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Abstract

We present an implementation of the Wisdom-Holman integrator for simulating
gravitational dynamics in planetary systems: systems with one dominant central
mass and N orbiting bodies, such as the Solar System. The Wisdom-Holman inte-
grator models the motion of non-central bodies as unperturbed Kepler orbits and
integrates gravitational interactions between orbiting planets as weak perturba-
tions. T'wo methods to advance a body along its orbits are investigated: one using
coordinate transformations (Method A) and one based on the f and g functions
(Method B). Method B is shown to be significantly faster than Method A, without
a significant loss of accuracy, making it the preferred method for most simulations.
Simulations of the Solar System using large time steps, including time steps ex-
ceeding the orbital period of some planets, are explored to determine whether the
increase in computational speed justifies the loss in accuracy. Simulations with a
fixed Sun and with a dynamic Sun are considered. Results indicate that for fixed
Sun simulations, while accurate simulations require small time steps, larger steps
still capture the qualitative behaviour of the system. The step size of simulations
with a dynamic Sun is limited by Atmax = TMercury/6. However, for small step
sizes, dynamic Sun simulations accurately describe the Solar System and the re-
stricted three-body problem in which resonance occurs. This is achieved without
the use of Jacobian coordinates, which are commonly used in implementations of
the Wisdom-Holman integrator. The fixed Sun and dynamic Sun simulations are
shown to conserve energy, suggesting an accurate description of the system simu-
lated.
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Table 1: List of symbols and their physical meaning frequently used in this text.

Symbol ‘ Quantity

radial distance

angular momentum

position vector

velocity vector

momentum vector

angular momentum vector

combined position and momentum vector

mass

central body mass

effective central body mass

mass ratio of orbiting and central body
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semi-major axis
semi-minor axis
linear eccentricity
semi-latus rectum
eccentricity
eccentricity vector

orbital inclination
longitude of ascending node
argument of periapsis
longitude of periapsis

true anomaly
eccentric anomaly
mean anomaly
mean longitude
mean motion
orbital period
time at periapsis
phase offset

SANE>EmY (gD =N T S

time

simulated time

time step

number of orbiting particles

current iteration

number of iterations

quantity y of particle ¢ at iteration k

SR

gravitational constant
Hamiltonian

Hkep Kepler Hamiltonian

Hopert perturbation Hamiltonian

Hint interaction Hamiltonian

Hebm central body motion Hamiltonian

2 Qlx

v



Contents

(1 Introduction|

2

eor
2.1 Mathematical description of Kepler orbits| . . . . . ... ... ... ...
[2.2  Kepler and Cartesian coordinate systems| . . . . . . . . . . .. ... ...
[2.2.1  From Cartesian to Kepler coordinates|. . . . . . . . ... ... ..
[2.2.2  From Kepler to Cartesian coordinates|. . . . . . . . .. ... ...
[2.3 Advancing a body along its orbit| . . . . . ... ... 0L
[2.3.1 Method A: transtorming between coordinates systems| . . . . . . .
[2.3.2  Method B: using the f and ¢ functions| . . . . . . ... ... ...
[2.4  Gravitational interaction between orbiting bodies| . . . . . . . . .. . ..
[2.4.1 Three-body system| . . . . . . . ... ... ... ... ..
[2.4.2  General case with N orbiting bodies| . . . . ... ... ... ...
[2.4.3  Correcting the general case for central body motion| . . . . . . ..
[2.4.4  Special case: the two-body problem| . . . . . .. . ... ... ...
2.5 The Simulationl . . . . . . ..o

B Resal IdG ol

[3.2  FError analysis| . . . . . . ...
[3.3  Perturbation magnitudes and energy conservation| . . . . . . . . ... ..
[3.4 Resonance as gauge for simulation fidelity] . . . .. ... ... ... ...

4 Conclusion|
[References|

[Appendix A

[Appendix B|

[Appendix C]

37

39

40

41

42



1 Introduction

Two massive objects attract each other through the force of gravity. The more massive
the objects, the stronger the attraction, according to Newton’s law of gravity. The grav-
itational force also depends on the distance between the objects: it is stronger the closer
the two objects are to each other — more exactly, the gravitational force is proportional
to the inverse square of the distance between the objects (Murray & Dermott 2009).
Gravity is too weak to notice any attraction between small masses. Here, small refers
to a mass that is orders of magnitude smaller than the mass of, for example, the Earth.
This is different on large scales. For instance, the gravitational attraction between the
Sun and the planets in the Solar System keeps the planets in orbit around the Sun.

Being able to describe, and thus predict or reconstruct, the motion of the celestial
bodies in, for example, the Solar System, is valuable, as it has many practical and scientific
applications. Practical applications include the planning of space missions, for which the
spacecraft’s trajectory needs to be calculated accurately, and tracking and monitoring
asteroids that could potentially impact the Earth. Scientific applications include research
on the formation and evolution of the Solar System and the modelling of the orbits of
exoplanets around their star.

The shapes of the planetary orbits in the Solar System happen to be elliptical, rather
than circular. According to Kepler’s laws of planetary motion, planetary orbits are, in
general, elliptical, of which circular orbits are a special case (Murray & Dermott 2009).
In practice, however, most orbits are at least slightly elliptical. Figure[l|shows an ellipse,
with its two focal points represented by black dots. The Sun resides in (the vicinity of)
one of these focal points, and the orbit of a planet traces out the ellipse. For many
celestial bodies, especially for the eight planets in the Solar System (see Fig. [2), the
orbits are more circular than the ellipse shown here.

Figure 1: Ellipse. The two black dots are the focal points of the ellipse.

Kepler’s laws govern the motion of one body orbiting another — or, more generally,
the motion of two objects orbiting each other. We call these orbits Kepler orbits, and
use this term only to refer to the elliptical orbits describing a two-body system. In this
text, we focus on planetary systems: systems with a large central mass, around which an
arbitrary number of small mass objects orbit. The Solar System is an example of such a
system. Since there is a gravitational attraction between any pair of objects, there is a
mutual attraction between all orbiting bodies. This attraction, although small compared
to the gravitational force exerted by the central body, causes the bodies to drift off their
corresponding Kepler orbits. We thus cannot describe a planetary system using Kepler’s
law alone, and we must resort to other methods.



A common way to study the motion of celestial bodies is by use of simulations. In
this context, a simulation approximates the motion of a body — that is, its position and
velocity — by calculating all the (gravitational) forces that are exerted on the body over
a short period. With these forces known, the change in the body’s position and velocity
during this period can be calculated. Repeating this calculation for many periods, or
time steps, the motion of the bodies in the system can be obtained for a longer timespan.
Generally, the simulation’s accuracy increases when the size of the time step decreases.

Mars

Venus @
\
Mercury

Saturn

Jupiter

Uranus

Neptune
Pluto

Figure 2: Orbits of the planets Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus,
Neptune and Pluto in the Solar System. The sun is shown as an orange dot, and the
positions of the planets on their orbits, on the 1st of January, 2000, are shown by black
dots.

The simulation method developed by Wisdom and Holman, called the Wisdom-
Holman integrator, is a common way to simulate planetary systems (Wisdom & Hol+
man 1991)l Rather than directly applying numerical integration to the equations of mo-
tion, it utilises the analytical solution of unperturbed Kepler orbits for a two-body system
to describe the approximate orbit of the bodies around the central body. The interactions
between the orbiting bodies are modelled as weak perturbations, which cause the Kepler
orbits to change slightly over time. The Wisdom-Holman integrator promises to be more
accurate and faster than direct numerical integration (Wisdom & Holman 1991), partly
due to larger time steps being possible. According to [Viswanath (2002), to preserve nu-
merical stability, the step size should be at most one-sixth of Mercury’s orbital period for
their implementation of the Wisdom-Holman integrator that models the Solar System.




We present an implementation of the Wisdom-Holman integrator and analyse to what
degree the simulation produces valuable results for step sizes exceeding the limit found by
Viswanath. This includes step sizes that exceed the orbital period of at least one planet
in the system. We expect this may be possible due to some form of orbit averaging, which
would work in the following way: the planets are in a different position along their orbits
when calculating the perturbations at each iteration of the simulation (provided that a
proper step size is chosen). This perturbation encompasses the interplanetary interactions
during the time step, also when this time step is larger than the orbital period. This may
seem inaccurate, as we only compute the perturbation at one point during the time step.
However, after many iterations, this perturbation averages out because of the varying
positions of the planets. The timescale of the effects of interplanetary interactions, such
as the precession of the orbit, is many orders of magnitude larger than the orbital periods
of planets in the Solar System. For example, the period of the precession of Earth’s orbit is
on the order of 10° y, with similar precession periods for the other planets. Therefore, we
expect the perturbation term to remain minimal, also when the time step exceeds orbital
periods, and we can thus apply perturbation theory in this case. While simulations with
large time steps may not produce the most accurate results, they may still give valuable
insight into the qualitative behaviour of a system, thus sacrificing accuracy for simulation
speed.

We examine the method for two separate cases. In the first case, we assume that the
central body is fixed and is thus not in motion in the chosen frame of reference. In the
second case, we relax this assumption, such that the central body is in motion in the
reference frame. One key difference between our implementation and the implementa-
tions presented in |Wisdom & Holman (1991) and Viswanath (2002)| is the lack of use
of Jacobian coordinates in our case. In Jacobian coordinates, the position of body i is
taken relative to the centre of mass of bodies. According to Murray & Dermott (2009),
Jacobian coordinates are a necessity for a proper separation of the Hamiltonian, and thus
to apply perturbation theory. However, we consider this not to be a necessity, and we
think the magnitude of the perturbation Hamiltonian remains minimal without Jacobian
coordinates. Hence, to decrease the number of computations, we work with standard
Cartesian coordinates rather than Jacobian coordinates.

Moreover, we present two ways to advance a body along its Kepler orbit and in-
vestigate which is the more promising of the two. Method A, the more conventional
method, uses rotation matrices to calculate the body’s position from its orbital elements.
Method B makes use of the f and g functions, which exploit the fact that the Kepler
orbit lies in a plane and can thus be written as a linear combination of the position and
velocity vector.

In Section [2] we begin by covering the theoretical background, which includes Kepler
orbits and the Kepler and Cartesian coordinate systems that are used to describe the
orbits. We then introduce the two methods to advance a body along its orbits, Method A
and Method B, in Section and we develop the perturbation theory for the time
integration in Section 2.4 In Section we outline the procedure of the simulation
method. We present the results of our analysis in Section [3] first discussing the difference
between Method A and Method B. We then examine the error of the simulation and test
the simulation’s fidelity using energy conservation and resonance. Finally, we provide the
conclusion of our work in Section [} An overview of the symbols frequently used in this
text is given in Table[I] on page [iv]



2 Theory

2.1 Mathematical description of Kepler orbits

The motion of a single celestial body — such as a planet, a moon, or an asteroid —
orbiting around a central body due to Newtonian gravity can be described by Kepler
orbits. If we place the central body at the origin, the orbit of the non-central body lies
in a plane, and is described in polar coordinates (r,v) by

() = a(l —e?)

— 2.1
1+ecosv’ (2.1)

where a and € are non-negative constants determining the shape of the orbit |(Taylor 2005).
There are fOllIE| types of orbits corresponding to different values of e. When € = 1 or
€ > 1, the orbit is a parabola or a hyperbola, respectively. In these two cases, the orbit
is unbounded. The more relevant case for this text is when the orbit is bounded with
0 <e < 1. When € = 0, the orbit is a circle with radius a. When 0 < € < 1, the orbit is
an ellipse with semi-major axis a and eccentricity e. In this last case, the central body
is at one of the focal points of the ellipse, the main focus, as shown in Figure . We
call the points on the orbit nearest to and farthest from the central body the periapsis
and apoapsis, respectively, and we define the eccentricity vector € as the vector in the
direction from the periapsis to apoapsis, with magnitude e.

Equation describes the orbit of a body using the angle v, the (counterclockwise)
angle between € and r. v is called the true anomaly. In many scenarios, it is more
convenient to work with either the eccentric anomaly E or the mean anomaly M, which
we define here. These three different anomalies all describe the body’s position on the
orbit. Since they use the periapsis as a reference point, which is not defined for circular
orbits, these angles are only defined for elliptical orbits (0 < € < 1).

) Y

() (b)

Figure 3: (a) Geometry of a body in a Kepler orbit around a central body fixed at the
origin. The angle v is the true anomaly, which is related to the distance r by Equation
. The lengths @ and b are the semi-major and semi-minor axes, respectively, c is the
distance from the centre of the ellipse to one of its focal points, and [ is the semi-latus
rectum. (b) Geometry of a body, situated in point P, orbiting a central body situated at
the origin, relating the eccentric anomaly F to the true anomaly v. The eccentric anomaly
is defined as the angle between the semi-major axis and the line segment QP’.

LOr three types when circular orbits are not considered separately from elliptical orbits.



Let C be the auxiliary circle with radius a and centre located at the same point as
the centre of the ellipse, as shown in Figure . Suppose the body is at point P on
the (elliptical) orbit. A line perpendicular to the semi-major axis and passing through P
intersects C' at some point. Call this point P’. The eccentric anomaly F is defined as the
counterclockwise angle between the semi-major axis and the line segment Q P’ |(Murray
& Dermott 2009).

Recall that an ellipse with semi-major axis a and semi-minor axis b, centred at the
point (—c,0), with € along the z-axis, can be described by

@+®2+f

a? ﬁZL

With the origin located at the main focus of the ellipse, we can write the position of the

body as (see Fig. [3(b)))

r=acosE —c=a(cos E —¢)

y=>bsinE =ay1—e€sinF,

(2.2)

where ¢ = ae is the linear eccentricity, the distance from the centre of the ellipse to one
of its focal points. The value of y is obtained from

2 2
Yy M:l—COSQE:SHPE-

We assume the rotation is in the direction of positive v, and thus positive E, so we take
the positive solution as in Equation (2.2). From Equation ({2.2)), an expression for r in
terms of the eccentric anomaly can be readily obtained:

r? = a*(cos E — €)* + a*(1 — €%)sin® E
= g2 [C082 E +¢2 —2ccos E +sin? E — % sin® E}
= > [1 +é2cos’ E — QECOSE]

= a?[1 —ecos E]?,
where we used sin? E = 1 — cos? E. Taking the square root leaves us with
r=a(l —ecosE). (2.3)

We can get the useful relation between the eccentric anomaly and true anomaly by

equating Equations (2.1 and ([2.3)), which, after rewriting, becomes

cosF — ¢
= 2.4
Y ] ecosE (24)

To get the eccentric anomaly directly from the position of the body, we substitute the
definition of the true anomaly, cosv = T - €, into Equation (2.4). This yields
e+1-€ e+1-€

E= - . 2.5
T I ct-e 1+i-e (2:5)
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Solving for E in Equation ([2.5) using the inverse cosine results in the smallest angle
between € and r rather than the counterclockwise angle. However, we can use the cross
product between the two vectors to determine the relative orientation and calculate the
right angle accordingly.

A downside of the true or eccentric anomaly is that they do not change linearly in
time. Let w be the mean motion of the body, that is,

2w
W= —
T )
with T the period of the orbit, and let 7 be the time at which the body crosses the
periapsis. We now define the mean anomaly M as

M= w(t—71)=wt+ . (2.6)

Here ¢ = —wr is the phase offset. Hence, contrary to the true and eccentric anomaly,
the mean anomaly is linear in time. The relation between M and E' is known as Kepler’s
equation and is given by |(Murray & Dermott 2009)

M =FE—¢sinE. (2.7)

Kepler’s equation is transcendental in E. Hence, if we want to solve for the eccentric
anomaly, we have to resort to iterative methods such as the Newton-Raphson method.
During each time step of the simulation, a body moves along its Kepler orbit. To
know its position and velocity after some time step At, it is required to know how the
eccentric anomaly changes over time. One way we can achieve this is to increase the mean
anomaly M° to M*' = M°+ AM = M° + wAt, and calculate the new eccentric anomaly
E' from M using Kepler’s equation (Eq. (2.7)). This can be done by (numerically)
solving for E' in
wAt = (E* — E°) — €(sin E* — sin E°). (2.8)

However, since the periapsis is not well defined for ¢ = 0, neither are £ and ¢. This
means Equation might not be ideal to calculate E* from E° for small values of ¢, as
it could lead to significant numerical errors. Nevertheless, the difference AE = E' — E°
is well defined, regardless of the value of €. Hence, we introduce the formula

0. 0 0
wAt — AE = (1 — cos AE) - (1 - —) sin AE, (2.9)

wa? a

which is derived in Appendix . The formula does not make direct use of either E' or E°.
Since r® and v° are perpendicular for circular orbits, we have that r - v® — 0 whenever
¢ — 0. Moreover, in this case we have that ° — a by Equation . According
to Equation (2.9), we thus have that AE — wA¢ in this circular orbit limit, and we
conclude that the formula is well-behaved for small eccentricities.

2.2 Kepler and Cartesian coordinate systems

Up to this point, we have limited ourselves to the situation where the elliptical orbit is
in the xy-plane. With more than one non-central body, however, this is not possible
as the bodies could be located anywhere around the central body. In this section, we
generalise the situation to three dimensions, and it is convenient to work with two separate



coordinate systems in which the particle state can be described: the Cartesian coordinates
and the Kepler coordinates. The particle state in Cartesian coordinates is given by the
position and velocity vector pair (r,v) or, more specifically, by

(@, Yy 2, Vzy Uy, V). (2.10)
In the Kepler coordinates, the state is

(CL, €, ¢7 ]7 Q; w) (211)

The first three variables in have been introduced in Section The inclination
I is the angle the orbital plane makes with the reference plane, which is taken to be the
xy-plane (see Fig. [4)). The longitude of the ascending node §3 is the angle between the
x-axis and the ascending node, the point at which the body moves through the reference
plane in the positive z-direction. Define the vector

n:=kxL, (2.12)

where k is the unit vector pointing in the z-direction, and L. = mr x v is the orbital
angular momentum of the particle. The vector n points from the centre of the ellipse to
the ascending node, and we define the argument of periapsis w as the counterclockwise
angle between n and €. For later reference, we also introduce the longitude of periapsis
® and the mean longitude A. The longitude of periapsis is defined as

®=w+Q. (2.13)

If I =0, ® is just the polar angle (as measured from the z-axis) of the periapsis. Using
the longitude of periapsis, we define the mean longitude as

A= M+ ®, (2.14)

which is the polar angle of the position vector for the case where both ¢ = 0 and I = 0.

Note that the variables in the Cartesian coordinate system change over time while
the body is orbiting the central body, but the variables in the Kepler coordinates are
constant — provided that the body is unperturbed. This means we need the time ¢ to
change between coordinate systems. We will next illustrate how to do this.

2.2.1 From Cartesian to Kepler coordinates

Suppose that the particle is described by the Cartesian coordinate system as in (2.10)).
We want to describe the particle by its Kepler coordinates — that is, we want to know
the values of the variables given by . We first calculate the angular momentum,
L = mr x v, from which we calculate the eccentricity vector using

vxL r
_ _ 2.15
€ Gmesm 1’ (2.15)

where G is the gravitational constant, m,. is the mass of the central body, and m is the
particle mass |(Visser 2023), One can prove this formula by taking the dot product with
r on both sides of the equation, using the fact that r- (v x L) = L+ (r x v) = L?/m, and
finally recovering Equation (2.1)). The semi-major axis is given by
l
a=-—— (2.16)

1=

7



Figure 4: Orientation of a celestial body (situated in point P) in three dimensions. The
inclination I is the angle the orbital plane makes with the plane of reference (the xy-plane
shown in light grey). The longitude of the ascending node §3 is the angle between the
z-axis and the ascending node, the point at which the body moves through the plane of
reference in the positive z-direction (point S). The argument of periapsis w is the angle
measured from the ascending node to the periapsis (point Q). As before, the angle v is
the true anomaly.

where [, defined aﬂ

L2
l= Gmm?’
is the semi-latus rectum |(Taylor 2005). The geometrical meaning of the semi-latus rectum
is depicted in Figure . The inclination is calculated readily using its definition given
above, and by observing that the angle between the orbital plane and the xy-plane is
the same as the angle between the angular momentum vector and the (positive) z-axis.

Hence,

7 L -k L,
= arccos = arccos —.
L[ K| L
To determine §, we first calculate
§) = arccos %, (2.17)

with n as given in Equation (2.12). We obtain the longitude of the ascending node from

QY for n, > 0,
gz p—
2r — ) forn, < 0.

Similarly, we calculate

(2.18)

w' = arccos ,
n| €]

such that the argument of periapsis is given by
w for e, > 0,

/

2 —w’ fore, <O.

2To be exact, for a two-body system | = L?/(Gm.mji), where i = m.m/(m. + m) is the reduced
mass. In this model, the motion of the central body is also taken into consideration. However, in this
text we have m, > m and in that case ji = m. For a system with more than two particles, a method to
model the motion of the central body is discussed in Sections and

8



From Equation (2.18]), we can see that, as explained in Section , the argument of
periapsis is not defined for ¢ = 0. Lastly, we obtain the phase offset ¢ from Equations

(2.5) — [2.7).
2.2.2 From Kepler to Cartesian coordinates

The reverse situation, where we need to obtain the Cartesian state (r, v) from the Kepler
state (a, €, ¢, 1, ), @) is more straightforward. We first calculate the mean motion of the
body by employing Kepler’s third law |(Murray & Dermott 2009)|,

w=1/ ch, (2.19)

and we define the rotation matrix % by

cos§{) —sin§) O 1 0 0 cosw —sinw 0
X = |sin§) cos§y O 0 cosl —sinl sinww cosw 0
0 0 1 0 sin/ cos/ 0 0 1
We obtain E from Equations (2.6) and (2.7]) and so, by Equation (2.2)),
acos W — ¢
r=% bsin &/ . (2.20)
0

For the velocity vector, we need to know the time derivative of F. By differentiating
Kepler’s equation,
M=w(t—7)=FE—¢€sink,

with respect to timd?} it follows that
d& w wa

B —— 2.21
dt 1—e€ecosE 1’ (2:21)
where we used Equation (2.3)). It follows that
wa —asin B
v=—%| bcosk |. (2.22)
" 0

2.3 Advancing a body along its orbit

While running the simulation using the Wisdom-Holman integrator, the body has to
be advanced along its Kepler orbit every iteration. We present two methods to do this.
The first method utilises the rotation matrix, changing between the Cartesian and Kepler
coordinates each iteration. The second method is based on the so-called f and g functions,
and essentially remains in the Cartesian coordinate system. Note that interaction between
orbiting bodies is not yet accounted for here, and the orbits of the bodies are still described
solely by Kepler’s laws.

3Tt should be noted that, strictly speaking, this is incorrect, as Kepler’s equation is derived in[Murray &
Dermott (2009)| by first calculating dE/dt by other means and then integrating it, making the argument
given here circular. However, it is possible to derive Kepler's equation directly using a geometrical
argument as described in, for example, [Visser (2023)!



2.3.1 Method A: transforming between coordinates systems

Suppose we know the particle state (r, v’) and we want to advance the particle along
its orbit during a time At — that is, we want to know the particle state (r',v') after a
time At. We first convert to Kepler coordinates as described in Section (retrieving
¢ is not necessary here — invoking Equation to obtain E° suffices). We obtain the
mean anomaly M using Kepler’s equation, and we increment its value by AM = wAt to
M. Again using Kepler’s equation, we recover the new value of the eccentric anomaly
E' (one could also use Equation to obtain E' more directly). Finally, by invoking

Equations (2.20) and (2.22)) we can find r' and v'.

2.3.2 Method B: using the f and g functions

An alternative way to advance the particle is by using the f and ¢ functions, which are
described in Appendix . Suppose again that the particle is in the state (r° v°), and we
want to know the state (r!, v') after time step At. As the orbit lies in a plane, and since
this plane is spanned by the vectors r° and v°, we write |(Murray & Dermott 2009)

r' = f(AH)r? + g(At)v’ (2.23)

and
vi = f(AD + g(AL)VO. (2.24)

The formulas for f, g, f and ¢ are given by Equations 1} - 1) f and g depend
on time only through At and AE. We can find AFE in the same way as in Method A

(AE = E' — E°) and compute r! and v! accordingly. However, as discussed at the end
of Section 2.1, when € is small, calculating AF in this manner may result in significant
numerical errors. This presents a potential advantage of Method B over Method A, since
we can use Equation to obtain AE directly. Another advantage of Method B is that
it is likely faster than Method A, as the number of calculations that must be performed
is significantly smaller for Method B compared to Method A.

2.4 Gravitational interaction between orbiting bodies

In the preceding sections, we assumed that there were only two bodies in the system.
In general, planetary systems contain many more bodies that each influence each other
gravitationally. We model such a system, i.e. a system with one central body that
contains most — over 99% in the case of the Solar System — of the total mass in the
system, by assuming that all bodies are in a Kepler orbit around the central body. The
interactions between all non-central bodies are modelled as (weak) perturbations that
change the geometry of the orbits over time. Mathematically, this means the values of
the orbital elements in do change over time, contrary to a two-body system that
we considered before.
To this end, we split the Hamiltonian of the entire system,

H= Ekin + Epota

with P, the kinetic energy and FEl the potential energy, into a Kepler part and a
perturbation part as

H = Hiep + Hpert- (2.25)

10



The Kepler Hamiltonian for a single orbiting particle with mass m, radial distance r = |r|
and momentum p = |p|, is of the form
P Gmem

Hicep = 2 —
P om ro

which is the sum of its kinetic energy and the gravitational potential energy due to the
central body. Using Hamilton’s equations,

. OH : oH
r=— and p=-——

op or’
the exact solution of the orbit can be derived, and is given by Equation (2.1). We define

the matrix
0 I
=5 o).

where [ is the 3 x 3 identity matrix, and for each particle we define the state vector
z := (r,p) € R®. We can now write Hamilton’s equations as |(Thijsen 2007)

z = JVH(z),
where 94 oH
VH = (5’ %) |

We want to calculate the body’s position and momentum at time ¢! when its position at
t% is known. We achieve this in the following way. The splitting in Equation (2.25)) yields

1

z(tl):z(t0)+/ z(t)dt

t0

=z(t%) + A}tl JVH(z(t))dt

t1

:zwﬁ+1¢JVHMNMQMt+/‘JVHWMAﬂMt (2.26)

0 +0
Let zxep(t°, ') be the state vector at time ' for an unperturbed particle when the state
vector at time t° is known. We can write this as

t1

Zxep (10, ') = 2(t°) + / IV Hkep(Ziep(t°, 1)) dt.

+0
For this scenario, the exact solution can be obtained and is given in terms of Kepler
orbits. We approximate Equation (2.26)) by
tl

z(t") ~ zkep (t0, 1) + / IV H pert (Zxcep (1°, 1)) dt (2.27)

+0

~ Ziep (1), 1) + TV Hpert(2)] At

z=27Kep (t0,t1)

= ZKep<t0’ tl) + Zpert‘Z:ZKep(tO,tl) At, (2.28)

where we substituted zx.,(t°,t) for z(¢) in Equation ([2.26) and approximated the second
integral by the product of the value of the integrand at ¢! and the time step At = ¢! —¢°.
It remains to find Zper = JVHpert(2z) for each body in the system.
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2.4.1 Three-body system

We now consider a simplified model of two bodies orbiting a fixed central body. In the
following sections, we generalise this to the case with N orbiting bodies, and to the case
with N orbiting bodies where the central body is not fixed at the origin.

Assume body A and B are in a Kepler orbit around the central body, and thus
influence each other gravitationally. The Hamiltonian of the entire system is given by

P4 N P )+( Gm.mys Gm.mp GmAmB>
T4 | [ra — 1B

H(za,2B) = (

2ms  2mp
Ekin Epot
2 2
B ( 5 GmcmA) N ( g GmcmB) +< GmAmB)
= — — -7,
2m 4 |4 2mp Irp| lra —rp|
HKCp Hint

where z; denotes the combined position and momentum vector of body 7 defined in Sec-
tion [2.4] Observe that the coordinates of the central body are not dynamical degrees
of freedom by the assumption that it is fixed, so it does not contribute to the Hamilto-
nian. We split the Hamiltonian according to Equation (2.25) as the sum of the Kepler

Hamiltonian,
M — ( Pi GmcmA) N ( PE GmcmB)
P 2my v Al 2mp rp| ’

and the perturbation Hamiltonian, which we call the interaction Hamiltonian #;,, as it
models the mutual gravitational interaction between the non-central particles,

Gmamp

a1l

Hpert = 7'[int =

We thus have that H = Hyep + Hint. As explained above, Hkep, is the Hamiltonian for the
(separate) Kepler orbits of bodies A and B. To calculate (Z4)pert, we apply Hamilton’s
equations for body A to the perturbation Hamiltonian. As H;, is independent of p4,
the first Hamilton equation gives (f4)pert = 0. According to Equation , we have
that r4(t') & (ra)kep(t°, t'). Analogously, rp(t') & (r5)kep(t°,t'). The second Hamilton
equation results in

) OH per Gmam
(pA)pert = - pert — 4 B3 (rA - I'B),
Or lrq —rp|
from which it follows that
) Gm
(VA)pert = S - 3<I'A — I'B).
[ra —rp|

Combining this with Equation (2.28)), we get

B GmB
ra(tt) —rp(th)]

vi(t') & (Vi) kep(t%, 1) S(ra(th) —rp(th))At,
with an analogous result for (Vg)pert-

12



2.4.2 General case with N orbiting bodies

For the general case with N orbiting bodies (with the central body still fixed at the
origin), the procedure is analogous to the one with two orbiting bodies. In this case, the
Hamiltonian of the system is given by

H(z ’ )_i p? _Gmcmi _i i Gm;m;
Ly @NJ = 2mz |I'Z| |I'Z'—I'j|'

i=1 i=1 j=i+1

As before, we split the Hamiltonian into two parts. The Kepler part is now given by

(2 Gmm
Hicep = Y - , (2.29)

=1 2m, |I'Z|

and the perturbation part is
N N
Gmimj
Hpert = Hing = — Z Z m (2.30)
i=1 j=i+1 " J

Define the particle Kepler and interaction Hamiltonian, (H;)kep and (H;)ins, for each
particle ¢ by

2
_ pz . Gmcmz
(%Z)Kep — sz |rz| ’
and
N Gmim;
D = =3 2.31

Observe that the (H;)kep are simply the terms in the sum in Equation (2.29), but this
is not the case for the (H,;)in in Equation due to double counting. We can get an
insight into the relative size of the perturbation by calculating the ratio |(H;)int/(Hi)Kep|-
The Kepler Hamiltonian is the total energy of an unperturbed body in a Kepler orbit.
Hence,

p? Gm.m; Gm.m;

i)Kep = (Ei)Kep = = - ) 2.32
(Mol = (B = 2 — S ) 232

with a; the semi-major axis (Murray & Dermott 2009). We therefore have

(Hi)int Gmimin 2a;
~ (N -1
‘ (Hi)Kep ( ) TiN Gmem;
miN a; mz‘N
=2(N -1 ~2(N —1 . 2.
(V= )T (v - 1) (2.3)

Here, m;y is the average mass of the non-central bodies excluding body ¢ and 7;y is the
average distance from body ¢ to the other non-central bodies. The factor N —1 is included
because of the sum in Equation . The last approximation comes from the fact that
a; and 7;y have roughly the same order of magnitude. By the assumption that m; < m.
for i = 1,..., N, and thus also m;y < m,, we conclude that |(H;)ims| < |(Hi)kep|- For
instance, Mgartn/Msun ~ 3 - 1075 (See Table . One might consider the case where N is
large enough such that the inequality does not hold any more. However, m, is generally

13



Table 2: Rough approximation of the mass m in kg and the radial distance r = |r| in
AU (1 AU = 150-10° m) for some bodies in the Solar System |(Murray & Dermott 2009).
Fixing the centre of mass in the origin, and because of Jupiter’s large mass, we have
TSun ~ rJupiter(mJupiter/mSun)-

Celestial body | Mass (10** kg) | Radial distance (AU)
Sun 2-10° 5-1073

Mercury 3-1071 4-1071

Earth 6 1

Jupiter 2-103 5

Neptune 1-107? 3-10*

several orders of magnitude larger than m;, so this is only a concern when simulating
systems with a large number of particles.

We again use Hamilton’s equations in combination with Equation to obtain
(Fi)pert and (V;)pert- The first Hamilton equation results in (¥;)pert = O foralli =1,..., N.
The second yields

. 1 OHper Gm;
(Vz‘)pert - pert = — Z —]3(1'1 - I'j). (234)

m; aI‘i - |ri — rj|

Substituting these results into Equation (2.28)) results in
ri(tl) ~ (ri)Kep(tou t1>7 (235)

and

Gm,;
Vi(tl) ~ (‘Q’)Kep(toatl) - 1 - 1
; r; (1) —r;(tY)|

These two equations are used for the numerical time integration for the simulation, where
the r;(¢') in Equation (2.36) are approximated by Equation (2.35)).

S (ri(th) —r;(th)At. (2.36)

2.4.3 Correcting the general case for central body motion

Up to this point, we have assumed that the central body is fixed at the origin and
does not move. However, this approximation might not suffice for some scenarios, for
instance, when a particle is relatively close to the central body. In this section, we relax
this assumption, and we assume the central body has a time-dependent position r. and
momentum p.. Because of the central body’s large mass, we assume that the central
body’s deviation from the origin is small compared to that of the other bodies, that is
re < r; for alli =1...N. In Table[2] the approximate values of the mass m and radial
distance r = |r| are given. Fixing the centre of mass in the origin, and because of Jupiter’s
large mass, we have sy, & 7 jupiter (M upiter/MSun)-

14



The Hamiltonian of the entire system is now given by

i Y2 Gmemy NN G
H goeey ,Z, = —° o c _ v
(o) = o 3 (- E) 7y
=1 i=1 j=i+1 J
_ P +§: p;  Gmem;
2m. <\ 2m; |t
Hicop
N N N
Gmem;  Gmm; Gm.m.;
+ ( S Cl>+— —L 1. (2.37)
ZZ:; ;] r; — 1| [ ;J,;l lr; — rj|]
Hz;ﬂ /H\i:]t

The Kepler Hamiltonian is given by Equation (2.29), but the perturbation part now

becomes )

P
2m,

where Hiy is the interaction Hamiltonian defined in Equation (2.30]), and

Hpers = + Hint + Hebm, (2.38)

N

ST XN: Gm.my; B Gmem; \ Z(H) (2.39)
cbm — ’rz‘ ‘ri _ rc| - i)cbm .

i=1 =1

is the term in the Hamiltonian due to the central body motion. Here, we have introduced

(Hz'>cbrn = Gmcmi (L - ;> ’

il e — x|

the particle perturbation Hamiltonian caused by the motion of the central body.

We want to know how the magnitude of this extra perturbation term (H;)chm re-
lates to the Kepler Hamiltonian to determine whether it is small compared to the total
Hamiltonian H. For r > r., we see that

1 1 1 1

[r] r—r v .
c , 1_|_<:_§_21;2rc)

B B (f) _ (2.40)
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Using Equation (2.32)) for the total energy of a body in a Kepler orbit, we compute the

ratio
(Hi)cbm
(Hi)Kep
Hence, the perturbation caused by the motion of the central body is small compared
to the Kepler Hamiltonian and thus also the total Hamiltonian. For instance, in the
case of Mercury, the planet closest to the Sun, we have that 2rsy,/ryercury = 3 - 1072,
Although this value is small, it can still cause undesirable numerical errors. Using another
coordinate system, such as Jacobian coordinates (see Sec. , might be more suitable in
this case.
We can do a similar calculation to get the relative size of the two types of perturbations
on body i, that is, the ratio of the perturbation caused by the motion of the central body
to the perturbation caused by the gravitational interaction between other bodies. We

then get that
1 TiN
N -1 GmimiN

1 Me [ TeTiN
~ 2.42
N — 17y ( ry > ’ (242)

(2

Gm.m; Gm.m; 2a; 2a;7.  2r,
~~ 2 ~~
|I'i ’ ’I'Z' — I'c’ Gmcmi r; T

< 1. (2.41)

'(7ii)cbn1
(Hi)int

B ' Gm.m;  Gmm;

;| r; — 1|

or, sincdﬂ we have that 7,5 = O(r;), we can write

(Hi)cbm 1 me Te
T — O ).
(Hz‘)int N —1mn r;

As before, m;y denotes the average mass of bodies j # i and 7;y denotes the average
distance from body i to bodies j # i. Unfortunately, we cannot say which perturbation
term is larger in general. If one desires more insight into the relative size of the terms,
the ratio has to be studied on a case-by-case basis.

For example, consider a selection of bodies from the Solar System. Assume that the
Sun and the planets Mercury, Earth, Jupiter and Neptune (and the origin) are on one
line (so their relative distances are just differences of their radial distances). The ratio
in Equation (2.42)) is calculated with N = 2 for some combinations of bodies i and j
in Table 3] The table shows that in this case, the central body motion perturbation
dominates for small r;. According to Equation , the perturbation caused by the
gravitational pull of other bodies should dominate in the limit r; — oo, which is in
agreement with the values in Table

From Equation is follows that, fori =1... N,

. r; r, — I, Gm;
(Vi) pert = G ( e — |3> — Z —7|3(rZ —rj). (2.43)

T ri — 1. #HE—Q

The value for r. is still unknown. To find it, we use Hamilton’s equations for the central

body. This leads to
L

- Op.  me.

rC (]

_ N N
“Observe that Tin = x7 20,y |16 — 15] <7+ g D05 75 < 7+ maxjz 7 and thus, as max;z; r;
is a constant a for fixed time ¢, we have T,y = O(r;).
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Table 3: Ratio given in Equation (2.42)) with N = 2 for pairs 4, j, with m. = mgu,. Since
N =2, we have T;ny = T2 = m; and T;n = Ts2 = |r; —7;|. The values from Table [2] are
used for the calculations, and we assume that all the bodies and the origin are on one line.

Body i | Body j | Ratio

Mercury | Jupiter | 1 - 102
Earth Jupiter | 2101
Neptune | Jupiter | 1-1071
Mercury | Earth | 6 - 103
Jupiter | Earth | 3-10?
Neptune | Earth | 5- 10!
where v, is the velocity of the central body, and
N
Do =~ = X p )

=1

We can now use numerical integration to obtain the central body’s position after a time
step At = t' — t°, with
r(th) = (1) + v (t°) At

Its velocity is obtained with

N

ve(th) mve(t?) = 3 Gm;

=7 Iri(th) — ()]

and use these values in Equation (2.43) to obtain (V;)pext.
There is, however, an easier (and perhaps more precise) method to keep track of the
central body position and velocity. Define the centre of mass of the system with total

mass Myer by N
1
= I . 2.44
re — (m r.+ ijr]) (2.44)

J=1

3(ri(tl) —r.(t'))At,

By conservation of momentum, we see, after differentiating Equation (2.44)), that the
centre of mass has a constant velocity, so we can choose an inertial frame of reference
such that 1., = 0. By setting r., = 0, it follows that

1 N N
r. = —E Z m;r; = — Z i X5, (245)
¢ =1 i=1

where p; := m;/m.. By differentiating the central body’s position, we also have

N
Ve=— mvi. (2.46)
=1

We can now use Equation (2.43) together with Equation ({2.45)) to calculate (V;)pers and
approximate the position of the body with Equation ([2.2§|).
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2.4.4 Special case: the two-body problem

The simplest system to consider is the one with NV =1, i.e. the two-body problem with
mi = m < me. In this case, Equation (2.43]) reduces to

. r r—r,
(Vpert)Nzl = Gmc <_3 - —3> s (247)

e[* e =

with r the position of the orbiting body. According to Equation (2.45)), r. = —(m/m.)r =
—pr, where = m/m,. < 1. Hence, the above becomes

r r + pur >
Vior =Gme | — — —————
W)= <|r| v+ purf’
_ Gm, 1 1 ;
s (1+p)?
Gmc

> 1—(1—=2p+3p*+...)]¢

2uGm. . 2Gm

~ 2z T r2
For this scenario, the perturbation Hg,, results in an acceleration in the direction of r,
which causes the body’s orbit to change. This effect is substantial, especially for more
massive particles, as (Vpert)n=1 1S proportional to m. This means that the perturbed
solution, given by Equations (2.28) and , does not agree with the unperturbed
solution of the two-body problem, for which the orbits do not change over time. We would
thus prefer to have (Vpert)nv—1 = 0. Hence, we write the Hamiltonian in Equation
as

9 N
H*(z1,...,2N,2:) = Pe +Z

p? 1 Gmcmi)
2m; (14 w)*  [ry]

al 1 Gm.m;  Gm.my al Gm;m;
S (i e ) - X e

N GmEmi Gmems Y X Grum,

+ citttt c'ltg _ #, (248)
Z ( ;] !ri—rcl) ;J;H lr; — ;]

where we have defined the effective central mass m, := m./(1+ u;)?. Note that this does

not change the Hamiltonian, as the terms with m}; cancel out. With this modification,
the two-body problem Hamiltonian is now given by

2 2 % .
H*(Z,ZC)N=1 — DPe + (p_ . Gmcm) X <Gmcm B Gmcm)

2m, 2m |r| |r| lr —r.|
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with m* =m./(1 + p)?. In this case, we get that (see Eq. (2.47))

. Gm} Gm,
(Vpert>N:1 = 3+ 3<I' rC)
r| r—r|
o [ 1 r r+ pur }
= mc _—_— =
(T+w)?ef |+ prf

We conclude that the Hamiltonian H* introduced here models the two-body problem
more accurately than the Hamiltonian H from Equation (2.37)). For the general case
with N > 1 orbiting particles,

(Vi )pert = ( ‘3 r, — |3 (ri - I'c)) - Z —J|3(rz — I'j). (249)

|r; lr; —r. o lr; —r;

With the effective central mass, the Kepler Hamiltonian for each particle ¢ is given by

2 Gm*.m;
(H*)Kep: pz _ ct '

Y

which is the Hamiltonian for a particle orbiting a body situated at the origin with mass m};
instead of m.. This means that the central mass m. should be replaced by the effective
central mass m;; in the equations that are used for transforming between the Kepler and
Cartesian coordinates (Sec. , and in the equations used for advancing a body along

its orbit (Sec. [2.3).

2.5 The Simulation

We simulate a system of N particles with masses m; orbiting a central body with mass
me > m; for all ¢ = 1,..., N, and assume that there are no collisions between these
particles. Each non-central particle is initialised with the orbital elements

(a2, &, M

i i 70

Q) @) (2.50)

79 [

as given in (2.11)), with the phase offset ¢ replaced by the mean anomaly M. By Equa-
tion , the States and are equivalent. The initial value of the eccentric
anomaly E? is calculated using Kepler’s equation. The initial position and velocity vec-
tors r? and v? are calculated using methods described in Section . At the start of
each iteration k of the simulation, we assume that the time-dependent variables

{rF, v} (2.51)

are known. We run the simulation for K iterations. The time at iteration k is denoted
by t*, and so the initial time is t°. We use a fixed time step At, so the total simulated
time tg, = tf — t° = KAt. Recall that we have two methods to advance a body along
its orbit. Method A utilises the rotation matrix, while Method B makes use of the f and
g functions (see Sec. . For both methods, we discuss how to integrate them into the
simulation. The main loop of the simulation is as follows:

1. From r¥ and v¥, compute the variables needed for this iteration. The specific
variables needed differ for the two methods. If £k = 0, this step can be skipped; go
to Step 2.

19



Method A: calculate the values given in (2.50]), excluding the mean anomaly,
using the method described in Section[2.2.1] Calculate EF using Equation (2.5)).

Method B: only €/ and a¥ are needed. Calculate their values using Equa-
tions and . It is, however, convenient to now also calculate the
variables that are needed for the analysis of the simulation, but those can also
be calculated after the simulation is finished to reduce the runtime.

k

P

For both methods, also calculate the mean motion w

2. Advance each particle ¢ along its orbit over a time step At. Variables labelled with
a prime are intermediate values where the perturbation has not yet been accounted
for.

Method A: use Equation (2.8) to get the eccentric anomaly (E¥™) from EF.
Use Equations 1) and (2.22) with (E¥™) in order to obtain (rf“)/ and
( k+1)’
Vi .

Method B: obtain AE* by employing Equation (2.9). Directly compute
(F1)" and (vE1) from r¥ and v¥ using Equations (2.23) and (2.24).

1

(vf“)/ in Equation 1 or (2.49). Note that when using the latter, m. needs
to be replaced by m?; in most equations (see Sec. [2.4.4)). If the central body is

assumed to be fixed at the origin, use Equation (2.34] instead. Next, set

3. Calculate the change in velocity v caused by the perturbations using (r’“l)/ and

rfﬂ _ (rfﬂ)’

and compute
/ .
vitl — (vf“) + (VF) pert AL.

4. Update the time t**! = t* + At and iteration k — k + 1.

5. If k = K or €¥ > 1 for some particle i, end the simulation. Otherwise, go back to
Step 1.

Note that in Step 5, we end the simulation if at least one particle’s orbit changed from
bounded to unbounded (e > 1). The issue with an unbounded particle is that it still
contributes to the position of the centre of mass and thus the position of the central
body (Equations and ) One could also delete particle ¢ from the simulation
whenever ¥ > 1 and adjust the centre of mass accordingly (note that there is a possibility
that the particle could end up in a bounded orbit again). Alternatively, one could simulate
the particle’s orbit as a parabola or a hyperbola in the case that it becomes unbounded.

The simulation method does not currently support orbits with e = 0, since it requires
the argument of periapsis to be defined (see Eq. , at least when initialising the
particles. For Method A, the eccentricity has to be non-zero for advancing a body along
its orbit as well. Although Method B does not rely on the eccentricity being non-zero
to do this, a non-zero eccentricity is still necessary to calculate the orbital elements in
that may be needed for analysis. Alternatively, a circular orbit can be modelled
as an elliptical orbit with a sufficiently small value for the eccentricity.
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In Step 3 we calculate (VF) e using the value of (zf“), in Equation . One could
also use the value of z¥ or a weighted sum of the two different values for this calculation.
In this last case, we get an integration method similar to Leapfrog integration |(Murray &
Dermott 2009), which might result in smaller numerical errors. However, such methods
are not used here since we include simulations where At > T; for some body ¢.

The simulation method is implemented in Python. The source code can be found on
GitHub |(van der Ven 2025).
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3 Results and discussion

In this section, we analyse the simulation method outlined in Section 2.5 We first inves-
tigate the difference between Method A and Method B, and identify the most favourable
of the two (Sec. . Next, we study the dependence of the error on the time step
size (Sec. . We then consider the magnitudes of the perturbation Hamiltonians to
determine whether the perturbation is significantly small, and to determine whether the
magnitudes agree with the estimates from Sections [2.4.2) and [2.4.3] (Sec. [3.3). Lastly, we
use conservation of energy and resonance as a gauge for simulation fidelity (Sec. and
Sec. respectively). For all dynamic Sun simulations discussed, we make use of the
effective central mass m?;, introduced in Section [2.4.4]
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() (b)

Figure 5: Projection of orbits in the Solar System onto the zy-plane for, in order of
increasing a, the planets (a) Mercury, Venus, Earth, and Mars, and (b) Jupiter, Saturn,
Uranus, Neptune, and Pluto (see also Fig. . These are the orbits on the 1st of January,
2000, and the positions of the planets on that date are indicated with a dot. The Sun,
situated at the origin, is shown in orange.

We analyse the simulation’s performance for the Solar System and the restricted three-
body problem. For our purposes, the Solar System contains the nine planets Mercury,
Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, and Pluto, with the Sun as its
central body. Figure 5| shows the projection of the orbits for these planets onto the
xy-plane on the 1st of January, 2000. The Sun’s position is shown in orange, and the
planets’ position is shown by a dot on the orbit. This configuration is the start position
for the analysed simulations of the Solar System. Note the large eccentricity of Pluto’s
orbit. The data for this system are obtained from both Murray & Dermott (2009) and
Williams (2016). Figures [6(a)| and [6(b)| show the simulated change in the orbits from
Figure || after, respectively, 6 - 10* years and 10° years. Note the big shift in Mars’s
periapsis.

The system for analysis of the restricted three-body problem consists of Jupiter or-
biting the Sun in a circular orbit (€jupiter < 1), and a test particle, which experiences the
gravitational pull from the other bodies, but does not itself exert a gravitational force on
the other bodies.
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Figure 6: Projection of orbits in the Solar System onto the zy-plane on the 1st of January,
2000 (grey), and their simulated (At = 0.8 y, Sun fixed at the origin, Method B) orbits
after (a) 6-10% y and (b) 10° y (black) for the same planets as in Figures and

respectively. Mars has the largest periapsis precession, and the trajectory of its periapsis
is shown by the red dashed curve.
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3.1 Method A versus Method B

In Section [2.3] we discussed two potential advantages of using Method B over Method
A. The runtime of simulations using Method B may be shorter, as Method B requires
fewer calculations than Method A. Furthermore, simulations using Method B may have
smaller numerical errors, especially for small eccentricity €, since in that case the eccentric
anomaly F is ill-defined, while the change in eccentric anomaly AFE is not.

Figure [7| shows the runtimes for simulations using Method A and Method B, labelled
‘A’ and ‘B’, respectively. Simulations using Method B are 30-40% faster than simulations
using Method A. Recall from Section [2.5] however, that when storing particle data at
every iteration, extra calculations need to be done for Method B. Simulations that store
data are labelled ‘A /store’ and ‘B/store’. For Method A, the runtime does not increase
significantly, but for Method B, the runtime is now similar to the runtime of Method A.
Method B is thus favoured when data at only a selected number of iterations need to be
stored.

Since F is ill-defined for small values of €, one may expect the error |¢X — €°| between
the initial eccentricity € and the eccentricity €/ after K iterations to be greater for small
values of € when using Method A. This relation is depicted in Figure , which shows
the error |eX — €| for both methods as a function of € for the planets Mercury, Mars,
Jupiter, and Neptune in the two-body system with the Sun and the planets. Contrary to
expectations, the magnitude of the error does not differ significantly between the methods.
Interestingly, for unknown reasons, Mercury’s and Mars’s error (Figs. and for
Method B is significantly greater than the error for Method A, when € is in the interval
(1072,1). This is also the case for Venus and Earth (not shown in Fig. [8). This might
be caused by the difficulty of numerically solving for AE in Equation (2.9), especially for
larger eccentricities, but further analysis is needed to draw any conclusions. Nonetheless,
the error remains below 1071°, which is negligibly small compared to the global error due
to numerical integration (see Sec. . Observe that for both methods, even though the
absolute error remains small for all initial values €, the relative error |eX —€°| /€® exceeds
unity for small values of €°. One should thus be cautious when simulating particles
with eccentricities < 10719, However, such small eccentricity values are several orders of
magnitude smaller than the measurement error. Only when modelling a circular orbit as
an elliptical orbit with small eccentricity, eccentricities of this order might be considered.
However, a value of € ~ 10~ should suffice in this case.

As Method A and Method B produce very similar results, we mostly use Method B in
the sections below due to its shorter runtime, and omit the specification of which method
is used.
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Figure 7: Runtimes t¢,,, for ten repetitions of eight different simulations of the Solar
System with K = 1000 iterations (tsim = 10 y, At = 0.01 y), using Method A, using
Method B, and using Method A or B and storing the orbital elements for all bodies at
every iteration, labelled ‘A/store’ and ‘B/store’, respectively. Runtimes of simulations
without any perturbation are shown in grey, and with interaction and central body mo-
tion perturbations are shown in blue. The mean of the runtimes is shown below the
corresponding data points.
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Figure 8: Error | — €| between initial eccentricity ¢® and final eccentricity X of the
planets (a) Mercury, (b) Mars, (c) Jupiter, and (d) Neptune as function of the start value
€® for the two-body (Sun and planet) simulations (K = 10°, tg4, = 10* y, At = 0.1 y,
Sun fixed) using Method A (grey) and Method B (blue). Observe that for Mercury and
Mars, when €” > 1072, the error for Method B is significantly larger than for Method A.
Nevertheless, this error remains below 10719,
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3.2 Error analysis

In this section, we investigate the error of simulations of the Solar System. Specifically,
we consider the global relative error, which is the relative error after multiple time steps
(contrary to the local error, which is the error after one time step), defined as 7. =
le — €ref| /€rer. Here, € is a planet’s eccentricity at ¢t = tg,, obtained from a simulation
with time step At, and €, is the reference eccentricity, also at ¢ = tg,,, obtained from
a simulation with At < At. We examine simulations with different time steps At,
but equal simulated time tg,. When At = nT;, with n a positive integer, time step
resonance can occur. In this case, body ¢ is in the same position when calculating the
perturbation every iteration, leading to a less accurate mode]ﬂ Hence, we consider the
case with At < T; and the case without restrictions on At separately.

Figure [9] shows the relative error 7, for simulations of the Solar System for the planets
Mercury, Mars, Jupiter, and Neptune (tg, = 5 y). Simulations with the Sun fixed are
shown in black, and simulations with a dynamic Sun are shown in blue. For simulations
with a dynamic Sun, the time step is limited to At < Tyercury. Otherwise, Mercury
ends up in an unbounded orbit due to large errors, and the simulation is terminated pre-
emptively. Linear fits of the logarithmic values of the data points show that 7. = O (AtP)
with p =~ 1 for both the fixed and dynamic Sun simulations. We refer to Table [5] in
Appendix[C]for an overview of the detailed fit parameters, including their errors. Only the
error for Mercury deviates from this trend, with p = 1.28 for the fixed Sun simulations and
p = 0.8 for the dynamic Sun simulations, the latter suggesting an increased sensitivity to
the central body motion perturbation for inner orbits. When the data point at the largest
value of At (= 0.15 y) is excluded from the fit of the dynamic Sun simulations in Figure
the slope, and hence also p equals 1.0340.08. This is more in line with the values of
p for the other planets. The smaller error for the simulation with At = 0.15 y is possibly a
statistical outlier. Without this data point, the largest time step that preserves numerical
stability for the dynamic Sun simulation is Atyax = 0.039 y. In Section [I, we mentioned
the limit on the largest possible time step, presented in [Viswanath (2002), which is one-
sixth of Mercury’s orbital period. For the largest possible time step Aty.c = 0.039 y
found here, we have that T\iercury/Atmax = 6.2, which is in line with the results found by
Viswanath.

The values of p found are close to the expected value of p = 1. We expect this value
because the local truncation error is O(At?), as each integration step is a linearisation,
and the global error is thus O(At!) |(Siili & Mayers 2003). Furthermore, observe that the
error of the dynamic Sun simulations is consistently at least as big as the error of the
fixed Sun simulations, and that the difference between the magnitude of these two errors
decreases when the distance to the Sun increases. This is consistent with Equation ([2.40)),
which says that (H;)wm = O(1/72). Therefore, we expect the error to also decrease with
increasing distance from the Sun.

Figure [10] shows the error 7, of the same fixed Sun simulations of Figure [J] (shown in
black) as a function of time step At, but spanning a longer timespan of tg, = 1000 y
and including bigger time steps. This includes time steps that exceed the periods of the
planets, shown by the vertical grey line in the figures. Simulations with a dynamic Sun
are not included because, as explained above, the larger time step results in unbounded

5Note that time step resonance can also occur when n is a fraction. However, the effect is most
pronounced when n is an integer. Time step resonance may be mitigated by taking At = 171 +--- +
ynTn, with ~; irrational parameters, but such alternatives are not investigated further here.
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orbits. The red line indicates where 7. = 1, because the relative error should not exceed
unity. Although there are significantly more fluctuations in the error with larger time
steps, the linear fit is still relatively accurate, with the relative error of the slope fit
parameter staying below 10% (see Table [5). However, the slopes themselves range from
0.86 to 1.05, thus being slightly smaller than expected.

Except for Neptune, and especially for the inner planets, we see that simulations
with time step At > T; are still relatively accurate, with the relative error of Mercury’s
eccentricity staying below 10% when At &~ 10? - Thtercury, and analogously when At =
10 - Tyjars for Mars’s eccentricity. Furthermore, contrary to the dynamic Sun simulations,
unbounded orbits happen only for very large time steps, when the relative error exceeds
unity. This behaviour may be the result of a kind of orbit averaging. If we take ty and
t; such that At = t; — tg = T, the integral in Equation (2.27)) equals, up to the factor
1/At, the orbit average of JVH ert = (—Pperts Ipert), taken along the Kepler orbit rge,(t)
with tg <t < t;. When we take At > T and approximate the integral as in Equation
(2.28), we do not get the same orbit averaging as with the integral. However, since the
planets are in a different location on their orbits during each iteration, provided that an
appropriate time step is chosen that mitigates time step resonance, we essentially average
over the orbits in this case as well (see Sec. [1] for a more comprehensive explanation).
Nevertheless, to get a better understanding of this potential orbit averaging, a statistical
framework may be required when evaluating the effect of the perturbation, rather than
naively using a large time step in Equation .

Overall, we conclude that for all simulations, with a fixed or dynamic central body, the
error can be predicted accurately for small time steps (At < Tyiercury), since 7. = O(AtP)
with p ~ 1. Furthermore, although we still roughly have that n. = O(At) for simulations
with a fixed central body and time step At > T; for at least one body i, the simulations
are significantly less accurate than when At < T;. Nevertheless, simulations with big time
steps are still viable to reduce the runtime of the simulation when only the qualitative
behaviour of a Solar System-like system is required.
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Figure 9: Relative error 7. = |€ — €ref|/€ref Of eccentricities of the planets (a) Mercury, (b)
Mars, (c) Jupiter, and (d) Neptune after ¢g,, = 5y, as function of time step At, where €,¢f is
the reference value obtained by simulation with time step At = 0.0001 y, for simulations
of the Solar System with the Sun fixed (black), and with a dynamic Sun (blue). The point
at which At = T, the planet’s orbital period, is indicated with a grey dotted line. Here,
an increase in error can be expected due to time step resonance. Numerical fits of the
(logarithmic values of the) data points for which A¢ < T are shown by the dashed lines.
The slopes of the fits are (a) 1.28 (black) and 0.8 (blue), (b) 1.03 (black) and 1.10 (blue),
(c) 1.08 (black) and 1.11 (blue), and (d) 1.05 (black) and 1.11. The fit parameters with
their errors, including the offset not stated here, are given in Table [5]in Appendixlg
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Figure 10: Relative error 7. = |€ — €,ef|/€rer as function of time step At as in Figure@ but
with tgm = 1000 y and At.es = 0.01 y. Only the simulation with fixed Sun is considered.
The point at which At = T is indicated with a grey dotted line. The point at which the
relative error 7. = 1 is indicated with a red dotted line. Numerical fits of the (logarithmic
values of the) data points are shown by the dashed lines. The slopes of the fits are (a)
0.86, (b) 0.98, (c) 0.87, and (d) 1.05. The fit parameters with their errors, including the
offset not stated here, are given in Table 5| in Appendix Q
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3.3 Perturbation magnitudes and energy conservation

In Sections [2.4.2] and [2.4.3 we estimated (H,;)in; and (H;)epm to determine whether the
perturbation would remain small compared to the total particle energy. The estimates are
given as ratios in Equations and (2.41), from which we concluded that for Mercury
— or any other body in a small orbit — the dynamic central body perturbation (H;)cbm
may be too large. Because of the big discrepancy in the error between the fixed and
dynamic Sun simulation in Figure [9] we investigate the magnitude of the perturbation
terms further.

Figure[11]shows the relative magnitudes of the different Hamiltonian components as a
function of time for the planets labelled above the figures for dynamic Sun simulations of
the Solar System. The interaction Hamiltonian (H;)i (shown in blue) remains relatively
constant and is at least three orders of magnitude smaller than the Kepler Hamiltonian
(Hi)kep (shown in grey). In contrast, the perturbation Hamiltonian (H;)epm (shown in
black) is only two to three orders of magnitude smaller for the inner planets, and larger
still for Mercury. Specifically, the ratio |(Huercury)ebm/ (HMercury ) Kep| has an average value
of 1.8 - 1072 and a maximum value of 5.7 - 1072, which agrees with the estimate found
in Section [2.4.3] For simulations with small time step (At < Tyjercury), this perturbation
is sufficiently small not to cause large errors, but, as is apparent from Figure , it
leads to large errors — or indeed an unbounded orbit — when using bigger time steps
(At > 1072 Tyjereury)- For planets in large orbits (Jupiter’s orbit and larger), one need not
be concerned about this, as |(Huercury )cbm| 18 roughly equal to or less than |(Htercury )int|-
Note, however, that the large magnitude of H.,, is a problem specific to this system.
Due to Jupiter’s large mass, r. is relatively big, and by Equation , this results in a
large relative magnitude of Hepy,. In a system without bodies close to the central body
or massive planets in outer orbits, |(#;)cbm| is smaller for all bodies. The simulation may
thus be more stable when time steps At > T; are used.

As the Solar System is essentially isolated, the total energy should be conserved. The
relative total energy deviation of three different simulations of the Solar System is shown
in Figure as a function of time. The relative total energy deviation of the simulation
with fixed Sun and At = 0.8 y (shown in black), and the simulation with dynamic Sun
and At = 0.01 y (shown in blue) remains smaller than 10~*. For the simulation with
fixed Sun and At = 0.01 (shown in grey), the relative deviation is smaller still, with a
maximum value on the order of 10~7. The total energy for these systems thus remains
essentially constant. Hence, it is reasonable to expect that they accurately describe the
Solar System. It is important to note, however, that energy conservation alone is an
insufficient measure when determining the accuracy of a simulation. Other conserved
quantities, such as momentum and angular momentum, should be considered as well,
since conservation laws for these quantities can also be violated, even when the total
energy remains essentially constant. Lastly, note that the fluctuations in the total energy
are merely a result of (numerical) error. Ideally, the plots should be a perfect horizontal
line.

The effect of the time step size on energy conservation is depicted in Figure ,
in which the relative standard deviation sf  /|Ey| is plotted against time step At for
fixed Sun simulations with timespan 10* y. As expected, because of the larger error,
the standard deviation increases as the time step increases. The extent to which the
simulation violates energy conservation thus increases with step size. Nevertheless, for
simulations with At < 10 y (which is not significantly smaller than T’j,pier), the relative
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standard deviation does not exceed 1073, indicating that the degree to which energy
conservation is violated remains minimal. This further suggests that, while simulations
with a large time step have relatively large errors, these simulations are valuable to obtain
qualitative behaviours of a planetary system.

Mercury Mars Jupiter Neptune

T 1t 1t 1t -

|1/ Etot

Figure 11: Relative magnitudes |H/Eio| of the Hamiltonians (H;)kep (grey), (Hi)int
(blue), and (H;)cbm (black) as function of time for the planets in the Solar System indi-
cated above the plots (At = 0.01 y, tgm = 50 y, dynamic Sun). The magnitude of the
Hamiltonian of the entire system is depicted by a black dashed line. Observe that for
Mercury, the highest values of (H;)cbm are only one to two orders of magnitude smaller
than (H;)Kep-
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Figure 12: (a) Relative total energy deviation |(Eiot — Etot)/Etot| as function of time ¢
for simulations the Solar System with At = 0.8 y and a fixed Sun (black), At = 0.01 y
and a fixed Sun (grey), and At = 0.01 y and a dynamic Sun (blue). The data points are
represented by dots, and for the simulation with At = 0.8 y, the data points are connected
by a line for better readability. (b) Relative (sample) standard deviation s¥  /|Eiot| as
a function of time step At for simulations of the Solar System with the Sun fixed at the
origin (tsim = 10* y). Note that the number of iterations K, and thus the number of
samples for the standard deviation, depends on At.
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3.4 Resonance as gauge for simulation fidelity

In some cases, high precision of the simulation is essential when investigating the details
of the behaviour of a system. The occurrence of resonance in a system is an example of
this. We speak of resonance when there is a simple numerical relation between the mean
motions of two bodies. Briefly, a resonance between two (or more) planets can occur due
to their mutual gravitational attraction keeping them around an equilibrium — when
one planet drifts away from this equilibrium, the attraction from the other planet pulls
it back to the equilibrium. An example of planets that are in resonance in the Solar
System is the pair Neptune and Pluto. They are in a 3:2 resonance, which means that
WNeptune/Wpluto = 3/2 |(Murray & Dermott 2009). To test the accuracy of the simulation
with small At, and to analyse the effect of the time step size on the accuracy, we consider
the restricted three-body problem (see Sec. , in which the test particle and Jupiter are
in a 2:1 resonance, i.e. Weest/Wiupiter = 2.

Figure 13| shows the evolution of four quantities important when studying resonance
over a timespan of 100 Jupiter periods. Figures (a) — (f) have slightly different initial val-
ues for agesy and €qes; (se€ Table. The initial values are chosen such that the test particle
and Jupiter are in (the vicinity of) a 2:1 resonance. Each initial condition corresponds
to a specific type of resonance, but details of each type are irrelevant for our discussion
herd’] In each figure, the results of four different types of simulations are shown, differing
in the position of the Sun (fixed or dynamic) and the initial values (calculated in the
centre of mass frame or the heliocentric frame).

From Figure (13| it is immediately apparent that the resulting behaviour of the system
is highly sensitive to the initial condition. One can thus imagine that, when the error
of the simulation is relatively large, details of the behaviour are lost. Furthermore, the
simulation with a fixed Sun and initial values calculated in the heliocentric frame (shown
in black), and the simulation with a dynamic Sun and initial values calculated in the
centre of mass frame (orange), most accurately reproduce the results given in Murray &
Dermott (2009), p. 366, the latter being a remarkable reproduction. In this case, the
significance of the effective central mass, introduced in Section becomes apparent.
For the results in the previous sections, exchanging the central mass m,. for the effective
central mass m;, made little difference. However, possibly due to the sensitivity of the
system discussed here, the dynamic Sun simulations give considerably different results
(not shown here) when the effective mass is not used, and resonance is not easily found in
that case. With a sufficiently small time step, the simulation can thus accurately describe
a 2:1 resonance for a restricted three-body problem, especially when the motion of the
central body is taken into consideration.

Figure [14] is the same as Figure [I3] but the time steps of the simulations are equal
to At = 2.5y < 593 yv = Tit. Comparing the two figures, we see that details of the
behaviour are lost when using a bigger time step. This is especially the case for Figures
—[14(f)] in which few similarities with their corresponding figure for At = 0.1 y
can be found. Interestingly, the fixed Sun simulation with its initial values calculated in
the centre of mass frame (shown in blue) does show some similarities between the two
figures. Even though this simulation does not describe the system accurately, the results
suggest some degree of stability for larger time steps.

6As an example, Figure corresponds to exact resonance |(Murray & Dermott 2009). In this case,
we have Tyypiter = 2Ttest, and thus aﬁcf/aJupiter = (1/2)2/3 = 0.6299605 . .. (see Table .
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Table 4: Initial values of the test particle’s semi-major axis a, eccentricity € and longitude
of periapsis ®, for the simulations of the plots shown in Figures [13|and The values are
taken from [Murray & Dermott (2009). Here, the values for the semi-major axis al, . are
calculated in the centre of mass frame. The semi-major axis a}  is the value corresponding
to a2, ; adjusted to the heliocentric frame. Note that for Plot (a), af ; is chosen such that
TJupiter = 2Ttest; as aﬁcf/aJllpiter = (Ttist/T}upiter)l/S = (TtZest/(ZTtBSt)2)1/3 = (1/2)2/3 ~
0.6299605 (see Eq. (2.19)).

Plot a ¢/ Agupiter al ¢/ @upiter €V 0 (rad)
(a) 0.629961 0.625277 0.128386 0
(b) 0.638169 0.633424 0.0725011 0
(c) 0.642615 0.637837 0.0122862 0
(d) 0.641475 0.636705 0.060146 T
(e) 0.643003 0.638222 0.0184545 T
(f) 0.615166 0.610592 0.1975 0

Figure shows the relative error 7. as a function of time step At for the same
simulations as Figures [13] and [14] differing only in time step size. Like Figure [9] it shows
that n. = O(At?), with p > 1. Contrary to the result in Section p exceeds 2 for
some simulations of this specific system, which could be due to its simplistic nature: the
restricted three-body problem analysed here, versus the Solar System with nine planets
analysed in Section [3.2] This difference may also be the result of the fewer data points or
the fewer iterations of the simulations used here, compared to the results in Section [3.2]
More importantly for the discussion here, we see that for At = 2.5 (indicated by the grey
line on the right), we have 107! < 7, < 10° for most simulations, with some relative errors
exceeding unity (indicated by the red line). These large errors explain the behaviour of
Figure [14] discussed above, since the error increases significantly with increasing step size.
For At = 2.5 y, the simulations are no longer accurate enough to model the resonance,
due to the high sensitivity of this phenomenon. Furthermore, it is clear from Figure
that overall, the fixed Sun simulation with its initial values calculated in the centre of
mass frame (shown in blue) has the lowest errors, explaining the stability of this specific
simulation.

Even though the simulation can accurately describe the details of the system’s be-
haviour, in this case, the phenomenon of resonance, when the motion of the central body
is taken into account and the step size is sufficiently small, these details are lost when
the time steps become too large. This further substantiates the idea that big time steps
are useful mostly when analysing a system qualitatively rather than quantitatively.

33



(2) (b)

() (f)

Figure 13: Evolution of semi-major axis a, eccentricity €, longitude of periapsis ® of
a test particle and resonance argument ¢ = 2Ajypiter — Mest — Pst OVer a timespan of
tsim = 100 - Tyypiter = 1186 y, for the simulations (At = 0.1 y) of the restricted three-
body problem (the Sun, Jupiter and the test particle) with initial values for a, € and ¢ as
given per figure (a) — (f) in Table 4| Each plot shows the simulations with fixed Sun and
a® = af ; (black), fixed Sun and a® = a® _; (blue), dynamic Sun and a® = a{ ; (grey), and
dynamic Sun and a® = a2 . (orange). The initial values are chosen such that the test
particle and Jupiter are (in the vicinity of) a 2:1 resonance. Jupiter is in a circular orbit
(Supiter = 1077 and @, iiers §upiter = 0) and is in the same plane as the test particle
(Iyupiter = ltest = 107 deg). For both Jupiter and the test particle, \° = 0. The vertical
axis ranges are: [0.60 - ajupiter, 0.67 - Gyupiter] for a, [0,0.24] for €, [0,27] for ® and [—n, 7]
for . Observe that the high-frequency oscillations, most evident in the semi-major axis
plots, have the same period as Jupiter’s orbital period.
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Figure 14: Evolution of semi-major axis a, eccentricity €, longitude of periapsis ¢ of a
test particle and resonance argument ¢ over a timespan of tgm, = 100 - Typiter = 1186 ,
for the same simulations as in Figure[13] except with At = 2.5 y. The vertical axis ranges
are: [0.60 - ayupiter, 0.67 - @jupiter] for a, [0,0.24] for €, [0, 27| for ® and [—m, 7] for ¢.
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Figure 15: Relative error 1 = |€ — €ef| /€rer Of the test particle’s eccentricity as a function
of time step At, with At = 0.01 y, for the same simulations as in Figures and
The points at which At = 0.1 y and At = 2.5 y, the time steps used for the Figures
and [I4] respectively, are indicated by a grey dotted line. The point at which the relative
error 7. = 1 is indicated with a red dotted line.

36



4 Conclusion

We present an implementation of the Wisdom-Holman integrator for simulating systems
with IV orbiting bodies and a dominant central mass, which models orbits around the
(fixed) central mass as Kepler orbits, while gravitational interactions between non-central
bodies and the central body motion are modelled as weak perturbations. We explore the
possibility of reducing runtime by taking time steps larger than used conventionally,
including time steps At > T; for at least one body i. To ensure the model correctly
describes a two-body system, we introduce for each body i the effective central mass m?, =
me/(1 + p;)?, with p; = m;/m,.. Furthermore, we present two methods for advancing
a body along its Kepler orbit: Method A, which uses both the Kepler and Cartesian
coordinates, changing coordinates each iteration, and Method B, which uses the f and g
functions to remain in the Cartesian coordinates.

Simulations with Method B yield slightly larger errors than those using Method A.
However, since the difference in magnitude of these two errors remains minimal, and
since the relative error of Method B does not exceed 107!°, Method B promises to be the
preferred method due to it outperforming Method A computationally (provided that the
number of iterations in which the data are stored is limited).

For simulations of the Solar System, consisting of the nine planets (including Pluto),
with the Sun fixed at the origin and with the Sun having dynamic position and velocity
(i.e. the centre of mass fixed at the origin), the relative error 7, grows as O(At) whenever
At < T. For simulations of the Solar system with a dynamic Sun, the error becomes
too big for time steps At 2> T, resulting in unbounded orbits. Specifically, for the maxi-
mum value of the step size At,.x possible such that the numerical stability is preserved,
we have that Tyiercury/Atmax = 6.2. This agrees with the step size limit according to
Viswanath (2002), which is one-sixth of Mercury’s orbital period. Fixed Sun simulations
are better behaved for At > T compared to dynamic Sun simulations, with the relative
error still equal to O(At), which is especially the case for the inner orbits. Although
simulations with large time steps can introduce significant errors and may not accurately
describe a system for certain applications, they can still provide valuable qualitative
information about the system’s evolution on long time scales.

The large errors of the dynamic Sun simulations become apparent when considering
the magnitudes of the individual components of the Hamiltonian of the system. While the
interplanetary interaction Hamiltonian remains minimal compared to the Kepler Hamil-
tonian, this is not the case for the perturbation Hamiltonian (for the inner planets) that
models the motion of the central body. However, due to Jupiter’s large mass, this is
possibly specific to the Solar System, and planetary systems without the most massive
planet in an outer orbit may be more stable for large time steps as well.

The simulation method is tested for its fidelity using both energy conservation and the
extent to which it can describe resonance. Results show that the dynamic Sun simulation
accurately describes the Solar System and the restricted three-body problem for small
time steps (At < T; for all bodies 7). This suggests that the use of Jacobian Coordinates
is not strictly necessary, contrary to what is commonly assumed, for example, in [ Murray
& Dermott (2009). For larger time steps, including time steps exceeding the orbital period
of planets, fixed Sun simulations still conserve energy to a significant degree, suggesting
that qualitative behaviour is maintained when using larger time steps.
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Overall, simulations of the Solar System with a fixed Sun can be used with large
time steps to obtain the qualitative behaviour of the system. For small step sizes, dy-
namic Sun simulations accurately describe the Solar System and the restricted three-body
problem without the use of Jacobian coordinates. However, for simulations of the So-
lar System, the step size is limited by Atyax = Thercury/6. Potential further research
includes investigating possible applications for large time step simulations, such as the
study of the formation of the Solar System, or any other planetary system. Moreover,
investigating other, more statistical means of orbit averaging with large time steps could
result in more accurate simulations. Finally, the number of bodies could be extended to
include the many asteroids in the Solar System. Since collisions or near-encounters are
more probable in this case, taking this into account, for instance, by using the method
described in |Visser (2023), may need to be taken into consideration.
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Appendix A

For a body in a Kepler orbit, the vectors r and v span the orbital plane (note that
lr x v| = L/m # 0). We exploit this fact to derive time-dependent expressions for the
position and velocity when their values are known for one point on the orbit. Let r° and
v? be the position and velocity vectors at some time t°. For the position we write

r(t) = f(t,t°)r" + g(t,t°)v°, (A1)

with f and ¢ functions that depend on time ¢. The velocity is readily obtained by
differentiation, giving us '
v(t) = f(t, %) + g(t, £°)v°. (A.2)

Taking the cross products with v? and r° on both sides of Equation (A.1]), we obtain

VO x r(t) = — f(t,to)% and 10 x r(t) = g(t,to)%. (A.3)

We can get a useful expression for f and g by employing Equations (2.20) and ([2.22)).
Without loss of generality, we assume the rotation matrix is the identity matrix and so

&)
vO x r(t) = wao [—sin E”sin E — cos E° cos E + e cos E°] k
r
wa?b 0 0
= — [— cos(E — E°) + ecos E°] k
,
wa?b 0
= — [— cos(AE) + ecos E°] k,
,

with AE = E — E°, the difference between the eccentric anomalies at positions r(t) and
r’. Equating the z-coordinates in Equation (A.3)), and using Equation (2.3)) and the fact
that L = (mwab)k, it follows that

0 o a
f(t,t)—l—ﬁ(l—cosAE). (A.4)
Similarly,
r’ x r(t) = ab [sin AE — ¢(sin E — sin E) |k
or, using Equation (2.8)) with At =t — 9,

r’ x r(t) = ab[sin AE + (wAt — AE) k.

Again, equating z-coordinates in (A.3]), we get
1
g(t,t") = At — —(AE — sin AE). (A.5)
w

By Equation ([2.21))
d dE  wa
—(AE) = — = —
dt( ) dt r’
and so it follows that )

.0 = — LY sin AR (A.6)

rr0
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and

Gt 1% =1 — %(1 — cos AE). (A7)

Note that f and g (and their derivatives) depend only on At and AE, with the latter
also depending only on At according to Equation (2.9). Hence, we write f(t,t°) = f(At)
and g(t,t°) = g(At).

Appendix B

Here, we derive Equation (2.9). The goal is to find an equation that expresses the time
difference At = t! —¢% in terms of the difference of eccentric anomalies AE = E' — E°.
We first evaluate the cross product € x Ar, with Ar = r! —r% Without loss of generality
we assume that the angles w, {2 and I are all equal to 0 because the rotation matrix
preserves cross products, i.e. (Za) x (#b) = Z(a x b). With € and Ar given by

1 acos E' — acos E°
e=¢c|0 and Ar = | bsin B! —bsin E° |,

0 0

we get that
€ x Ar = b(sin E' — sin E")k.
Combining this with Equation (2.8)) gives us
exAr L
b L’

where the last equality follows from the fact that L/L is a unit vector pointing in the
direction of € x Ar. We want to eliminate the dependence of r! because the new position

is still unknown. We achieve this using the f and ¢ functions defined in Equation (A.1)).
Equation (B.1]) can then be written as

1
AE — wAt = ¢(sin E* — sin B°) = 3 le X Ar| = (B.1)

exr’ L n EXYV
b L9
We now use Equation (2.15)) to eliminate €. First note that
0 L 0
(os><r0)-L:{(V>< —r—>><r0]-L

Gm.m r

AE —wAt = (f — 1)

~ (vOx L) xr?
N Gm.m

‘L

L(r®-v") —v'(x"- L)
— L
Gm.m

r? . vo

L2

Gm.m

since r° x r% = 0 and r° - L = 0. Similarly, we have

(U0>2L2 L2

0
L= _
(€xv7) Gm.m  mr9’
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and hence

(r’-vO)L (v9)2L L
AE —wAt=(f -1 —
w (f ) Gm.mb * gGmcmb gmrob
rv0 (09?2 wa
—(f_1 _ vl
(f=1) wa? +g wa? ro’

where the last equality from Gm, = w?a® and L = mwab. Next, we use the vis-viva

equation
2 1 2a
02 _ d==—=)= 2.2 (22 B.2
(v") me (g~ wia | 5 : (B.2)

which can be derived from energy conservation (Murray & Dermott 2009), and arrive at

0.0
AE—wAt:(f—l)r ‘2, —I—gu)(%—l)
wa r
Lastly, we substitute the expressions for the f and g functions (Eqgs. (A.4) and (A.5)
into the above, which, after rewriting, results in

0 0 0

AE — wAt = (cos AE — 1) a ‘2, + (1 — r_) sin AF.
wa a

Appendix C

Table 5: Fit parameters « (slope) and § (offset) for the numerical fits in Figures |§| and
The logarithmic values of the data points are fitted with a linear function, i.e. the
fits are of the form Inn = aln At 4+ 3, with n the (relative) error and At the time step.
Parameters with subscript fized are for data points obtained from simulations with a fixed
Sun (depicted in black in the figures), and parameters with subscript dynamic are for data
points obtained from simulations with a dynamic Sun (depicted in blue in the figures).

Figure ‘ Ofixea (black)  Bxea (black) ‘ Qdynamic (Plue)  Baynamic (blue)

0(a) | 1284006 —302+7 |0840.1 —15+1
() |1.034+003 —2314+04 |1.10+04 —20.0 £ 0.5
| 1.08£0.02  —25.0+03 |1.11+0.04 —23.3+04
1.05+0.02  —23.5+03 |1.11+0.04 —25.3+0.4
086+0.07 —21+1
0.984+0.09  —23+2
0874007 —20+1
1.05+£006  —24+1
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