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Abstract

Automatic theme-based playlist generation systems often fail to replicate the quality of expert human cu-
ration. While Reinforcement Learning (RL) offers a framework for this sequential task, its effectiveness
is limited by the challenge of designing reward functions that capture the knowledge of professional
curators. This thesis introduces and evaluates a methodology to bridge this gap by using Large Lan-
guage Models (LLMs) to translate curatorial principles, gathered from expert interviews, into dense
reward function code. The main aim of this research is to determine if LLMs can effectively interpret
the complex strategies of professional curators and, in turn, guide an RL agent to produce playlists that
adhere to expert standards.

To investigate this, we interviewed music experts and then used LLMs to create reward functions in
two ways: one from a concise summary of the interviews and another from the complete raw tran-
scripts. These reward functions were used to train a RL agent for playlist generation. The agents’
performances were then evaluated for recommendation accuracy and alignment with the expert’s cu-
ratorial style, and compared against two baselines: a similarity-based model and an RL agent with a
hand-crafted reward function

The results showed that, the impact of the addition of the interview summarization step on the mod-
els’ recommendation accuracy depended on the LLM, with the GPT-based model showing a significant
increase in accuracy, while the Gemini-based model’s performance remained consistent across both in-
puts. Furthermore, qualitative analysis of the generated reward functions revealed that the summarized
transcripts resulted in high-level reward factors consistent across all the LLMs, whereas raw transcripts
resulted in more varied and granular reward factors. Additionally, the choice of LLM impacted the final
reward structure and the agent’s subsequent performance. When compared against the baseline mod-
els in the cold-start scenario, RL agents guided by LLM-generated rewards significantly outperformed
both the manually-tuned RL baseline and the non-RL similarity-based model. However, in seeded
playlist continuation tasks, this performance hierarchy changed, with the simpler similarity-basedmodel
achieving higher recommendation accuracy.
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1
Introduction

Music playlists, which are a list of songs organized around a theme, mood, or style, have reshaped
how listeners discover and enjoy music in the digital era. Studies have shown that playlists account for
a substantial portion of music streaming time in various streaming platforms, thereby increasing mu-
sic consumption and growth of these platforms[1, 2]. Streaming services, recognizing this shift, have
positioned playlists as a primary mode of music discovery and consumption. Central to the appeal of
these streaming platforms is personalization, with users increasingly seeking experiences tailored to
their tastes [3, 4].

Historically, professional music editors, often working at record labels, radio stations, or streaming
services, have hand−picked tracks for flagship playlists. These experts are good at weaving tracks
together to evoke specific moods, tell stories, or introduce listeners to new, fitting music within a par-
ticular theme [5]. This “expert touch“, often driven by years of experience, cultural understanding, and
deep musical knowledge, is highly valued. However, manual expert curation is time-consuming and
difficult to scale to meet the ever-growing demand for diverse, themed playlists [6, 7]. By contrast,
largescale streaming algorithms typically rely on quantitative signals such as past play counts, skip
rates, or metadata similarity. These systems optimize for short-term engagement: keep the user lis-
tening, minimize skips, and maximize “time spent“. However, purely algorithmic approaches to playlist
generation often fall short in replicating the nuance and quality of human expert curation [8]. For in-
stance, flagship editorial playlists on major platforms, e.g. Rap Caviar on Spotify, often retain immense
popularity, underscoring the continued importance of human insight alongside algorithmic recommen-
dations [9]. These systems can struggle to create truly engaging playlists, often reinforcing existing
preferences, leading to “filter bubbles“ [10] and limiting musical diversity and homogenizing listening
experiences over time [11, 12].

The challenge lies in capturing the tacit knowledge that guides human experts. Professional curators
rely on years of musical experience, cultural context, and instinctive judgments. Much of this expertise
is tacit—that is, it lives in their heads as intuitive, unspoken rules rather than explicit checklists. These
explanations are rich in natural language but difficult to translate directly into numbers or code [13]. In
fields like knowledge engineering, this challenge is known as the “knowledge acquisition bottleneck”
[14, 15].

Reinforcement Learning (RL) [16] offers a promising framework for this problem. RL is a branch of ma-
chine learning in which an “agent“ learns to make sequential decisions through trial and error, guided
by a numerical reward function [17]. Over time, the agent explores different actions, receives feedback
(positive or negative rewards), and adjusts its strategy to maximize the cumulative reward. Unlike static
recommendation methods which focus on user−specific metrics (e.g., likes, skips, play) [18] and song
metadata [19] for immediate rewards, RL can optimize for long-term objectives, such as recommending
items that might give smaller immediate rewards but could result in better cumulative rewards over time
[20].

1



1.1. Research Questions 2

Traditional approaches to reward design in RL are often manual, relying on hand-crafted rules or pre-
defined quantitative metrics. However, RL systems often face the reward design problem, where de-
signing a good reward for a creative domain can be notoriously difficult [21]. Such methods may fail
to capture the subtleties of human preferences or expert logic, potentially leading to misaligned agent
behavior [22]. A system rewarded solely for maximizing listens or minimizing skips might learn to cre-
ate bland, predictable playlists filled with popular hits, failing to capture the novelty and narrative that
human curators provide. The quantitative objective (e.g., maximize play count) does not fully capture
the qualitative goal (e.g., create a thematically resonant playlist).

The difficulty of translating qualitative goals into quantitative rewards has led to the exploration of Large
Language Models (LLMs) as a potential solution. Recent advances have demonstrated LLMs’ ability
to understand, process, and structure information from free-form human language [23]. Their capacity
to translate natural language inputs into formal representations like code or logical rules has been suc-
cessfully applied in various domains [24, 25]. While more recent research has explored using LLMs to
generate reward functions in fields like robotics and gaming [26, 27], this approach remains unexplored
for music playlist generation and other creative domains like narrative generation, where expert tacit
knowledge plays a significant role.

1.1. Research Questions
The challenge of integrating music playlist curators’ tacit knowledge into automated systems motivates
this thesis. We aim to explore how the tacit knowledge of music curators can be captured within a
RL-based framework for playlist generation. This thesis is therefore driven by the following central re-
search question:

RQ: How can we integrate expert playlist curators’ knowledge into a RL system to generate
theme-based playlists that reflects experts’ curation standards?.

To provide a comprehensive answer, we further split our research question into two primary sub-
questions:

• RQ1: How canwe leverage LLMs to interpret professional curators’ natural language expla-
nations and generate executable dense reward function code for playlist creation? LLMs
been effective in generating code from natural language. This question investigates LLMs ability
to convert music experts’ tacit knowledge into dense reward function code.

• RQ2: To what extent can an RL-based system that, guided by these expert-informed re-
ward functions, generalize to create theme-based playlists that reflect expert curation prin-
ciples? Building on the first question, this question evaluates the performance of the RL agent
trained on LLM-generated reward functions. It assesses whether an RL agent, guided by these
rewards, can learn a policy that generates playlists reflecting professional standards. The perfor-
mance of this agent is benchmarked against existing baseline models on the playlist generation
task.

To address these questions, this thesis puts forth and evaluates a proposed solution: a system
that integrates human expertise, LLMs, and RL. This system is developed and contextualized within
XITE, an music video platform that relies on a team of experts for music playlist curation. Our proposed
methodology involves eliciting playlist curation strategies through interviews with these experts, which
are then translated by an LLM into a dense reward function. This expert-derived reward guides an
RL agent to learn sequential playlist generation. We posit that LLMs can effectively formalize qualita-
tive expert knowledge from interviews into reward function, allowing RL agents to learn expert-aligned
playlist generations strategies.

Through our research, we make the following main contributions:

• We introduce a methodology for translating tacit expert knowledge into computable reward func-
tions for RL agents. This approach uses semi-structured interviews to elicit qualitative principles
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from domain experts and leverages LLMs to automatically generate structured, multi-component
reward code.

• We conduct a comparative analysis of two different knowledge processing pipelines for reward
generation: one based on high-level, verified summaries of expert interviews and another using
the anonymized, raw interview transcripts. Through our findings, we reveal a trade-off between
the consistency of rewards derived from summaries and the granular, creative heuristics captured
from raw text.

• We propose and implement a comprehensive, two-part evaluation framework for playlist gen-
eration systems. This framework assesses not only the alignment with ground-truth data using
standard metrics (e.g., NDCG, Precision) but also evaluates the behavioral alignment of the agent
by comparing the characteristics of generated playlists (e.g., Flow, Diversity, Novelty) against a
quantitative ”expert profile”.

• We perform an empirical investigation into the application of different foundational LLMs (GPT-4,
Gemini Pro, Claude) for the specific task of reward function generation for RL agents. The results
provide insights into how model choice influences the structure and focus of the resulting reward
functions.

1.2. Thesis Structure
This thesis is organized into seven chapters. Chapter 2 introduces the foundational concepts that would
be used in the thesis such as RL, reward design problem, LLMs and existing evaluation methods.
Chapter 3 goes into the existing research in music recommender systems, RL for recommendation,
LLMs for knowledge extraction, and methods of eliciting tacit expert knowledge. Chapter 4 describes
our proposed methodology, firstly exploring expert knowledge elicitation and the LLM-based pipeline
that transforms interview transcripts into formal reward components. We then detail the design of the RL
framework, including state/action representations, and the agent training process. Chapter 5 outlines
our experimental setup: datasets, models being compared, implementation details, and the metrics
used for the evaluations. Chapter 6 presents empirical results from the experiments demonstrating
how well our system captures expert curation principles and compares to baselines. Chapter 7 details
the broader implications of our results as well as the limitations of our work. Finally, Chapter 8 concludes
by summarizing key findings and presenting directions for future research.



2
Background

2.1. Playlist Generation and Music Recommender Systems(MRS)
Music playlists are curated sequences of songs (tracks) designed to fulfill specific target characteris-
tics, such as evoking a mood, adhering to a genre, or fitting a particular context [28]. In the current
streaming landscape, they represent a primary mode of music discovery and consumption, accounting
for over 30% of listening time [1, 29]. As given in [28], playlist generation is defined as:

”Given (1) a catalog of songs, (2) background knowledge, and (3) some target characteristics of the
playlist, construct a sequence of songs fulfilling the target characteristics in the best possible way.”.

The target characteristics usually indicate a theme that the songs in the playlist should adhere to. For
instance, it could be based on a mood (’Happy Hits’) or based on an artist (’Coldplay’) or genres(’Jazz’).

Music recommender systems have evolved significantly, moving from traditional collaborative and
content-based filtering to more sophisticated deep learning and graph-based approaches, increasingly
incorporating multiple modalities of information to better understand user preferences and item char-
acteristics [30]. A survey on music information retrieval (MIR) research on playlists done by Gabbolini
et al. [31], categorized playlist generation two primary methodologies: Automatic Playlist Generation
(APG) and Manual Playlist Generation (MPG) and further distinguished between playlists generated for
individuals and for groups, based on the target audience. APG, which involves constructing a playlist
via an algorithm, significantly reduces the time and effort of manual curation. A common task within
APG is Automatic Playlist Continuation (APC), where an algorithm extends a playlist from a set of ini-
tial ’seed’ tracks. The objective of these automatic methods, however, shifts depending on the target
audience. When generating a playlist for a group of users (APG-G), for instance, the system must
prioritize songs with a more general appeal that cater to the preferences of multiple members, rather
than a single individual.

Various playlist generation methodologies have been explored, including similarity-based algorithms,
collaborative filtering, content-based filtering and context-aware methods. Similarity is often derived
from song content [32], metadata [33], tags, manually curated playlists, listening logs, and user ratings.
Collaborative filtering (CF) techniques leverage historical user interactions to recommend songs based
on preferences of similar users [34], while content-based(CB) approaches focus on analyzing audio fea-
tures and metadata [19]. Context-aware methods consider additional factors such as user activity[35],
mood[36], location of the user [37], or time of the day[38] to enhance playlist relevance. More recent
advancements in MRS include deep learning techniques such as Autoencoders, RNNs[39], CNNs for
audio feature extraction[40], graph-based methods like GNNs [41], node2vec [42, 43], and Session-
Based Recommender Systems (SBRS) [44]. Despite these, many systems still generate playlists opti-
mized for immediate engagement, potentially lacking in long-term satisfaction or narrative coherence.

4



2.1. Playlist Generation and Music Recommender Systems(MRS) 5

2.1.1. The Role of Expert Curation
While algorithmic recommendations are scalable, the value of human expertise in playlist curation re-
mains significant. Music experts, or curators, leverage deep domain knowledge, cultural context, and
an intuitive understanding of musical aesthetics to create compelling listening experiences [5, 45]. This
”expert touch” is difficult to replicate with algorithms that primarily optimize for explicit engagement met-
rics like play counts or skip rates. Experts often start with a core set of songs and filter and arrange them
to fit a theme, relying on their memory and experience where metadata is insufficient [46]. This quali-
tative, nuanced process has often resulted in highly popular and influential ”flagship” playlists on major
streaming platforms, demonstrating that human insight is a critical component of perceived playlist
quality [9, 47].

2.1.2. The Importance of Song Sequencing
The order in which songs appear in a playlist can impact the listener’s experience and the playlist’s
perceived coherence. Effective sequencing is not just grouping similar tracks but involves creating a
narrative or emotional arc [48, 28]. Smooth transitions between tracks, whether in tempo, energy, or
mood, are known to significantly increase user satisfaction. Research into manually curated music
albums reveals that artists often employ specific sequencing patterns, such as starting with higher-
energy tracks and then alternating mood to prevent listener fatigue [49]. While that the exact ordering
of songs does not drastically affect raw recommendation metrics, studies suggest that considering
the context and properties of each track significantly improves next-song prediction and, by extension,
user satisfaction [50]. Moreover, analyses of user-generated playlists confirm that adjacent tracks share
stronger audio-feature similarity than random pairs, underlining the importance of sequence-awareness
in playlist generation systems [51]. In short, a good playlist generation system must not only select the
right songs but also arrange them in an engaging sequence.

2.1.3. Playlist Completion Task
The playlist completion task, often referred to as Automatic Playlist Continuation (APC), requires ex-
tending a partially-observed playlist by predicting the next k tracks that best fit the original theme or
listening context. Formally, given a seed (initial) sequence of N tracks (s1, s2, . . . , sN ) drawn from a
catalog C, the goal is to produce an ordered list of k additional tracks (sN+1, . . . , sN+k) such that the
completed playlist maximizes song selection accuracy. This problem has been benchmarked in the
RecSys 2018 Challenge on music playlist continuation [52] to evaluate the performance of different
playlist generation systems.

The playlist completion task, often referred to as Automatic Playlist Continuation (APC), is a core
problem in music recommendation. It challenges a system to extend a partially-observed playlist by
predicting the next k tracks that best fit its original theme or listening context. Formally, given an
initial ”seed” sequence of N tracks (s1, s2, . . . , sN ) from a song catalog C, the objective is to generate
an ordered list of k additional tracks (sN+1, . . . , sN+k) that matches the songs present in the playlist
considered as the ground-truth (reference-set). Due to its practical relevance and clear evaluation
criteria, this task has become a standard benchmark for evaluating the performance of different playlist
generation systems, notably in challenges like the RecSys 2018 Challenge [52].

Cold-Start in Playlists. A key difficulty in APC, and recommender systems in general, is the cold-
start problem. This occurs when the system has insufficient data to make reliable inferences about
user or item preferences [53, 54]. Without historical data, collaborative filtering approaches fail, forcing
the system to rely on other signals. In playlist generation, this problem manifests in two primary ways:

• User cold-start: This refers to a situation where a new user interacts with the system. Lacking
any listening history or explicit preferences for that user, the system cannot personalize recom-
mendations effectively and may resort to suggesting globally popular or generic content.

• Playlist cold-start (seedless): This occurs when a playlist is generated from scratch, without
any initial seed tracks to establish a context. The system must infer the intended theme solely
from other available information, such as a playlist title or a brief description.

In both cold-start scenarios, the system’s ability to produce relevant recommendations is severely
hampered. Overcoming this often requires leveraging content-based signals, such as audio features,
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lyrical content, or other metadata, to bridge the information gap [28].

Seedless vs. Seeded Playlist Generation. The APC task is typically evaluated in two distinct modes,
each presenting a different set of challenges for the generation model:

1. Seedless Generation: In this mode, also known as N = 0 generation, the model must create
a complete playlist of length k without any initial seed tracks. This evaluates the performance
against the cold-start problem, as the model must rely entirely on abstract, high-level side in-
formation (e.g., a playlist title like “90s Pop“ or a user profile) to infer the intended theme and
generate a coherent sequence from nothing [28]. Success in this task demonstrates a system’s
ability to select and rank songs in accordance to a reference playlist.

2. Seeded Generation: In this mode, also known as N > 0 generation, the model is provided with
the first N tracks of a playlist and is tasked with continuing the sequence by predicting the next
k tracks. This shifts the problem from pure generation to contextual inference. The model must
analyze the provided seed tracks to understand the established theme and then adapt its rec-
ommendations accordingly to create a seamless continuation [52]. The quality of the generated
playlist in this scenario is highly dependent on the system’s ability to accurately predict the next
tracks based on the context provided by the seed.

2.2. Reinforcement Learning
RL is a sub-field of machine learning where an agent learns to make optimal decisions through direct
interaction with an environment. The agent’s goal is to maximize a cumulative numerical reward signal
it receives over time [16]. This process of sequential decision-making is formally modeled as a Markov
Decision Process (MDP). An MDP is defined by the tuple (S,A, P,R, γ), where:

• S is the set of possible states the environment can be in. A state s ∈ S provides a complete
description of the environment at a single point in time. The state space can be either discrete or
continuous.

– Discrete State Space: A finite or countably infinite set of distinct states. An example use
case would be a robot navigating a maze, where the state would be the agent’s specific
location on the grid. For a finite number of states N , the space is written as:

S = {s1, s2, . . . , sN}

– Continuous State Space: An infinitely large set of states, typically defined as a subset
of a multidimensional Euclidean space. An example application would be a self-driving car
where the state is a high-dimensional vector composed of continuous variables like the car’s
exact speed, steering angle, and so on. Formally, it is written as:

S ⊆ RDS

where DS ∈ N is the dimension of the state space.

• A is the set of all possible actions that an agent can execute. An action a ∈ A is a choice made
by the agent. Like the state space, the action space can be discrete or continuous.

– Discrete Action Space: A finite set of distinct actions. A typical use case would be making
a robot navigate through a maze, with its possible actions would be to move ’up’, ’down’,
’left’, or ’right’. For a finite number of actions M , this is written as:

A = {a1, a2, . . . , aM}

– Continuous Action Space: An infinite set of actions described by real-valued vectors. This
is generally used in tasks like controlling the steering angle of a car. Formally, it is repre-
sented as a subset of a Euclidean space:

A ⊆ RDA

where DA ∈ N is the dimension of the action space.
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• P (s′ | s, a) is the transition probability function, indicating the probability of moving to state s′ from
state s after taking action a. This transition can be deterministic, meaning taking a specific action
in a state always leads to the same next state or non-deterministic (or stochastic) environment
which involves randomness in the state transition.

• R(s, a) is the reward function, which returns a numerical reward after taking action a in state s.

• γ ∈ [0, 1] is the discount factor, balancing the importance of immediate versus future rewards.

The agent’s decision-making strategy is called a policy, denoted by policy π(a | s), which maps each
state s to a probability distribution over actions. The goal of reinforcement learning is to find an optimal
policy π∗ that maximizes the expected cumulative discounted reward:

π∗ = argmax
π

Eπ

[ ∞∑
t=0

γt R(st, at)
]
.

Policies may be on-policy, where learning is based on actions taken by the current policy, or off-policy,
where learning can leverage actions generated by a different (e.g. historical or exploratory) policy. RL
has gained a lot of traction since studies have shown that an RL agent can perform extremely well in
online gaming environments like chess [55], real-world simulations such as Gran Turismo Sport [56].

2.2.1. RL Algorithms and Proximal Policy Optimization
One of the more influential factors when training an RL agent can be the choice of training algorithm.
Before explaining the algorithm used in our research, we briefly introduction into the different kinds of
RL algorithms. An non-exhaustive taxonomy of algorithms is provided in Figure 2.1.

Figure 2.1: A non-exhaustive taxonomy of algorithms in RL. Img Source: [57]

While dividing the RL algorithms, one of the most prominent questions is whether there is some
kind of function (or model of the environment) available that can help the agent in predicting the state
transitions and rewards (model-based and model-free). In most cases, model-free algorithms are cho-
sen over model-based, since access to ground-truth model (or learning the model) of the environment
is usually difficult or can induce bias in the agent [58].

RL algorithms can be broadly categorized into value-based and policy-based [16]. Value-basedRL algo-
rithms like Q-Learning, State-Action-Reward-State-Action (SARSA), Deep Q-Networks (DQN), learn a
value function that estimates the expected cumulative reward from each state or state-action pair. While
these methods are often easier to implement, they tend to struggle in continuous or high-dimensional
action spaces, since policy is determined by selecting actions that maximize the estimated value. Policy-
based RL methods (Proximal Policy Optimization (PPO), Trust Region Policy Optimization (TRPO)), on
the other hand, directly try to learn the policy by the policy’s parameters (which map states to actions),
to maximize expected return. In recommender systems, policy-based approaches [59, 60, 20] are
generally preferred over value-based approaches in large state-action spaces, since they evaluate the
policy instead of calculating the value over all actions. Proximal Policy Optimization (PPO) [61] is a pol-
icy gradient algorithm that has gained popularity for large-scale tasks, since it is less computationally
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demanding than other policy-gradient algorithms and can be applied to both discrete and continuous
environments [62, 61]. The core of PPO is its policy objective, which aims to create a strategy that
leads to higher rewards.

2.2.2. Large Action-Space Problem in RL
A significant challenge in applying RL to recommender systems is dealing with vast, discrete action
spaces [59]. The set of possible actions (e.g., the entire catalog of songs) can easily number in thou-
sands, resulting in the agent having to explore millions of state-action pairs. This makes exploration
inefficient and policy learning computationally expensive. This computational expense arises from the
lengthy hyperparameter search followed by several full training runs of the RL agent, each demanding
typically millions of timesteps to ensure the agent’s policy is both effective and statistically reliable. Ad-
ditionally, previous studies like [63] have shown that it is difficult to design variable action spaces for
different states. Several strategies exist to manage this:

• Invalid Action Penalty: Assigning a negative reward for invalid actions [64]. This is often ineffi-
cient as the agent must first learn to avoid these penalties through trial and error, which does not
scale well.

• Action Space Shaping: Reducing the action space by removing non-useful actions or discretiz-
ing a continuous space [65, 63]. A downside to this approach is that it can be difficult to implement
without losing potentially optimal actions [59].

• Invalid Action Masking: This is a more direct and effective approach where the probabilities
of all invalid actions for a given state are masked (i.e., set to zero) before the action selection
step [66]. This strictly prevents the agent from selecting invalid actions (like a song already in the
playlist or a song that does not fit the theme). This technique has been successfully applied in
complex domains with large discrete action spaces, such as real-time strategy games [67, 68],
and is the most suitable method for our task as it directly prunes the decision space to only valid
candidates at each step.

2.2.3. Reward Design Problem in RL
The reward function is the most critical component in an RL system, as it defines the task and guides
the agent’s behavior. The principle of ”reward is enough” posits that the maximization of a well-defined
reward signal can lead to the emergence of all desired intelligent behaviors [22], while an inadequately
defined reward signal can negatively impact the agent’s performance [69]. However, designing such a
function, a process known as reward engineering, is notoriously difficult [21].

Reward functions are typically classified into two types:

• Sparse Rewards: Feedback is provided infrequently, often only upon completion of the entire
task (e.g., a final score for a complete playlist). This makes learning very difficult, as the agent
struggles to attribute a final outcome to the long sequence of actions that led to it. This is known
as the credit assignment problem. Techniques like Hindsight Experience Replay (HER) have
been developed to help agents learn from unsuccessful attempts in sparse reward settings [70].

• Dense Rewards: Feedback is provided at each step, guiding the agent with more frequent signals.
This generally accelerates learning but carries the risk of specifying a flawed reward that leads to
unintended ”reward hacking,” where the agent optimizes the proxy metric without achieving the
true goal [69]. For instance, a reward for song popularity might lead to playlists that are popular
but lack novelty or coherence. Manually crafting dense rewards that capture nuanced human
preferences has been a significant challenge [71].

2.3. Tacit Knowledge Elicitation and LLMs
Expertise, particularly in creative domains like music curation, is heavily reliant on tacit knowledge.
This form of knowledge, as defined by philosopher Michael Polanyi, is knowledge that we “know more
than we can tell“ [72, 73]. It is deeply personalized, context-dependent, and acquired through years of
experience and practice, making it difficult for experts to fully articulate or codify into explicit rules [14,
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15]. This challenge of converting tacit knowledge into an explicit, computable format is a well-known
problem in knowledge engineering, often referred to as the “knowledge acquisition bottleneck“.

Several techniques exist to elicit tacit knowledge, with interviews being a cornerstone method [73].
These can range from unstructured conversations to highly structured questionnaires. For capturing
the nuanced, subjective logic of experts, semi-structured interviews are particularly effective [74, 75].
This format uses a set of guiding questions but allows the interviewer the flexibility to probe deeper,
ask follow-up questions, and explore other sub-topics within the same area of concern based on the
expert’s responses [76]. This balance of structure and freedomworks well for uncovering the underlying
”why” behind an expert’s decisions, making it a powerful tool for understanding the tacit dimensions of
creative processes [77, 78].

2.3.1. Large Language Models(LLMs)
Large Language Models (LLMs) are a class of deep learning models, most commonly based on the
transformer architecture [79], that are pre-trained on vast quantities of text and code [80, 81]. This
extensive training enables them to acquire a sophisticated understanding of grammar, syntax, seman-
tics, and real-world concepts. Models like OpenAI’s GPT-4 [82], Google’s Gemini [83], and Anthropic’s
Claude [84] have demonstrated remarkable capabilities in understanding, generating, and reasoning
about human language.

Their ability to process unstructured text makes them uniquely suited to bridging the gap between
qualitative human knowledge and quantitative computational systems. LLMs can analyze interview
transcripts, identify thematic patterns, and even translate natural language descriptions of a task into
formal, structured representations like code or logical rules [85, 24, 86]. While they differ in their specific
architectures, training data, and fine-tuning methods (e.g., Gemini’s native multimodality or Claude’s
training with ”Constitutional AI”), their core strength lies in capturing the rich context and intent embed-
ded in human language, thereby offering a promising solution to the knowledge acquisition bottleneck.

2.4. Knowledge Graphs and Node2Vec
A knowledge graph (KG) is a structured representation of information where entities (nodes) are con-
nected by their relationships (edges). In the music domain, a KG can represent songs, artists, genres,
and decades as nodes, with edges representing relationships like ”performed by,” ”belongs to genre,”
or ”released in decade” [64]. This creates a rich, interconnected network of musical knowledge.

To leverage this structure for machine learning, we need to convert the nodes into low-dimensional
numerical vectors, or embeddings. Node2vec is a powerful algorithm for this task [43]. It generates
embeddings by simulating biased random walks on the graph. The algorithm uses two parameters, p
(return parameter) and q (in-out parameter), to control the walks. A low p encourages thewalk to explore
new nodes, while a low q keeps the walk localized. By exploring diverse neighborhoods, node2vec cap-
tures both local community structure (homophily) and broader structural roles of nodes. The sequences
of nodes generated by these walks are then fed into a Skip-gram model, similar to Word2Vec, to learn
the final embeddings. In recommendation systems, these embeddings have proven highly effective for
tasks like finding similar items or users, often outperforming traditional baselines [42, 87].

In the domain of recommendation systems, node2vec can be employed to generate embeddings for
users and items based on their interaction graphs (e.g., user-purchase histories, user-rating data).
These embeddings can then be used to suggest relevant items to users or to find similar users and
has been shown to outperform collaborative filtering baselines and other graph embedding methods in
terms of recommendation accuracy [42, 87].

2.5. Statistical Significance Testing
In empirical research, statistical significance testing is essential to determine if observed differences
in model performance are genuine or simply due to random chance. The process involves formulating
a null hypothesis (H0), which assumes no true difference exists, and then calculating a p-value, indi-
cating the probability of observing the results if the null hypothesis were correct. If this p-value falls
below a predefined significance level (α), typically 0.05, the null hypothesis is rejected, and the result
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is deemed statistically significant.

The choice of statistical test depends on the data’s characteristics. When comparing two models on
the same set of evaluation instances, the performance scores are paired. If the differences between
these pairs cannot be assumed to follow a normal distribution, a parametric test like the paired t-test is
inappropriate. In such cases, the non-parametric Wilcoxon signed-rank test is the appropriate method
to assess these differences [88]. It tests the null hypothesis that the median difference between paired
observations is zero, without making strong assumptions about the underlying distribution of the data.

Another challenge that emerges is the multiple testing problem, where conducting numerous pairwise
comparisons across multiple models increases the likelihood of a “false positive“. To mitigate this, a
correction for multiple testing, such as the Benjamini-Hochberg (BH) procedure controls the False Dis-
covery Rate (FDR) [89]. The FDR is the expected proportion of claims of significance that are actually
false. By adjusting the raw p-values from the entire family of tests, the BH procedure ensures that our
overall findings remain statistically reliable.



3
Literature Review

This chapter examines prior literature related to the application of RL for music playlist generation. The
analysis is structured to establish the suitability of RL as a sequential decision-making framework for
this task. We cover foundational and more recent models, while focusing on the critical approaches to
reward engineering, state representation, and action space management. By examining the method-
ologies, strengths, and limitations of existing approaches, we focus on gaps that we aim to address
through our work.

3.1. RL-based Playlist Generation Systems
In this section, we cover the existing works that have been done in RL in the context of playlist genera-
tion systems. Central to any RL application is the formal definition of its environment, which influences
the information provided to the agents and as a result the actions it would pick in a given state. This
section delves into how the state and action spaces, are represented in existing literature of playlist
generation systems, reviewing various strategies that researchers have employed to model a playlist
and the catalog of candidate songs.

3.1.1. State-Action Space Representation
Reinforcement learning (RL) offers an alternative to traditional methods by learning playlist generation
models that directly optimize user satisfaction through interaction[90]. The efficacy of an RL agent
depends significantly on how its environment, particularly the state and action spaces, is defined and
represented. In context of playlist generation, previous works have explored a variety of representa-
tions. The state which encapsulates the current listening context, has been encoded as sequences of
track identifiers or song embeddings [39, 90], song-feature summaries [91], or enriched embeddings
from knowledge graphs [92].

The action space on the other hand consists of the candidate pool of songs to choose the next track
from, typically represented by a discrete song id [39] or its feature/embedding vector [92]. However,
this presents a challenge when the agent must choose from thousands of potential songs in a discrete
action space. For example, a study by Dulac-Arnold et al. [59] addressed the challenge of large ac-
tion spaces in RL by embedding actions in a continuous space using prior information. This approach
allowed for generalization across similar actions and leveraged approximate nearest-neighbor (NN)
methods to achieve logarithmic-time lookup complexity. This principle can be applied to playlist gener-
ation by representing songs in an embedding space where similar songs are located near one another.

Another notable method is the combination of hierarchical clustering with Q-learning proposed in [93],
where clusters of songs serve as states rather than individual songs. This hierarchical approach al-
lows for scalability in large libraries (100–1,000 songs) and has been shown to outperform baseline
shuffle-mode systems. By focusing on audio characteristics instead of metadata, this method improves
performance in offline settings without requiring explicit user input. However, this requires finding the
similarity between songs and determining the right value for the number of clusters. Determining the
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similarity between songs can be subjective [31]. Simple metadata alone often fails to adequately deter-
mine whether a song fits the current state of a playlist in terms of genre, tempo, or mood[46]. Additional
information such as the lyrics and audio characteristics could help understand the type of message the
song is trying to convey. Song similarity can be measured using Mel-Frequency Cepstral Coefficients
(MFCCs), learned embedding representations, metadata, or expert annotations. Knowledge graphs,
where songs and metadata are represented as nodes and their relationships as edges, have also been
used to model song similarity [94, 92]. These approaches enable a more nuanced understanding of
how songs are related to one another.

3.1.2. Approaches Addressing Cold-Start Problem
As persistent challenge in playlist generation is the cold-start problem, previously introduced in 2. Oord
et al. [40] proposed applying deep convolutional neural networks (CNNs) to the raw audio of songs
to tackle the cold start problem for newly release songs which did not have enough user-interaction
data or meta tags. By learning a representation directly from the audio signal, their model was able
to recommend new songs that have no listening data, effectively solving the item cold-start problem.
However, it does not solve the user cold-start problem, as it has no information about a new user’s pref-
erences. Additionally, since the model is trained to predict factors from a collaborative filtering system,
it can cause popularity biases and not necessarily incorporate the theme of a playlist.

For the specific challenge of playlist continuation when the starting songs are few or unpopular, la-
tent factor models offer a different solution. Yürekli et al. proposed using Latent Semantic Indexing
(LSI) on a song-playlist matrix to find hidden relationships between tracks [54]. This technique improves
recommendations in sparse data situations by inferring connections between songs that may not have
appeared together before. While this alleviates the issue, it does not solve it entirely, as this approach
treats a playlist completion as at “set-problem“ meaning it does not consider the sequencing of songs.

Addressing a more extreme case, seed-free generation, requires a different approach where a playlist
is created from scratch. Li et al. proposed a generative model that learns the characteristics of well-
formed playlists and can generate a new one based on high-level constraints like a requested genre
or theme [95]. This directly tackles the problem of starting a playlist with no initial song. The main
limitation is that, like the LSI model, this approach also tends to overlook the importance of sequence.
Furthermore, its effectiveness relies heavily on the quality and completeness of the metadata tags used
for conditioning, which could be an issue when there is lack of good metadata.

3.2. Graph-embedding (Node2Vec) in Music Recommendation
For playlist generation system, one of the more common issues lie when user-data is sparse, and when
the metadata present in the song-database is limited, which the number of distinct values for each at-
tributed not being enough to distinguish between songs. In such instances, knowledge graph can be a
good way to capture information about the songs and relation between other song based entities like
decade, genre, artists and so on. Graph-based embeddings have been used extensively to capture
relationships between songs, artists, genres, and user preferences in music recommender systems
[92, 41]. These embeddings allow for modeling rich semantic and structural connections, particularly
in cases where the songs’ metadata alone is insufficient for expressing user intent or song similarity.

One of the baselines for our work in representation of the songs and the RL agents state space is
the Node2Vec model being used in [96]. Here, a collaborative knowledge graph (CKG) is constructed
where songs, artists, genres, subgenres, decades, and curated playlists are all nodes, with edge
weights reflecting the relative importance of each relation (e.g. song–genre, song–artist, song–playlist).
To capture not only these metadata relationships but also acoustic similarity, they augment the CKG
with direct song–song connections. For each track, they generate audio embeddings using pre-trained
MULE (Musicset Unsupervised Large Embedding) [97], which was trained on log-mel spectrograms us-
ing a SimCLR contrastive objective over a massive Musicset corpus. For determining the connections
to other songs, they used Faiss to find its ten nearest neighbors in a high-dimensional audio-embedding
space, then added edges whose weights are set in proportion to the cosine similarity between theMULE
embeddings. This allowed the model to traverse directly between sonically similar tracks, bypassing
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intermediate nodes like genre or artist. The edge weights itself was determined through scaling the
edge weights, one can control exactly how much the audio features influence the graph structure.

Figure 3.1: Graph schema for the full CKG with occurrence counts. Img Src: [96]

Node2Vec [43] is then applied to learn low-dimensional embeddings for every node in this enriched
graph. For generating playlists using the Node2Vec model, the incomplete playlist at each step is rep-
resented by the sequence of its song-node embeddings. The next track is then chosen by finding the
nearest neighbors of the last song’s embedding and greedily extending the playlist. This simple neigh-
bor chaining policy implicitly enforces both metadata and acoustic coherence. The obtained Node2Vec
embeddings encode both song metadata and audio similarity, an approach we adopt as the backbone
of our RL agent’s state representation. On the playlist completion task, the Node2Vec model performs

3.3. Reward Function Formulation in Playlist Generation Systems
Traditional methods of reward function specification often rely on hand-crafted rules or predefined quan-
titative metrics, which does not effectively capture expert’s metrics. Hu et al. aimed to enhance playlist
generation by incorporating user feedback on recommendations into the reward function [98]. How-
ever, this method risks creating a feedback loop that could restrict users’ exposure to diverse content.

Authors Shih et al. model playlist generation as a language-modeling task refined by policy-gradient
RL [39]. Their agent is an attention-RNN language model (song sequences as “words“), optimized with
hand-crafted reward components. Specifically, they define four metrics (diversity, novelty, freshness,
coherence) and combine them as a weighted sum: for example, diversity is the Euclidean distance be-
tween track embeddings, novelty is inversely related to playcount, freshness penalizes older release
years, and coherence is the log-probability from the pretrained RNN. All reward terms are manually
designed and weighted for each user preference. As a result, the system can flexibly tune between
diversity or novelty, but it requires careful tuning of those metrics. In contrast, our approach avoids
manual reward coding by using LLMs to interpret expert-specific preferences from interview text.

Another recent example is from industry: Spotify employed a simulation-based RL to create playlists
for user satisfaction [90]. Here the state includes high-dimensional track features and user context; the
action is choosing the next track, and rewards are derived from a user-simulator (e.g. positive reward
if the simulated user plays a song, negative if skipped). They train a modified deep Q-network (“Action-
Head DQN“) in a model-based framework. This approach yields improved satisfaction metrics in offline
A/B tests, but depends on the accuracy of the user model. Like Shih et al., it relies on predefined, ex-
plicit reward signals (user-play behavior). Furthermore, the reliance on simulated user behavior may
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introduce a gap in capturing an playlist curators’ decision-making process. Other works have empha-
sized achieving smooth transitions between tracks by embedding acoustic similarity metrics into the
reward function [99, 94]. Despite these varied approaches, there is still no clear agreement in the field
regarding which reward function components yield the best results.

3.4. Natural Language to Reward Function
Recent studies have tried to address the issue of reward design in other RL-based tasks by introducing
new approaches, specifically including Large Language Models(LLMs), that make reward design eas-
ier and flexible. One such study explores how LLMs can be leveraged as proxies for reward functions,
converting textual descriptions of desired out- comes into quantitative signals [27]. This approach has
the potential to significantly streamline reward design by making it more intuitive and aligned with cu-
rators’ intention.

Building on [27], Xie et al. propose Text2Reward, which uses large language models to turn natural-
language goals into dense reward functions for RL [26]. Given a textual task description (e.g. “push
the chair to the marked position”), Text2Reward generates executable reward-code (in Python) that an
RL agent can use.

Figure 3.2: An overview of TEXT2REWARD pipeline proposed in [26]

They demonstrate this on standard benchmarks (robotic manipulation in ManiSkill2/MetaWorld and
locomotion in MuJoCo) and report that policies trained with the LLM-generated rewards perform on par
with expert-designed rewards. This approach is fully automated (no manual tuning of reward weights)
and operates on general control tasks with clear objective goals. We build upon their work in a more
domain-specific setting: we derive reward functions from interviews about musical taste, which are
more subjective and varied than the well-defined goals in Text2Reward. Thus, while Text2Reward
validates the idea of text-to-reward shaping in RL, its tasks and assumptions differ substantially from
playlist generation. Our method adapts the concept to a specialized music context, using interview text
to inform the reward rather than generic task descriptions.



4
Methodology

This chapter details the methodology employed to develop an RL-based system for generating music
playlists that align with expert curatorial standards. The core of our approach involves eliciting the
nuanced, often tacit, decision-making principles of professional music playlist curators, translating this
qualitative knowledge into a computable reward function to guide a RL agent for playlist generation.
The methodology is divided into two main phases:

1. Text to Reward: Capturing curator decision-making through semi-structured interviews, process-
ing the interview data and generating reward functions using LLMs via two input processing
pipelines: one using summarized transcripts and the other using raw transcripts.

2. Expert-Guided RL for Playlist Generation: Defining the environment within which the RL agent
learns, guided by the expert-informed reward.

4.1. From Text to Reward: Methodology for Eliciting Expert Knowl-
edge

This section details the first part of our methodology, which includes converting qualitative expert knowl-
edge into a reward function for training the RL agent. The approach begins with knowledge elicitation
through semi-structured interviews. It then outlines two pipelines for processing the interview data:
one using high-level summaries and the other using the raw transcripts. Finally, it describes how the
processed text is converted into a reward function and code which is further refined through a feedback
loop. Figure 4.1 givens an overivew of our text to reward process

15



4.1. From Text to Reward: Methodology for Eliciting Expert Knowledge 16

Figure 4.1: An overview of the methodology for converting expert interview transcripts into an executable reward function.

4.1.1. Expert Knowledge Elicitation: Interview Design
For the interview process, we interviewed 8 experts from the XITE music team, who are responsible for
curating various playlists on the platform. Each interview was conducted for an hour, resulting in 10-12
pages long transcripts per interview. Through the interviews, we tried to understand the experts’ thought
process, the factors considered, and the degree of importance given to each factor while selecting and
ordering songs for a given playlist. To ensure that the experts can be as descriptive as possible and
dive deep into their process while still guiding the discussion, we opted for a semi-structured format
as introduced in Section 2 for the interviews. The interviews were designed to determine how experts
balance factors like cohesion, diversity, smooth transitions, popularity, and so on. The interview protocol
was organized around four core themes:

1. Initial song selection strategies for a new theme.

2. Principles of sequencing and song-to-song transitions.

3. The role of diversity, popularity, song metadata, acoustics and novelty within a coherent playlist.

4. The practical workflow while curating a specific playlist.

The questions targeted to uncover the criteria that the experts consider while selecting the songs that
go into a specific playlist. For example, themes such as ”90’s pop” or ”80’s rock” were used as exam-
ples to elicit more general principles.
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The interviews were recorded and transcribed using the company’s internal tools: Google meet for
the recording and transcription of the interviews. The names of the participants and other named en-
tities (company names, artist names, client and countries) and any other PII (personally identifiable
information) mentioned during the interview were anonymized before proceeding with the analysis and
summarization.

4.1.2. Knowledge Processing: A Comparative Approach to Reward Generation
A central methodological question during this phase is determining the level of information granularity
required to generate a high-fidelity reward function from qualitative data. Should the LLM be provided
with a concise, high-level summary of expert principles, or should it reason over the full complexity and
nuance of the raw transcripts?

To investigate this trade-off, we designed and compared two distinct pipelines for converting the textual
data into a reward function.

Pipeline A: The Summarization-First Approach
This pipeline tests the hypothesis that a pre-processed, high-level summary allows the LLM to identify
core, consensual principles more effectively, reducing noise from individual and elaborate transcripts.

1. LLM-Powered Summarization: Traditional qualitative analysis methods like LDA often fail to cap-
ture deep contextual meaning [100]. Inspired by recent work [75, 101], we first employed an LLM
(Gemini Pro) to analyze and synthesize the anonymized transcripts from all eight experts into
a single, cohesive summary. The Gemini Pro model has demonstrated strong performance in
qualitative content analysis of interview data [102]. We used a zero-shot prompt instructing the
model to extract key principles, rules, and heuristics, grouping them into categories supported by
textual evidence.

2. Human-in-the-Loop Verification: Given LLMs’ tendency to hallucinate their responses, [103, 104],
the qualitative analysis and summary generated by the LLM was further verified manually, com-
paring it to the researchers’ key notes and original interview transcripts taken during the interviews,
to ensure that human insight was included in determining key information and correcting any infor-
mation that was misinterpreted by the LLM. This human-in-the-loop step was critical for refining
the output. Manual analysis of the provided summaries brought to light some discrepancies be-
tween the factors identified and the excerpts that served as base for the factors. For instance,
“Song Length Appropriateness“ was identified as one of the key factors, based on an excerpt
from one of the interviews, “A song of six minutes which is very very sad... maybe take that out
because we could lose people“. Additionally, there were repetitions in the factors identified. For
instance, identified factors like “Song’s adherence to primary genre/decade of the theme“ and
“Maintaining Genre Consistency“ point toward the same criteria, which could lead to redundan-
cies during the formulation of the reward function. Figure A.1 in the Appendix, shows a snippet of
The qualitative analysis generated by the LLM is Adding human-insight to final summary ensured
a more accurate representation of the experts’ collective knowledge by correcting the errors and
redundancies.

Pipeline B: The Direct-from-Raw Approach
This second pipeline operates on the hypothesis that providing the LLM with the complete, unsumma-
rized transcripts allows it to capture more subtle, varied, and potentially contradictory heuristics that
might be lost during abstraction. This approach trades the clarity of a summary for the variance of the
original data. In this pipeline, the full set of anonymized raw transcripts was concatenated and used as
the direct input for the reward generation step. The aim is to understand whether the LLM can process
inputs from all experts and give a more generalizable reward function that acts as a mixture of experts.

4.1.3. From Processed Text to Reward Function
The final step in both pipelines is the conversion of the processed text (either from Pipeline A or from
Pipeline B) into a computable reward function. Following a general approach inspired by Xie et al. [26],
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we engineered a detailed prompt that along with the inputs from Pipeline A or B, provided the LLM with
three categories of information:

1. Task and Persona Context: The prompt began by assigning the model the role of an expert in
RL and code generation and outlined the high-level goal of creating a RL-based agent to generate
playlists aligned with human expert standards.

2. Detailed Environment Specification: To ground the code generation task and ensure compat-
ibility with our existing framework, the prompt included the precise Python class definitions for
the RL environment. This included the structure of the state and action spaces, available song
metadata, and the mechanics of the action masking process which will be introduced in Section
4.2. Providing this concrete implementation detail was intended to minimize hallucination and
syntactic errors in the generated code.

3. Negative Constraints: The prompt explicitly included negative constraints to guide the model
away from redundant calculations. For example, specific instruction was provided to not include
a reward component for theme alignment, as this is already enforced by the environment’s action
masker which only permits theme-relevant songs to be selected.

4. Output Format: To ensure the output is structured and interpretable, the prompt specifies a
required format, instructing the model to provide the reward function as mathematical formula,
followed by a detailed explanation of each component and its corresponding weight, and finally,
to provide the logic within a predefined Python class structure.

4.1.4. Iterative Refinement and Code Execution:
Once the output is generated by the LLM, we implement an automated self-repair execution loop on the
generated reward code, a technique validated in prior works on code generation [25, 105]. The LLM’s
initial code is executed in a sandboxed interpreter. Any resulting stderr traceback is captured and used
as feedback to prompt the model for a correction. The feedback prompt contained the original code
that failed, the captured error traceback, and an instruction for the LLM to debug the code and provide a
corrected version. This iterative refinement process was repeated until the code was free of syntax and
runtime errors. The initial code generated by the LLMs frequently contained a predictable set of errors,
most commonly involving mismatches in song metadata column names, incorrect variable references,
and data type conflicts. The self-repair process thus ensured that the final code on which the RL agent
was trained was not only syntactically correct but also avoided runtime exceptions.

4.2. Reinforcement Learning for Playlist Generation
The playlist generation process is framed as a Markov Decision Process (MDP), where the state rep-
resents the current playlist and attributes of the included songs. This chapter details the design of this
MDP, including the definitions of the state and action spaces, the formulation of the reward signal, and
the specifics of the training algorithm and experimental setup. The overall training loop is depicted in
Figure 4.2.

4.2.1. State and Action Space Representation
An important design choice is how to represent the current state of the playlist being built. An analysis
into the song data showed that song metadata available was found to be insufficient, as it lacked
the richness to distinguish nuanced acoustic differences between tracks. A snippet of the meta data
provided in table 4.1 shows the limited categories for the songmetadata types. Additionally, most tracks
has NULL values for their metadata. To overcome this lack of information on the songs, we adopted
a multi-component state representation centered on Node2Vec embeddings and popularity metrics,
which was extended from the baseline model described in Section 3. These embeddings were derived
from a collaborative knowledge graph, capturing complex relationships between songs, artists, genres,
and user interactions.

Generating Song Embeddings via Weighted Node2Vec
To capture the various dimensions of similarity between songs and the metadata (thematic, acoustic,
and collaborative), we built upon Node2vec approach introduced in Section 3. We adopted a two-stage
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Figure 4.2: Overview of the training the RL agent for playlist generation

Table 4.1: Distribution of Clip Metadata

Song Mood

Mood Count
NULL 795100
Normal 85883
Uplifting 38932
Melancholic 24013
Happy 10242
Sad 6207

Song Speed

Speed Count
NULL 795815
Normal 73378
Uptempo 46910
Relaxed 33106
Ballad 8119
Extra Fast 3049

Song Urgency

Urgency Count
Non-relevant 846926
Recognizable 82790
Classic Hit 15159
Recurrent Hit 9570
Hit 5932

process to create dense vector representations for the songs and other metadata entities.:

1. Construction of a Heterogeneous Collaborative Knowledge Graph (CKG) to model the rich net-
work of connections between musical entities.

2. Application of a weighted Node2Vec algorithm to learn low-dimensional embeddings from the
graph structure.

Constructing the Collaborative Knowledge Graph: The foundation of our song representation is a
heterogeneous Collaborative Knowledge Graph (CKG) designed to model the rich network of connec-
tions between musical entities. The primary nodes in this graph are the songs themselves (represented
as videos), which are described by a set of factual metadata nodes, including their associated artists,
genres, subgenres, and decades. To incorporate high-level thematic organization, the graph also in-
cludes playlist nodes, representing collections curated by human experts. Finally, to capture user
behavior, the graph is populated with anonymized user nodes.

The relationships between these entities are defined by a multi-source edge structure. The seman-
tic backbone of the graph is formed by metadata-driven edges, which create factual links such as
song-has-artist or song-has-genre. This structure is then enriched with expert-curation edges (playlist-
contains-song), which encode the invaluable knowledge of professional curators regarding which songs
belong together. The final layer incorporates collaborative filtering edges, such as user-streams-song
and user-likes-song. Adding this user interaction data transforms the graph into a true CKG, allowing
the model to learn latent user preferences and similarities that are not explicitly captured in the meta-
data alone. This multi-faceted structure enables the discovery of complex relationships between songs
via multi-hop connections, providing a rich, contextual foundation for our recommendation agent.
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Multi-modal Enhancement with Audio Similarity While the CKG effectively captures semantic and
collaborative signals, it may not effectively capture the acoustic similarities between songs. To address
this limitation, we enhanced the graph with a new modality of information derived directly from the
songs’ audio content. By adding direct song-song connections based on acoustic similarity, we allow
the Node2Vec random walks to traverse directly between sonically similar tracks, even if they do not
share common artists or genres. This results in a shortcut for discovering fine-grained acoustic rela-
tionships. The implementation proceeded by first generating a vector representation for each song’s
log-mel spectrogram using the pre-trained MULE audio embedding mode. Using the Faiss library, a
k-nearest neighbor search (where k=10) was then performed in this audio embedding space for each
song. Finally, new edges of type audio_similar were added to the CKG between each song and its
ten nearest neighbors. To ensure these new acoustic signals supplemented rather than dominated the
existing graph structure, their influence was carefully controlled: the edge weights, derived from the
cosine distances, were scaled to a constrained range of [0, 0.125], thereby balancing the multi-modal
information within the graph. This specific range was determined by the experiments in our baseline
paper [96], which demonstrated on a playlist completion task that a smaller audio edge weight (0.25)
yielded superior performance over other weights (0 and 0.5), establishing that a lower weight is optimal
for balancing the multi-modal signals within the graph.

Generating Embeddings withWeighted Node2Vec With the multi-modal CKG fully constructed, we
applied the Node2Vec algorithm [43] to learn a 128-dimensional embedding for each node. Similar to
the baseline paper, our implementation utilized the computationally efficient fastnode2vec library, which
was specifically configured to respect the pre-defined edge weights (weighted=True). This ensures that
the probability of a random walk traversing an edge is proportional to the edge’s importance, whether
derived from collaborative signals, expert curation, or acoustic similarity. To ensure the robustness of
our embeddings, the Node2Vec hyperparameters were determined via a systematic grid search. The
final configuration used for generating the embeddings for our RL agent was:

• Embedding Dimensions (d): 128

• Walk Length: 20

• Context Window Size: 5

• Return Parameter (p): 0.5 (encourages broader exploration)

• In-out Parameter (q): 0.5 (encourages staying within a local neighborhood)

• Training Epochs: 200

To ensure the integrity of our evaluation process, all nodes for the playlists designated for the hold-
out test set were entirely removed from the graph before the Node2Vec training process began. This
strictly prevents any information about the evaluation data from leaking into the learned song embed-
dings, ensuring that our downstream evaluation of the RL agent is fair and unbiased.

The output of this process was a dictionary mapping each song ID to a multi-modal, 128-dimensional
vector. These embeddings serve as the foundational state representation for the RL agent, equipping
it with a multi-modal understanding of the music catalog.

Inclusion of Popularity Metrics
A major limitation of the data used for our research is the exclusion of external sources like Wikipedia,
Billboard and Spotify charts, which the experts leverage to determine song and artist popularity, glob-
ally or contextually (e.g. for a specific genre or decade). Additionally, the available popularity metric
in the song metadata was categorical, corresponding to 5 categories : “Non-relevant“, “Recognizable“,
“Classic Hit“, “Recurrent Hit“ “Hit“, which was not representative enough to differentiate between the
songs’ in terms of popularity. Similarly, there was no readily available metric to compute artist popular-
ity. To overcome these limitation, we designed our own metrics for artist and song popularity.

For computing song popularity, we used the play counts for a given song. Additionally to determine
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Figure 4.3: Distributions of the Song and Artist Popularity Scores.

artist popularity, we assigned a weighted score based on the popularity categories of the songs featur-
ing the artist. Both metrics resulted in a highly skewed, long-tail distribution, where a small number of
songs and artists have extremely high popularity scores (above a million for a viral hit), while the vast
majority have very low scores (closer to 0). Such distributions in the data can effect the agent’s learning,
as the extreme outliers can disproportionately influence the model’s parameters, often overlooking the
significance of less popular items. To mitigate this imbalance, we applied a logarithmic transformation
to compress the data’s scale. We computed the natural logarithm of 1 plus the raw score:

y = ln(1 + score) (4.1)

This transformation (as shown in Figure 4.3), helped in reducing the differences caused by high value
outliers and transformed the skewed distribution into a more Gaussian distribution. Through this nor-
malization, we ensure that the popularity features contribute to the model’s performance without being
dominated by a few highly popular tracks.

Multi-Component State Vector
o enable our agent to make informed decisions throughout the playlist generation process, we design a
rich, multi-component state vector. At each step t, the state st provided to the agent is a dictionary com-
prising several components, each designed to capture a particular features of the playlist constructed
so far. These components are combined using a MultiInputPolicy mechanism and then provided as
input for the neural network. At each step t, the state st provided to the agent is a dictionary containing
multiple components, each designed to capture a distinct aspect of the playlist constructed so far:

• Average embedding of songs in the playlist: The mean of all Node2Vec embeddings for tracks
selected so far. This gives the policy an estimate of the playlist’s overall thematic coherence.

• Full playlist embeddings: A stacked sequence of the Node2Vec vectors for each chosen track,
allowing the agent to learn learn higher-order transitions and long-range dependencies [90].

• History embeddings): A sliding window over the embeddings of the last ℓ = 5 tracks to help
the agent focus on recent transitions and local similarity, reflecting the finding that local audio
similarity strongly predicts user satisfaction [51].
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• Last track embedding: The embedding of the most recent song, allowing the policy to explicitly
condition on the immediate predecessor, supporting smoother transitions [39].

• Popularity statistics: Summary statistics (mean, std) of the log-normalized popularity scores for
all songs and artists in the current playlist, enabling the agent to balance familiarity and novelty,
thus mirroring the diversity–popularity trade-off in [39]

Our agent’s decision-making relies on the above diverse set of information, presented as a dictio-
nary of different data types. To handle this, our policy uses a “multi-input“ neural network architecture.
This means that instead of trying to process all the different pieces of information at once in a single
stream, the policy breaks down the observation dictionary.

For each distinct type of information, like our song embeddings or popularity scores, the policy creates
a separate, specialized “sub-network“. These sub-networks then work in parallel to extract relevant fea-
tures from their specific data, which are then concatenated together into a single feature vector. The
sub-networks for larger vectors like sequences of song embeddings use RNNs to understand patterns
over time, while smaller dimensional data like popularity scores go through feedforward networks. This
combined vector then becomes the main input for the rest of the policy’s neural network. Together, the
vectors gives the RL agent both overall context (average embedding, full sequence) and local context
(recent history, last embedding), as well as quantitative signals of popularity and progression.

Reducing the Action Space - Invalid Action Masking
Similar to previous works on RL-based playlist generation[39, 7], our action space is represented by
song ids where the songs ids are discrete values mapped to each songs in the playlist. To train the
agent, the first challenge is dealing with the large action space problem 2, as the number of songs
available for playlist generation can be large.

To address this issue, instead of the agent having to explore the entire song database in each episode,
we employ action masking. This approach significantly reduces the number of songs the agent needs
to consider at each step, making the selection process faster and more efficient. During our interviews
with the experts, we tried to understand if any filter was used at the beginning of curating their playlists,
for which we got that the experts used an internal database tool to filter out songs matching the targeted
theme based on the songs’ metadata . For example, while curating playlists like ‘90s pop‘ or ‘Hits now‘,
the songs belonging to that specific decade (1990), genre (‘Pop‘), year (2025), popularity (‘Hit‘) would
be filtered. This makes the process of handpicking songs easier for the expert. Following a similar
approach while training our agent, we only provide the agent with the songs which match the given
theme profile as the unmasked actions. This serves as a filter to the agent, and a way for the agent to
navigate through large discrete action spaces. Additionally, we mask out the songs already present in
the playlist to avoid repetition within the playlist.

4.2.2. Agent Training and Optimization
To optimize our playlist-generation policy, we employ the Maskable Proximal Policy Optimization (Mask-
ablePPO) algorithm [66], which extends the standard PPO framework to support large discrete action
spaces with dynamic masking. We use a MultiInputPolicy to handle our heterogeneous state repre-
sentation.

Hyperparameter Tuning
The performance of a RL agent is highly sensitive to the choice of its hyperparameters. To ensure
that our results are robust and not merely an artifact of a specific configuration, a systematic hyper-
parameter optimization process was conducted. This process aimed to identify a near-optimal set of
hyperparameters for the PPO algorithm, which serves as the foundation for our learning agent.

To maintain experimental integrity and ensure a fair comparison across all models, we adopted train our
agent on a fixed set of hyperparameters, determined through hyperparameter tuning performed on the
manual reward RL agent, similar to the approach presented by Xie et al [26]. The manual agent serves
as our primary baseline, and by optimizing its configuration, we establish a consistent foundation. The
optimal set of hyperparameters discovered during this process was then fixed and used for the training
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of all subsequent models, including those guided by the LLM-derived reward functions. This ensures
that any observed differences in performance can be attributed to the quality of the reward signal itself,
rather than variations in the agent’s underlying training configuration.

We utilized the Optuna framework [106], an open-source hyperparameter optimization library, to au-
tomate the search process. Optuna employs efficient sampling and pruning algorithms to explore the
hyperparameter space and find optimal values. The optimization was structured as a series of 30 trials.
In each trial, a set of hyperparameters was sampled from a predefined search space, and an agent
was trained for 200000 timesteps using these parameters. The objective function for each trial was to
maximize the mean reward obtained by the agent over five evaluation episodes in a separate, unseen
environment.

Based on the provided implementation, the following PPO hyperparameters were tuned, with their
respective search spaces defined as follows:

1. Learning Rate (learning_rate): Sampled from a logarithmic scale between 1e-5 and 1e-3. This
parameter controls the step size of the optimizer.

2. Discount Factor (gamma): Uniformly sampled from the range [0.90, 0.999]. This determines
the importance of future rewards.

3. Number of Steps (n_steps): Categorically chosen from [512, 1024, 2048]. This is the number
of steps to run for each environment per update.

4. Batch Size (batch_size): Categorically chosen from [32, 64, 128]. This is the size of the mini-
batch used for each gradient update.

5. Number of Epochs (n_epochs): An integer sampled from [5, 20]. This is the number of times
the agent iterates over the collected data during an update.

6. Clip Range (clip_range): Uniformly sampled from the range [0.1, 0.3]. This is a core PPO
parameter that clips the policy update to prevent excessively large changes.

Upon completion of the 30 trials, the set of hyperparameters that yielded the highest mean reward
was identified as the optimal configuration. This single, optimized configuration was subsequently used
for all experiments presented in this thesis, ensuring consistency and comparability across all tested
reward functions. The results from the hyperparameter tuning are presented in Appendix C

Training Protocol
To ensure the statistical reliability and reproducibility of our findings, a rigorous training protocol was
established and followed for all experiments. The stochastic nature of RL, arising from random weight
initialization and probabilistic action selection, necessitates multiple training runs to form a credible as-
sessment of an agent’s performance. Consequently, the performance of an agent from a single training
run can exhibit high variance and may not be representative of the algorithm’s true capabilities. A sin-
gle successful run could be an outlier, just as a single poor run could unfairly represent the model’s
potential.

For each experimental condition (i.e., each reward function), we conducted five complete training runs,
each initiated with a different random seed. All agents were trained for a total of 5 million timesteps
using the optimized hyperparameters identified in Section 4.2.2.



5
Experimental Setup

The goal of our experiments is to evaluate how effectively our proposed system captures expert prefer-
ences. This involves comparing playlists generated by our expert-driven models against the baseline
models with respect to reference playlists curated by human experts. The evaluation is designed to
assess not only the accuracy of song selection but also the overall characteristics of the generated
playlist, in terms of sequencing and attributes of the tracks picked, ensuring the models can generate
playlists that can align with the standards of a professional curator.

5.1. Models compared
To assess the performance of our approach, we compared the performance of RL agents trained on dif-
ferent reward functions (LLM-generated and manually crafted), and the performance of the Node2Vec
model introduced in Section 3.2. The state and action space representations in the training environ-
ment are held constant across all RL agents to ensure a fair comparison focused on the efficacy of the
reward functions.

The models evaluated are as follows:

• Node2Vec Similarity Baseline (N2V-S): This non-RL baseline generates playlists by sequen-
tially selecting songs with the highest cosine similarity to the current playlist’s average embedding.
The embeddings are derived from the Node2Vec model used for the RL agent’s state representa-
tion, as detailed in Section 4.2.1. This model serves as a baseline for assessing the effect of the
reward function on RL agent performance, given that it uses the same Node2Vec embeddings
for state representation.

• Manually-Crafted Reward RL Agent (RL-M): The RL-M agent is trained using a hand-crafted re-
ward function which integrates four quantifiable aspects of playlist quality, inline with the manually
designed reward function of Shih et al. [39]. The reward factors were redefined to reflect the re-
searchers’ insights from the expert interviews and to align with the used data sources (Node2Vec
embeddings, raw popularity scores), which constitute the state and action spaces of our agents.
The reward components are calculated as follows:

– Coherence (F): the mean cosine similarity between the embeddings of consecutive tracks,
with negative similarity values decreasing the flow score.

– Popularity (P): the average of each track’s popularity score after normalization across the
dataset bounds.

– Novelty (Q): the mean of inverse of the popularity scores of the songs added, to expose the
listeners to lesser known tracks (or “hidden gems“) that they might not otherwise encounter.

– Diversity (D): the proportion of unique artists within the playlist, to encourage songs from
multiple artists, a criteria identified during the expert interviews as well as in [39].

These components are combined into a single scalar reward:
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R = 0.3F + 0.3P + 0.2Q+ 0.2D (5.1)

where the reward factor weights (0.3,0.3,0.2, and 0.2) were determined manually based on the
inputs from the experts. This agent acts as a RL baseline to determine whether the LLM-derived
reward functions provide an advantage over a more direct, human-crafted design.

• LLM-Generated Reward from Summarized Transcripts (RL-LLM-S): This represents our pro-
posed RL agent trained on the LLM-generated reward function from Pipeline A (4.1.2). The ob-
jective of this model is to assess the impact that combining and condensing the expert interviews
can have on the reward functions generated by the LLMs and subsequently on the performance
of the trained RL agent.

• LLM-Generated Reward from Raw Transcripts (RL-LLM-R): This model explores the impact
of Pipeline B (4.1.2). It follows a similar structure as the RL-LLM-S agent, with the exception that
of the input source to the LLM for reward function generation. By comparing the performance of
RL-LLM-R to RL-LLM-S, we evaluate the effect of introducing the additional summarization and
refinement step in the methodology pipeline.

5.1.1. LLM Models
For the LLM-based reward generation, we compare the effectiveness of three different LLMs: OpenAI’s
GPT-4 , Google’s Gemini Pro, and Anthropic’s Claude introduced in Section 2.3.1. This comparative
analysis allows us to evaluate if the choice of LLM model can influence the quality and alignment of
the generated reward functions. For each input type (from Pipeline A and Pipeline B), the models were
prompted 5 times to generate 5 different reward functions, which enabled us to account for the variation
within the outputs generated by each model.

5.2. Dataset and Evaluation Procedure
One of the main phases in the experimental design involved understanding the XITE dataset. While
analyzing the expert-curated playlists titles, we noted that out of 789 playlists that exist, the titles of 453
playlists were based on songs’ metadata (eg: “90s Pop“, “80s Rock“). For the scope of our evaluation,
we decided to train our RL agents on playlist titles generated from the songs’ metadata, specifically of
the format “decade“, “genre“, and “decade+genre“. Additionally, for evaluating our models, we test it on
expert-curated playlists which followed the format of “decade+genre“. Additionally, the song pool con-
tains 5755 songs that either adhere to the theme of training and evaluation playlist titles or are present
in the expert curated test playlists. The agent was trained on 145 such playlist titles and evaluated
against 18 expert-curated playlists.

Another important thing to note is that the expert-curated playlists on the platform vary in length from 10
to over 4000 tracks per playlist. We fixed the length of the generated playlists as 20 songs during train-
ing and evaluation. This length was chosen as it corresponds to the average user streaming session
for the expert-curated playlist titles over the past year, allowing us to focus our analysis on a realistic
use case.

5.2.1. XITE Bucketing system for Song Sequencing
A key challenge in evaluating playlist generation systems is that there is not one single “correct“ se-
quence for a given playlist. Within XITE, the experts themselves use a “bucketing“ system for partial
ordering, where songs within a bucket are interchangeable, but the buckets themselves have a defined
order. When a user plays a playlist multiple times, the ordering of the songs can be different each
time. This indicates that multiple sequences exist that meet the experts’ ordering criteria. To account
for this variability, we generated 1000 different sequences for each of the 18 test playlists by repeatedly
querying the platform’s API. These 1000 sequences serve as our ground truth reference set. Thus the
evaluation is performed by comparing the sequences generated by the models for a given title to each
of the sequences present in the expert-curated reference set for that specific title. Given that the length
of the model-generated playlists has been fixed to 20 tracks, we consider the top 20 songs from any
expert playlist sequence. This also implies that there is variability in the song selection across the 1000
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valid 20-song sequences for a playlist, meaning they do not all contain the exact same set of tracks.
Figure 5.1 gives an overview of the sequences generation and playlists comparison.The figure shows
the evaluation done for one of the test playlists of length 5. In our experiments, we follow these for
each test playlist with a length of 20 tracks.

Figure 5.1: An overview of the evaluation methodology based on the expert bucketing system. Our ground truth is generated
from the expert curated playlist using the bucketing system (on the far right), where songs within each ordered bucket are
interchangeable. The evaluation process involves a one-to-many comparison, assessing the playlist generated by the

model(on the left) against each of the 1000 sequences in the experts’ reference set (in the middle).

5.2.2. Playlist Completion Task
The core method used in our evaluation is the playlist completion task, as proposed by [52]. Given a
number (N) of seed tracks, the model needs to select and order the remaining (20-N) tracks for the
playlist from the playlist song pool, where 20 is the length of the playlist. The song pool is filtered using
the action mask introduced in Section 4.2.1, which filters out songs that do not match the theme of the
given playlist. We evaluate the models on the playlist completion task for two distinct scenarios:

1. Seedless Generation (N=0): In this scenario, the models are provided with the playlist title (e.g.,
“90s Pop“) and no other context, to generate a complete 20-song playlist. This setup evaluates the
models’ ability to address the cold-start problem (introduced in Section 2.1.3), as it relies entirely
on its learned policy without any initial context. When evaluating the N2V-S model, we provide
the embedding of the playlist title, which is obtained by taking the mean of the embeddings of the
components for the playlist title. For example, for the playlist “90s Pop“, the title embeddings is
computed by averaging the Node2Vec embeddings of the decade “1990“ and the genre “Pop“.
This embedding serves as a starting point for the model, with the model initially picking the song
with embedding closest to the playlist title embedding from the song pool. The RL agents on the
other hand, use their learned policies to generate playlist from the song pool.

2. Seeded Generation (N=1): Here, the agent is provided with the playlist title and the first song
from the expert-curated sequence to which it is compared. It then generates the remaining 19
songs. This scenario tests the model’s ability to contextually continue a playlist, adapting its
choices based on an initial track. For the N2V-S model, the Node2Vec embedding of the first
song from the sequence is provided to the model, which then determines the successive tracks
of the playlist based on the cosine similarity. For evaluating the RL agents, information pertaining
to the first track (Node2Vec embedding and popularity scores) are incorporated into the state
representation, based on the the agent picks the successive tracks.

5.3. Evaluation Metrics
To ensure a comprehensive evaluation, we split our evaluation into two categories of metrics. The first
category, Recommendation Quality Metrics, uses standard offline metrics (Precision@k, Recall@k and
NDCG@k) to measure the performance of our models against the expert-curated ground truth. These
metrics assess the accuracy of song selection and ranking. We introduce a second category of metrics,
Reward Component Metrics, to evaluate the characteristics of the generated playlists according to the
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curatorial factors derived from expert interviews. The two metric categories allow us to evaluate the
generated playlists in terms of specific tracks picked as well as the “profile“ of the generated playlists.

5.3.1. Recommendation Quality Metrics
The following metrics are used to compare the generated playlists against the expert-curated reference
sets. For each model and playlist title, the metrics are computed for the models’ generated playlist
against the sequences in the reference set and then averaged across the sequences of that title. The
scores obtained determine the overlap between the song set as well as the sequencing of songs. We
focus primarily on k values of 10 and 20, as it relates directly to our fixed playlist length and typical user
behavior. We select k=20 to assess accuracy and ordering across the entire 20-track playlist and k=10
to focus on the first half, since listener engagement at the beginning of a playlist can influence session
continuation.

1. Precision@k: Measures the proportion of relevant songs (i.e., songs present in the expert-
curated playlist) among the top k songs recommended by the model. In our setup, this helps
evaluate how accurately the model is able to select expert-relevant tracks. Higher precision indi-
cates better alignment with the expert’s song selection.

Precision@k =
|{recommendedk1} ∩ {expert playlist}|

k
(5.2)

This measures the fraction of the top-k tracks that appear in the expert’s playlist.

2. Recall@k: Measures the proportion of relevant songs that were retrieved in the top k recom-
mendations out of the total relevant songs in the expert playlist. In this context, Recall@k helps
assess how well the model captures the expert’s choices within its top-k predictions.

Recall@k =
|{recommendedk1} ∩ {expert playlist}|

|{expert playlist}|
(5.3)

This measures the fraction of the expert’s tracks that are recovered among the top-k.

3. NDCG@k (Normalized Discounted Cumulative Gain): Captures both the relevance and the
position of songs in the recommended list. It gives higher weight to relevant songs appearing
earlier in the sequence. This metric focuses on the ordering of tracks. We consider ndcg@k as
a primary indicator, as it evaluates both the relevance of the selected songs and their position
in the sequence. A higher NDCG@k score implies that the model not only selects appropriate
songs but can also order them in a manner consistent with expert-curated playlists. To compute
NDCG@k, we first define the Discounted Cumulative Gain (DCG):

DCG@k =

k∑
i=1

reli
log2(i+ 1)

, (5.4)

where

reli =

{
1, if the i-th recommended track is in the expert playlist,
0, otherwise.

(5.5)

Then normalize by the ideal DCG (IDCG), which is the DCG of a perfect ranking (all k expert
tracks first):

IDCG@k =

min(k,|expert playlist|)∑
i=1

1

log2(i+ 1)
. (5.6)

Finally,
NDCG@k =

DCG@k

IDCG@k
. (5.7)

This captures both whether the expert selected tracks appear in the top-k and how early they
appear. This is relevant since we want the users to be engaged with the playlists from the very
beginning.

These metrics allow us to evaluate both the selection quality and sequencing capability of our mod-
els, providing insights into how well they approximate expert-level playlist curation.
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5.3.2. Reward Component Analysis
In addition to the primary recommendation metrics, we evaluate our models using a secondary set of
metrics relating to the expert-oriented characteristics of the generated playlists. While objective mea-
sures like Precision, Recall and NDCG are valuable for assessing recommendation accuracy against a
ground-truth dataset, they fail to capture the qualitative aspects that define expert curation. The goal of
this research is not merely to recommend relevant songs, but to generate playlists that reflect the expert
principles like “flow“, “strong start“, and balance between “popularity“, and “novelty“. Consequently, the
comparison of the models based on these metrics allows us to assess which models produces playlists
that are most characteristic of the experts’ own creations.

From Expert Intuition to Computable Profiles
One of the challenges in determining the characteristic of the playlist is defining curatorial concepts like
“flow“, “diversity“, and “novelty“ as quantitative metrics. These factors do not have a universal definition,
and their interpretation can vary between experts and contexts. As an example, one of the experts ex-
plained flow as ‘...for an Indie playlist, you don’t really need to make a difference in tempo, so I’d say
maintain a regular tempo, and you don’t need to build up the energy“, which would indicate that higher
cosine similarity between consecutive songs would indicate a better flow. However, the definition of
flow was presented a bit differently by another expert, “I made six buckets and made the first one such
that it would start with nothing too fast or nothing too slow but also something very recognizable, and
then went into something maybe a bit heavier for the second bucket and then back down a bit slower
and then build it up and down. So then when you’re listening to it, the tempo is flowing up and down.“,
suggesting that while the cosine similarity between consecutive songs should not be too low, it should
also be maintained below a certain threshold.

The quantitative definitions provided for each metric, therefore, is our attempt at operationalization
of these concepts. Operationalization is the process of defining abstract and sometimes ambiguous
concepts in quantifiable terms and is a widely practiced in the field of recommender systems [107, 108]
for measuring fairness, diversity, etc. The hypothesis is not that our definition of the concepts are the
ground truth, but that an agent trained to optimize on reward functions derived from expert curation
principles should learn a policy that generates playlists with characteristics similar to those of the ex-
perts. The selection of our five reward component metrics, flow, popularity, start power, diversity, and
novelty was based on a manual analysis of our interviews with the experts, representing the most con-
sistently articulated principles in their explanations. Furthermore, the objective of this comparison is
not to declare that a higher score in a metric like “flow“ is better. Instead, we treat the collection of
expert-curated, ground-truth playlists as the benchmark that defines a target “expert profile“. For these
metrics, a model’s effectiveness is measure by how the close the scores obtained by each model are
to the expert sequences.

Reward Component Metrics
The evaluation involves scoring each generated playlist sequence from the models, as well as the
expert reference sequences, against the reward component metrics. For computing the expert profiles
for a given playlist title, we average out the scores obtained by the playlists’ corresponding sequences
in the reference set. Given, a generated playlist be a sequence of L songs, S=(s1, s2 ,…,sL), the reward
component metrics are defined as:

• Flow Score (F): Measured as the sum of the cosine similarities between 2 consecutive songs’
embeddings (v(si)) to its context. For the first song, the context is the playlist title embedding (vT ).
For subsequent songs, it is the embedding of the previous song (v(si−1)). The score is scaled to
a [0, 1] range.

F (S) =

L∑
i=1

1

2

(
sim(v(si),

{
vT if i = 1

v(si−1) if i > 1
) + 1

)
(5.8)

The concept of flow appeared several times across the interviews, particularly while describing
the ordering of the songs. It was captured in the summarized document obtained from Pipeline
A as well. Flow happened to be one of the toughest concepts for the experts to articulate, with
many further describing it with terms like “vibes“, “feel“, and “mood“: “Since I’m very familiar with
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hip and R&B, I already have the vibe and the flow in mind when curating for such genres“. As
expected, there was not one single definition for flow: “..the flow would include listening and hear-
ing some of the biggest hits followed by some of the smaller songs that didn’t do so well“ or as
another expert puts it, “..if we go from Indie to EDM I’m fine with that because I like both of those
genres. But yeah, it really flows, if it’s in the same kind of ballpark... if it’s in the same kind of
vibe...“.

Our definition of flow was motivated based on the description provided by a majority of the experts
as the smooth sequencing of songs, “I think my favorite way of like separating energy is to build
it up and then build it back down again. I think it’s really jarring to go from a really powerful song
to a really chill song.“, indicating a tendency to pick songs which would be closer to each other in
the node2vec embedding space

• Popularity (P): The combined popularity score, calculated as the sum of the log-normalized song
popularity score (psong) and the log-normalized artist popularity score (partist) for the tracks added
to the playlist.

P (S) =

L∑
i=1

(psong(si) + partist(si)) (5.9)

This metric reflects the strategic use of well-known, popular songs (“hits“) to ensure the playlist is
recognizable and engaging for a broad audience, “The base of the playlists are rooted in popular
songs, I think it may be like a 95 to 5 ratio for popular to unpopular songs.“. The consensus on
what the experts considered popular varied slightly, “If you want to dig in to see what’s popular,
you can see the number of streams that a song has and that helps.“, while another expert factored
in artist popularity “The song’s popularity is the most important because you want people to keep
it on and sing along. But with big artists like Beyoncé, I don’t think it really matters what song is
played.“

• Starting Power (S): The total starting power score is the sum of bonuses awarded for adding
highly popular songs within the first Nstart tracks (where Nstart = 3), reflecting the “start strong“
heuristic.

S(S) =

Nstart∑
i=1

{
1.0 if psong(si) ≥ 0.75

0.0 otherwise
(5.10)

Here, we consider only the songs’ popularity, since the experts generally are more concerned on
starting the playlists with trending hits, instead of focusing on the artist’s popularity, “You want to
start off with the biggest hits, at least like three big hits in a row.“

• Diversity (D): The total diversity score is the sum of step-wise scores that reward adding new
artists and penalize repetition. At each step i, a raw score rdiv(si) is calculated, clipped to [−1, 1],
and scaled.

D(S) =

L∑
i=1

1

2
(clip(rdiv(si),−1, 1) + 1) (5.11)

A majority of the experts interviewed emphasized on the importance of representing multiple
artists within the same playlist, “I would definitely try to not have too much artist repetition.“

• Novelty (N): The total novelty score for the playlist is the sum of the inverse log-normalized song
popularity scores for all tracks.

N(S) =

L∑
i=1

(1− psong(si)) (5.12)

This metric captures the goal of balancing familiar hits with lesser-known tracks or “hidden gems“
to help listeners discover new music, “I think that’s my key main driver, to sort of help people
discover new, but it could also be old music.“
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Comparing the average scores for these components across the different models and the expert-
curated ground truth provides insight into the behavioral alignment of each agent. We expect the
expert-driven RL-based model to produce playlists whose characteristic scores for flow, diversity, and
novelty closely mirror those of the expert reference set, thus depicting a better understanding of expert
curation beyond simple item selection.

5.4. Statistical Significance Testing
To ensure the robustness of our findings, a statistical significance analysis was conducted to validate
that observed performance differences between models were not attributable to random chance. The
objective is to determine if the superior performance of one model over another is statistically mean-
ingful.

Given that the performance scores may not follow a normal distribution, the non-parametric Wilcoxon
signed-rank test was selected as the primary statistical tool. This test is appropriate for our setup, as
it directly compares the paired scores (one for each playlist) between two models. It works by ranking
the differences between the paired scores and evaluates if one model consistently outperforms the
other across the entire test set. For each evaluation metric, pairwise comparisons were performed
between all models. The significance testing was structured to address the specific comparisons in
each research question:

• For RQ1 (Comparing Proposed Approaches): To evaluate the impact of the input processing
pipeline, the averaged scores of the RL-LLM-S and RL-LLM-R models (for each LLM) were di-
rectly compared using the paired Wilcoxon test. Additionally, we

• For RQ2 (Comparing Against Baselines): To evaluate our proposedmodels against the baselines,
the paired Wilcoxon test was used for all comparisons: RL-LLM-S vs. N2V-S, RL-LLM-S vs. RL-
M, RL-LLM-R vs. N2V-S, and RL-LLM-R vs. RL-M.

The null hypothesis (H0) for each test was that the median difference in performance scores be-
tween the two models is zero. A significance level (α) of 0.05 was used as the threshold.

Furthermore, to address the heightened risk of Type I errors (false positives) when performing mul-
tiple statistical comparisons on the same dataset, we applied a Benjamini-Hochberg (BH) correction,
which controls the False Discovery Rate (FDR), which is the expected proportion of false positives
among all declared significant findings. A comparison between two models was considered statisti-
cally significant only if its BH-adjusted p-value was less than 0.05. This rigorous testing provides a high
degree of confidence in the results presented in Chapter 6



6
Results

This chapter presents the experimental results and qualitative analysis conducted to address the re-
search questions of this thesis. It is structured as follows: Section 6.1 addresses RQ1, focusing on the
impact that the choice of the different input approaches and LLMs has on performance. Section 6.2
addresses RQ2 by comparing our proposed models’ performance against the N2V-S and RL-M base-
lines. Each section combines quantitative metrics with qualitative insights to provide a comprehensive
analysis of model performance.

6.1. RQ1: Impact of Transcript Processing and LLM Choice
This section examines the impact of the input processing pipeline (RL-LLM-S vs. RL-LLM-R) and the
choice of LLM on the performance of the resulting RL agents. The analysis begins with a quantitative
comparison using the evaluation metrics defined in Chapter 5, followed by a qualitative analysis of the
generated reward functions.

6.1.1. Quantitative Analysis
To measure the effect of these design choices, the performance of each model configuration is as-
sessed using recommendation quality and reward component metrics. The final score reported for any
given metric is the average performance across all playlists in the test set. This is calculated as shown
in Equation 6.1:

Score(M,K) =
1

|Ptest|
∑

p∈Ptest

scorep(M,K) (6.1)

where:

• Score(M,K) is the final score for model M on metric K.
• Ptest is the set of all playlists in the test set.
• |Ptest| is the total number of playlists in the test set.
• scorep(M,K) is the raw score achieved by model M on metric K for a single playlist p.

Recommendation Quality Metrics
The analysis uses precision@k and recall@k to measure the accuracy of song selection and ndcg@k
to evaluate the quality of the song ranking. We reported scores for both k values of 10 and 20 to dis-
tinguish performance on the first half of the playlist from the full 20-song playlist. Tables 6.1 and 6.2
present the scores achieved by the models in the seedless and seeded playlist completion tasks.

Across all models and pipelines, precision, recall, and nDCG scores remained between 0.1 and 0.3.
This range is a result of our evaluation framework, which defines the ground truth for a playlist as the
top 20 tracks from each 1,000 sampled expert sequences. The significant variance in the length (10-
4,000 tracks) and internal ordering of the source playlists means that many valid recommendations
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may not be present or may have an inconsistent rank within the truncated evaluation set. Under these
conditions, scores in this range are expected and interpreted as representing substantial alignment
with expert choices.

To validate our findings, we performed statistical significance testing. For each metric, a Wilcoxon
signed-rank test was conducted for each pairwise model comparison, and the resulting p-values were
adjusted using the Benjamini-Hochberg procedure to control the false discovery rate at a significance
level of α=0.05.

Seedless Playlist Generation (N=0) In the seedless scenario, the performance differences between
the summary-based (RL-LLM-S) and raw transcript-based (RL-LLM-R) pipelines vary considerably de-
pending on the underlying LLM, as shown in Table 6.1.

For the Claude-based models, the RL-LLM-S pipeline demonstrated a marginal yet consistent advan-
tage. At the k=10 cutoff, its precision@10 score of 0.2714 indicates that it placed, on average, 2.7
expert-selected tracks in its top ten, compared to 2.6 for the RL-LLM-Rmodel (precision@10 of 0.2589).
The higher recall@10 and nDCG@10 scores further suggest that the summary-based approach not
only covered a slightly larger portion of the expert’s valid continuations but also ranked themmore effec-
tively. This trend is more apparent at the k=20 level. The precision@20 score of 0.2710 for RL-LLM-S,
compared to 0.2536 for RL-LLM-R, translates to a difference of nearly one additional expert-approved
track for every three playlists generated. This indicates a more consistent long-term recommenda-
tion strategy from the summary-based model. Furthermore, the higher nDCG@20 score (0.2706 vs.
0.2546) further confirms that the summary-based model ranked these correct tracks more effectively,
demonstrating a more consistent long-term recommendation strategy.

The GPT-based models exhibited the most substantial difference in performance between the two
pipelines. The RL-LLM-S model achieved a precision@10 of 0.2026, including roughly two expert-
approved tracks in its top ten. In contrast, the RL-LLM-R model’s precision@10 dropped to 0.1169,
corresponding to just over one correct track. The accompanying decline in the nDCG@10 score, which
was nearly halved from 0.2035 to 0.1099, confirms that the raw transcript pipeline not only selected
fewer correct tracks but also demonstrated a lower quality in ranking them. This pattern persists at
k=20, where the RL-LLM-S model maintains its lead, while the RL-LLM-R model’s performance sug-
gests a loss of almost two expert-selected tracks per playlist.

Table 6.1: Recommendation Quality Metrics for RQ1: Seedless Scenario (N=0). Bold scores indicate the better-performing
approach for each LLM. Significance markers denote statistically significant differences (α = 0.05) between the RL-LLM-S and

RL-LLM-R pipelines for a given LLM, based on a Wilcoxon test with Benjamini-Hochberg correction.

Claude GPT Gemini
Metric RL-LLM-S RL-LLM-R RL-LLM-S RL-LLM-R RL-LLM-S RL-LLM-R

precision@10 0.2714 0.2589 0.2026‡ 0.1169 0.2731 0.2709
recall@10 0.1357 0.1294 0.1013‡ 0.0585 0.1365 0.1354
ndcg@10 0.2707 0.2579 0.2035‡ 0.1099 0.2729 0.2718

precision@20 0.2710‡ 0.2536 0.1981‡ 0.1249 0.2687 0.2693
recall@20 0.2710‡ 0.2536 0.1981‡ 0.1249 0.2687 0.2693
ndcg@20 0.2706‡ 0.2546 0.1998‡ 0.1179 0.2699 0.2704

‡Significantly different from the score in the other column for the same LLM. For clarity, inter-LLM significance (e.g., Claude vs.
GPT) is described in the text.

In contrast, the Gemini-based models showed minimal variation in performance regardless of the in-
put pipeline. At k=10, the precision scores for RL-LLM-S (0.2731) and RL-LLM-R (0.2709) were nearly
identical, indicating a comparable ability to select expert-approved tracks. The recall and nDCG met-
rics also showed negligible differences, suggesting that both pipelines produced playlists of a similar
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quality in terms of coverage and ranking. At k=20, precision and recall each increased with the RL-LLM-
R model, marginally from 0.2687 to 0.2693, while nDCG@20 rose from 0.2699 to 0.2704, showed a
marginal, likely inconsequential, increase in performance.

To validate these observations, statistical significance testing was conducted. For Claude, the nu-
merical advantage of the RL-LLM-S pipeline at k=10 was found to be not statistically significant (padj
> 0.05), suggesting the observed difference could be due to chance. However, at k=20, its superior
performance is statistically significant across all metrics (padj > 0.05), providing strong evidence that
the summarization pipeline offers a reliable advantage for generating longer playlists with this LLM. For
GPT, the drop in performance when using the raw transcript pipeline was statistically significant across
all metrics at both k=10 and k=20 (padj < 0.01). This confirms that the GPT model was highly sensitive
to the input format and depends on the summarization process to generate an effective reward function.
For Gemini, the minor differences between the two pipelines were not statistically significant for any
metric, formally supporting the conclusion that its performance is robust and largely unaffected by the
input processing approach.

(a) Precision (b) Recall

(c) NDCG

Figure 6.1: Model Performance on Recommendation Quality Metrics in the Seedless Scenario, comparing RL-LLM-S and
RL-LLM-R for different LLMs (Claude, GPT, Gemini).

Regarding the choice of LLMS, statistical testing confirms a clear performance hierarchy. The
Claude and Gemini-based models significantly outperform the GPT-based models across both the RL-
LLM-S and RL-LLM-R pipelines. The Claude and Gemini models, exhibit comparable results to each
other. For instance, in the summary-based pipeline, the nDCG@10 scores for RL-LLM-S (Claude)
(0.2707) and RL-LLM-S (Gemini) (0.2729) are nearly identical, and the difference between them was
found to be not statistically significant. A similar lack of significant difference was observed between
their RL-LLM-S counterparts. This places the Claude and Gemini models in the same performance
category.

In contrast, both of these models demonstrate a statistically significant advantage over their GPT-based
counterparts in all configurations (padj). While this trend is apparent in the top-10 recommendations,
the performance gap is even more pronounced when evaluating the full 20-song playlists. Within the
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RL-LLM-S pipeline, the precision@20 scores for Claude (0.2710) and Gemini (0.2687) indicate they
successfully included, on average, 5.4 and 5.3 expert-approved tracks, respectively. This is substan-
tially higher than the GPT model’s score of 0.1981, which corresponds to finding fewer than 4 correct
tracks per playlist. This suggests that for the task of generating reward functions from expert interviews,
the Claude and Gemini models were more effective than those of the GPT model used in this study.

Seeded Playlist Generation (N=1) In the seeded scenario, where models began with one track and
generated the remaining 19, the performance trends among pipelines and LLMs largely mirrored the
seedless results, as shown in Table 6.2.

For the Claude-based models, the RL-LLM-S pipeline again yielded higher raw scores. At the k=10 cut-
off, the precision@10 score decreased from 0.2712 for RL-LLM-S to 0.2585 for RL-LLM-R. However,
similar to the seedless case, this difference was found to be not statistically significant. The advantage
of the summary-based approach becomes more apparent and reliable for longer playlists. At k=20, the
decline in performance for RL-LLM-R is statistically significant across all metrics (padj < 0.05). The drop
in precision@20 and recall@20 from 0.2584 to 0.2425 translates to a practical difference of 5.2 ver-
sus 4.9 expert tracks per playlist. The significantly lower nDCG@20 score (0.2473 vs. 0.2624) further
confirms that the RL-LLM-S pipeline more consistently placed expert-approved songs at higher ranks
across the full playlist.

The GPT-based models once again exhibited a strong sensitivity to the input format. The sharp drop
in performance from the RL-LLM-S to the RL-LLM-R pipeline was statistically significant across all
metrics at both k=10 and k=20 (padj < 0.01). At k=10, the precision score fell from 0.2018 to 0.1170,
meaning the raw transcript model included nearly one fewer expert-selected track in its first ten rec-
ommendations. The corresponding decline in nDCG@10 from 0.2029 to 0.1099 indicates that these
correct selections were also ranked much lower. This pattern continued at k=20, where the significant
drop in precision@20 from 0.1889 to 0.1168 suggests a reliable loss of more than one expert track per
playlist, confirming a lower quality of recommendation with the RL-LLM-R approach.

Table 6.2: Recommendation Quality Metrics for RQ1: Seeded Scenario (N=1). Bold scores indicate the better-performing
approach for each LLM. Significance markers denote statistically significant differences (α = 0.05) between the RL-LLM-S and

RL-LLM-R pipelines for a given LLM, based on a Wilcoxon test with Benjamini-Hochberg correction.

Claude GPT Gemini
Metric RL-LLM-S RL-LLM-R RL-LLM-S RL-LLM-R RL-LLM-S RL-LLM-R

precision@10 0.2712 0.2585 0.2018‡ 0.1170 0.2730 0.2704
recall@10 0.1356 0.1292 0.1009‡ 0.0585 0.1365 0.1352
ndcg@10 0.2706 0.2575 0.2029‡ 0.1099 0.2727 0.2714

precision@20 0.2584‡ 0.2425 0.1889‡ 0.1168 0.2551 0.2573
recall@20 0.2584‡ 0.2425 0.1889‡ 0.1168 0.2551 0.2573
ndcg@20 0.2624‡ 0.2473 0.1938‡ 0.1127 0.2610 0.2626

‡Significantly different from the score in the other column for the same LLM. For clarity, inter-LLM significance (e.g., Claude vs.
GPT) is described in the text.

Consistent with the seedless scenario, the agents trained using reward functions from the Gemini
model showed robust performance irrespective of the input processing approach. At k=10, the preci-
sion scores for the summary-based (RL-LLM-S: 0.2730) and raw-transcript (RL-LLM-R: 0.2704) reward
agents were nearly identical, and no performance differences between them were found to be statisti-
cally significant for any metric. This suggests the Gemini model’s ability to generate effective rewards
is not dependent on the input format.
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Figure 6.2: Model Performance on Recommendation Quality Metrics in the Seeded Scenario, comparing RL-LLM-S and
RL-LLM-R for different LLMs (Claude, GPT, Gemini).

Regarding the choice of LLM, the performance hierarchy established in the seedless scenario re-
mains intact and is statistically robust. The Claude and Gemini reward-based RL models exhibit highly
comparable results and are not statistically different from each other on key metrics like nDCG@10.
Both models, however, significantly outperform the GPT reward-based models in all configurations.
For instance, the nDCG@10 scores for RL-LLM-S (Claude) (0.2706) and RL-LLM-S (Gemini) (0.2727)
were significantly higher than for RL-LLM-S (GPT) (0.2029), with padj < 0.01. This consistent result un-
derscores the performance advantages of the Claude and Gemini reward-based models for this task,
both with and without a seed track.

Reward Component Metrics
This section analyzes the alignment of the generated playlists with the expert curatorial profile defined
in Section 5.3. The primary measure is the delta score, which represents the absolute difference from
the expert profile values. As established in the evaluation design, the goal is not to maximize these
component scores, but to match the expert profile as closely as possible. A lower delta therefore
indicates a closer alignment with the expert’s curatorial style.

Seedless Playlist Generation (N=0) Table 6.3 along with Figure 6.3 shows the absolute delta scores
for Flow, Popularity, Start Power, Diversity, and Novelty, lower values indicate closer alignment to
the expert profile. Overall, the RL-LLM-R pipeline yielded smaller deltas on transition, and discovery-
focused metrics (Flow, Novelty), while RL-LLM-S achieved tighter matches on engagement and bal-
ance oriented metrics (Popularity, Start Power, Diversity). This pattern shows that raw transcripts better
preserved nuanced curatorial signals about how songs transition within a playlist, whereas summaries
emphasized the expert’s explicit priorities for popular, engaging, and varied playlists.
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Figure 6.3: Deviation of Reward Component Scores for RQ1 in the Seedless Scenario. The plots compare the alignment of
each LLM and pipeline combination against the Expert Baseline (zero line).

With Claude, RL-LLM-R produced deltas of 0.0014 for Flow and 0.0006 for Novelty, significantly
lower than RL-LLM-S (0.0518 and 0.0491, respectively), indicating that raw transcripts aligned with the
expert’s song-to-song transition style and their proportion of unpopular songs (“hidden gems“). How-
ever, RL-LLM-S matched the expert-profile on Popularity (0.0469 vs. 0.1064), Start Power (0.0084
vs. 0.0161), and Diversity (0.0071 vs. 0.0215) more closely, showing that summaries highlighted the
expert’s emphasis on familiar, energetic openers and a balanced variety of artists or genres.

For GPT, RL-LLM-R again aligned more on Flow (0.0008 vs. 0.0658), Diversity (0.0028 vs. 0.0129),
and Novelty (0.0056 vs. 0.0586), suggesting raw transcripts enabled the reward function to capture
curation traits related to song transitions, track variety. By contrast, RL-LLM-S achieved much lower
deltas on Popularity (0.0168 vs. 0.3096) and Start Power (0.0050 vs. 0.0795), reflecting that the sum-
maries proved more effective in capturing the expert’s intent to favor well-known tracks and strong
opening energy.

Table 6.3: Delta Analysis for RQ1 (Seedless): Absolute Difference from Expert Profile. A lower value indicates that the score
achieved by the model is closer to the scores computed from the expert curated sequences. The bold marked represented the
better scoring approach for each LLM model. The scores marked with * represents the lowest (best) score across all models

Claude GPT Gemini
Metric RL-LLM-S RL-LLM-R RL-LLM-S RL-LLM-R RL-LLM-S RL-LLM-R

Flow 0.0518 0.0014 0.0658 0.0008* 0.0209 0.0294
Popularity 0.0469 0.1064 0.0168* 0.3096 0.0997 0.0985
Start Power 0.0084 0.0161 0.0050* 0.0795 0.0194 0.0144
Diversity 0.0071 0.0215 0.0129 0.0028* 0.0140 0.0217
Novelty 0.0491 0.0006* 0.0586 0.0056 0.0151 0.0252
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With Gemini, RL-LLM-S outperformed RL-LLM-R on Flow (0.0209 vs. 0.0294), Diversity (0.0140
vs. 0.0217), and Novelty (0.0151 vs. 0.0252), indicating that summaries conveyed these curatorial
aspects more reliably. However, RL-LLM-R held slight advantages on Popularity (0.0985 vs. 0.0997)
and Start Power (0.0144 vs. 0.0194), indicating the raw transcripts were able to preserve some expert
cues about track familiarity and opening impact.

Overall, these results demonstrate that input format systematically shifted which curatorial components
the agents prioritized: raw interviews better captured transition and novelty signals, while summaries
emphasized track popularity, initial energy, and overall variety.

Seeded Playlist Generation (N=1) In the seeded playlist setting, delta scores as shown in Table
6.4 reveal similar performance trends to the seedless case. The RL-LLM-R pipeline continued to yield
models with stronger alignment on transition-based and novelty-focused metrics, while the RL-LLM-S
models were generally more consistent with the expert profile on popularity, diversity, and start power.
This consistency suggests that the choice pipelines influenced the types of curatorial behaviors the
agent learns, even when a seed track is provided.

Claude again showed clear differences in curatorial alignment based on input pipeline. The RL-LLM-R
model achieved a perfect delta of 0.0000 on Novelty and a very low Flow delta of 0.0014, indicating
extremely close adherence to the expert’s behavior in both choosing “hidden gems“ and maintaining
expert-based smooth track transitions. In contrast, RL-LLM-S yielded smaller deltas on Popularity
(0.0471 vs. 0.1087), Start Power (0.0034 vs. 0.0226), and Diversity (0.0083 vs. 0.0192), suggesting
that the summarized input guided the model to produce playlists that were more popular, opened more
strongly, and contained a slightly better mix of artists or genres.

Table 6.4: Reward Component Analysis for RQ1: Seeded Scenario

Claude GPT Gemini
Metric Expert Profile RL-LLM-S RL-LLM-R RL-LLM-S RL-LLM-R RL-LLM-S RL-LLM-R
Flow 0.8333 0.8853 0.8347 0.7664 0.8342 0.8545 0.8632
Popularity 1.4188 1.3717 1.5275 1.4383 1.1072 1.5205 1.5181
Start Power 0.1128 0.1094 0.1354 0.1236 0.0351 0.1389 0.1325
Diversity 0.7325 0.7408 0.7133 0.7216 0.7363 0.7200 0.7125
Novelty 0.1768 0.1282 0.1768 0.2365 0.1829 0.1624 0.1519

Figure 6.4 provides a visual representation of the deviation in scores form the expert baseline.
GPT’s reward alignment provided a different result compared to the recommendation quality metrics.
RL-LLM-Smodel showed the largest deviation from the expert profile on almost all metrics, even though
it scored significantly higher than RL-LLM-R model on the recommendtion metrics. This could indicate
that while the RL-LLM-R model did not pick the same song as the experts, the characteristics of the
overall playlist generated was similar to that of the expert. On Flow, the RL-LLM-R model once again
produced a near-zero delta (0.0009), far outperforming the RL-LLM-S version (0.0669). The Novelty
delta also dropped significantly from 0.0597 (RL-LLM-S) to 0.0061 (RL-LLM-R), highlighting the raw
input’s strength in reinforcing the expert’s discovery-oriented curation. However, this came at the cost
of large mismatches on Popularity (delta of 0.3116 for RL-LLM-R vs. 0.0195 for RL-LLM-S) and Start
Power (0.0777 vs. 0.0108), suggesting that the raw transcripts failed to capture the expert’s preference
for well-known or popular opening tracks. These results reinforce GPT’s difficulty in balancing multiple
curation goals when given unstructured input.
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Figure 6.4: Deviation of Reward Component Scores for RQ1 in the Seeded Scenario. Each subplot compares the alignment of
the different LLM-guided models against the Expert Baseline.

For Gemini, the differences between pipelines were smaller but still notable. The RL-LLM-S model
yielded better scores on Flow (0.0212 vs. 0.0299), Diversity (0.0125 vs. 0.0200), and Novelty (0.0144
vs. 0.0249), indicating better alignment with the expert’s stylistic flow, artist variety, and selection of
lesser-known songs. Conversely, RL-LLM-R showed slightly lower deltas on Popularity (0.0993 vs.
0.1017) and Start Power (0.0197 vs. 0.0261), but these margins were narrow. Similar to the seedless
scenario, Gemini remained relatively unaffected by input format, with both pipelines producing compa-
rable reward alignments across most components.

In the seeded scenario, as well, the pipeline structure influenced the types of curatorial behaviors cap-
tured by the models. RL-LLM-R pipelines favored smoothness and novelty, while RL-LLM-S pipelines
produced rewards more aligned with popularity, variety, and playlist structure. These effects were
most pronounced for GPT and Claude, while Gemini continued to show stable performance across
both pipelines.

6.1.2. Qualitative Analysis of LLM-Generated Reward Functions
This section provides a qualitative evaluation of the reward functions generated by our different input
pipelines and LLMs. By comparing the identified reward factors and their assigned weights, this analy-
sis links the understanding capabilities of the models to the observed characteristics of their generated
playlists. The analysis reveals that the choice of input format, summarized versus raw transcripts,
directly influenced the granularity and consistency of the resulting reward functions.

Common Reward Factors Identified
Across a majority of LLMs and both input pipelines, a consistent set of core curatorial principles was
identified, suggesting these factors are fundamental to the task. The reward components generated
from the summarized transcripts (Pipeline A) and raw transcripts (Pipeline B) are presented in Table
6.5 and Table 6.6, respectively. The most frequently identified factors were:
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• Flow: This factor was the most consistently identified component and typically received the high-
est weight (between 0.25 and 0.40). This was in line with our manual observations from the
expert interviews. Flow was mainly used by the experts to describe the sequencing of the tracks
in the playlist and a factor to consider when determining if a playlist is good. Provided our state
representation was mainly based on the Node2vec embeddings, most of the LLM generated re-
ward functions implemented flow as either the average or sum of the cosine similarity between
the subsequent songs. The RL-LLM-R approach based LLMs provided a slightly different imple-
mentation, taking into account the songs’ metadata like ‘mood‘ and ‘tempo‘, which was limited in
the number of distinct values present

• Popularity: Identified as a primary component with a high weight (often 0.25 to 0.35), this factor
reflects the expert principle of balancing curation with audience engagement. Experts confirmed
this, stating, “User engagement would mean that people are familiar with what they listen to.
So choosing popular songs...is just easy to listen to…“. This factor, appearing the sum of the
playlist songs’ popularity scores or a position-weighted song popularity calculation, where more
weightage was given to the popularity of the songs added initially.

• Artist Diversity: The models consistently included a factor to avoid artist repetition, assigning it a
weight between 0.15 and 0.20. This corresponds directly to expert heuristics such as, “Apart from
the flow, artist separation is a big deal for us.“, or as mentioned by another expert, “In general for
a playlist, I think it’s important not to have too much repetitiveness for certain artists“. It reflects
the experts’ aim of preventing listener fatigue by not playing the same artist too frequently.

• Start Strong: Also identified as “Start Power“, many models identified a specific factor for placing
popular tracks at the beginning of a playlist, reflecting the expert tactic of engaging the listener
early. The weights assigned were generally between 0.15 and 0.20. This aligns with the expert
inputs like, “..maybe you can force order the bigger artist first or the bigger songs first“.

The quantitative formula and code provided for computing the start strong reward was consis-
tent across the models. “..maybe you can force order the bigger artist first or the bigger songs
first, and then let the people slowly dive into more discover songs“

• Novelty: Another common factor recognized by most models through Pipeline A and Pipeline B
was the need for introducing less popular tracks. The reflects the experts’ strategy to surprise the
listeners with “hidden gems“ and encouraging them to explore new types of songs. In a majority
of the generated reward functions this was calculated as the inverse of song popularity.

Reward Functions from Summarized Transcripts (RL-LLM-S)
When prompted with the pre-processed, summarized text from Pipeline A, the LLMs generated reward
functions that were highly consistent and focused on a core set of abstract curatorial principles. As
shown in Table 6.5, the same fundamental factors emerged repeatedly across all models and runs:
Flow, Popularity, Start Strong, Artist Diversity, and Novelty. For example, “Flow“ consistently received
a high weight (typically 0.25-0.40), aligning with expert feedback that emphasized cohesive transitions.
Similarly, “Popularity“ was assigned a significant weight (0.25-0.35), reflecting the need to balance cu-
ration with audience engagement.

This stability suggests that the summarization process distills the expert interviews into a set of generic
agreed-upon rules amongst the experts, filtering out contradictory details. The result is a stable, gener-
alist curation policy built on the most essential principles of playlist creation. Table 6.5 provides insights
into the factors identified by the LLMs through the summarized transcripts.
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Table 6.5: Reward factors and weights generated by different LLMs from summarized interview transcripts. The table shows
five independent generation runs (v1-v5) for each model. The consistency in factors like ’Flow’ and ’Popularity’ highlights the

models’ ability to extract core, high-level principles from abstracted text.

Factor GPT-o4 Gemini 2.5 Pro Claude Opus4
v1 v2 v3 v4 v5 v1 v2 v3 v4 v5 v1 v2 v3 v4 v5

Flow 0.35 0.30 0.30 0.30 0.25 0.30 0.30 0.30 0.40 0.40 0.30 0.30 0.35 0.35 0.30
Popularity 0.35 0.30 0.30 0.25 0.25 0.30 0.25 0.30 0.35 0.35 0.25 0.25 0.25 0.25 0.25
Start Strong - 0.20 - 0.15 0.15 0.15 0.20 0.20 0.15 0.10 0.10 0.15 0.15 0.15 0.10
Artist Diversity 0.15 0.20 0.15 0.15 0.20 0.15 0.15 0.15 0.05 - 0.20 0.15 0.15 0.10 0.10
Novelty 0.15 - 0.10 0.15 0.15 0.10 0.10 0.05 0.10 0.15 0.10 0.10 - 0.05 0.05
Artist Popularity - - - - - - - - - - 0.05 0.05 - - 0.10
Energy Progression - - - - - - - - - - - - 0.10 0.10 0.05
Genre-variety bonus - - 0.15 - - - - - - - - - - - -
Discovery bonus - - - - - - - - - - - - - - -

Reward Functions from Raw Transcripts (RL-LLM-R)
In contrast, when provided with the complete raw transcripts from Pipeline B, the LLMs produced a
more diverse and granular set of reward functions. The models identified more specific, conditional
heuristics that were absent in the summarized outputs. A notable example is the introduction of Song
popularity as a position-weighted score, a rule that reflects the expert tactic of placing popular songs
at strategic points in the playlist, rather than just including them anywhere or just at the beginning.

As seen in Table 6.6, the reward structures are also more diverse across runs. For instance, GPT-
4o identifies a “Discovery bonus“ in four of five runs, while the other LLMs do not. This suggests that
the raw text provides a larger and more complex solution space, resulting in more varied interpretations
of expert strategy.

This presents a trade-off: summarized transcripts yield consistent reward functions based on core
principles, while raw transcripts allow for the extraction of more specific and creative heuristics at the
cost of consistency. This finding has significant implications for designing the reward function using
LLMs for the RL agent, as the former might create a reliable generalist, while the latter could create a
more specialized agent that can mimic individual expert tactics.

Table 6.6: Reward factors identified by LLMs along with their weights with Raw Interview Transcripts

Factor GPT-o4 Gemini 2.5 Pro Claude Opus4
v1 v2 v3 v4 v5 v1 v2 v3 v4 v5 v1 v2 v3 v4 v5

Flow 0.25 0.30 0.30 0.30 0.30 0.20 0.25 0.30 0.25 0.25 0.25 0.25 0.35 0.25 0.25
Popularity - - - - - 0.25 - - 0.35 0.30 - - 0.30 - -
Start Strong - 0.05 0.10 - 0.15 0.25 0.10 0.15 0.15 0.20 0.15 0.15 0.10 - 0.15
Song position 0.20 - - - - - - - - - - - - 0.15 -
Artist Diversity 0.15 0.20 0.20 0.15 0.15 0.10 0.10 0.15 0.15 - 0.15 0.15 0.20 0.20 0.10
Novelty - - - - 0.15 0.10 0.05 - 0.10 0.20 0.10 0.10 0.05 0.10 0.10
Song_popularity (position-weighted) 0.25 0.30 0.25 0.35 0.25 - 0.20 0.30 - - 0.20 0.30 - 0.25 0.20
Artist Popularity - - - - - - 0.15 - - - 0.15 0.05 - - 0.15
Energy Progression - - - 0.10 - 0.10 0.15 - - 0.05 - - - 0.05 0.05
Discovery bonus 0.15 0.15 0.15 0.10 - - - 0.10 - - - - - - -

LLM-Specific Behavioral Patterns
While all models identified the core principles, subtle differences in their outputs can be observed:

• GPT-4o: This model included a “Discovery bonus“ factor when processing raw transcripts, indi-
cating a tendency to identify concepts related to novelty. Its outputs also showed higher structural
variety between runs compared to the other models. Appears to be particularly sensitive to con-
cepts of discovery and novelty when processing raw transcripts, frequently including a Discovery
bonus factor.

• Gemini 1.5 Pro: Tends to produce very stable and robust reward structures. This model tended
to produce reward structures with consistently high weights assigned to “Popularity“ metrics, sug-
gesting it prioritized engagement-driven heuristics from the text. It consistently assigns a high
weight to Popularity metrics, suggesting a strong ability to identify core engagement-driven heuris-
tics from the text.
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• Claude 3 Opus: This model demonstrated a tendency to identify more relational concepts. It
was the only model to consistently extract “Energy Progression“ from the summarized text and
frequently distinguished between “Artist Popularity“ and “Song Popularity“.

This presents a clear trade-off: summarized transcripts yield consistent reward factors based on
core principles, while raw transcripts result in more specific and creative heuristics at the cost of consis-
tency. This finding has significant implications for designing the RL agent, as the former might create
a reliable generalist, while the latter could create a more specialized agent that mimics specific expert
tactics.

6.2. RQ2: Alignment of RL Agents with Expert Curation
Having established in Section 6.1 the impact of different LLMs and input processing pipelines on the
agent’s performance, we now broaden the scope of our investigation. The primary objective of this
research is not only to develop a novel method for reward function generation, but also to assess its
efficacy relative to existing and simpler approaches. This section, therefore, addresses the second
research question: To what extent does RL-LLM agents align with expert curatorial strategies when
compared to established baseline methods?

To answer this, we evaluate our two proposed approaches, represented by RL-LLM-S (Gemini)
and RL-LLM-R (Gemini) models, against our two baselines: a simple similarity-based approach (N2V-
S) and an RL agent with a manually crafted reward function (RL-M). The Gemini LLM was chosen for
both approaches as it demonstrated more stable and high-performing results in RQ1. Our findings from
Section 6.1 indicated that models specializing in specific curatorial metrics often exhibited diminished
overall recommendation quality. In contrast, RL-LLM-S (Gemini) and RL-LLM-S (Gemini) achieved the
highest scores on primary recommendation metrics like ndcg@k, while also demonstrating comparable
performance across the other recommendation quality and reward component metrics.

6.2.1. Quantitative Analysis
Similar to RQ1, the quantitative analysis first examines the performance through the lens of recommen-
dation quality metrics and then into a comparison of expert-curatorial alignment, in the seedless and
seeded playlist completion scenarios.

Recommendation Quality Metrics
We first assess the models’ ability to replicate expert-curated playlists using standard recommendation
accuracy metrics. This evaluation is helps in understanding the practical performance of our proposed
models (RL-LLM-S and RL-LLM-R) in comparison to the baselines (N2V-S and RL-M).

Seedless Playlist Generation (N=0): In the seedless scenario, where models generate a 20-song
playlist from only a title, the results in Table 6.7 reveal a clear and statistically significant performance
hierarchy. A substantial gap exists between the RL models and the Node2Vec baseline. The N2V-S
model’s precision@10 of 0.0582 indicates it placed, on average, fewer than one expert-selected track
for every playlist generated. Its correspondingly low nDCG@10 score of 0.0493 further suggests that
its simple similarity-based strategy is insufficient for the cold-start generation task, as it fails to identify
relevant tracks and rank them effectively.

The manually-crafted reward-based RL model, RL-M, demonstrates a considerable improvement over
N2V-S, achieving a precision@10 of 0.2405, corresponding to roughly 2.4 expert-approved tracks in
its top ten. However, it is statistically outperformed by the LLM-guided models. For instance, the RL-
LLM-S (Gemini) model achieved a precision@10 of 0.2731, placing approximately 2.7 correct tracks.
The higher recall@10 (0.1365 vs. 0.1203) and nDCG@10 (0.2729 vs. 0.2437) scores confirm that the
LLM-based reward function not only enabled the agent to cover a larger portion of the expert’s choices
but also to rank them more effectively.
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Table 6.7: Recommendation Quality in the Seedless Scenario (N=0). Scores are annotated with superscript letters (a, b, c) to
denote statistical significance based on a Wilcoxon signed-rank test (α=0.05). Models that do not share a common letter are
significantly different. The analysis reveals three distinct performance tiers, with our proposed RL-LLM models (a) significantly

outperforming both the manual RL-M (b) and N2V-S (c) baselines. Best scores are in bold.

Metric N2V-S RL-M RL-LLM-S (Gemini) RL-LLM-R (Gemini)
ndcg@10 0.0493c 0.2437b 0.2729a 0.2718a
precision@10 0.0582c 0.2405b 0.2731a 0.2709a
recall@10 0.0291c 0.1203b 0.1365a 0.1354a

ndcg@20 0.0623c 0.2338b 0.2699a 0.2704a
precision@20 0.0724c 0.2278b 0.2687a 0.2693a
recall@20 0.0724c 0.2278b 0.2687a 0.2693a

For k=20, N2V-S remains poor, placing less than 1.5 expert-selected tracks on average (preci-
sion@20 of 0.0724). RL-M significantly improves this to approximately 4.5 expert-selected tracks (pre-
cision@20 of 0.2278). The LLM-guided models, RL-LLM-S (Gemini) and RL-LLM-R (Gemini), per-
form best, consistently picking around 5.4 expert-selected tracks (precision@20 of 0.2687 and 0.2693
respectively), further demonstrating their ability to generate relevant and well-ranked playlists from
scratch.

The statistical significance testing formally validates these observations, identifying three distinct perfor-
mance tiers (padj < 0.05). The two Gemini-based RL-LLM models, which are statistically indistinguish-
able from each other, significantly outperform the RL-M model, which in turn significantly outperforms
the N2V-S baseline. This confirms the value of the LLM-generated reward signals over both a manually
specified one and a simple embedding-based approach for this task.

Seeded Playlist Generation (N=1) When a seed track is provided, the performance hierarchy shifts
, as shown in Table 6.8. The N2V-S baseline becomes the top performing model across all recom-
mendation quality metrics, suggesting the task becomes less about interpreting a broad concept (the
title) and more about local, similarity-based continuation. The N2V-S model’s precision@10 of 0.2966
indicates it placed nearly three expert-approved tracks in the top ten recommendations.

However, the significance tests presents an additional insight. At the k=10 level, there is no statisti-
cally significant difference between the N2V-S model and the two RL-LLM models, placing them in the
same performance tier. This suggests that for shorter playlists containing an initial track, the next-track
predictions based on the direct signal from embedding similarity is as effective as the more complex
RL policies. All three of these models do, however, significantly outperform the RL-M baseline, whose
precision@10 of 0.2398 corresponds to only 2.4 correct tracks.

Table 6.8: Recommendation Quality in the Seeded Scenario (N=1). Scores are annotated with superscript letters (a, b, c) to
denote statistical significance (α=0.05). Models that do not share a common letter are significantly different. For top-10 metrics,
N2V-S and the RL-LLM models (a) are statistically indistinguishable and significantly outperform RL-M (b). For top-20 metrics,

N2V-S (a) is the clear top performer. Best scores are in bold.

Metric N2V-S RL-M RL-LLM-S (Gemini) RL-LLM-R (Gemini)
ndcg@10 0.2992a 0.2427b 0.2727a 0.2714a
precision@10 0.2966a 0.2398b 0.2730a 0.2704a
recall@10 0.1483a 0.1199b 0.1365a 0.1352a

ndcg@20 0.2955a 0.2266c 0.2610b 0.2626b
precision@20 0.2927a 0.2175c 0.2551b 0.2573b
recall@20 0.2927a 0.2175c 0.2551b 0.2573b

At the k=20 level, we observe a clear hierarchy. The N2V-S model’s advantage over the RL models
becomes statistically significant, solidifying its strength in the seeded playlist continuation scenario.
Amongst the RL models, models from both the LLM based approaches, significantly outperforming
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the RL-M model. Interestingly, the performance of the RL agents did not uniformly improve with a
seed track; this suggests that the provided seed may at times constrain the learned policy in a way
that hinders its ability to match the expert sequence. Nevertheless, the results consistently show that
the LLM-guided agents significantly outperform the manually-tuned agent, while the summary-based
(RL-LLM-S) and raw-transcript-based (RL-LLM-R) pipelines remain statistically indistinguishable for
the Gemini model.

Reward Component Metrics
While we established how the models perform with respect to the song selection, we further analyze the
characteristics of the playlists generated by the model with respect to our reward component metrics.
By evaluating against the reward component metrics, we canmeasure how closely each model’s output
aligns with the complex curatorial profile derived from expert interviews. The primary metric used is the
delta score, the absolute difference from the expert profile benchmark, where a lower value indicates a
closer alignment. The accompanying deviation plots in Figures 6.5 and 6.6 visualize these differences,
with the zero-line representing a perfect match with the expert profile.

Seedless Playlist Generation (N=0) The delta analysis in Table 6.10 provides insight into how each
model’s output aligns with the target curatorial profile. An analysis of the reward components in the
seedless scenario reveals the distinct operational logic and resulting trade-offs of each model. By cor-
relating the delta scores from Table 6.10 with the achieved raw scores in Table 6.9, we can develop a
critical understanding of their respective alignment strategies.

The N2V-S baseline, which does not explicitly model the expert strategies, shows divergence from
the expert profile on several metrics. Its large delta on Popularity (0.4975) is because its achieved
score (0.9213) is substantially lower than the expert target (1.4188). Its Start Power delta (0.1128) is
simply the expert target itself, as the model’s raw score is 0.0000, reflecting its inability to factor in
track position or popularity. Its performance on Flow (delta 0.0519) is moderate, suggesting that while
embedding similarity is a reasonable proxy for coherence, the model tends to slightly over-optimize it
(raw score 0.8852 vs. target 0.8333).

Table 6.9: Reward Component Analysis: Seedless Scenario. This table shows the raw scores for each model against the
expert profile.

Metric Expert Profile N2V-S RL-M RL-LLM-S RL-LLM-R
Flow 0.8333 0.8852 0.8110 0.8542 0.8347
Popularity 1.4188 0.9213 1.3786 1.5185 1.5173
Start Power 0.1128 0.0000 0.1144 1.322 0.1272
Diversity 0.7325 0.6926 0.7294 0.7185 0.7108
Novelty 0.1768 0.1376 0.1989 0.1617 0.1762

Note: The RL-LLM-S and RL-LLM-R columns show results from their respective Gemini-guided models. Bold values indicate
the score closest to the Expert Profile.

The RL-M model provides a compelling case study in manual reward engineering, with it achiev-
ing the lowest deltas on three of the five metrics. Its top performance on Diversity (delta 0.0031) and
Start Power (delta 0.0016) stems from its ability to learn and execute clear rules. The Diversity score of
0.7294 is nearly identical to the expert target of 0.7325. The Start Power score of 0.1144 is also remark-
ably close to the 0.1128 benchmark, a likely emergent property from optimizing for its high-weighted
factors like Popularity and Coherence.

It also achieves the best alignment on Popularity (delta 0.0402), with its raw score of 1.3786 being the
closest to the expert profile (1.4188). This is counterbalanced by its performance on Novelty, where
its score of 0.1989 overshoots the target of 0.1768, resulting in a delta of 0.0221. This illustrates the
explicit trade-off dictated by its fixed weights: the agent prioritizes hitting the Popularity target, which
comes at the cost of slightly over-representing novel tracks to satisfy its secondary Novelty objective.
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Table 6.10: Delta Analysis (Seedless): Absolute Difference from Expert Profile. A lower value indicates that the score achieved
by the model is closer to the scores computed from the expert curated sequences and are in bold.

Metric N2V-S RL-M RL-LLM-S RL-LLM-R
Flow 0.0519 0.0223 0.0209 0.0294
Popularity 0.4975 0.0402 0.0997 0.0985
Start Power 0.1128 0.0016 0.0194 0.0144
Diversity 0.0399 0.0031 0.0140 0.0217
Novelty 0.0392 0.0221 0.0151 0.0252

The LLM-guided models exhibit a different set of trade-offs, showing better performance on abstract
metrics. The RL-LLM-S model achieves the best delta for Flow (0.0209) and Novelty (0.0151). Its
Novelty score of 0.1617 is very close to the expert target (0.1768), suggesting the LLM better captured
the nuanced balance between discovery and popularity described in the interviews. However, this
comes at the cost of precision on other metrics. Both RL-LLM-S and RL-LLM-R produce playlists with
higher Popularity scores (1.5185 and 1.5173, respectively) than the expert target (1.4188). This leads to
larger deltas on this metric (0.0997 and 0.0985) compared to RL-M. This suggests the LLM-generated
reward functions may have interpreted “popularity“ as a general principle to be maximized, rather than
a specific level to be targeted, resulting in less precise alignment to that specific value.

(a) Flow (b) Popularity (c) Start Power

(d) Diversity (e) Novelty

Figure 6.5: Deviation of Reward Component Scores from the Expert Profile for the Seedless Scenario. Each subplot shows
the performance for a single metric against the Expert Baseline (zero line).

The seedless scenario highlights that no single model achieves superior alignment across all cura-
torial dimensions. The RL-M model achieved a higher alignment with more quantifiable and structural
components of the expert profile, such as popularity levels and adhering to rules for artist diversity. The
RL-LLM models offer a different kind of alignment, one that is broader but less numerically exact. This
could be an indication that the LLM-based rewards aligned more on subjective and stylistic aspects
of the expert profile, such as capturing a musical “flow“ and balancing track discovery with familiarity
(Novelty).
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Seeded Playlist Generation (N=1) We further evaluate the model generated playlists in the seeded
scenario. An analysis of the raw scores in Table 6.11 and the corresponding deltas in Table 6.12 high-
lights a divergence between the similarity-based N2V-S model and the reward-driven RL models.

Although the N2V-S model achieves high recommendation accuracy in the seeded scenario, this per-
formance is accompanied by substantial deviations from key curatorial benchmarks. A significant devi-
ation is observed in Diversity, where the raw score of 0.1125 results in a large delta of 0.6200. This can
be attributed to a “homogenization“ effect, where the model’s reliance on embedding similarity leads
it to repeatedly select tracks from the same artist or album as the seed song provided. Similarly, the
model exhibits a lack of control over Start Power, yielding a delta of 0.6083. The raw score of 0.7211 is
not a product of a learned strategy but an result of the seed track’s own popularity, wherein the N2V-S
picks then adds songs with similar popularity. Conversely, its local optimization strategy results in the
closest alignment on Popularity (delta 0.0336), where its raw score (1.3852) is nearest to the expert
profile (1.4188).

In contrast, the RL-M model maintains high fidelity to the target profile, exhibiting considerable robust-
ness. It achieves the lowest deltas for Start Power (0.0064) and Diversity (0.0011), with its raw scores
(0.1192 and 0.7314, respectively) closely matching the expert benchmarks. This illustrates the efficacy
of its explicit, rule-based design in mitigating the homogenization and control issues observed in the
N2V-S model.

Table 6.11: Reward Component Analysis: Seeded Scenario. This table shows the raw scores for each model against the
expert profile.

Metric Expert Profile N2V-S RL-M RL-LLM-S RL-LLM-R
Flow 0.8333 0.9000 0.8112 0.8545 0.8632
Popularity 1.4188 1.3852 1.3786 1.5205 1.5181
Start Power 0.1128 0.7211 0.1192 0.1389 0.1325
Diversity 0.7325 0.1125 0.7314 0.7200 0.7125
Novelty 0.1768 0.1264 0.1994 0.1624 0.1519

Note: The RL-LLM-S and RL-LLM-R columns show results from their respective Gemini-guided models. Bold values indicate
the score closest to the Expert Profile.

The LLM-guided agents on the other hand, maintained low deltas on structural metrics like Start
Power and Diversity. The RL-LLM-S model attains the lowest deltas for Flow (0.0212) and Novelty
(0.0144). Its raw Novelty score of 0.1624 is the closest to the expert target of 0.1768, suggesting its
tendency to focus on addtional criteria like maintaining artist diversity as well as avoiding popularity
bias.

Table 6.12: Delta Analysis (Seeded): Absolute Difference from Expert Profile. A lower value indicates that the score achieved
by the model is closer to the scores computed from the expert curated sequences and are in bold.

Metric N2V-S RL-M RL-LLM-S RL-LLM-R
Flow 0.0667 0.0221 0.0212 0.0299
Popularity 0.0336 0.0402 0.1017 0.0993
Start Power 0.6083 0.0064 0.0261 0.0197
Diversity 0.6200 0.0011 0.0125 0.0200
Novelty 0.0504 0.0226 0.0144 0.0249
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(a) Flow (b) Popularity (c) Start Power

(d) Diversity (e) Novelty

Figure 6.6: Deviation of Reward Component Scores from the Expert Profile for the Seeded Scenario. Note the significant
deviation of the N2V-S model on Start Power and Diversity.

The seeded scenario clearly differentiates the models based on their strategic scope. The perfor-
mance of the N2V-S model illustrates that a similarity-driven optimization, can be more effective on
the playlist continuation task. By evaluating the playlist as a whole, their reward-driven policies can
integrate a local constraint without deviating from fundamental curatorial principles. The RL-M model
is particularly effective at preserving the explicit structure of the playlist, while the RL-LLMmodels show
a notable capacity for maintaining its intended style, highlighting the different capabilities of manually-
engineered versus interpretively-derived reward systems.This indicates that while choosing songs that
are closer in the embedding space can result in more expert-selected tracks to be added to the mod-
els’ playlists, the tracks that do not overlap could be different from the type of songs and the overall
composition of the experts’ playlists.

6.2.2. Stability of the RL Agents
To establish the reliability of our findings, each RL agent was trained five times with different random
seeds. The learning curves from this process, as illustrated by the stable convergence of the RL-LLM-
S (Claude) agent in Figure 6.7, showed minimal variance across runs. This stability, further detailed
with the evaluation metric scores obtained by the 5 instances of the agents (presented in Appendix
D), confirms the robustness of the models. All results presented above for each RL agent is therefore
based on these averaged scores, allowing for a reliable comparison.
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Figure 6.7: Illustrative learning curves for the RL-M agent, showing stable convergence across five independent runs.



7
Discussion

This chapter provides a discussion of the results presented in Chapter 6, interpreting their implica-
tions for our research questions and broader applications, within academic research and industry. We
explore how our findings answer the central research question and its sub-questions, highlight other
implications, and finally, address the limitations of this study.

7.1. Impact of Transcript Processing and LLM Choice
Our investigation into leveraging LLMs for interpreting expert curatorial explanations and generating
computable reward components (RQ1) give insights into the capabilities and limitations of the proposed
summarization pipeline.

7.1.1. The Summarization Pipeline: Function and Implications
The ”Summarization-First Approach” (RL-LLM-S) was designed to combine and condense multiple, un-
structured expert interviews into a concise, pre-verified summary before LLM processing. This pipeline
consistently led to the generation of stable and generalized reward functions, centered on the more
commonly mentioned and recognized curatorial principles such as “Flow“, “Popularity“, “Artist Diver-
sity“, “Start Strong“ and “Novelty“. The reward factors identified through the summarization approach
across various LLMs remained consistent, both within multiple runs of the LLM (v1-v5, Table 6.5 and
across different LLM instances. This suggests that the summarization process narrowed down the
LLMs’ focus on the concepts that represented a common consensus across the experts, thus leading
to a more ”generalist” curation policy.

Quantitative Impact onRecommendationQuality: One of the questions we try to answer is whether
inclusion of the summarization step offered an advantage. The results were mixed across the LLMs,
suggesting that the choice of LLMs also influenced the effect of this approach. For GPT-based Agents,
the summarization pipeline demonstrated a statistically significant advantage in the seedless scenario.
This indicates that for GPT models, providing a pre-summarized, less noisy input resulted in a reward
signal that guided the RL agent to learn a more effective expert policy, validating the benefit of the
summarization step for this specific LLM. The Claude-guided agents showed an improvement in recom-
mendation accuracy on longer playlists when moving from raw to summarized inputs. Gemini-guided
Agents’ robustness and stability across both input pipelines, with minimal statistical differences in per-
formance, brings out an interesting insight. The similarity in performance across both pipelines could
suggest that Gemini possesses strong capabilities in processing diverse textual inputs effectively, or,
as a critical observation, that its internal processing might inherently perform a similar summarization
step as Pipeline A. Given that Gemini was used also for the summarization stage of the RL-LLM-S
pipeline, this raises the question of whether an external summarization step offers an added advan-
tage when using Gemini, implying its internal mechanisms already perform a similar summarization
to retrieve relevant information from qualitative data. This finding necessitates investigating whether
LLMs internally perform a summarization step when processing raw transcripts to better understand
their mechanisms for knowledge formalization.
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7.1.2. LLM Information Processing: Consistency or Granularity?
While, the reward factors generated from the raw transcripts, overlapped quite a bit with the one gener-
ated from the summarization pipeline, it did capture some additional set of heuristics. This was evident
in the emergence of highly specific factors like “Song popularity as a position-weighted score“, “Dis-
covery bonus“, and “Genre-variety bonus“. Additonally, we observed that resulting reward factors from
RL-LLM-R approach were less consistent across runs, indicating that the LLMs focused on different
specific details in each iteration. This suggests that while LLMs possess the capability to capture nu-
anced information, this comes at the cost of less predictable outputs when the input is unconstrained
and highly variable.

7.1.3. Bridging Tacit Knowledge to Computable Code
Beyond reward function generation, the analysis of the generated reward code revealed that, given
sufficient context about the agent’s state, action space, and available data, LLMs were capable of gen-
erating functional code with minimal errors. The observed errors, such as references to non-existing
data or incorrect variable references, were largely addressable and could be resolved through the itera-
tive code refinement step. Additionally, providing the LLMs with a skeletal structure for the reward code
resulted in more consistent and easier to implement code, though potentially at the cost of excluding
exhaustive or highly creative approaches (e.g., using expert-criteria mappings for playlist titles). The
findings from these results suggest that LLMs are capable of capturing expert-based curatorial criteria,
though their ability to translate abstract and tacit concepts into a structured, executable format requires
further investigation, given the lack of consensus on how to quantify these metrics.

7.2. RQ2: Alignment of RL Agents with Expert Curation
Our second research question evaluates the practical efficacy of our proposed RL-LLM models by
comparing them against two baselines: a non-RL, similarity-based model (N2V-S) and an RL agent
guided by a manually-engineered reward function (RL-M). The results reveal that the effectiveness of
each approach is highly dependent on the playlist generation context, specifically whether the playlist
generation task is seedless (cold-start) or seeded (continuation).

7.2.1. Performance of Model in Seedless Playlist Generation
In the seedless generation scenario, which tests the models’ ability to generate playlists from scratch
using a thematic title, the results revealed a clear and statistically significant performance hierarchy.
The data presented in Table 6.7 inidicates that the RL-LLM models outperformed the baselines models
on the recommendation metrics.

This outcome implies that for generating theme-based playlists a simple similarity-based approach is
insufficient. The RL agents, which leverage the same song embeddings but are guided by a long-term
reward signal, learn a more effective policy. The success of the LLM-guided agents over the manually-
tuned one further suggests that the LLM-derived reward function captures the experts’ preferences
more effectively than the hand-crafted rules of the RL-M agent. However, while the improvement is
statistically significant, the difference in raw performance scores shows the practical gain as modest,
translating to less than one additional expert-approved track in a 20-song playlist. This raises questions
about the practical magnitude of the advantage. While our findings validate the hypothesis that LLM-
derived rewards can enhance performance in the cold-start problem, the degree of this improvement
suggests that a well-designed manual reward function can still be highly competitive, and the additional
complexity of the LLM pipeline may yield only marginal gains in this context.

Moreover, this comparison is complicated by the reward component analysis, which does not mirror
the same performance hierarchy. The manually-tuned RL-M agent, despite its lower recommendation
accuracy, achieved a closer alignment to the expert profile on quantifiable metrics like Popularity and
Diversity. This suggests the RL-M agent was better at optimizing for the explicit, rule-based definitions
we provided, even if the tracks specifically differed. In contrast, the RL-LLM models’ superiority in
overall accuracy may indicate they learned a policy that better reflects the experts’ true intent, even if
that intent was not perfectly captured by our specific, and simplistic, quantitative formulas for abstract
concepts like “flow“ or “novelty“.
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7.2.2. Performance of Model in Playlist Continuation
When the task shifted from playlist generation to seeded playlist continuation, the performance hierar-
chy changed. The non-RL N2V-S baseline outperformed the RL-based models on recommendation
quality metrics, achieving an nDCG@20 of 0.2955, significantly outperforming the RL-LLM (0.2626)
and RL-M (0.2266) models .

This result highlights a fundamental distinction between local, greedy optimization and global, policy-
based optimization. The N2V-S model, when provided with a seed track, shows a substantial improve-
ment in its recommendation accuracy and ranking. This indicates that a simple similarity based heuris-
tic, can be more effective at predicting the next likely tracks in a sequence. On the other hand, the
presence of a seed track did not improve the accuracy of any of the RL agents. This could be a result
of the agents learned policy, which takes into consideration multiple factors from the reward, and not
just the information gained from the seed song. While the N2V does have a statistically significant
improvement over the RL agents, a comparison of the raw scores reveal that the almost same num-
ber of correct songs are picked by both approaches in the seeded scenario (5,9 vs 5,2 out of 20 tracks).

However, this picture of the N2V-S model’s superiority is reversed when examining the reward com-
ponent scores. The N2V-S model, despite its high accuracy, showed more deviation from the expert
profile on the reward component scores. Its greedy strategy led to playlist homogenization, with low
artist diversity scores, revealing that the overall characteristic of its playlists did not align with experts
on our simple metrics. The RL agents, in contrast, demonstrated closer characteristic alignment with
these global curatorial principles.

7.3. Industrial and Practical Applications
The motivation for this research was rooted in the industrial challenge of scaling expert curation at XITE,
where a small team of music experts is tasked with creating a large volume of high-quality playlists to
meet increasing user demand. The findings suggest that the proposed RL-LLM framework should not
be viewed as a replacement for human curators, but rather as a potentially valuable assistive tool. The
interviews as well as the reward component metric scores of the models revealed that the expert cura-
torial process is deeply abstract, relying on tacit knowledge, and intuitive judgments that are difficult to
fully formalize into quantitative reward signals. The models learn from a static snapshot of this knowl-
edge, whereas human experts continually adapt to new trends and cultural shifts. Therefore, a realistic
application of this system would be to augment the expert workflow, for instance, by generating a “first
draft“ of a playlist which the experts can further refine. This has the potential to reduce the time required
for initial track selection, allowing experts to focus on more creative and strategic tasks, especially dur-
ing periods of high demand.

However, translating these research findings into a production environment requires an assessment of
the operational costs against the potential benefits. The adoption of the RL framework is fundamentally
constrained by its high computational cost. The expenditure required to train an RL agent, in our case,
5 million timesteps for each configuration, is orders of magnitude greater than that of the one-time train-
ing for the simpler Node2Vec model. Deploying and maintaining such a system requires a substantial
investment in computational resources. This significant cost necessitates further evaluation of whether
the performance gains justify the expenditure.

7.4. Limitations of our work
While this study provides a novel framework, its limitations must be acknowledged as they could serve
as directions for future research. A main limitation lies in the study’s data and scope, which impacts
the generalizability of the findings. The reliance on an internal dataset from XITE meant that metrics
like song popularity had to be proxied, creating a potential disconnect from the real-world signals (e.g.,
Billboard charts, Spotify data) that experts use. Furthermore, the expert knowledge was elicited from
a small, homogeneous group of eight curators from a single organization. Their curatorial strategies,
while valuable, may not be universally representative, and the framework’s effectiveness should be
validated with a more diverse expert pool and across different music platforms.
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A second limitation was the metrics used to compare the playlists’ characteristics. Our operationaliza-
tion of concepts like “flow“ and “novelty“ resulted in overly simple definitions of these abstract concepts.
For instance, when using cosine similarity as a proxy for ”flow”, a comparison between the two playlists
gets reduced to their average track similarity, a behavior that is not always representative of an expert’s
strategy. An alternate quantitative representation of these metrics might lead to different conclusions
about playlist alignment. This necessitates the need for more human-based evaluation. A further limi-
tation is the foundational assumption of our work, that experts’ strategies in interviews perfectly mirror
their actual behavior. There can be a significant gap between an expert’s stated process and their
actions when creating a playlist. Future work could address this by augmenting interviews with expert
demonstrations (i.e., analyzing playlists curated by those same experts), which would ground the LLM’s
understanding in actual expert behaviour.

Finally, the study was confined to assessing playlists of a fixed 20-song length, which may not be
enough to capture the variation of the expert playlists, which can range up to over 4000 tracks in length.
This also indicates that our evaluation may not fully assess the theoretical advantage of RL, which is its
ability to optimize for cumulative rewards over long durations. Furthermore, the training and evaluation
were performed on a narrow set of themes defined by explicit metadata like decade and genre. Fu-
ture research should therefore extend the evaluation to playlists of greater and more variable lengths
and broaden the training scope to include more abstract, subgenre, or mood-based titles. This would
provide a more robust assessment of the learned policy’s generalizability and long-term performance.
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Conclusion and Future Work

This thesis proposed a novel methodology for integrating the tacit knowledge of expert curators into
a RL framework for theme-based playlist generation. The primary objective was to bridge the gap
between the nuanced, qualitative strategies of human experts and the quantitative reward functions
required by RL agents. The research was structured around two main quesions. Firstly, it explored
how LLMs could be leveraged to interpret natural language explanations from curators and generate
effective reward functions, comparing a pipeline that used summarized interview data against one that
used raw transcripts. Secondly, it assessed the extent to which an RL agent guided by these expert-
informed rewards could generate playlists that align with professional curation standards in comparison
to baseline models.

The investigation into using LLMs for reward generation revealed a trade-off between the two process-
ing pipelines. The summarization-first pipeline, which processed a condensed and verified summary of
expert interviews, consistently produced stable and generalist reward functions focused on high-level,
consensual principles like flow, popularity, and diversity. In contrast, the direct-from-raw pipeline, which
provided the LLM with the complete, unstructured transcripts, allowed for the extraction of more varied,
and specific factors like Genre-variety bonus. This came at the cost of consistency, indicating that while
raw text can be more descriptive, it can also lead to less predictable reward structures. The choice of
LLM also proved to be a significant factor; models from the Claude and Gemini families consistently
outperformed the GPT-based models used in this study.

The results obtained from the comparative evaluation of the playlist generation models varied based on
the task. In the seedless playlist generation, the proposed RL-LLM models significantly outperformed
both the manually-tuned RL agent (RL-M) and a similarity-based baselines (N2V-S) on standard rec-
ommendation quality metrics. This suggests our agent, trained on expert insights, was able to create
better expert-aligned playlists. The LLM-derived reward functions proved more effective at captur-
ing the multi-objective nature of expert curation than a hand-crafted reward formula. However, in the
seeded playlist continuation task, the performance hierarchy inverted. The simple, similarity-based
N2V-S baseline achieved the highest scores on recommendation accuracy metrics, suggesting that for
local, next-track prediction, a greedy similarity heuristic can be more effective when an initial context is
provided.

The N2V-S model, however, showed misalignment with the expert curatorial profile on different heuris-
tics, thus producing playlists with extremely low artist diversity. The RL-based agents, conversely,
demonstrated better alignment with curatorial principles such as diversity and balancing popularity with
novelty, even in the seeded scenario.

The primary contributions of this thesis are threefold. It introduces a methodology for translating tacit
expert knowledge into executable reward function code using LLMs. Furthermore, it provides a com-
parative analysis of knowledge processing pipelines, revealing a trade-off between the consistency of
rewards from summarized text and the granularity in rewards from raw text. Third, it offers an empirical
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comparison of different foundational LLMs for the task of converting tacit knowledge to reward function
for RL. By establishing a baseline methodology, this research lays the groundwork for subsequent re-
search to integrate experts’ tacit knowledge in various domains.

The study does have some limitations. The use of proxied data for measuring metrics like song pop-
ularity could have influenced our results. Furthermore, the operationalization of abstract concepts like
“flow“ into simple quantitative metrics for evaluation is a simplification of complex human perception.
This brings forth the need for more concrete experiments and metrics to draw more definitive conclu-
sions.

8.1. Future Work
The findings and limitations of this study suggest several directions for future research. These avenues
focus on validating the approach with real users, enhancing the system’s semantic understanding,
incorporating expert demonstrations, exploring our methodology’s broader applications.

8.1.1. Online Evaluation and Human-in-the-Loop Refinement:
One of the most important next steps would be to evaluate our models in a online setting. While neces-
sary for initial validation, an offline setting cannot fully capture the dynamic nature of user satisfaction.
Conducting an online A/B testing, similar to the setting proposed in [109], would help measure how
the playlists generated by the RL-LLM framework compare to the expert-curated playlists. This would
provide more conclusive results on our models’ ability to generate high-quality playlists. Tracking key
user engagement metrics, such as session length, skip rates, and user feedback, can help determine
if the observed offline improvements translate into a genuinely better user experience.

Furthermore, the current reward generation process is static. A more advanced implementation could
incorporate a human-in-the-loop step our methodology, as demonstrated in [26]. This would involve
iterative reward refinement, where experts provide natural language feedback on generated playlists
(“the energy drops too quickly here“) to dynamically update the reward function.

8.1.2. Improving Semantic Understanding and Model Capabilities
The system’s performance is dependent on its ability to understand the semantic content of both the
songs and the playlist themes. The current Node2Vec embeddings, while effective, does not capture
meanings from song lyrics or the playlist titles. Incorporating song lyrics, through RNN-based feature
extraction mechanisms, as proposed in [110], could help the agent gain more information about the
songs. Similarly, our current approach is limited for themes defined by explicit song metadata (e.g.,
“90s Pop“). To handle more abstract themes like “workout motivation“ or “happy hits“, the system
requires a deeper understanding of the semantic meaning of playlist titles. Building on Yürekli et al.’s
work [54] which utilizes semantic meaning from playlist titles, future research could integrate semantic
representations of the titles into the agent’s state.

8.1.3. Incorporating Expert Demonstrations
As noted earlier, a main assumption of our paper is the alignment between expert descriptions and
their actual intent. Learning directly from expert demonstrations could enable agents to better learn
expert-curation strategies. This can be explored in two ways:

• Inverse Reinforcement Learning: One primary approach involves leveraging Inverse Reinforce-
ment Learning (IRL), which addresses the reward design problem by inferring the reward function
directly from observing expert demonstrations. IRL has been applied in previous works to learn
sequential decisions [111]. In the context of playlist generation, the agent could learn directly from
expert-curated sequences.

• Additional Prompting Techniques: A secondary approach involves exploring few-shot prompting
techniques to improve themodel’s output quality and consistency, as demonstrated in the baseline
Text2Reward paper [26]. Providing a few examples of expert-curated playlists alongside the
expert interview transcripts could help the LLMs match expert descriptions with their existing
work to learn expert strategies better.
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8.1.4. Extensibility to Other Domains:
Wile this research focused exclusively on music, the core methodology has the potential for extensibility.
Any field where success is defined by subjective and hard to codify expert knowledge could benefit from
this approach of translating qualitative expertise into computable reward functions. In creative domains
like narrative generation, the intuitive principles of storytelling could be elicited from expert authors to
guide an RL agent in creating compelling plots. Similarly, in fields such as medical treatment planning,
this framework could be leveraged to capture the decision-making processes of experienced clinicians,
which are often difficult to define as simple rules.
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A
Qualitative Analysis of Interview

Transcripts

Figure A.1: Summarization of the Interview Transcripts by LLM (Gemini)
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B
Prompt

The following prompt was provided to the language model to generate the reward function, its compo-
nents, weights, and Python implementation.

You are an expert in Reinforcement Learning. We are developing a Reinforcement Learning
(RL) agent to generate theme-based music playlists. The goal is for the RL agent (using Proxi-
mal Policy Optimization - PPO) to generate playlists that align with the creative decision-making
processes and preferences of expert music curators at the company.

Available Data & Environment Setup: environment details

Formulate a Dense Reward Function Based on the provided expert interview transcripts,(8
experts in playlist curation were interviewed) your task is to:

1. Define a Dense Reward Function Formula: The reward function should be designed based
on the inputs from the experts. This formula should assign a numerical reward at each
step (i.e., for each song added to the playlist).

2. Assign Weights to Factors: Propose a set of weights for each component in your reward
function. Explain the rationale behind the components and weights, considering the rela-
tive importance of different factors as implied by the expert insights.

3. Provide Python Code: Implement the proposed reward function in Python. The function
should take the current state (e.g., current playlist, playlist title, candidate songs) and the
chosen action (song added) as input. The code should be in a rewarder class format,
similar to shown below: Python code

Key Considerations for the Reward Function:

• Density: The reward should be given at each step (each song added).

• Use of Embeddings: Leverage the Node2Vec embeddings.

Output Format:

1. Reward Function Formula:

2. Explanation of Components and Weights:

3. Python Code Implementation:

64



C
Hyperparameter Details

In this section, we provide the details of the hyperparameter configuration used for our Reinforcement
Learning (RL) agent.

For the RL training, we used an open-source implementation of the Proximal Policy Optimization (PPO)
algorithm. To ensure a fair and controlled comparison between the different reward functions, we first
performed a systematic hyperparameter search using the Optuna framework on our baseline manual
reward model (the agent trained with the manually defined reward function). The search was conducted
over 30 trials with the objective of maximizing the mean reward. The results of the top 10 performing
trials are detailed in Table C.1.

Reward Score Batch Size Clip Range Gamma Learning Rate Epochs Steps
94.84546 128 0.25358 0.99447 4e-5 8 512
93.23071 128 0.13383 0.98920 4.8e-4 8 1024
92.37172 128 0.10260 0.98433 9e-5 11 2048
91.66009 128 0.16469 0.96468 1.1e-4 8 1024
88.85317 128 0.21303 0.97754 8e-5 7 2048
88.35233 128 0.25063 0.93344 2.8e-4 8 512
87.30213 128 0.12839 0.97671 1.1e-4 12 1024
87.25313 32 0.26090 0.98337 2e-5 16 2048
87.03858 128 0.11859 0.96334 3e-5 10 512
85.73132 128 0.17531 0.98871 1.6e-4 9 512

Table C.1: Top 10 Hyperparameter Configurations from Optuna Study

The single best-performing configuration from this search was then selected and used consistently
for training all models throughout this study. The final, fixed hyperparameter values used for all exper-
iments are listed in Table C.2.

Hyperparameter Final Value
Discount Factor (γ) 0.99447
PPO Clip Range 0.25358
Learning Rate 4e-5
Number of Epochs 8
Number of Steps per Update 512
Batch Size 128

Table C.2: Final Hyperparameter Configuration used for training the RL agents
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D
Training and Performance Stability of

RL Agents

This appendix provides detailed evidence of the training process for the RL agents. All experiments
were conducted in the playlist generation environment as described in the main report.

Following the protocol outlined in Section 4.2.2, we trained each RL agent five times with different ran-
dom seeds to ensure our results are reliable and not due to stochastic chance. We show this through
the learning curve plots of the RL agents during training. Furthermore, we evaluate and compare the
scores of each instance of the RL agent to ensure the results obtained are consistent enough to be
combined for a given agent.

D.1. Learning Curves of RL-M
This section shows the learning curves for the agent trained on the manually-defined reward function
(RL-M). The plots display the mean reward component scores and standard deviation across five runs
over 5 million training steps. The learning curves for each agent, demonstrate consistent convergence
with low variance across the independent runs for the key reward components of that agent. The narrow
standard deviation bands in the performance plots (Figures D.1 - D.7) confirm that the training process
was stable, especially in the convergence of the overall reward.
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Figure D.1: Learning curves for the agent trained with the manually-defined reward function(RL-M). The agent shows
consistent learning across all reward components, establishing a strong baseline for comparison. The low variance indicates a

highly stable and reproducible training process.

D.2. Pipeline A: RL-LLM-S
The figures in this section show the learning curves for agents trained on reward functions generated
from summarized interview transcripts. Each figure corresponds to a policy trained using a different
LLM.
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Figure D.2: Learning curves for the policy guided by rewards from GPT-4o (Summarized). The agent demonstrates stable
convergence, particularly in Overall Reward and Flow, indicating that summarized reviews provide a reliable signal for policy

optimization.
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Figure D.3: Learning curves for the policy guided by rewards from Gemini 2.5 Pro (Summarized). The training process is
stable, with tight standard deviation bands across most metrics, confirming the reliability of the agent.
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Figure D.4: Learning curves for the policy guided by rewards from Claude 3 Opus (Summarized). The agent learns effectively,
showing clear positive trends in key metrics like Novelty and Popularity, backed by a consistent, low-variance training profile.

D.3. Pipeline B: RL-LLM-R
The figures in this section show the learning curves for agents trained on reward functions generated
from raw interview transcripts. Each figure corresponds to a policy trained using a different LLM.
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Figure D.5: Learning curves for the policy guided by rewards from GPT-4o (Raw Transcripts). The agent exhibits a stable
learning trajectory, suggesting that the model can effectively generate a coherent reward function even from noisy,

unprocessed user feedback.
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Figure D.6: Learning curves for the policy guided by rewards from Gemini 2.5 Pro (Raw Transcripts). The tight standard
deviation across the five runs highlights the reliability of the generated reward signal, leading to a predictable and stable

training outcome.
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Figure D.7: Learning curves for the policy guided by rewards from Claude 3 Opus (Raw Transcripts). The plots show
successful and stable policy optimization, confirming that raw transcripts, when processed by a capable LLM, can serve as a

robust source for reward generation.

D.4. Performance Stability Across Run
The following tables provide summary statistics for model performance, complementing the stability
analysis in the main report. Each cell contains the mean (µ) and standard deviation (σ) calculated
across five independent runs with different random seeds. The data in the tables confirm the stability
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of the models. Most LLM-guided agents exhibit very low variance across the five runs; for instance, the
RL-LLM-R (Gemini) model’s ndcg@k score is stable at 0.272±0.004. The RL-Mmodel serves as a slight
outlier among the RL models, showing a comparatively higher standard deviation (e.g., 0.242±0.013 for
ndcg@k), indicating more variability in its performance. This overall consistency, among the RL agents,
indicates that the aggregated results presented in the following sections are a reliable measure of each
model’s capabilities.

RL-LLM-S RL-LLM-R RL-M
Metric Claude GPT Gemini Claude GPT Gemini Manual
ndcg@k 0.271 ± 0.009 0.203 ± 0.004 0.272 ± 0.005 0.257 ± 0.003 0.110 ± 0.009 0.272 ± 0.004 0.242 ± 0.013
precision@k 0.272 ± 0.008 0.202 ± 0.004 0.271 ± 0.004 0.258 ± 0.005 0.117 ± 0.011 0.271 ± 0.004 0.239 ± 0.015
recall@k 0.158 ± 0.005 0.117 ± 0.001 0.158 ± 0.002 0.149 ± 0.003 0.070 ± 0.007 0.158 ± 0.002 0.137 ± 0.011

Table D.1: Summary of Recommendation Quality in the seedless scenario. Each cell shows the mean score and standard
deviation (µ± σ) calculated across five independent runs. Higher scores indicate better performance.

RL-LLM-S RL-LLM-R RL-M
Metric Claude GPT Gemini Claude GPT Gemini Manual
ndcg@k 0.268 ± 0.009 0.201 ± 0.004 0.269 ± 0.006 0.254 ± 0.003 0.108 ± 0.009 0.269 ± 0.004 0.239 ± 0.013
precision@k 0.267 ± 0.008 0.199 ± 0.004 0.267 ± 0.004 0.254 ± 0.005 0.114 ± 0.010 0.267 ± 0.005 0.235 ± 0.015
recall@k 0.154 ± 0.005 0.114 ± 0.001 0.153 ± 0.002 0.146 ± 0.003 0.067 ± 0.006 0.154 ± 0.003 0.133 ± 0.010

Table D.2: Summary of Recommendation Quality in the seeded scenario. Each cell shows the mean score and standard
deviation (µ± σ) calculated across five independent runs. Higher scores indicate better performance.

RL-LLM-S RL-LLM-R RL-M
Metric Claude GPT Gemini Claude GPT Gemini Manual
diversity 0.740 ± 0.009 0.720 ± 0.006 0.718 ± 0.017 0.711 ± 0.022 0.735 ± 0.002 0.711 ± 0.014 0.729 ± 0.004
flow 0.885 ± 0.003 0.767 ± 0.003 0.854 ± 0.005 0.835 ± 0.013 0.834 ± 0.004 0.863 ± 0.002 0.811 ± 0.014
novelty 0.128 ± 0.002 0.235 ± 0.001 0.162 ± 0.004 0.176 ± 0.012 0.182 ± 0.003 0.152 ± 0.002 0.199 ± 0.011
popularity 1.372 ± 0.009 1.436 ± 0.010 1.519 ± 0.016 1.525 ± 0.019 1.109 ± 0.018 1.517 ± 0.003 1.379 ± 0.053
start power 0.104 ± 0.005 0.118 ± 0.006 0.132 ± 0.007 0.129 ± 0.005 0.033 ± 0.004 0.127 ± 0.005 0.114 ± 0.017

Table D.3: Summary of Reward Components in the seedless scenario. Each cell shows the mean score and standard
deviation (µ± σ) calculated across five independent runs. These values indicate alignment with expert curatorial principles.

RL-LLM-S RL-LLM-R RL-M
Metric Claude GPT Gemini Claude GPT Gemini Manual
diversity 0.741 ± 0.009 0.722 ± 0.006 0.720 ± 0.017 0.713 ± 0.020 0.736 ± 0.001 0.713 ± 0.013 0.731 ± 0.004
flow 0.885 ± 0.003 0.766 ± 0.002 0.854 ± 0.005 0.835 ± 0.013 0.834 ± 0.004 0.863 ± 0.001 0.811 ± 0.013
novelty 0.128 ± 0.002 0.236 ± 0.001 0.162 ± 0.004 0.177 ± 0.012 0.183 ± 0.003 0.152 ± 0.002 0.199 ± 0.011
popularity 1.372 ± 0.011 1.438 ± 0.012 1.520 ± 0.017 1.527 ± 0.019 1.107 ± 0.020 1.518 ± 0.003 1.379 ± 0.052
start power 0.109 ± 0.005 0.124 ± 0.006 0.139 ± 0.007 0.135 ± 0.006 0.035 ± 0.005 0.133 ± 0.004 0.119 ± 0.018

Table D.4: Summary of Reward Components in the seeded scenario. Each cell shows the mean score and standard deviation
(µ± σ) calculated across five independent runs. These values indicate alignment with expert curatorial principles.
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