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Abstract

Miniaturizing optical systems is necessary and useful for many different applications, such as cameras
and optical sensors. Recent breakthroughs in metalenses have enabled ultra-thin optical components,
driving efforts to reduce the free space propagation distances between them. This can be done us-
ing devices called spaceplates, which mimic the phase response of free space propagation within a
shorter relative distance. This thesis investigates the properties of theoretical spaceplates comprised
of multilayer thin film structures, designed through optimization. It explores the limits of achievable ef-
fective distances by stacking devices, ultimately demonstrating a theoretical effective distance of 23.3
mm for an NA of 0.087 and 1550 nm wavelength. It also finds manufacturing errors have a significant
influence on this metric, reducing achievable effective distances to millimeter scales. Lastly, it explores
combining the spaceplate function with angular stray light filtering to achieve multifunctional designs,
with promising results.
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1
Introduction and context

The field of optics has known a long history, seeing some of its first real application in lenses for vision
correction in (and possibly before) the 13th century (Darrigol, 2012). In 1608 it was demonstrated
by the invention of the telescope by Hans Lippershey that by putting lenses at certain distances from
one another, light can be manipulated into projecting images in many different sizes and orientations,
opening up a world of possibilities (Historiek.nl, 2024). In 1865, James C. Maxwell described light
as being an electromagnetic wave, furthering the understanding of its behavior, like diffraction and
interference patterns (Maxwell, 1865). This understanding then forms the basis for modern thin film
optics. The design of thin film structures permits manipulation of transmitted light, particularly in the
spectral domain. It can do so by creating resonant cavities between interfaces between different media,
where the wave will partially be reflected. When periodic, analytical expressions can be found which
allow for instance the creation of near-perfect mirrors, otherwise known as Bragg mirrors (Horsley et
al., 2014). In the past few decades, manufacturing techniques have become so advanced they allow
even more complex optics, through the use of photonic metamaterials. These materials have sub-
wavelength sized features in the plane (essentially 2D-features), which are shaped in such a way they
shape the phase profile of transmitted light. This way, ultra-thin and completely flat lenses can be made
(Arbabi and Faraon, 2023).

Like in many other technological fields, with the advancements of fabrication came the possibility
to make systems smaller and more efficient, by creating better and stronger lenses and making clever
use of the understanding of light as a wave. The rise of metalenses has helped accelerating this effort,
since they are so thin and highly customizable. However, when miniaturizing an optical system, there
are two main parts one must consider: the lenses themselves, and the free space between them. This
space is needed to allow phase profiles of light to propagate to the correct shape, like in the case
where a converging beam needs a certain distance to focus to a point after passing through a lens.
The presence of this space becomes glaringly obvious when one looks at any typical telescope or photo
camera: the most simple versions of these systems only contain a few lenses which are meticulously
put at given distances of free space to achieve the desired effect. In many systems, this makes free
space a critical factor affecting system size.

For that reason, a new type of optical element was recently proposed which has the ability to com-
press this space by enacting the required phase shift over a shorter distance than the free space
associated with that phase shift (Reshef et al., 2021), as can be seen in figure 1.1. This means that
for a distance 𝑑𝑒𝑓𝑓 in free space a spaceplate of thickness 𝑑 ≤ 𝑑𝑒𝑓𝑓 can enact the same operation on
light, compressing it by a factor 𝑅 = 𝑑𝑒𝑓𝑓/𝑑, otherwise known as the compression ratio.

1
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Figure 1.1: a Propagation through free space. b Propagation through spaceplate with same effective distance as in a. c
Focusing through a lens in free space. d Focusing through a lens together with a spaceplate.

Having access to spaceplates would enable many optical systems to shrink down significantly. Fur-
thermore, by combining them with the previously mentioned metalenses it would theoretically become
possible to attach all components of the optical system together into one monolithic structure without
the need for very complicated fixtures, as all components have flat surfaces.

To be able to compress space this way, a spaceplate needs to impart a phase to the incoming light,
depending only on the incoming angle, as further explained in section 1.1. Since the first proposition
of spaceplates, multiple new techniques have been proposed to achieve this effect in different ways,
as are shown in section 1.2.

Out of these techniques, the use of thin film stacks was chosen to further investigate in this the-
sis. Multilayer thin film optics are understood very well, and relatively easy to fabricate using modern
techniques (Danielzik et al., 2003). While the same effect might be possible using photonic metama-
terials, taking a step back into multilayer thin films to create them might prove easier. Specifically, the
question in this thesis was whether effective distances can be reached that may have possible uses
in earth observation instruments for satellites, as miniaturization of those systems would be very valu-
able, both for weight and size requirements. This would require them to reach effective distances in
the range of centimeters. Additionally, during this project it was found that thin film stacks also have a
capability for filtering out angular stray light, which leads to a possibility of a multifunctional spaceplate.
Therefore, angular stray light filtering using multilayer thin film stacks and the eventual combination
with spaceplate functionality was also explored.

To investigate these questions, first the fundamental limits from literature are examined in section
1.3, along with other literature concerning the use of thin film stacks to create multifunctional space-
plates and angular stray light filters in sections 1.4 and 1.5. Then will follow the methods used to
evaluate the properties of and optimize the thin film multilayer stacks, in chapter 2. The results of this
research can be found in chapter 3, of which the resultant conclusions and discussions can be found
in chapter 4.

1.1. Spaceplate basic principles
The concept of spaceplates was first introduced in Reshef et al., 2021. In their article, they explain the
idea of an optic which transforms the phase profile of an incoming wave into the phase profile expected
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from free space propagation, but within a smaller distance, meaning it compresses the necessary
propagation space for the optical system. In very simple terms, a spaceplate enables light to travel
between two planes as if it is in the background medium, but it does so in an actual distance smaller
than the simulated propagation distance.

The propagation of the electric field 𝐸(𝑥, 𝑦, 𝑧) of a known plane wave with free space wavenumber
𝑘0 = 𝜔/𝑐 can be described by the Helmholtz equation, which follows from Maxwell’s equations:

∇2𝐸 + 𝑘20𝐸 = 0 (1.1)

Then taking apart the transverse (xy) and z-component of the Laplacian operator:

𝜕2
𝜕𝑧2𝐸 + (

𝜕2
𝜕𝑥2 +

𝜕2
𝜕𝑦2 )𝐸 + 𝑘

2
0𝐸 = 0 (1.2)

Enacting the Fourier transform in the x- and y-direction where 𝐹𝑥𝑦{𝐸(𝑥, 𝑦, 𝑧)} = �̂�(𝑘𝑥 , 𝑘𝑦 , 𝑧) will give:

𝜕2
𝜕𝑧2 �̂� + (𝑘

2
0 − 𝑘2𝑥 − 𝑘2𝑦)�̂� = 0 (1.3)

This is a simple differential equation, which has a possible solution:

�̂�(𝑘𝑥 , 𝑘𝑦 , 𝑧) = �̂�(𝑘𝑥 , 𝑘𝑦 , 0) exp 𝑖𝑧√𝑘20 − 𝑘2𝑥 − 𝑘2𝑦 (1.4)

This shows that the transfer function corresponding to free space propagation is:

𝐻(𝑘𝑥 , 𝑘𝑦 , 𝑧) = exp 𝑖𝑧√𝑘20 − 𝑘2𝑥 − 𝑘2𝑦 (1.5)

And so a plane wave’s unhindered phase difference in a homogeneous medium between two points
along the z-axis separated by a distance 𝑑𝑒𝑓𝑓 is the following:

𝜑𝑆𝑃(𝑘0, 𝑘𝑥 , 𝑘𝑦 , 𝑑𝑒𝑓𝑓) = 𝑑𝑒𝑓𝑓√𝑘20 − 𝑘2𝑥 − 𝑘2𝑦 = 𝑑𝑒𝑓𝑓𝑘0 cos𝜃 = 𝑘𝑧𝑑𝑒𝑓𝑓 (1.6)

Where 𝜃 is the angle between the k-vector and the z-axis. It is not named inside the function
𝜑𝑆𝑃 since it is inherent to the vector form of k (being a vector with 𝑘𝑥 , 𝑘𝑦 , 𝑘𝑧 as its components and
magnitude 𝑘0). An ideal spaceplate would impart this exact phasewhile being thinner than 𝑑𝑒𝑓𝑓, thereby
compressing the space with a factor 𝑅 = 𝑑𝑒𝑓𝑓/𝑑, where 𝑑 is the spaceplate’s actual thickness.

This phase response is only dependent on the incoming angle and wavelength (i.e. values 𝑘𝑥
and 𝑘𝑦) and should respond the same regardless of x, y coordinates. This operation is dependent on
the input electric field at a certain region on the first interface, since the critical values 𝑘𝑥 and 𝑘𝑦 can
only be determined by knowing the value of 𝐸 over a region. This makes the spaceplate a non-local
optic. This type of optical element is the exact opposite of an ideal thin lens, which will have a phase
response dependent only on the local properties of the lens at a certain distance from the optical axis,
and independent of the larger shape of the incoming electric field.

In further sections the transverse components of the k-vector, 𝑘𝑥 and 𝑘𝑦, are combined in scalar 𝑘𝑡𝑣,

having magnitude 𝑘𝑡𝑣 = √𝑘2𝑥 + 𝑘2𝑦. This can be done, since these systems usually use transversely
invariant structures, making it possible to model them in 2D. Important to note about this quantity is
that, due to the continuity condition over an interface, it will be the same regardless of the medium for
any transversely invariant structure, like those mentioned in sections 1.2.2, 1.2.3 and 1.2.4.

1.2. Existing spaceplate concepts
Many different spaceplate concepts were proposed and some demonstrated in literature, which are
listed in this section.
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1.2.1. Simple homogeneous low index slab
A straightforward initial approach to realizing a spaceplate is to consider using a single slab of material
with a refractive index lower than the background medium. Due to Snell’s law, a slab like this would
displace an incoming beam a certain distance, depending on the incoming angle. Snell’s law is a
consequence of the change of the speed of light between different media, and is formulated as follows:

𝑛1 sin𝜃1 = 𝑛2 sin𝜃2 = 𝑛3 sin𝜃3 (1.7)

Assuming 𝑛1 = 𝑛3 = 𝑛𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 this would result in a lateral displacement that mimics the expected
displacement due to propagation while keeping the angle of propagation before and after the slab the
same. This can be seen in figure 1.2.

Figure 1.2: a) A lateral displacement due to propagating 𝑑𝑒𝑓𝑓 of free space. b) This can be recreated with a low-index slab of
thickness 𝑑.

When trying to make a spaceplate this way, it is possible to define R using geometric relationships.
If it turns out that R is a constant value regardless of incoming angle, then this indicates the material
could be used as a spaceplate. Taking the lateral displacement after propagation as Δ𝑠:

Δ𝑠 = 𝑑 tan𝜃2 = 𝑑𝑒𝑓𝑓 tan𝜃1 (1.8)

𝑅 =
𝑑𝑒𝑓𝑓
𝑑 = tan𝜃2

tan𝜃1
(1.9)

Then by redefining these terms, one can come to R dependent on 𝜃1:

tan𝜃1 =
sin𝜃1

√1 − sin2 𝜃1
(1.10)

tan𝜃2 =
𝑛1
𝑛2

sin𝜃1

√1 − (𝑛1𝑛2 sin𝜃1)
2

(1.11)

𝑅 =
𝑛1
𝑛2
√1 − sin2 𝜃1

√1 − (𝑛1𝑛2 sin𝜃1)
2

(1.12)

The second order Taylor expansion of R around 𝜃1 = 0 will yield:

𝑅 = 𝑛1
𝑛2
(1 +

(𝑛1𝑛2 )
2 − 1
2 𝜃21) + 𝒪[𝜃41 ] (1.13)

With 𝜃1 in radians. This shows that a simple homogeneous slab is not an ideal spaceplate, since this
expression for R exponentially increases when the incoming angle increases instead of being constant
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for any incoming angle. For very small angles (e.g. very close to 𝜃1 = 0) it can approach the response
of a spaceplate. This range gets bigger the closer 𝑛2 approaches 𝑛1, but doing this simultaneously
makes 𝑅(𝜃1 ≈ 0) ≈

𝑛1
𝑛2

approach 1, making it less and less useful.

By expressing a maximum deviation away from 𝑅(0) as 𝑝 = 𝑅(𝜃1)−𝑅(0)
𝑅(0) one can describe the angular

range at which this works as follows:

𝜃1 ≤ √
2𝑝

(𝑛1𝑛2 )
2 − 1

(1.14)

Out of this can be concluded that this type of spaceplate is possible and may be useful for applica-
tions with a very small numerical aperture (NA). However, since materials with a refractive index lower
than that of vacuum are not widely available, this solution is impractical for in-air or in-vacuum applica-
tions. This also does not take into account transmission intensity, which may also limit the usefulness
of this concept.

1.2.2. Fabry-Pérot cavities
A simple way to create a spaceplate would be by using a series of identical Fabry-Pérot cavities (Chen
and Monticone, 2021, Mrnka et al., 2022), as shown in figure 1.3. Shown here are the end results
of lengthier derivations, which can be found in appendix B. Ideally, this type of design could result in
systems such as that in figure 1.3 (a), where the whole optical system between lens and detector is a
single monolithic structure.

Figure 1.3: a) An ultrathin, solidstate imaging system realizable with spaceplates. b) A single dielectric resonance structure
with 𝜀1 a high relative permittivity and 𝜀 of grey areas near unity. In this 𝜆𝑟 is wavelength of resonance frequency 𝜔𝑟 of the first
even Fabry-Pérot-like resonance of the structure. c) Structure of n individual resonators which can function as a spaceplate.

Figure adapted from Chen and Monticone, 2021.
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Assuming 𝜔 ≈ 𝜔𝑟, the complex transmission phase of a single resonator as seen in figure 1.3 (b)
is:

𝜑𝑡 = arctan(𝜔 − 𝜔𝑟𝛾0
) ≈ 𝜔 − 𝜔𝑟

𝛾0
+ 𝒪 [(𝜔 − 𝜔𝑟𝛾0

)
3
] (1.15)

Where 𝜔 is the angular frequency of incoming light, 𝜔𝑟 is the resonant frequency of the structure
and 𝛾0:

𝛾0 =
2𝜀1𝜔𝑟

𝜋(𝜀1 − 1)(1 + √𝜀1 + 𝜀1)
= 𝜔𝑟
2𝑄 (1.16)

With 𝜀1 being the dielectric constant of the dielectric mirrors and 𝑄 being the quality factor of the
resonator. Since the component of the wavevector along the propagation direction varies with angle,
different incident angles result in differing effective resonance frequencies meaning the structure will
impart a different phase depending on incoming angle.

The non-global phase change this can impart is between −𝜋/2 and 𝜋/2, which is not enough to
achieve significant compression of large effective distances. However, by stacking them into a structure
as in figure 1.3c, the phases add up to useful values, namely a total phase variation of 𝑛𝜋. The total
phase for a stack is:

𝜑𝑡 ≈ arctan(𝑛 ⋅ 𝜔 − 𝜔𝑟𝛾0
) = 𝑛 ⋅ 𝜔 − 𝜔𝑟𝛾0

+ 𝒪 [(𝑛 ⋅ 𝜔 − 𝜔𝑟𝛾0
)
3
] (1.17)

In this phase the contributions of the layers between the structures (gray layers with thickness 𝜆𝑟
4

are assumed to only add a global phase independent of incoming angle. In truth, their added phase is
nonzero, but a much smaller contribution than that of the designed structures.

To relate this directly to incoming angle, one needs a relation of 𝜑𝑡 to 𝑘𝑡𝑣. This can be achieved by
assuming small angles, meaning 𝑘𝑡𝑣 is assumed to be small enough not to influence the field profile
within the thin dielectric plates, having their individual reflection coefficients within those remain approx-
imately real. This implies that the resonant frequency 𝜔(𝑘𝑡𝑣)is only dependent on the length of space
between dielectric mirrors, and the dispersion relation can be calculated based only on the required
optical path length for constructive interference. This formula represents the shift in the resonance
frequency depending on the difference in transverse momentum, which signifies the incoming angle of
the light:

√𝜔2(𝑘𝑡𝑣)𝜇0𝜀0 − 𝑘2𝑡𝑣 = 2𝜋/𝜆𝑟 =
𝜔𝑟
𝑐 (1.18)

Rewriting this and using a Taylor expansion around 𝑘𝑡𝑣 = 0 (small angles):

𝜔(𝑘𝑡𝑣) = 𝑐√𝜔2𝑟/𝑐2 + 𝑘2𝑡𝑣 = 𝜔𝑟 + 𝛽𝑘𝑡𝑣 + 𝒪[𝑘4𝑡𝑣] (1.19)

Where:

𝛽 = 𝑐2
2𝜔𝑟

(1.20)

Using equations 1.16, 1.17, 1.19 and 1.20 together and substituting them in equation 1.6 one can
come to the formula for the effective distance of an n-layered spaceplate:

𝑑𝑒𝑓𝑓 = 𝑛
2𝛽𝑘0
𝛾0

≈ 𝑛 𝑐𝛾0
= 𝑛𝜆𝑟(𝜀1 − 1) (1 + √𝜀1 + 𝜀1)4𝜀1

(1.21)

Mrnka et al., 2022 expands on this by naming a limit for the numerical aperture of such a spaceplate,
which is based on the angular range where the spaceplate transmits ≥ 50% of incoming power and the
bandwidth that must be satisfied to remain close to resonance. It also assumes the reflection intensity
to be independent from frequency and incoming angle. This results in the limit:
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𝑁𝐴 ≤ √1 −
1

(1 + 1
2𝑅𝑙 )

2
(1.22)

In which 𝑅 = 𝑑𝑒𝑓𝑓/𝑑𝑎𝑐𝑡𝑢𝑎𝑙 and 𝑙 is the order of resonance (1, 2, 3 ...).

1.2.3. Multilayer thin film stack
The paper that initially proposed spaceplates introduced multiple possible ways of achieving them.
One of these was a multilayer stack comprising different layers with different (sub-wavelength) thick-
nesses and refractive indices that together would effectively form many coupled cavities with different
resonances, allowing more complex interference behavior. This is a more general form of a thin film
spaceplate, whereas the method described in 1.2.2 specifically uses a single resonance toward which
the periodic structure is tailored. Such a structure can be designed by using a transfer matrix method
(as discussed in subsection 2.1) to calculate its complex transmission and then optimizing for targeted
parameters, for instance by using gradient descent optimization. This method was further explored in
J. T. R. Pagé et al., 2022, where theoretical spaceplates were achieved with a maximum R of 340 at an
NA of 0.017, and an R of 15 at an NA of 0.087. The paper showed numerically that there exists a trade-
off between numerical aperture and compression factor, and that the additional gain in compression
gotten by adding degrees of freedom past 17 layers starts to plateau quickly.

The result of an optimization using the previously mentioned algorithm can be seen in figure 1.4.
This particular one was optimized for operation on p-polarized light with an R of 19.7 and a maximum 𝜃
of 5, and had a final thickness after optimization of 2.38 𝜇m, leading to an effective distance of 47 𝜇m.

(a) Structure of the spaceplate
(b) Transmission intensity dependent on angle

for p-polarized light
(c) Non-global imparted phase dependent on

angle for p-polarized light

Figure 1.4: A structure generated using the code that was made publicly available at J. Pagé and Reshef, 2021 with R = 19.7,
maximum angle 5 degree and 31 layers.

Interestingly, this also shows a possibility of using this type of structure to selectively transmit only
a certain range of incoming angles. By adding an extra step in the optimization, one could shape the
transmission profile in a way that only desired angles are let through. Using periodic thin film structures
for angular stray light filtering has been done before, as discussed in section 1.5.

This type of spaceplate design using multilayer thin film layers is the one further investigated in this
thesis. The particular behavior for angular stray light filtering is further investigated in section 3.4.

1.2.4. Birefringent material
The initial spaceplate proposal by (Reshef et al., 2021) also included an experimental demonstration
using a uniaxial birefringent material which has an angle-dependent refractive index. A birefringent
material has an anisotropic refractive index, meaning that the refractive index of the material is different
along different directions. This means that depending on both polarization and incoming angle, light
will experience a different refractive index. Since a spaceplate needs such an angular dependence to
work, it is an apparent candidate for them.

Before finding birefringent materials as a possible solution, the condition for spaceplates needs to
be rewritten as is shown below here. Firstly, one can define a refractive index ratio:

�̃� = �̃�(𝜃𝑆𝑃) = 𝑛(𝜃𝑆𝑃)/𝑛𝐵𝐺 (1.23)
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With SP signifying the property within the spaceplate itself and BG the property in background
medium. In this case for instance, 𝜃𝑆𝑃 is the angle away from the z-axis of the k-vector within the
spaceplate.

Then using geometry and the continuity constraint of 𝑘𝑡𝑣:

𝑘(𝐵𝐺)𝑧 = 𝑘𝐵𝐺√1 − �̃�2 sin2 𝜃𝑆𝑃 (1.24)

The required imparted phase by the spaceplate in distance d is the phase expected in background
medium plus an irrelevant global phase (𝜑𝐺). In this phase, intervals of 2𝜋 for different incoming angles
are physically irrelevant. Knowing this:

2𝜋𝑚 = 𝜑𝑆𝑃 − 𝜑𝐵𝐺 − 𝜑𝐺 = 𝑘(𝑆𝑃)𝑧 𝑑 − 𝑘(𝐵𝐺)𝑧 𝑑𝑒𝑓𝑓 − 𝜑𝐺 (1.25)

Where 𝑚 is an integer.
Combining these equations results in:

2𝜋𝑚 = 𝑘𝐵𝐺𝑑�̃� cos𝜃𝑆𝑃 − 𝑘𝐵𝐺𝑑𝑒𝑓𝑓√1 − �̃�2 sin2 𝜃𝑆𝑃 − 𝜑𝐺 (1.26)

One can then isolate the phase offsets in a single parameter C:

𝐶 ≡ (𝑚 + 𝜑𝐺2𝜋 )
𝜆

𝑛𝐵𝐺𝑑
= �̃� cos𝜃𝑆𝑃 −

𝑑𝑒𝑓𝑓
𝑑
√1 − �̃�2 sin2 𝜃𝑆𝑃 (1.27)

Then using 𝑅 = 𝑑𝑒𝑓𝑓/𝑑 it becomes possible to define �̃�:

�̃�(𝜃𝑆𝑃) =
𝑛(𝜃𝑆𝑃)
𝑛𝐵𝐺

=
𝐶 ± √𝐶2 + (𝑅2 − 𝐶2)(1 + 𝑅2 tan2 𝜃𝑆𝑃)

(1 + 𝑅2 tan2 𝜃𝑆𝑃) cos𝜃𝑆𝑃
(1.28)

In this, C is a parameter dependent only on the angle inside the spaceplate. This can be expressed
in the integer m as such:

𝐶(𝜃𝑆𝑃) =
2𝜋𝑚(𝜃𝑆𝑃) + 𝜑𝐺

𝑘𝐵𝐺𝑑
(1.29)

C signifies the ratio of the total phase offset to the phase that would be accumulated normally in the
background medium over distance d. It is an arbitrary number, meaning that equation 1.28 can have
an infinite number of solutions, and so it covers an infinite collection of possible spaceplates.

By then taking C = 0, Reshef et al., 2021 was able to come to:

1
𝑛2(𝜃𝑆𝑃)

= cos2 𝜃𝑆𝑃
𝑛2𝐵𝐺𝑅2

+ sin2 𝜃𝑆𝑃
𝑛2𝐵𝐺

(1.30)

For an extraordinary ray through a negative uniaxial birefringent material with 𝑛𝑜 > 𝑛𝑒 with its
extraordinary axis along the z-axis, the refractive index for an extraordinary ray is:

1
𝑛2(𝜃𝑆𝑃)

= cos2 𝜃𝑆𝑃
𝑛2𝑜

+ sin2 𝜃𝑆𝑃
𝑛2𝑒

(1.31)

This equation can be found by solving Maxwell’s equations for anisotropic media and applying the
correct boundary conditions as detailed in Jones, 2018.

So by finding a negative uniaxial birefringent material with an extraordinary refractive index equal
to 𝑛𝐵𝐺 and aligning it correctly, one can get a spaceplate that works for all incoming angles and has an
R equal to 𝑛𝑜/𝑛𝑒 for any extraordinary ray. Since C=0 in this case, it also means that the global phase
offset should be zero, meaning it could potentially be used to compress space within interferometers
as well.

Notably, this does require the incoming fields to have an extraordinary polarization, which in this
context means this only works for p-polarized light as it is shown in figure 1.5. If s-polarized light is used
instead, then the angular dependence of the refractive index completely falls away and the spaceplate
will function as a medium with index 𝑛𝑜 would do. This happens since the birefringent properties of the
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material are caused by a directional property of electrons in the material, and so the electric field must
have a component oscillating in that direction.

Figure 1.5: a A uniaxial birefringent material with its extraordinary axis parallel to z. b Incident p-polarized and s-polarized rays
onto the uniaxial birefringent material.

Unfortunately, naturally occurring birefringent crystals have 𝑛𝑒 > 1 and so a background medium
other than air is needed for them to work as spaceplates. The paper Reshef et al., 2021 found and
experimentally proved a working material, calcite (𝑛𝑒 = 1.486, that needed linseed oil (𝑛 = 1.48) as
its background material to function and had 𝑅 = 1.12. Without the development of novel birefringent
materials with tailored refractive indices, this approach is currently impractical for use in air or vacuum.

It may be possible to find other materials that fulfill the requirements of equation 1.28 for a differently
chosen C, though it is currently unclear which.

1.2.5. Photonic crystals
Previous concepts all used structures which were transversely invariant, meaning they only consisted
of layers of material that had no geometry in the plane perpendicular to the optical axis. Such structures
can be used, in photonic metamaterials, which have structures with sub-wavelength sized features in
this plane. In the case of spaceplates, photonic crystals, which have a repeating feature pattern across
the plane, can be used to manipulate the transmitted phase profile. A spaceplate was proposed in Guo
et al., 2020 which relied on Fano resonances in a photonic crystal to shape the phase profile of trans-
mitted light. Fano resonance occurs through interference of two coupled resonant modes and results
in an asymmetric transmission profile depending on input frequency. This input frequency relates to
wavelength and incoming angle, since it is the frequency in a certain direction, defined by the crystal
lattice (meaning it has a dependency on 𝑘𝑡𝑣). Such a crystal has sub-wavelength structures fabricated
on or in its surface (as seen in figure 1.6), which form these resonances, allowing them to shape the
phase profile of transmitted light. Additionally, these structures can be designed to have a very high
transmission intensity around the intended frequency range and have a large design freedom making
them ideal for designing spaceplates for many different applications.

The approach of Guo et al., 2020 demonstrated promising performance, with a maximum found R
of 144 for an NA of 0.01, and an R of 11.2 for an NA of approximately 0.11.
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Figure 1.6: A photonic crystal functioning as a spaceplate. Figure adapted from Díaz-Fernández et al., 2024.

Amore recent study of using photonic crystals to achieve spaceplate functionality wasDíaz-Fernández
et al., 2024. The designs in this paper make use of the fact that light has both even and odd resonance
frequencies, both of which can be used separately to influence the phase of transmitted light through a
photonic crystal. By having the two structures integrated in the same geometry (even electric and odd
magnetic symmetry), double the compression factor of a single resonance spaceplate can theoretically
be achieved. By then also applying the Huygens’ condition (Pfeiffer and Grbic, 2013), a transmission
intensity approaching 1 (meaning 100% power is transmitted) can be attained. For this reason, they are
referred to as Huygens’ spaceplates. The possibility of doubling the compression factor can be seen
in the following formula for complex transmission phase through such a spaceplate (Díaz-Fernández
et al., 2024):

arg[𝑡𝑆𝑃(𝜔, 𝑘𝑡𝑣)] ≈ arg[𝑡𝑆𝑃(Ω0,1, Ω0,2)] + 𝑘2𝑡𝑣(
𝛼1

𝛾1 + 𝛾1Ω20,1
+ 𝛼2
𝛾2 + 𝛾2Ω20,2

) (1.32)

Wherein arg[𝑡𝑆𝑃(Ω0,1, Ω0,2)] represents a global phase, Ω0,1 and Ω0,2 represent the frequency de-
tuning factors for the normal incidence as Ω0,1 =

𝜔−𝜔1(0)
𝛾1

and Ω0,2 =
𝜔−𝜔2(0)

𝛾2
and 𝛼1 and 𝛼2 represent

the frequency dispersion of each resonance at small incidence angles as 𝜔1(𝑘𝑡𝑣) ≈ 𝜔1(0) + 𝛼1𝑘2𝑡𝑣.
Frequency itself in later figures is represented using:

Ω𝑖 =
𝜔 − 𝜔𝑖(𝑘𝑡𝑣)

𝛾𝑖
(1.33)

Each resonance, 1 and 2 (even and odd), has its own added phase dependent on some param-
eters, whereas the formula for arg[𝑡𝑆𝑃] of a single resonance structure is the same but with one less
resonance. This implies that by including both resonances in one geometry, their effects can be added
without added thickness. This was also shown numerically, as presented in figure 1.7. In this figure,
the orange line represents compression depending on wavelength, where Φ = 𝛼1

𝛾1+𝛾1Ω20,1
+ 𝛼2
𝛾2+𝛾2Ω20,2

.
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Figure 1.7: (a) Transmission coefficient amplitude at normal incidence and compression parameter versus frequency for a
spaceplate with single even (electric) resonance. Parameters of the resonance are 𝛾1 = 0.032𝜔1, 𝛼1 = 1.15𝑐2/𝜔1, and

𝑡𝑑 = 0.01. (b, c) Complex transmission coefficient for different frequencies and angles of incidence. (d-f) Same for a Huygens’
spaceplate with 𝜔2 = 𝜔1, 𝛾2 = 𝛾1, 𝛼2 = 𝛼1, and 𝑡𝑑 = 1. This figure was adapted from Díaz-Fernández et al., 2024.

Furthermore, by tuning the even and odd resonances for slightly different frequencies, one can
make the structure have almost exactly the same phase response for a band of wavelengths between
the two resonance frequencies. This means that it opens up possibilities of broadband structures that
are better at retaining good compression factors and numerical aperture than their single-frequency
counterparts. This was also numerically demonstrated as seen in figure 1.8.

Figure 1.8: (a) Transmission coefficient at normal incidence (blue) and compression parameter (red) for the spaceplate slightly
detuned from the Huygens’ condition. The two resonances are separated by 𝜔2 −𝜔1 = Δ𝜔 = 4𝛾/𝜋, with 𝛾1 = 𝛾2 = 0.032𝜔1,
𝑡𝑑 = 0.8, and 𝛼1 = 𝛼2 = 1.15𝑐2/𝜔1. Within the frequency region between the two vertical black lines, the spaceplate shows a
near constant compression. (b, c) Complex transmission coefficient for different frequencies and angles of incidence. This

figure was adapted from Díaz-Fernández et al., 2024.

A student of Diaz-Fernández published a thesis (Wei, 2024) looking into further optimization of these
structures using rigorous coupled-wave analysis, managing to attain a structure with an R of 5.17 with
NA of 0.29 .

The amount of transmission intensity that these kinds of spaceplate allows seem promising, since
it would allow multiple of the devices to be combined for a larger propagation distance reduction. How-
ever, since the actual spaceplate thickness is also usually smaller than a single wavelength, the amount
of stacking required to reach effective distances on a centimeter scale is enormous, and might still lower
the performance a considerable amount. It also makes the fabrication process of a spaceplate for ef-
fective distances above a millimeter exceedingly challenging. Comparing this to thin film spaceplates,
the technology needed to achieve stacking of the photonic crystal spaceplates is way less feasible due
to the added geometry fabrication steps.

Due to the complexity of these structures and limited time, this thesis will not further investigate
design of a spaceplate using these photonic crystals with geometry in the transverse plane.
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1.2.6. Three-lens system
For much larger devices, Sorensen et al., 2023 proposed a type of spaceplate consisting of three (thin)
lenses, which is able to do optical compression on a larger scale. This system is shown here in figure
1.9.

Figure 1.9: Three lenses (black) that together form a spaceplate. Focal planes of external lenses shown in red. Different
situations of incoming light are shown in appendix C.

To understand it, it is important to understand the Fourier optics of lenses. It is known that an
ideal positive lens performs a Fourier transform between its two focal planes, depending on spatial
frequency, which in this context relates to the incoming angle of the light. By placing two identical
lenses a distance of 2𝑓 away from each other, 𝑓 being their focal distance, one gets a ”4f system”. This
is a system where the input field at the focal plane before the first lens gets a Fourier transform onto the
plane at the focal plane after the first and before the second lens, after which it once again experiences
a Fourier transform onto the focal plane after the second lens. This effectively reproduces the electric
field of the focal plane before the first lens, but mirrored about the optical axis and displaced by a
distance of 4𝑓. These systems also exist with lenses of different focal lengths, but that would introduce
unwanted magnification in this case. Technically speaking, this system alone would be a spaceplate
with 𝑅 = 0, since it has an effective distance of zero with a thickness of 4𝑓.

To make this system into a useful spaceplate, it needs to manipulate the phase of the incoming
waves depending on their incoming angle. Since this is exactly the property which is projected onto
the plane between the two lenses, known as the Fourier plane, one can place a spatially varying phase
mask at this location to properly shape the phase profile. Since it will become clear this is also a lens,
the focal distance of the two lenses that provide the Fourier plane will be called the external focal
distance 𝑓𝑒𝑥𝑡 and that of the middle lens will be 𝑓𝑚𝑖𝑑.

To derive the properties of the required phase mask, first the small-angles approximation is used
to redefine the required phase. The phase from free space propagation over a distance 𝑧0 for small
angles is as follows:

𝜑𝑆𝑃 = 𝑧0𝑘0 cos𝜃 ≈ 𝑧0𝑘0(1 −
𝜃2
2 ) ≈ 𝑧0𝑘0(1 −

𝑘2𝑡𝑣
2𝑘20

) (1.34)

In this, 𝑧0 is taken instead of 𝑑𝑒𝑓𝑓 since it does not signify the effectively propagated distance
between the outer two lenses, but instead between the ends of the 4f system, meaning 𝑑𝑒𝑓𝑓 = 𝑧0−2𝑓𝑒𝑥𝑡.

Then taking only the part of the required phase shift that is dependent on the transverse momentum
(non-global phase), it leaves a required imparted phase:

𝜑𝑆𝑃 = −𝑧0
𝑘2𝑡𝑣
2𝑘0

(1.35)

Once again making use of the small angle approximation, one can relate 𝑘𝑡𝑣 to 𝑟 (distance from
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optical axis at the Fourier plane) and 𝑓𝑒𝑥𝑡 for this system by combining equations 1.36 and 1.37 to come
to equation 1.38:

𝑟 = 𝑓𝑒𝑥𝑡 tan𝜃 ≈ 𝑓𝑒𝑥𝑡𝜃 (1.36)
𝑘𝑡𝑣 = 𝑘0 sin𝜃 ≈ 𝜃𝑘0 (1.37)

𝑘𝑡𝑣 ≈
𝑟𝑘0
𝑓𝑒𝑥𝑡

(1.38)

This then leads to the required imparted phase at the Fourier plane:

𝜑𝑆𝑃 = −
𝑧0𝑘0𝑟2
2𝑓2𝑒𝑥𝑡

(1.39)

The phase added by an ideal thin spherical lens with a focal distance 𝑓𝑚𝑖𝑑 in the paraxial approxi-
mation is given by:

𝜑𝑚𝑖𝑑 = −
𝑘0𝑟2
2𝑓𝑚𝑖𝑑

(1.40)

Equating this to equation 1.39, meaning this lens is placed on-axis in the Fourier plane, shows that
the effective distance ”experienced” by the light through the total system as it is shown in figure 1.9 is:

𝑧0 =
𝑓2𝑒𝑥𝑡
𝑓𝑚𝑖𝑑

(1.41)

Again, note that this definition of 𝑧0 is the experienced propagation length for the system totaling
a length of 4𝑓𝑒𝑥𝑡, since it includes a length of 𝑓𝑒𝑥𝑡 on each side of the external lenses to include the
Fourier transforms. This defines the effective propagation distance between the outer lenses as:

𝑑𝑒𝑓𝑓 = 𝑧0 − 2𝑓𝑒𝑥𝑡 =
𝑓2𝑒𝑥𝑡
𝑓𝑚𝑖𝑑

− 2𝑓𝑒𝑥𝑡 (1.42)

Then, knowing 𝑑 = 2𝑓𝑒𝑥𝑡 and 𝑅 = 𝑑𝑒𝑓𝑓/𝑑 one can find R:

𝑅 = 𝑓𝑒𝑥𝑡
2𝑓𝑚𝑖𝑑

− 1 (1.43)

This makes it apparent that for a system where 𝑓𝑚𝑖𝑑 < 𝑓𝑒𝑥𝑡/4, R will be bigger than one, meaning
these lenses replace more space than they occupy. It is also possible for this formula to become
smaller than one, at which point the system will take up more space than it mimics, as demonstrated
in Sorensen et al., 2023. Important to realize is that all light going through this type of spaceplate will
be mirrored through the z-axis.

A key advantage of this type of spaceplate, is its ability to compress large distances while remaining
relatively simple in composition. In Sorensen et al., 2023, the largest spaceplate managed to replace
a distance of 4.39 meters, with the resulting image presumably remaining observable without need
for highly sophisticated instrumentation. Furthermore, this system functions well for broadband light
barring chromatic aberrations, and regardless of polarization. This combination of properties is unique
within the spaceplate designs discussed here.

One drawback of the system is that it can be rather sensitive to longitudinal misalignment of the
lenses, since it is important that the middle lens is placed exactly at a distance of 𝑓𝑒𝑥𝑡 apart from each
external lens. The bigger drawback however, is that the numerical aperture is very limited due to the
need for very large lens diameters:

𝑁𝐴 =
⎧⎪
⎨⎪⎩

(1 + 4𝑁21 )
− 12 , 𝐷1 ≤ 𝐷2 ≤ 𝑓𝑚𝑖𝑑𝐷3/ (𝑓𝑒𝑥𝑡 − 𝑓𝑚𝑖𝑑)

[1 + 16𝑁22 (1 + 𝑅)2]
− 12 , 𝐷2 ≤ 𝐷1 ≤ 𝑓𝑚𝑖𝑑𝐷3/ (𝑓𝑒𝑥𝑡 − 𝑓𝑚𝑖𝑑)

[1 + 4𝑁23 (1 + 2𝑅)2]
− 12 , 𝐷1, 𝐷2 ≥ 𝑓𝑚𝑖𝑑𝐷3/ (𝑓𝑒𝑥𝑡 − 𝑓𝑚𝑖𝑑) .

(1.44)
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In which 𝑁𝑖 = 𝑓𝑖/𝐷𝑖, where 𝑓𝑖 and 𝐷𝑖 are the respective diameter and focal length of the lenses in
figure 1.9 from right to left. This numerical aperture is also assuming the field of view as drawn in the
figure, meaning axial with the focus at 𝑓𝑒𝑥𝑡 away from the last lens. Should a pixel array for observation
be desired, then the limits will tighten more due to different incoming angles and off-axis light needing
to be included.

In most situations 𝑁3 turns out to be the limiting factor, since it is the most physically realizable type
of system. In their experiments, they managed a maximum incoming angle of about 3 degrees.

Should this factor no longer form such a problem, then NA will be limited by the Abbe Sine condition
according to equation 1.45 and R could end up being limited by diffractive effects, if really pushed.

𝑁𝐴 = 1
2(𝑅 + 1) (1.45)

A last significant drawback is the fact that, due to the use of traditional lenses and propagation
within the spaceplate, the current design cannot be miniaturized very far. Especially when needing
large numerical apertures, the device needs quite a lot of space itself, since it needs big lenses to
work. The use of metalenses may be of help with this.

An interesting possibility is integrating another type of spaceplate within the propagation space of
this one, specifically in the space between lenses where the light will not travel at a high angle (in figure
1.9 between middle and right lens). Taking 𝑅𝑆𝑃 as the other type spaceplate compression and 𝑅3𝐿 as
that of the three lens system, it would result in a compression:

𝑅𝑎𝑐𝑡𝑢𝑎𝑙 =
2𝑅3𝐿
1 + 1

𝑅𝑆𝑃

(1.46)

As this formula shows, the furthest a single added spaceplate could increase the total compression
factor is nearing a factor 2 (for which 𝑅𝑆𝑃 would need to be very large). Realistically, this means that at
first glance this is not a great way to increase the compression of the system, since there are simpler
ways.

1.2.7. Overview and comparison
Based on the reviewed techniques, a rough overview of their relative properties can be made. This
overview is presented below in tables 1.1 and 1.2.

Type of
spaceplate Bandwidth Numerical

aperture
Transmission
intensity

Low index slab Large Very small Large
Fabry-Pérot Very small Moderate Moderate to large
Multilayer stack Small Moderate Moderate to large
Birefringent material Large Large Large
Photonic crystals Small Moderate Large
Three-lens system Large Small Moderate

Table 1.1: Properties of different spaceplate techniques: bandwidth, numerical aperture, and transmission intensity

Type of
spaceplate

Effective
distance scale Achievable Compression Ratio Polarization

dependence
Low index slab Large Very small Very small
Fabry-Pérot Small Moderate to large Very small
Multilayer stack Small Moderate to large Moderate to large
Birefringent material Large Very small Very large
Photonic crystals Very small Moderate to large Moderate to large
Three-lens system Very large Moderate Very small

Table 1.2: Properties of different spaceplate techniques: effective distance range, compression, and polarization dependence
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In this overview, what should be kept in mind is the possibility for stacking multiple spaceplates
onto each other to achieve a larger 𝑑𝑒𝑓𝑓 at the cost of a certain amount of transmission intensity and
possibly aberrations or deviations from the desired phase profile, depending on the chosen method.
Furthermore, it should be noted that both multilayer stacks and photonic crystals rely a lot on optimiza-
tion processes, meaning their properties in this table can be somewhat tuned to suit their envisioned
application. The possible bandwidth of multilayer stacks is also estimated to be higher than that of
Fabry-Pérot for that exact reason, even if they are very similar in their way of functioning. The tunability
also extends to polarization dependence, since a device can be optimized for both s- and p-polarization,
possibly enabling the design of polarization independent spaceplates. This possibility is also highlighted
in the conclusion of Guo et al., 2020.

1.3. Fundamental limits
This section discusses two fundamental limits regarding spaceplates. What should be noted, is that
though they both end up forming limits for the same parameter, they depend on different variables and
so could not be resolved to come to a single equation. Since both are valid, whichever limit is tighter
in the given use case will be the operational bound for that use case.

1.3.1. Miller thickness limit
David A. Miller has recently established a fundamental limit on howmuch optical systems can physically
be compressed while still theoretically being able to function in Miller, 2023, a limit henceforth called
the Miller thickness limit.

Miller writes about how, in non-local optics like the spaceplate, a single input and output are not
related only to each other, but an output in one location is dependent on input information from many
locations, which overlaps with the input for other output locations as well. This means it displays over-
lapping nonlocality (ONL). These input-output channels have to relay information sideways within the
optic, meaning it automatically leads to thickness (since, for true zero thickness the information would
have to travel sideways instantly, i.e. faster than light).

It is specified that a device that has an array of N independent output sensors will need a number C of
sideways communication channels within the optic to achieve a full image. The term independent here
means that none of these sensors have overlap, meaning that their inputs can be seen as orthogonal.
For a fully overlapping nonlocal imager, one can say that the amount of channels needed to image one
half of the pixels, is equal to N/2. For this example, we will look at the imaging of the left half of the
pixels.

By defining an aperture splitting the two halves, one can evaluate the number of sideways channels,
as seen in figure 1.10. Half of the channels needed to image the left half will be coming from the same
side, meaning they are not crossing the aperture in the middle. This would require 𝐶𝑅𝐿 = 𝑁/4 sideways
communication channels from right to left. Due to the assumption that the optic is a reciprocal system
(light can be sent through backward with the inverse result of the forward direction), we cannot neglect
the channels needed to image from the left output side to the right input side. This means that the
amount of sideways channels 𝐶 = 𝐶𝑅𝐿 + 𝐶𝐿𝑅 = 𝑁/4 + 𝑁/4 = 𝑁/2. This result is general for 1D
optical elements, meaning it applies to transversely invariant structures such as multilayer thin film
spaceplates.

Figure 1.10: In a reciprocal ONL imager, the amount of channels crossing the dividing aperture is equal to N/2. Image adapted
from Miller, 2023
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For the 1D imager, diffraction heuristics say that for each separate channel a space of 𝜆0/2𝑛𝑟 is
needed, with 𝜆0 being the wavelength of the imaged light and 𝑛𝑟 being the refractive index of the
material between input- and output-plane. If our material is made of a range of materials, then we can
say that the thickness 𝑑 ≥ 𝐶𝜆0

2𝑛𝑚𝑎𝑥
. However, this is under the presumption that all angles ± 90 degrees

are available for propagation, and so for conveying information through a channel. In reality, optics
often make use of a limited numerical aperture meaning limited angular range 0 ≤ 𝜃 ≤ 𝜃𝑚𝑎𝑥, leaving
only a fraction 𝛼 = 1 − cos𝜃𝑚𝑎𝑥 ≤ 1 available. This makes the ultimate limit for thickness of a 1D
imager:

𝑑 ≥ 𝐶𝜆0
2𝛼𝑛𝑚𝑎𝑥

(1.47)

This boundary is not something that can be passed, unless one or more of the underlying assump-
tions is violated by the structure of the spaceplate. Firstly, the amount of channels needed could
theoretically be halved by violating the assumption of reciprocity. One could say that, if we are looking
at the amount of channels needed to image one side, we should be able to neglect the number of
channels going to the other side, making 𝐶 = 𝑁/4 the total number of needed channels. This would
mean it could halve the needed thickness. However, if reciprocity is assumed, then the channels in
the opposite direction are needed to image this side anyways, pointing from output to input, which is
why for now 𝐶 is assumed to be 𝑁/2. While Miller discusses the possibility of violating the principle of
reciprocity, no feasible implementation of this is currently known.

The possibility of using dimensional interleaving (DI) is also mentioned. This is a technique where
certain degrees of freedom are reconfigured to use a different dimension, for example putting a part of
𝑁𝑥 into 𝑁𝑦. It would make the whole equation into a 2D problem, and probably not gain much assuming
an equal amount of degrees of freedom in both x and y. However, in situations where the observer is
only present in virtually one dimension (say, a single line of pixels), this may become interesting.

For a spaceplate, knowing the Miller thickness limit also puts a bound on R, assuming a known
aperture for incoming light and pixel-size of the camera/observer, in addition to the previously needed
variables. Assuming an ideal system where all space between input and output of the light is occupied
by the spaceplate, 𝑑𝑒𝑓𝑓 is equal to the distance that would be traveled in free space to achieve the
same magnification, as seen in figure 1.11.

Figure 1.11: Light propagating from an input aperture to an array of pixels.

This shows that the following holds:

𝐷𝐴 = 𝐿𝐶 + 2𝑑𝑒𝑓𝑓 tan𝜃 = 𝐿𝑝𝑥𝑁 +
2√𝛼(𝛼 − 2)
1 − 𝛼 𝑑𝑒𝑓𝑓 (1.48)
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𝑑𝑒𝑓𝑓 =
(𝐷𝐴 − 𝐿𝑝𝑥𝑁)(1 − 𝛼)

2√𝛼(𝛼 − 2)
= 𝑅𝑑 (1.49)

Using equations 1.47 and 1.49 one can arrive at a final equation limiting the compression ratio of a
transversely invariant spaceplate:

𝑅𝑚𝑎𝑥 ≤
2𝛼𝑛𝑚𝑎𝑥(𝐷𝐴 − 𝐿𝑝𝑥𝑁)(1 − 𝛼)

𝑁𝜆0√𝛼(𝛼 − 2)
(1.50)

This equation shows there is a large dependency on the range of available angles 𝛼. Additionally,
the number of independent outputs 𝑁 has a large influence, since it prescribes the number of channels
needed.

1.3.2. Bandwidth limit
The article Shastri et al., 2022 introduced a limit to the bandwidth of a spaceplate, dependent on nu-
merical aperture and the compression ratio of that spaceplate. Investigating this fundamental limit is
important to understand what is and is not possible, and to prevent futile efforts to design impossible
devices.

Understanding this limit starts with defining the variables around an ideal spaceplate. The formula
for the imparted phase remains the same as formula 1.6, where in figure 1.12 the other dimensions are
illustrated.

Figure 1.12: Spaceplate with parameters (figure adapted from Shastri et al., 2022).

Using a ray-optics approach, one could interpret the action of a spaceplate as moving the ray in the
spaceplate-plane by a distance Δ𝑠 relative to propagation in the background medium, with a direction
and magnitude depending on its incoming angle. This required transversal displacement can be written
as:

Δ𝑠 = (𝑑𝑒𝑓𝑓 − 𝑑) tan(𝜃) (1.51)

It is then stated that in general, the transverse displacement 𝑠 that a ray or wave experiences in
a material structure can be formulated as 𝑠 = 𝑣𝑔𝑥𝜏, where 𝑣𝑔𝑥 is the group velocity in the transverse
direction and 𝜏 is the group delay imparted by the structure. One could get to the same result by varying
𝑣𝑔𝑧 instead, but the choice is made not to do so, since in the actual structure the relation between group
velocities is not constant and in this approach the spaceplate is taken more as a black box. Using the
previously stated definitions, one can find:

Δ𝑠 = 𝑣𝑔𝑥𝜏 − 𝑣0𝑔𝑥𝜏0 = 𝑣𝑔𝑥𝜏 − 𝑐 sin(𝜃)𝜏0 (1.52)

In which 𝜏0 = 𝑑/(𝑐 cos(𝜃)) is the time delay experienced by the wave in the background medium
for length d and 𝑐 = 𝑐0/𝑛𝑏 is wave velocity in the background medium, e.g. without the spaceplate.
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From this equation, it is clear that Δ𝑠 can only be increased by either increasing 𝑣𝑔𝑥 or 𝜏 to be
larger than their counterpart in the background medium. Increasing 𝑣𝑔𝑥 would be possible by having
a medium with a lower refractive index than the background medium, but most applications need to
function in background media with low indices (air, vacuum), and so this is usually not an option. Then
changing 𝜏 remains. It can be achieved by relying on resonances within the material to add a delay to
the wave. By then taking Δ𝑇 = 𝜏 − 𝜏0 and using equation 1.52 one can find:

Δ𝑇 =
Δ𝑠 + (sin(𝜃) − 𝑣𝑔𝑥/𝑐)𝑑 sec(𝜃)

𝑣𝑔𝑥
(1.53)

Note that this delay becomes larger with increasing angle of incidence 𝜃 and smaller with increasing
𝑣𝑔𝑥. For 𝜃 = 0, Δ𝑠 = (𝑑𝑒𝑓𝑓 −𝑑) tan𝜃 = 0 and Δ𝑇 becomes equal to 𝑑/𝑐, which is the exact time spent
inside the spaceplate medium.

By using the definitions of 𝑁𝐴 = 𝑛𝑏 sin𝜃 and 𝑅 = 𝑑𝑒𝑓𝑓/𝑑 one can rewrite equation 1.53 to:

Δ𝑇 = 𝑑
𝑅 ⋅ NA/𝑛𝑏 − 𝑣𝑔𝑥/𝑐

𝑣𝑔𝑥√1 − (NA/𝑛𝑏)2
(1.54)

Delaying light in this way for a certain bandwidth also comes with a defined limit (Miller, 2007), which
for now can be written as:

Δ𝑇Δ𝜔 ≤ 𝜅 (1.55)

Then applying equation 1.54 and defining a center frequency 𝜔𝑐 = 2𝜋𝑐/𝜆𝑐 with wavelength 𝜆𝑐 in
the background medium results in:

Δ𝜔
𝜔𝑐

≤ 1
2𝜋

𝜅
𝑑/𝜆𝑐

√1 − (NA/𝑛𝑏)2𝑣gx/𝑐
𝑅 ⋅ NA/𝑛𝑏 − 𝑣gx/𝑐

(1.56)

To be able to use this formula specifically to create a bound for structures made of transversely
invariant structures like multi-layer stacks, two variables, 𝜅 and 𝑣𝑔𝑥 are still difficult to fill in.

For finding the transverse group velocity 𝑣𝑔𝑥 for a multi-layer transversely invariant structure it was
found in Gerken and Miller, 2005 to be approximated as follows:

𝑣𝑔𝑥 ≈ 𝑐0 sin(𝜃)/𝑛2𝑒𝑓𝑓 (1.57)

In which 𝑛2𝑒𝑓𝑓 is a weighted average of the layers of the structure:

𝑛2𝑒𝑓𝑓 =
∑(𝑛2𝑖 𝑑𝑖/√𝑛2𝑖 − (sin𝜃)2)

∑(𝑑𝑖/√𝑛2𝑖 − (sin𝜃)2)
(1.58)

Wherein 𝜃 signifies the incidence angle in vacuum and 𝑖 indexes the layer that is being summed.
To find a general 𝜅, Shastri et al., 2022 derived Miller’s upper bound for kappa found in Miller, 2007

but replacing the background wavenumber 𝑘𝑏 by the longitudinal wavenumber 𝑘𝑧,𝑏 = 𝑘𝑏 cos𝜃 and
making the permittivity contrast factor angle-dependant: 𝜂(𝑧, 𝜔, 𝜃) = 𝜂(𝑧, 𝜔)/(cos𝜃)2. Assuming the
ideal spaceplate to work for both p- and s-polarization, this results in:

𝜅 = 𝜋
√3

𝑑
𝜆𝑐
𝜂𝑚𝑎𝑥/ cos𝜃 (1.59)

With 𝜂𝑚𝑎𝑥 = |(𝜖𝑚𝑎𝑥 − 𝜖𝑚𝑖𝑛)/𝜖𝑏| where 𝜖𝑚𝑖𝑛 and 𝜖𝑚𝑎𝑥 are the minimum and maximum permittivity
for any wavelength in any point in the structure and 𝜖𝑏 = √𝑛𝑏 is the relative background permittivity. It
should be noted that for a spaceplate comprised only out of a single mode resonator, 𝜅 can be presumed
to be 2 (Mann et al., 2019). In Shastri et al., 2022, the limit using the modified 𝜅 of Miller is what they
then call Miller’s limit, not to be confused with the previously discussed Miller thickness limit.

Rewriting this limit to focus on effective distance instead will result in:
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𝑑𝑒𝑓𝑓 ≤
𝑑(𝜂𝑚𝑎𝑥2√3 +

Δ𝜔
𝜔𝑐
)𝑛2𝑏𝑣𝑔𝑥

Δ𝜔
𝜔𝑐

NAc0
(1.60)

This equation shows that to maximize 𝑑𝑒𝑓𝑓, the permittivity contrast should be as big as possible,
and having a lower numerical aperture and bandwidth allow for a larger 𝑑𝑒𝑓𝑓. Lastly, making the plate
itself thicker obviously makes 𝑑𝑒𝑓𝑓 bigger, but this can only be done so much before phase aberrations
and/or transmission intensity losses become too large to tolerate. If, instead, the focus is only on the
compression ratio 𝑅 = 𝑑𝑒𝑓𝑓

𝑑 :

𝑅 ≤
(𝜂𝑚𝑎𝑥2√3 +

Δ𝜔
𝜔𝑐
)𝑛2𝑏𝑣𝑔𝑥

Δ𝜔
𝜔𝑐

NAc0
(1.61)

This bound should be kept in mind when optimizing or evaluating a spaceplate for multiple perfor-
mance criteria.

1.4. Multifunctional thin film spaceplates
A use for spaceplates as aberration correctors for three different types of aberrations was proposed
in Shao et al., 2024. The correcting behavior relies on two aspects of multilayer thin film spaceplates,
which are shown in figure 1.13.

Figure 1.13: Different dependencies of a spaceplate, figure adapted from Shao et al., 2024. (a) A functioning spaceplate with
an effective distance Δ𝐿 dependent on wavelength and incoming angle. (b) A spaceplate that can be used to correct chromatic

aberrations by exploiting wavelength dependence of Δ𝐿. (c) A spaceplate that can be used to correct angle dependent
aberrations by altering Δ𝐿 dependent on incoming angle.

By using the dependence on the wavelength of the incoming light to change the effective distance,
it is possible to correct chromatic aberrations that are introduced by a lens, if those are well known.
Furthermore, since the phase profile depending on the incoming angle can be engineered using an
optimization algorithm, it is possible to add an extra component to the phase profile beside the perfect
phase parabola expected from traveling the effective distance. This extra component can correct for
spherical aberrations and Petzval field curvature, both of which are erroneous effects caused by an un-
intended phase difference between an ideal phase profile and their own in the image plane, depending
on the angle away from the optical axis. Shao et al., 2024 uses gradient optimization of multilayer thin
film structures with both the layer thicknesses and refractive indices as free variables to design these
aberration correcting spaceplates, and demonstrates their theoretical capabilities. The paper shows a
theoretical design which can successfully correct chromatic aberrations between 488 nm and 658 nm
at NA = 0.087, eliminating a difference in focal distance of approximately 22 𝜇m. It is stated that this
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device was designed for operation up to a NA of 0.34. It also shows a spaceplate design which can suc-
cessfully correct Petzval field curvature for incoming angles into the lens up to 10 degrees, achieving
a focal distance range 7 𝜇m instead of 21 𝜇m without the spaceplate. Lastly, a device is shown which
corrects spherical aberrations of a lens, but which introduces a coma-type aberration when incoming
light before the lens is angled away from the normal by 4 degrees.

This report also explores the concept of multifunctional spaceplates, though not for aberration cor-
rection. Instead, it focuses on combining the spaceplate function with angular stray light filtering. The
results of this exploration can be found in section 3.5.

1.5. Angular stray light filtering using thin films
Thin film stacks can be made to create not just tailored phase profiles, but also tailored transmission
intensity profiles. This fact can be used to create angular stray light filters which only transmit incoming
light up to a certain incident angle relative to the optical axis at a given wavelength, as was demonstrated
in Qian et al., 2017. The design of this filter relies on the concept of photonic bands and bandgaps of
a periodic structure, such as the one shown in figure 1.14.

Figure 1.14: A periodic structure with a period consisting of two layers. Figure adapted from Joannopoulos et al., 2011.

An example of the resulting photonic bands can be seen in figure 1.15. In this figure, it is assumed
that the incoming wave has a k-vector which lies in the zy-plane, meaning quantity 𝑘𝑥 is assumed to
be zero and 𝑘𝑦 is therefore the only nonzero transverse wavenumber component. The ratio between
𝑘𝑦 and 𝑘0 =

2𝜋
𝜆 can therefore represent the different incoming angles.

Figure 1.15: Allowed photonic bands of a quarter-wave stack with dielectric constants 𝜀 of 13 and 2, with allowed bands colored
in. Incoming angles through air only exist above the straight red line, the light line (𝜔 = 𝑐𝑘𝑦). The white dashed line represents
the Brewster angle, causing a crossing at B. The yellow shaded region between lower edge L and upper edge U represents the
range of wavelengths that will be reflected in air regardless of incoming angle. Figure adapted from Joannopoulos et al., 2011.

In a photonic band (colored in), transmission through the crystal structure is possible, and in a
bandgap (white) it is not. Establishing whether a certain incoming plane wave falls inside a photonic
band requires some theory, which is expanded on in appendix A. Essentially, using the transfer matrix
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of a single period of a periodic structure, one can find the Bloch wavenumber 𝐾 of the structure, which
is further dependent on wavelength and incoming angle.

(a) Bragg mirror without defects.

(b) Bragg mirror with single defect, being a double layer thickness.

(c) Repeating structure of subsequent quarter-wave and half-wave thicknesses.

Figure 1.16: Electric field amplitude of light at normal incidence traveling through selected structures. (a) Exponentially
decaying waves in a Bragg mirror with refractive indices 3.48 and 1.44 with 10 periods. (b) The result of a single defect layer
with half-wave instead of quarter-wave thickness. (c) A periodic structure with alternating quarter-wave and half-wave thick

layers.

When this number has an imaginary component, at that wavelength and angle there is no possible
resonant state of the light wave inside the structure, and so (assuming infinite periodicity) there is
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no transmission. Be aware that the resonant state meant here is not one to do with resonant states
from quantum mechanics like some of those referred to in Moiseyev, 2011, but only relates to a self-
sustaining electromagnetic wave inside the context of the optical cavities created by the interfaces of a
multilayer structure. In the case where 𝐾 is a complex value, the incoming waveform will exponentially
decay inside the structure. When this occurs, this combination of wavelength and incoming angle falls
within the photonic bandgap. If 𝐾 is a real number, then for that wavelength and incoming angle a
resonant state does exist and transmission is possible, meaning it is inside a photonic band instead.
An example of this is shown in figure 1.16, where introducing a single defect in the layer thicknesses
allows for a resonant state of the wave and therefore transmission through the structure. If this defect
was instead part of a repeating pattern, like in figure 1.16c, one can see transmission is possible.

A numerical plot of photonic bands can be seen in figure 1.17. In this plot the y-axis label is simplified
by using 𝜔 = 2𝜋𝑐/𝜆. By tuning the thicknesses of two layers with different refractive indices and using
that as the period of a repeating pattern in a thin film stack, one can tune the height of the horizontal blue
dotted line seen in figure 1.17, thereby tuning whether light can be transmitted at certain angles or not.
In this case, the result of an optimization of periodic structures which will be discussed in section 3.4.1
was used as the plotted structure, and so the cutoff of the photonic band is around an incoming angle
of 5 degrees in air. In the case of Qian et al., 2017, a physical prototype was made which demonstrated
transmission intensity values between 0.8 and approximately 0.18 between incoming angles of 0 and
2 degrees away from the surface normal, and transmission intensity near zero after incoming angles
of approximately 6 degrees.

Figure 1.17: Numerical analysis of photonic bands of a structure with a period of 2 layers for p-polarized light.

The design of a stray light filter using periodic thin films does not solely depend on the photonic band
structure, however. Since the photonic band graph assumes infinite periodicity, it does not show the
actual transmission intensity values inside the band for a finite structure. Therefore, the methodology
used in Qian et al., 2017 starts from a design which is within a transmissive band up to a couple degrees,
and then involves tuning the amount of repetitions and the individual layer thicknesses of the unit cell
to find a combination which has a transmission peak closest to the bandgap at the desired wavelength.
Plots of these tunable variations are presented in figure 1.18.

This way, high transmission at normal incidence is guaranteed while still filtering transmission at
oblique angles. However, designing this way does not seem to allow having high transmission intensity
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for a range of angles, meaning it may not be optimal for applications which only want to filter out light
at higher incident angles. Therefore, an exploration of non-periodic thin film structures was conducted,
the results of which can be found in section 3.4.

Figure 1.18: Transmission intensity spectrum of periodic angular light filter, figure adapted from Qian et al., 2017. A unit cell
consists of layers 𝐿1 and 𝐿2 where 𝐿1 = 80nm and 𝐿1 + 𝐿2 = 534nm. (a) Transmission spectrum with differing number of unit
cell repetitions but same unit cell. (b) Transmission spectrum for 10 unit cell repetitions with changing unit cell thicknesses

while maintaining 𝐿1 + 𝐿2 = 534nm.





2
Methods

2.1. Transfer matrix method
To calculate the intensity and phase of both transmission and reflection of multilayer thin film structures,
the simplest (and generally least computationally expensive)methods are those using transfer matrices.
Two different matrix formalisms were explored. They work using slightly different terms, but ultimately
give the same results. The second method ended up being the method chosen for the optimization
algorithm, but the first was used for validation purposes and may also be more intuitive to some, hence
why it is still included here. Important to note is that all refractive indices are taken as purely real
numbers, meaning absorption of light by the media is not taken into account in this thesis.

2.1.1. Fresnel-based transfer matrix method
The first of the two methods often used is one based on the Fresnel coefficients between two media
with different refractive indices (Yariv and Yeh, 2007). This method relies on two types of matrices,
those describing interfaces between two materials of different refractive indices, and those describing
traveling a distance through a homogeneous material. First, the Fresnel equations for each interface
are considered (Born and Wolf, 1999). These equations are well known in optics, and are based on
the continuity conditions of electric and magnetic fields through a surface. They result in reflection and
transmission coefficients of an interface:

𝑡𝑠 =
2𝑛1 cos𝜃1

𝑛1 cos𝜃1 +
𝜇𝑟1
𝜇𝑟2
𝑛2 cos𝜃2

(2.1)

𝑟𝑠 =
𝑛1 cos𝜃1 −

𝜇𝑟1
𝜇𝑟2
𝑛2 cos𝜃2

𝑛1 cos𝜃1 +
𝜇𝑟1
𝜇𝑟2
𝑛2 cos𝜃2

(2.2)

𝑡𝑝 =
2𝑛1 cos𝜃1

𝜇𝑟1
𝜇𝑟2
𝑛2 cos𝜃1 + 𝑛1 cos𝜃2

(2.3)

𝑟𝑝 =
𝜇𝑟1
𝜇𝑟2
𝑛2 cos𝜃1 − 𝑛1 cos𝜃2

𝜇𝑟1
𝜇𝑟2
𝑛2 cos𝜃1 + 𝑛1 cos𝜃2

(2.4)

In which s and p stand for their respective types of polarization as shown in figure 2.1, 𝜃 is the angle
between surface normal and the beam and 𝜇𝑖 denotes the magnetic permeability of the medium. The
coefficients at a single interface are real numbers as long as all refractive indices are real numbers as
well, as is assumed in this thesis.

Notably, when considering the transmission and reflection coefficients from medium 1 to medium 2
(𝑡12 and 𝑟12) and from medium 2 to medium 1 (𝑡21 and 𝑟21), they satisfy the relationships:

𝑡12𝑡21 − 𝑟12𝑟21 = 1 (2.5)
𝑟12 = −𝑟21 (2.6)

25



26 2. Methods

Figure 2.1: Polarization of incident light.

Using these coefficients, one can now formulate a set of equations describing the amplitudes of
forward and backward traveling waves 𝑣 and 𝑤 respectively, on either side of the incidence plane
between layers 1 and 2:

𝑣2 = 𝑣1𝑡12 +𝑤2𝑟21 (2.7)
𝑤1 = 𝑣1𝑟12 +𝑤2𝑡21 (2.8)

Applying equations 2.5 and 2.6 enables rewriting this set of equations to:

𝑣1 =
1
𝑡12
𝑣2 +

𝑟12
𝑡12
𝑤2 (2.9)

𝑤1 =
𝑟12
𝑡12
𝑣2 +

1
𝑡12
𝑤2 (2.10)

Generalizing these equations for layers number 𝑗 and 𝑗 + 1 instead of 1 and 2 and rewriting them
into a matrix form delivers the characteristic matrix 𝐹 for finding the amplitudes 𝑣 and 𝑤 at an interface:

( 𝑣𝑗
𝑤𝑗 ) = (

1 𝑟𝑗,𝑗+1
𝑟𝑗,𝑗+1 1 ) 1

𝑡𝑗,𝑗+1
( 𝑣𝑗+1
𝑤𝑗+1 ) = 𝐹𝑗,𝑗+1 (

𝑣𝑗+1
𝑤𝑗+1 ) (2.11)

Between interfaces, the forward and backward traveling waves accumulate a phase shift 𝛿 depen-
dent on the thickness 𝑑𝑗 and refractive index 𝑛𝑗 of the layer, the angle inside the medium and the
vacuum wavelength of the light:

𝛿𝑗 =
2𝜋
𝜆0
𝑑𝑗 cos𝜃𝑗 (2.12)

Where 𝜃𝑗 can easily been found using Snell’s law and a known angle 𝜃0 in a known medium with
refractive index 𝑛0:

𝑛0 sin𝜃0 = 𝑛𝑗 sin𝜃𝑗 (2.13)

Knowing 𝛿𝑗, one can write out the relationship between amplitudes of 𝑣 and 𝑤 at the start and end
of layer 𝑗 along the optical axis culminating in characteristic phase 𝑃:

( 𝑣𝑗,𝑠𝑡𝑎𝑟𝑡
𝑤𝑗,𝑠𝑡𝑎𝑟𝑡 ) = (

𝑒−𝑖𝛿𝑗 0
0 𝑒𝑖𝛿𝑗 )(

𝑣𝑗,𝑒𝑛𝑑
𝑤𝑗,𝑒𝑛𝑑 ) = 𝑃𝑗 (

𝑣𝑗,𝑒𝑛𝑑
𝑤𝑗,𝑒𝑛𝑑 ) (2.14)

Consequently, this permits the formulation of forward and backward traveling waves through a mul-
tilayer structure by multiplying matrices. For instance, going from air (layer 0) through two layers (layers
1 and 2) into a substrate (layer 3), the forward and backward traveling waves at the interfaces of the
two layers to their environment are:



2.1. Transfer matrix method 27

( 𝑣0
𝑤0 ) = 𝐹01𝑃1𝐹12𝑃2𝐹23 (

𝑣3
𝑤3 ) (2.15)

Generalizing this method for a structure with an arbitrary total of N layers, the wave amplitudes of
forward and backward traveling light 𝑣 and 𝑤 can be found using the complete transfer matrix of the
structure, �̃�:

( 𝑣𝑖𝑛
𝑤𝑖𝑛 ) = 𝐹01

𝑁

∏
𝑗=1

(𝑃𝑗𝐹𝑗,𝑗+1) (
𝑣𝑜𝑢𝑡
𝑤𝑜𝑢𝑡 ) = �̃� (

𝑣𝑜𝑢𝑡
𝑤𝑜𝑢𝑡 ) (2.16)

From matrix �̃� one can then find t and r like so:

( 1𝑟 ) = �̃� (
𝑡
0 ) (2.17)

𝑟𝑠𝑡𝑎𝑐𝑘 =
�̃�10
�̃�00

, 𝑡𝑠𝑡𝑎𝑐𝑘 =
1
�̃�00

(2.18)

Complex transmission t holds the phase information that can be compared to the desired phase
resultant of propagation through the multi-layer stack. Themagnitude of the transmitted field can simply
be found using the following equation:

𝑇𝑠𝑡𝑎𝑐𝑘 = 1 − 𝑅𝑠𝑡𝑎𝑐𝑘 = 1 − |𝑟𝑠𝑡𝑎𝑐𝑘|2 (2.19)

Important to note, from these calculations, is that the polarization of the incoming light matters
greatly for the transmitted light through a multi-layer stack, both in magnitude and phase. If the light is
not linearly polarized to be either s- or p-polarized, then these polarizations will be (partially) separated
unless both are optimized for simultaneously.

2.1.2. Characteristic transfer matrix method
The matrix formalism used by J. Pagé and Reshef, 2021, colloquially known as the characteristic trans-
fer matrix method, instead does not focus on forward and backward traveling wave amplitudes, but on
the electric and magnetic field magnitude at interfaces, as described in Pedrotti et al., 2017.

Figure 2.2: Definitions of fields traveling through a single thin film into a substrate, adapted from Pedrotti et al., 2017. Note that
the resultant field of any interaction at boundary (a) will have a subscript 1 and at boundary (b) a subscript 2.

Working out the formalism can be done using the definitions given in figure 2.2. Important to realize
about this figure is that the terms inset in the figure represent all light traveling in a certain direction on a
side of the boundary. For instance, 𝐸𝑟1 represents the light from both the reflection on the first incident
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layer and transmitted light coming back out of the thin film after being reflected inside it. Furthermore,
this image represents the situation for s-polarization, with the bold dots representing an electric field
vector perpendicular to the xy-plane. Also notice that the y-component of B is flipped in the reflected
wave, while the z-component of E is not. This is a consequence of positive sign convention for electric
waves combined with the formulation of the Poynting vector, which expresses the direction of propa-
gation of the energy of the electromagnetic plane wave, given by:

S = 𝜀0𝑐2E × B (2.20)

Using the definitions from figure 2.2 and using the Maxwell’s boundary conditions which state that
the tangential components of the resultant E- and B-fields are continuous over the boundary between
two different mediums, one can formulate the magnitude of the fields at the boundaries:

𝐸𝑎 = 𝐸0 + 𝐸𝑟1 = 𝐸𝑡1 + 𝐸𝑖1 (2.21)
𝐸𝑏 = 𝐸𝑟2 + 𝐸𝑖2 = 𝐸𝑡2 (2.22)

𝐵𝑎 = 𝐵0 cos𝜃0 − 𝐵𝑟1 cos𝜃0 = 𝐵𝑡1 cos𝜃𝑡1 − 𝐵𝑖1 cos𝜃𝑡1 (2.23)
𝐵𝑏 = 𝐵𝑖2 cos𝜃𝑡1 − 𝐵𝑟2 cos𝜃𝑡1 = 𝐵𝑡2 cos𝜃𝑡2 (2.24)

One can relate the magnitudes 𝐸 and 𝐵 of fields E and B using:

𝐵 = 𝑛√𝜀0𝜇0𝐸 (2.25)

Combining equations 2.23, 2.24 and 2.25 one can relate the fields:

𝐵𝑎 = 𝛾0(𝐸0 − 𝐸𝑟1) = 𝛾1(𝐸𝑡1 − 𝐸𝑖1) (2.26)
𝐵𝑏 = 𝛾1(𝐸𝑖2 − 𝐸𝑟2) = 𝛾𝑠𝐸𝑡2 (2.27)

Where 𝛾 are defined using the refractive index and angle in the respective medium:

𝛾0 = 𝑛0√𝜀0𝜇0 cos𝜃0 (2.28)
𝛾1 = 𝑛1√𝜀0𝜇0 cos𝜃𝑡1 (2.29)
𝛾𝑠 = 𝑛𝑠√𝜀0𝜇0 cos𝜃𝑡2 (2.30)

To find the relation between angles in the different mediums, one can use Snell’s law:

𝑛0 sin𝜃0 = 𝑛1 sin𝜃𝑡1 = 𝑛𝑠 sin𝜃𝑡2 (2.31)

One can also find a relationship between the fields inside the film using their phase difference:

𝐸𝑖2 = 𝐸𝑡1𝑒−𝑖𝛿 (2.32)
𝐸𝑖1 = 𝐸𝑟2𝑒−𝑖𝛿 (2.33)

Where 𝛿 represents the accumulated phase from traveling from one side of the film to the other,
defined as:

𝛿 = 2𝜋
𝜆0
𝑛1𝑑 cos𝜃𝑡1 (2.34)

Revisiting boundary (b), one can now write:

𝐸𝑏 = 𝐸𝑡1𝑒−𝑖𝛿 + 𝐸𝑖1𝑒𝑖𝛿 = 𝐸𝑡2 (2.35)
𝐵𝑏 = 𝛾1(𝐸𝑡1𝑒−𝑖𝛿 − 𝐸𝑖1𝑒𝑖𝛿) = 𝛾𝑠𝐸𝑡2 (2.36)

Which can be rewritten to:
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𝐸𝑡1 =
𝛾1𝐸𝑏 + 𝐵𝑏
2𝛾1

𝑒𝑖𝛿 (2.37)

𝐸𝑖1 =
𝛾1𝐸𝑏 − 𝐵𝑏
2𝛾1

𝑒−𝑖𝛿 (2.38)

Then by using the Euler identities, which are as follows:

2 cos 𝛿 = 𝑒𝑖𝛿 + 𝑒−𝑖𝛿 (2.39)
2 sin 𝛿 = 𝑒𝑖𝛿 − 𝑒−𝑖𝛿 (2.40)

One can arrive at the set of equations relating the field at boundary (a) to boundary (b):

𝐸𝑎 = 𝐸𝑏 cos 𝛿 + 𝐵𝑏
𝑖 sin 𝛿
𝛾1

(2.41)

𝐵𝑎 = 𝐸𝑏(𝑖𝛾1 sin 𝛿) + 𝐵𝑏 cos 𝛿 (2.42)

These equations can then be put into matrix form:

( 𝐸𝑎𝐵𝑎 ) = (
cos 𝛿 𝑖 sin𝛿

𝛾1
𝑖𝛾1 sin 𝛿 𝑒𝑖𝛿𝑙

)( 𝐸𝑏𝐵𝑏 ) = 𝑀(
𝐸𝑏
𝐵𝑏 ) (2.43)

This matrix successfully relates the fields at the two boundaries, and is known as the transfer matrix
of the film. If boundary (b) is actually the start of a second film, this transfer matrix is still valid. Fur-
thermore, the formula can be used directly to find the transfer matrix of this second film by filling in the
correct parameters. For an arbitrary number of layers, just as formula 2.16 in the previous section, all
transfer matrices can be multiplied to find the total transfer matrix:

( 𝐸𝑎𝐵𝑎 ) =
𝑁

∏
𝑗=1

𝑀𝑗 (
𝐸𝑏
𝐵𝑏 ) = �̃� (

𝐸𝑏
𝐵𝑏 ) (2.44)

This formulation still requires some work to extract the transmission and reflection coefficients.
Defining the last boundary of the stack as being boundary number 𝑁 and the subsequent refractive
index of the substrate as 𝑛𝑠, one can write:

𝐸𝑎 = 𝐸0 + 𝐸𝑟1 (2.45)
𝐸𝑏 = 𝐸𝑡𝑁 (2.46)

𝐵𝑎 = 𝛾0(𝐸0 − 𝐸𝑟1) (2.47)
𝐵𝑏 = 𝛾𝑠𝐸𝑡𝑁 (2.48)

Filling in equation 2.43 results in:

( 𝐸0 + 𝐸𝑟1
𝛾0(𝐸0 − 𝐸𝑟1) ) = (

cos 𝛿 𝑖 sin𝛿
𝛾1

𝑖𝛾1 sin 𝛿 𝑒𝑖𝛿𝑙
)( 𝐸𝑡𝑁

𝛾𝑠𝐸𝑡𝑁 ) = ( 𝑚11 𝑚12
𝑚21 𝑚22 )(

𝐸𝑡𝑁
𝛾𝑠𝐸𝑡𝑁 ) (2.49)

In which 𝑚11, 𝑚12, 𝑚21 and 𝑚22 are the components of �̃� to be used for the sake of simplification
from here on out. This is equivalent to the following set of equations:

𝐸0 + 𝐸𝑟1 = (𝑚11 +𝑚12𝛾𝑠)𝐸𝑡𝑁 (2.50)
𝛾0(𝐸0 − 𝐸𝑟1) = (𝑚21 +𝑚22𝛾𝑠)𝐸𝑡𝑁 (2.51)
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The following definitions for t and r are used:

𝑡 = 𝐸𝑡𝑁
𝐸0

(2.52)

𝑟 = 𝐸𝑟1
𝐸0

(2.53)

Using some algebra, this leads to the final expressions for t and r dependent on the total transfer
matrix of the structure:

𝑡 = 2𝛾0
𝛾0𝑚11 + 𝛾0𝛾𝑠𝑚12 +𝑚21 + 𝛾𝑠𝑚22

(2.54)

(2.55)

𝑟 = 𝛾0𝑚11 + 𝛾0𝛾𝑠𝑚12 −𝑚21 − 𝛾𝑠𝑚22
𝛾0𝑚11 + 𝛾0𝛾𝑠𝑚12 +𝑚21 + 𝛾𝑠𝑚22

(2.56)

These are complex coefficients, from which the phase change introduced by the multilayer structure
can be deduced, just as in the method shown in section 2.1.1. The previously derived equations were
obtained using definitions of s-polarized light. For p-polarized light, one can follow the same steps, but
changing the situation so that E is in the direction that B is currently in in figure 2.2, and rotating B
accordingly so that the direction is still correct according to the definition of the Poynting vector. In this
case, the cosine terms show up in the terms for the electric field instead, as that now has a component in
the x-direction. Ultimately, this derivation comes down to the same transfer matrix except for a change
in the definition of 𝛾𝑚 with m denoting the medium, where it is divided instead of multiplied by the cosine
term. For clarity, both definitions are listed here:

𝛾𝑚, 𝑝−𝑝𝑜𝑙. = 𝑛𝑚 √𝜀0𝜇0
cos𝜃𝑚

(2.57)

𝛾𝑚, 𝑠−𝑝𝑜𝑙. = 𝑛𝑚√𝜀0𝜇0 cos𝜃𝑚 (2.58)

At normal incidence, cos𝜃𝑚 = cos 0 = 1 which results in equal outcomes for both situations, as is
to be expected.

2.2. Optimization
The design of a thin film spaceplate can be done using optimization, as was demonstrated in J. T. R.
Pagé et al., 2022. However, when looking at the code provided in J. Pagé and Reshef, 2021, it becomes
apparent that the optimization method is rather rudimentary, and can be improved upon.

When regarding this as an optimization problem, it is one with a freedom space that has a number
of dimensions equal to the amount of layers of the structure to be optimized. The thicknesses of these
layers are to be changed until the optimal solution has been found. In J. T. R. Pagé et al., 2022 it is
suggested that near optimal compression can be reached with 17 layers for a certain system, but since
more requirements aside from high compression may be introduced, adding extra layers to extend the
freedom space may be desirable.

Due to the complexity of the structure and possible added requirements, it may be assumed that this
will be a highly non-convex problem, meaning many local optima will exist which are worse solutions
than the global optimum. Simply starting with a gradient descent method from a random point inside
this freedom space will most likely result in the algorithm converging on a local optimum. Therefore,
it is wise to use a global search algorithm as an initial stage which can rule out many low-quality local
optima and provide a promising region in the freedom space, after which a gradient descent method
can optimize within that region to get to the nearest optimal location in the parameter space. This still
may not be the actual global optimum, but guarantees better results than a gradient descent method
on its own.
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2.2.1. Particle swarm optimization
For a global search algorithm, particle swarm optimization is chosen (Kennedy and Eberhart, 1995,
Clerc, 2012). Several others were considered, namely simulated annealing, genetic algorithms, and
differential evolution. The choice for particle swarm optimization is made since it offers a relatively
simple approach that allows for a lot of nuance in parameters. The other methods may still be useful,
but a single global search method seems enough, as they should all converge to relatively similar
results.

The chosen implementation of particle swarm optimization works as follows. First, a swarm of parti-
cles is generated, each having an initial position in the freedom space, x𝑝, which is a vector containing
the coordinates (layer thicknesses) in each of the corresponding n dimensions (number of layers) for
particle p. They are generated using latin hypercube sampling (LHS), which is a method of sampling
meant to randomly spread out samples evenly over dimensions in a multidimensional space (McKay
et al., 1979). This is done using the built in function from the scipy library for python (SciPy Developers,
n.d.). Each particle also gets a random velocity v𝑝 in the same number of directions, with all vector
components 𝑣𝑑 of v𝑝 = [𝑣1, 𝑣2, ..., 𝑣𝑛] having a magnitude according to a uniform random distribution:

𝑣𝑑 ∼ 𝑈(−0.5Δ𝑡ℎ, 0.5Δ𝑡ℎ) (2.59)

Where Δ𝑡ℎ is equal to the difference between the lower and upper boundary on individual layer
thickness. Let s𝑝 be the best known location of the individual particle p itself and g be the best known
location of the entire swarm of particles, then an iteration of the particle swarm optimization will consist
of updating the velocity and location of each particle 𝑝 inside the swarm according to the following
formulas:

𝑣𝑝,𝑑,𝑛𝑒𝑤 = 𝑤𝑣𝑝,𝑑 + 𝑐𝑠𝑟𝑠(𝑠𝑝,𝑑 − 𝑥𝑝,𝑑) + 𝑐𝑔𝑟𝑔(𝑔𝑑 − 𝑥𝑝,𝑑) (2.60)

x𝑝,𝑛𝑒𝑤 = x𝑝 + v𝑝 (2.61)

In which d signifies the single dimension that is updated, 𝑟𝑠 , 𝑟𝑔 ∼ 𝑈(0, 1), and 𝑤, 𝑐𝑠 and 𝑐𝑔 are
the inertia weight and the cognitive and social coefficient, respectively. The basic idea here is that
any single particle will start moving in a random direction, and in each iteration ”chooses” where to
go next based in part on its best known location (s) and that of the group (g) in combination with the
initial randomly assigned velocity. Throughout the process, the inertia weight and coefficients are then
changed so that, at the end, the inertial weight is low and all particles converge toward g, which is
assumed to be the global optimum. In an ideal world, the swarm will be large enough to have covered
the entire freedom space and reviewed all local optima, but in reality the found solution is most likely not
global in this thesis, since the search space has many dimensions and there is limited computational
power. Each time the process is repeated different solutions may be found due to randomness in the
process. The chosen weights for the particle swarm optimization in this study were found by finetuning
them using trial and error and are as follows:

𝑐𝑠 = 1.5 (2.62)
𝑐𝑔 = 0.2 + 1.8(𝑗/𝑁) (2.63)
𝑤 = 0.9 − 0.4(𝑗/𝑁) (2.64)

Wherein 𝑗 signifies the current iteration count and 𝑁 signifies the total number of iterations the
process will go through, as is given at the start. Whenever a particle then crosses the boundary of
a dimension (exceeding the boundary thickness for a certain layer), its velocity in that dimension is
flipped by multiplying it with -1 and 𝑥𝑝,𝑑 is set to be equal to the boundary that was crossed. This way,
particles ”bounce off” the boundaries so that they do not lose all velocity and can still continue exploring
the search space.

2.2.2. Fletcher-Reeves conjugate method
For the gradient descent algorithm, the Fletcher-Reeves conjugate gradient method is chosen (Pa-
palambros and Wilde, 2017). This algorithm only requires first order derivative information, which
leaves the amount of necessary evaluations per optimization steps relatively small whilst still being an
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effective gradient descent method. Higher order methods could also work, but are considered too com-
putationally expensive since they need more evaluations of the fitness function in different locations.

The conjugate gradient method works as follows. First, the starting position is defined as x1. Next,
the first search direction is defined as d1 = ∇𝑓(x1), where 𝑓 is the fitness function. Since this thesis
uses a figure of merit as its fitness function which increases with better solutions (section 2.2.3), the
search direction is in the direction of the positive gradient of 𝑓(x). Next, a line search is performed
toward the next location in the optimization space:

x𝑗+1 = x𝑗 + 𝛼𝑗d𝑗 (2.65)

The line search consists simply of ”walking” in the direction d𝑗 while evaluating the fitness using
𝑓(x) and stopping at the point where increasing 𝛼𝑗 no longer increases fitness function 𝑓(x𝑗+1). The
next search direction is then determined:

d𝑗+1 = ∇𝑓𝑗+1 +
||∇𝑓𝑗+1||2
||∇𝑓𝑗||2

(2.66)

After this step the steps in equations 2.65 and 2.66 are repeated N times, after which the next
direction d𝑁+1 = ∇𝑓(x𝑁+1), where N is equal to the number of dimensions in the search space (which
is equal to the number of layers in the structure that is being optimized). This is necessary since the
algorithm has worse convergence after approximately N steps.

2.2.3. Figure of merit
All of the evaluations of the fitness function of a location within the parameter space are done using
a figure of merit (FOM) as the fitness function. This figure is to be maximized by the optimization
algorithms, and is the inverse of a loss function. Due to there being a number of requirements for
practical use of a spaceplate besides absolute compression, it is quite a large function, with weights that
can be set to zero to eliminate optimization towards the corresponding targeted property if necessary.
The formula for the FOM for a structure designed for a discrete wavelength is as follows:

𝐹𝑂𝑀 = (𝑤𝑓𝑖𝑡𝜎𝑓𝑖𝑡 +𝑤𝑇,𝑤𝜎𝑇,𝑤 +𝑤𝑇,𝑓𝜎𝑇,𝑓 +𝑤𝑝𝑜𝑙𝜎𝑝𝑜𝑙 +𝑤ℎ𝑖𝑔ℎ𝑅(1/𝑅′))
−1

(2.67)

In which all weights are denoted as 𝑤𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦, which will now be explained. In this equation, 𝜎𝑓𝑖𝑡 is
the root mean square error (RMSE) between an ideal spaceplate phase 𝜙 and the transmitted phase
by the current design 𝜙′. The factor R for which 𝜙 is determined is either a target compression ratio,
or the most closely fitted ratio (using a built-in fit algorithm) to the current phase profile.

𝜎2𝑓𝑖𝑡(𝜙′, 𝜙) =
1

𝜃𝑚𝑎𝑥
∫
𝜃𝑚𝑎𝑥

0
(𝜙′ − 𝜙)2 𝑑𝜃 (2.68)

Where 𝜃𝑚𝑎𝑥 denotes the maximum acceptance angle for which the spaceplate is supposed to work,
in radians.

Furthermore, 𝜎𝑇,𝑤 and 𝜎𝑇,𝑓 represent the RMSE’s of the normalized transmission over the angular
range where a high transmission intensity is intended (𝑇𝑤) and angles to be filtered out (𝑇𝑓), respectively.
For the wanted angles it is the difference away from full transmission, and for the filtered angles the
difference away from zero transmission:

𝜎2𝑇,𝑤(𝑇𝑤) =
1

𝜃𝑚𝑎𝑥
∫
𝜃𝑚𝑎𝑥

0
(1 − 𝑇𝑤)

2 𝑑𝜃 (2.69)

𝜎2𝑇,𝑓(𝑇𝑓) =
1

𝜋/2 − 𝜃𝑚𝑎𝑥
∫
𝜋/2

𝜃𝑚𝑎𝑥
(𝑇𝑓 − 0)

2 𝑑𝜃 = 1
𝜋/2 − 𝜃𝑚𝑎𝑥

∫
𝜋/2

𝜃𝑚𝑎𝑥
𝑇2𝑓 𝑑𝜃 (2.70)

This formulation leaves space for changing the desired transmission in a given region to a different
value, which is why the zero is still named in equation 2.70. Matching compression factors for both p-
and s-polarization is expressed using 𝜎𝑝𝑜𝑙, and attempts only to minimize the difference:

𝜎2𝑝𝑜𝑙 =
1

𝜃𝑚𝑎𝑥
∫
𝜃𝑚𝑎𝑥

0
(𝑅𝑝 − 𝑅𝑠)

2 𝑑𝜃 (2.71)
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In which 𝑅𝑝 and 𝑅𝑠 are the compression factors of the current design for p- and s-polarization,
which are determined by fitting their phase profiles to that of an ideal spaceplate for the angular region
[0, 𝜃𝑚𝑎𝑥].

Lastly optimization for a high compression is achieved simply by the factor 1/𝑅′, where R’ is the
current compression factor of the spaceplate design. Of course, when a target is set for the compres-
sion factor, this term is not considered, as this is then caught in 𝜎𝑓𝑖𝑡 by fitting it to an ideal phase profile
𝜙(𝜃) corresponding to the target R.

All of this is relatively straightforward. However, once it becomes necessary to formulate the FOM
for a spectral band, a few things change. For every single (discrete) wavelength considered, the trans-
mitted phase and intensity are different. Therefore, the RMSE’s and R’ have to be evaluated on all
of these wavelengths, after which the mean value of each of the RMSE’s is taken. For any evaluated
value 𝑋, this means:

𝜎𝑋,Δ𝜆 =
1
Δ𝜆 ∫

𝜆0+Δ𝜆

𝜆0−Δ𝜆
𝜎𝑋,𝜆𝑑𝜆 (2.72)

Where Δ𝜆 is the given width of the wavelength range, 𝜆0 is the center wavelength, and 𝜎𝑋,𝜆 is the
RMSE for value 𝑋 at wavelength 𝜆.

Additionally, a term is added which evaluates whether the compression factors of different wave-
lengths match with one another, and punishes large differences. This is done by taking the RMSE
between the mean value of R (⟨𝑅′⟩) and the value of R at each wavelength (𝑅′𝜆) over the spectral band:

𝜎2𝑅,Δ𝜆 =
1
Δ𝜆 ∫

𝜆0+Δ𝜆

𝜆0−Δ𝜆
(𝑅′𝜆 −

1
Δ𝜆 ∫

𝜆0+Δ𝜆

𝜆0−Δ𝜆
𝑅′𝜆𝑑𝜆)

2

𝑑𝜆 = 1
Δ𝜆 ∫

𝜆0+Δ𝜆

𝜆0−Δ𝜆
(𝑅′𝜆 − �̄�′)

2 𝑑𝜆 (2.73)

This then results in the FOM for a spectral band:

𝐹𝑂𝑀 = (𝑤𝑓𝑖𝑡𝜎𝑓𝑖𝑡,Δ𝜆 +𝑤𝑇,𝑤𝜎𝑇,𝑤,Δ𝜆 +𝑤𝑇,𝑓𝜎𝑇,𝑓,Δ𝜆

+𝑤𝑝𝑜𝑙𝜎𝑝𝑜𝑙,Δ𝜆 +𝑤ℎ𝑖𝑔ℎ𝑅(1/�̄�′) + 𝑤𝑅,Δ𝜆𝜎𝑅,Δ𝜆)
−1 (2.74)
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Results

Many structures were generated for this thesis. To make sure they can be compared easily and do not
deviate too much from previous literature, they all us SiO2 (refractive index n = 1.444) and Si (refractive
index n = 3.47638) and are generally designed for operation at (or around) a wavelength of 1550 nm.

3.1. Single structures
To test the optimization algorithm and to slowly allow complexity of the system to build up, the results
are compiled based on complexity.

Evaluating and interpreting the results can be done based off the transmission intensity and phase
plots, combined with the fitted compression ratio R and the estimated Strehl ratio (𝕊) of the structure.
The Strehl ratio is a metric related to imaging quality, often used for lenses. It is the ratio of the peak
intensity of the focus of a Gaussian beam traveling through a real optical element to this peak after
going through an ideal optical element. It ranges from 0 to 1, and if 𝕊 ≥ 0.8 diffraction will limit image
resolution more than the introduced optical aberrations, making the optical element ’diffraction limited’.
The Strehl ratio of a structure is estimated by taking the negative exponent of the mean square error
of the phase fit that remains after R is fitted onto the phase profile such that this error is minimal van
den Bos, 2000:

𝕊 ≈ 𝑒−𝜎2𝑓𝑖𝑡𝑡𝑒𝑑 (3.1)

Note that 𝜎𝑓𝑖𝑡𝑡𝑒𝑑 is not necessarily the same as 𝜎𝑓𝑖𝑡 from equation 2.68, since this can also refer to
the fit to a target compression ratio R while 𝜎𝑓𝑖𝑡𝑡𝑒𝑑 only aims to minimize the root mean square error
of the fit, with R being a free variable. Any valid spaceplate included in 3.1 has a Strehl ratio of at
least 0.96 (meaning phase profile RMSE is smaller than 0.2). This should ensure all spaceplates are
diffraction limited and are feasible for use in a sensitive optical system.

3.1.1. Reproducing results
The code provided in J. Pagé and Reshef, 2021 was designed to optimize a structure to mimic free
space propagation of light for a single given wavelength, with a target R to optimize towards. By then
selecting a higher target R, greater compression could be achieved until the optimization no longer
managed to converge to a satisfactory result.

This code has since been reworked as has been explained in section 2.2. Entering the same starting
requirements, (target R of 340, 27 layers, 𝜆 = 1550nm), yields a functioning spaceplate with properties
similar to those found in J. T. R. Pagé et al., 2022. These results can be seen in figure 3.1.

35
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(a) Transmission intensity (b) Simulated phase (c) Structure

Figure 3.1: A spaceplate design for p-polarized light with an R of 351, and a Strehl ratio of 0.99997, exceeding that of
J. T. R. Pagé et al., 2022.

While this design does not exactly match the compression factor found in the cited paper, it does
show the capabilities of the optimization algorithm to get close to its results.

After producing the previous result relatively quickly, an attempt was made using a target R of 500
instead, to see whether improvements could be made. This resulted in the structure which can be seen
in figure 3.2. After this, further attempts yielded results with Strehl ratios lower than that of J. T. R. Pagé
et al., 2022, and so the exploration was halted here. Further exploration of this situation also seems
futile, since its applications are limited due to polarization dependence, low angular range and zero
bandwidth, problems that will be discussed in the next section.

(a) Transmission intensity (b) Simulated phase (c) Structure

Figure 3.2: A spaceplate design for p-polarized light with an R of 545, and a Strehl ratio of 0.9995, still exceeding that of
J. T. R. Pagé et al., 2022.

3.1.2. Exploring optimization capabilities
For the sake of testing the optimization algorithm, starting parameters are chosen to which complexity
will be added in steps. First off, the parameters are as follows:

• Target R = 40

• Number of layers = 27

• 𝜆 = 1550 nm

• 𝜃𝑚𝑎𝑥 = 5 degrees (meaning NA = 0.087)

• Optimized polarization = p-polarization

The reasoning for the relatively low 𝜃𝑚𝑎𝑥 is explained at the end of section 3.2. This results in the
spaceplate design seen in figure 3.3. This spaceplate has a thickness of 4.25 𝜇m and an effective
distance of 151 𝜇m, with an R of 35.5 and Strehl ratio 0.9865.

There are three main problems with this design for practical use. The first is the lack of transmission
in certain wanted angles, which will cause unwanted changes in the PSF of transmitted light and in
general will lead to a loss of power. Secondly, this spaceplate is designed to work for p-polarized light.
If s-polarized light travels through this spaceplate, it will in this case experience a distance of 138 𝜇m
instead of 151, meaning unpolarized light will smear out between the effective distances of its polarized
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(a) Transmission intensity (b) Simulated phase (c) Structure

Figure 3.3: A spaceplate design for p-polarized light with a compression ratio of 35.5 and an NA of 0.087.

components. Third and last, this spaceplate is optimized for a single wavelength only, and so will not
have the same compression or transmission for other wavelengths.

To tackle the problem of transmission, a term was added in the figure of merit calculation, as ex-
plained in section 2.2.3. Selecting a spaceplate design with a normalized transmittance > 0.8 over
the wanted angular range with the highest possible R then yields the design seen in figure 3.4. The
spaceplate has a thickness of 2.98 𝜇m and an effective distance of 54.49 𝜇m, with an R of 18.3 and
Strehl ratio 0.99998.

(a) Transmission intensity (b) Simulated phase (c) Structure

Figure 3.4: A spaceplate design for p-polarized light with a compression ratio of 18.3 and an NA of 0.087, achieving average
transmission intensity in the intended region of 0.9335.

Disregarding transmission profiles for a moment, the issue of difference in compression for differ-
ent polarizations also needs addressing. By having the optimization match the compression of both
polarizations, this problem is solved up to a point. In this case, a spaceplate for which the compression
factors of both polarizations were within 1% of each other is deemed satisfactory. The resultant space-
plate can be seen in figure 3.5. It has a thickness of 4.05 𝜇m, an effective distance of 49.2 𝜇m, and
Strehl ratio 0.9998. Its compression factors are 12.14 and 12.17, for p- and s-polarization respectively.

(a) Transmission intensity (b) Simulated phase (c) Structure

Figure 3.5: A (semi) polarization-independent spaceplate design with compression ratios of 12.14 and 12.17 for p- and
s-polarized light respectively, and an NA of 0.087.

Lastly, optimizing the spaceplate for multiple wavelengths at the same time shows one of the flaws
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of the thin film spaceplate. Due to the design relying on a combination of resonances within the struc-
ture, the influence of wavelength on the transmitted phase profile is very large, meaning consistent
compression is difficult to achieve. To illustrate this, a spaceplate design is optimized for a bandwidth
of 1 nm and one with a bandwidth of 5 nm and their compression ratios dependent on wavelength are
shown in figure 3.6.

(a) Compression of structure optimized for band of 1 nm around 1550
nm.

(b) Compression of structure optimized for band of 5 nm around 1550
nm.

(c) Compression of structure optimized for band of 1 nm around 1550
nm zoomed in on intended band.

(d) Compression of structure optimized for band of 5 nm around 1550
nm zoomed in on intended band.

Figure 3.6: Plots showing the compression factor dependent on wavelength of two different spaceplate designs, optimized for 1
nm and 5 nm bands respectively around a center-wavelength of 1550 nm. The plots clearly show the wavelength dependence

has a large influence on performance in terms of compression factor.

The results in figure 3.6 shows that expanding the required operational bandwidth of the spaceplate
leads the optimization algorithm to design devices with lowered compression factors. Only adding a
1 nm bandwidth as a requirement lowers the highest found compression factor to approximately 7.3,
which is roughly 5 times lower than that without this constraint. Within this band of 1 nm, there is
also still a significant variation in compression factor, within an interval size of 0.1. Increasing the
bandwidth further to 5 nm results in spaceplate designs which have compression factors below 1,
meaning propagation space was lengthened instead by this spaceplate.

Considering this was only at a maximum bandwidth of 5 nm, which cannot be considered very
broad, the choice was made to focus research in this thesis on monochromatic (discrete wavelength)
spaceplates, in order not to limit compression ratios and effective distances by added bandwidth re-
quirements.

3.2. Dependence on maximum incident angle
To establish the relations of different achievable parameters through the designed algorithm, a sweep
is conducted through incoming angles. This is done for spaceplate designs with 27 layers, again at
1550 nm. Layer thicknesses at start are set between 50 and 250 nm. All spaceplates were required to
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meet a threshold Strehl ratio of 0.967 (which translates to RMSE of the phase equal to approximately
1/30) to ensure they were usable as spaceplates. The resulting graph, shown in figure 3.7, shows a
large dependency between the maximum accepted incoming angle and the maximum compression
factor. This was to be expected, looking at the formulation of the limit of R in equation 1.61.

Figure 3.7: Mean compression ratio R versus 𝜃𝑚𝑎𝑥, surrounded by an area of one standard deviation above and one below the
mean. Results in blue from optimization with 𝑤𝑇,𝑤 = 0.25 results in red with 𝑤𝑇,𝑤 = 0 (see equation 2.67). The compression

factor R decreases with larger maximum incoming angles in degrees, i.e. higher NA.

What is interesting in this figure is the fact that it does not seem to go towards infinity around 𝜃 = 0.
At this angle, R becomes arbitrary since it effectively removes the need for a specific phase profile. This
means that the function in 3.7 is discontinuous at 𝜃 = 0. Besides this, however, the maximum value for
R found from these optimizations is 467, at a very small angle (𝜃𝑚𝑎𝑥 = 0.0001). Previous results have
shown that it is possible to exceed this value, but not by an enormous margin, which would be expected
if there was a divergence toward infinity at 𝜃 = 0. Whether or not there actually is a divergence in the
globally optimal solutions is impossible to say from these results, as they showcase the inability of the
optimization algorithm to reliably find the global optimum.

Figure 3.8: The mean amount of layers needed to theoretically achieve 1 cm of effective distance, surrounded by one standard
deviation above and one below the mean.
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A consequence of the decreasing compression factor with increasing incoming angles is the need for
a larger amount of layers to achieve the same effective distance for larger incoming angles. Using the
assumption that the structure can be repeated to achieve a higher effective distance without it affecting
the compression factor or quality of the phase profile, a rough estimate can be made of the amount
of layers needed to reach some arbitrary effective distance. Plotting this, using the same spaceplate
designs as those used for the last figure, results in figure 3.8. Of course, these assumptions are quite
steep, so the actual values will most likely be higher, if reaching 1 cm of effective distance for a useful
numerical aperture is even possible at all. For this reason, in the rest of this thesis a conservative
maximum acceptance angle of 5 degrees (NA of 0.087) is used for the spaceplate designs.

3.3. Achieving large effective distances through repetition
Whether a spaceplate can actually be useful in industry is highly dependent on its absolute effective
distance in the end. In this section, monochromatic spaceplates are used in an attempt to maximize
this distance.

If the spaceplate functions flawlessly, transmitted light should not differ from the light coming into
it, except in the distance traveled. Therefore it stands to reason that sending light through multiple
spaceplates consecutively would not change their functioning. Since it is increasingly computationally
expensive to expand the number of layers in the optimization protocol in order to extend the resultant
effective distances, repeating a unit cell may be an avenue to reach large effective distances nonethe-
less. Repeating a structure that functions as a spaceplate should ideally result in a structure that retains
the same compression factor, effectively scaling the effective distance by a factor N, with N being the
number of repetitions. This is assuming the repetition of the structure does not introduce undesired
additional interferences across different unit cells which could change the transmission phase and
magnitude profiles. Additionally, angles that previously provided constructive interference resulting in
a high transmission intensity would be expected not to decrease in transmission, since this same exact
constructive interference pattern is present in each separate ”spaceplate” that is stacked on top of each
other. Lastly, any error of the phase would be expected to add linearly, since it is also expected that
the induced phase profile adds linearly.

To test these hypotheses and see if additional interferences between unit cell structures play a large
role, optimized structures are repeated and their transmission phase and intensity are evaluated using
TMM. This is done for three structures, all of which consist of 33 alternating layers of silicon and silicon-
dioxide, optimized for a wavelength of 1550 nm for a half angle up to 5 degrees (NA = 0.087) in air.
Of these designs, the second design has layer thickness boundaries that are shifted by 50 nm to have
generally thicker layers, and the third design is only optimized for p-polarized light. These alterations
are made to gauge their effects on achievable effective distances.

Additionally, modern manufacturing techniques are not without flaws. When manufacturing similar
layer thicknesses, confidence intervals upwards of 5 nanometers are usual (Qian et al., 2017, Hattrick-
Simpers et al., 2019). Precision errors like these can have significant effects on the functioning of
multilayer thin film optics, which rely on interference based on a relationship between the wavelength
and angle of traveling waves and the thickness of the medium (Mielenz, 1960).

This section shows results of attempts of repeating the structure of three different spaceplate de-
signs as much as possible, to achieve an effective distance that has a possibility for practical appli-
cations. It also reviews the effects of precision errors in layer thicknesses on the achievable effective
distances.

3.3.1. Unit structure
In this section, the structures and transmission intensity versus incoming angle are shown of the designs
that were repeated in an attempt to reach a large effective distance. All of the designs consist of 33
alternating layers of silicon and silicon dioxide, and are optimized for a wavelength of 1550 nm and
a half angle up to 5 degrees (NA = 0.087). The second design has a focus on using bigger layer
thicknesses, and the third design was only optimized to function as a good spaceplate for p-polarized
light. Additional information on the results of the spaceplate optimization can be found in table 3.1.
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Design 1 Design 2 Design 3
Effective distance in
microns 19.26 25.12 30.23 (p)

24.77 (s)
Compression factor 2.94 (p & s) 2.95 (p & s) 3.99 (p)

3.27 (s)
RMSE of fitted phase profile
in rad

5.49e-4 (p)
5.02e-4 (s)

5.23e-4 (p)
1.11e-3 (s)

3.18e-4 (p)
2.23e-4 (s)

Strehl Ratio 0.99945 (p)
0.99950 (s)

0.99880 (p)
0.99890 (s)

0.99968 (p)
0.99978 (s)

Layer thickness boundaries
in nm 150–300 200–350 150–300

Polarization p & s p & s p or s

Table 3.1: Spaceplate designs to be repeated to reach large effective distances.

(a) Design 1: p-polarization (b) Design 1: s-polarization (c) Design 1: Structure

(d) Design 2: p-polarization (e) Design 2: s-polarization (f) Design 2: Structure

(g) Design 3: p-polarization (h) Design 3: s-polarization (i) Design 3: Structure

Figure 3.9: Comparison of three spaceplate designs with corresponding transmission intensity and phase error (= fit(𝜃) -
simulated phase at 𝜃) for p- and s-polarization, and structures.

As figure 3.9 shows, all three have a transmission intensity near 1 within the intended angular range.
What has become apparent during the optimization attempts is that adjusting the layer thickness

boundaries in this way, from design 1 to design 2, will have an adverse effect on the RMSE of the phase
profile, meaning it matches the intended phase profile less. Still, it does function at a spaceplate quite
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well and would, in this non-repeated form, easily fit into a diffraction limited system. It also performs
worse in terms of compression, going from 2.94 to 2.51.

Additionally, loosening the constraints by only optimizing for p-polarization instead of both polariza-
tions leads to better results in the other parameters, allowing for a higher compression factor while si-
multaneously allowing a better match to the phase profile, as shown in the difference of RMSE between
designs 1 and 3. Interestingly, the phase match is better for s-polarization than it is for p-polarization
while its compression factor is significantly lower.

3.3.2. Ideal structure
In this section, the results are shown of repeated stacking of the structures that were shown in section
3.3.1. During this repetition none of the thicknesses in the structure get altered, and there is no gap in
between them.

The designs are repeated up until they are no longer diffraction limited, which is assumed to be at a
Strehl ratio of 0.8. Strehl ratio is approximated using equation 3.1 which was shown earlier in section
3.1.

Repeatedly stacking these designs results in an increase in the RMSE of the phase fit, which is the
reason it is not possible to repeat them thousands of times and still end up with a useful device. The
RMSE of the phase fit versus the amount of repetitions of the base structure of each of the designs can
be seen in figure 3.10. This figure shows that the RMSE of the phase fit follows a semi-linear pattern,
which implies that the influence of additional internal interferences due to repetition on the phase fit
is relatively small. There is some oscillation in the pattern, which is likely caused by these additional
interferences.

(a) Design 1, reaching 185 repetitions before
no longer being diffraction limited

(b) Design 2, reaching 12 repetitions before
no longer being diffraction limited

(c) Design 3, reaching 589 and 919 repetitions
for p- and s-polarized light respectively before

no longer being diffraction limited

Figure 3.10: RMSE of the phase fit versus amount of repetitions, with Strehl ratio of 0.8 at the red dotted lines.

Unfortunately, based on these results no relation could be found between the RMSE of the phase
fit of the unit structure to the approximate linear rate of increase of the RMSE with the number of
repetitions of this structure. The effective distance one could theoretically achieve while remaining
diffraction limited, shown in figure 3.11, is completely dependent on this rate of increase. Additionally,
this figure confirms the assumption that stacking a spaceplate will result in a linear increase of its
effective distance. In this graph, too, a slight oscillation is visible due to added internal interferences,
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but a general linear trend is clearly present, and the compression ratios remain close to those of the
spaceplate that forms the unit cell.

(a) Design 1, reaching an effective distance
of 3.575 mm before no longer being

diffraction limited

(b) Design 2, reaching an effective distance
of 0.304 mm before no longer being

diffraction limited

(c) Design 3, reaching effective distances
of 18.2 and 23.2 mm for p- and s-polarized
light respectively before no longer being

diffraction limited
Figure 3.11: Effective distance versus amount of repetitions, with Strehl ratio of 0.8 at the red dotted lines.

Repeating these structures until they cross Strehl ratio of 0.8 does not take into account transmission
intensity. This intensity is also highly dependent on the interference patterns inside the structure, and
whether there are possible states in which the incoming wave can sustain itself inside the structure.
Figure 3.12 shows that having a high transmission intensity at these amounts of layers is still possible.

(a) Design 1, p-pol. (b) Design 2, p-pol. (c) Design 3, p-pol.

(d) Design 1, s-pol. (e) Design 2, s-pol. (f) Design 3, s-pol.

Figure 3.12: Transmission and phase error of repeated spaceplate structures for p- (top) and s-polarization (bottom).



44 3. Results

For both design 1 and 3, a transmission intensity near 1 is reached. The result of design 2 shows
that this high transmission is not fully guaranteed, and should be examined before any actual repeated
manufacturing takes place. Also, the transmission intensity plot of design 2 shows that at higher incident
angles, transmission peaks may occur which is important to note if angular stray light is an issue for
the envisioned application.

A summary of the properties of the repeated structures with the number of repetitions at which they
have a Strehl ratio of 0.8 is shown in table 3.2. Notably, this shows that achieving effective distances
into the centimeter range is theoretically possible, while maintaining a decent transmission intensity
(assuming zero absorption). However, it also shows that the amount of layers that would need to be
manufactured for this is very high and so probably not feasible.

Design Pol. Eff. Distance (mm) Thickness (mm) Layers Avg. Trans. R
1 Both 3.575 1.211 6105 0.9768 2.95
2 s 0.303 0.102 396 0.4762 2.97

p 0.305 0.102 396 0.4722 2.99
3 p 18.2 4.46 19437 0.9798 4.08

s 23.2 6.95 30327 0.9810 3.34

Table 3.2: Summary of effective distances, structure thickness, number of layers, average transmittance, and compression
ratio for each design and polarization.

3.3.3. Manufacturing errors
Theoretically repeating a structure to achieve a large effective distance still does not guarantee this dis-
tance can be realized in practice. To further evaluate the manufacturability of thin film spaceplates with
large effective distances, precision errors were introduced. This was done by taking the thicknesses
of the repeated structure, and adding a precision error 𝜖 to them according to a uniform distribution:

𝜖𝑝 ∼ 𝑈(−𝑒𝑝, 𝑒𝑝) (3.2)

With 𝑒𝑝 being the maximum precision error induced by the manufacturing process. Note that this
evaluation does not account for a possible accuracy error (which would introduce a constant offset
to all thicknesses), and assumes all layers to have a perfectly uniform thickness without local defects
(such as trapped dust particles or general surface roughness). Still, it should give a feeling for the error
sensitivity of the structure.

In this way, 200 different ”defect” structures are generated for each separate number of repetitions
N, to provide a decent sample size for statistical analysis of manufacturability at different amounts of
repetition and precision errors. Introducing these errors significantly affects the performance of the
repeated structures, both in their transmission intensity and matching of the correct phase parabola.
An example of this erroneous behavior can be seen in figure 3.13, which shows the average RMSE of
the phase and transmission of the complete batch of samples with defects between -1 nm and 1 nm,
against those of the ideal structure of design 1.

To gauge the highest effective distance that could be manufactured given a certain maximum preci-
sion error, all samples were tested to a set of criteria: a minimum of 25% average transmission over the
intended angular range (0 to 5 degrees), a phase profile match with a Strehl ratio above 0.8 (meaning
RMSE < 0.223), and in the case of the polarization matched designs the different compression factors
of both polarizations were to remain within 5% of each other. When less than 10% of all defect struc-
tures adhered to these criteria, it was deemed that the used number of repetitions would no longer result
in working spaceplates for the tested manufacture error, enabling the plotting of maximum achievable
effective distance. This test resulted in the plots shown in figures 3.14a, 3.14b and 3.14c.
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(a) RMSE of the phase parabola (b) Average transmission

Figure 3.13: The result of introducing defects between -1 nm and 1 nm in design 1. Transmission data show the average
transmission within the wanted angular regime, up to 5 degrees, with the defect lines showing the mean of that parameter for

the 200 samples per number of repetitions.

(a) Design 1: polarization independent (b) Design 2: polarization independent (thicker layers)

(c) Design 3: p-polarized light (d) Design 4: s-polarized light

Figure 3.14: Manufacturing precision error size 𝑒𝑝 (see equation 3.2) versus maximum effective distance for all designs, where
design 3 has different achievable effective distances depending on polarization.

As these figures show, manufacturing errors have a large influence on the viability of thin film space-
plate with a large effective distance. Furthermore, these figures do not show the quality of the trans-
mission intensity profile, only whether the average transmission intensity is sufficiently high. When
plotting single defect structures, it becomes apparent that the ideal even transmission profile is far from
guaranteed when precision errors are introduced, as shown in figure 3.15. The shown transmission
profile is that with the average transmission out of all defect samples at the given number of repetitions.
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Figure 3.15: Transmission profile of design 1 repeated 6 times with introduced defects between -1 and 1 nm, of sample with the
average transmission out of all defect samples at N=6. Average intended transmission of 0.4483, Strehl ratio of 0.818.

3.4. Angular stray light filters
To create angular stray light filters, the input parameters of the optimization algorithm were chosen
such that only the transmission profile of the thin film structure was taken into account. The figure of
merit was dependent only on the terms 𝑤𝑇,𝑤𝜎𝑇,𝑤 and 𝑤𝑇,𝑓𝜎𝑇,𝑓, while all other weights were set to zero.
In defining the wanted and unwanted angular regimes, a range of angular tolerance region sizes were
also taken into account to study their effect. A typical transmission profile with the different angular
regimes included looks something like figure 3.16. The tolerance region signifies a range of incoming
angles for which there is no target that the optimizer is trying to converge towards, and was introduced
to allow a continuous slope downwards between optimized regions. It was devised this way since the
transition from full transmission to zero transmission will be a continuous curve, and doing it without a
tolerance region may result in lower values in the range where full transmission is required. This way,
the location of the slope can hopefully be more consciously placed. The optimizer was given layer
thickness boundaries of 150 to 300 nm and a 𝜃𝑚𝑎𝑥 of 5 degrees.

Figure 3.16: A typical transmission profile with a hypothetical tolerance region with a size of 5 degrees (𝜃𝑚𝑎𝑥 = 5 and
𝜃𝑡𝑟 = 10) on which no explicit optimization is performed.
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3.4.1. Single function
To evaluate the performance of the thin film structures as angular stray light filters, contrast (ℂ) and
suppression ratio (𝑅𝑠𝑢𝑝𝑝) were used as metrics. They are defined as:

ℂ =
�̄�𝑤 − �̄�𝑓
�̄�𝑤 + �̄�𝑓

(3.3)

𝑅𝑠𝑢𝑝𝑝 =
�̄�𝑤
�̄�𝑓

(3.4)

Where:

�̄�𝑤 =
1

𝜃𝑚𝑎𝑥
∫
𝜃𝑚𝑎𝑥

0
𝑇𝑑𝜃 (3.5)

�̄�𝑓 =
1

𝜋
2 − (𝜃𝑚𝑎𝑥 + 𝜃𝑡𝑟)

∫
𝜋
2

𝜃𝑚𝑎𝑥+𝜃𝑡𝑟
𝑇𝑑𝜃 (3.6)

In which 𝜃𝑚𝑎𝑥 is the incoming angle up to which full transmission is desired and 𝜃𝑡𝑟 is the size of
the tolerance region before the angular region that is to be filtered out.

Furthermore, to be able to compare them to periodic structures like that of Qian et al., 2017, addi-
tional optimizations were done to find periodic angular stray light filters. These optimizations were done
by having a period of 2, 4, or 6 layers which had variable layer thicknesses, and repeating these 500 or
1000 times every time before evaluating the result. This way, they are assumed to be able to represent
periodic solutions that are created based on the idea of photonic bands, where infinite periodicity is as-
sumed. They were optimized with a tolerance region size of 2 degrees, and layer thickness boundaries
of 150 to 300 nm, just like the non-periodic ones. The two best periodic filters were chosen to use for
comparison to the non-periodic filters, their resulting photonic band plots can be seen in figure 3.17.
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(a) Photonic band structure for p-polarized light — 2-layer period (b) Photonic band structure for s-polarized light — 2-layer period

(c) Photonic band structure for p-polarized light — 6-layer period (d) Photonic band structure for s-polarized light — 6-layer period

Figure 3.17: Photonic band structures of optimized periodic filters for p- and s-polarized light. Bandgaps appear near the
design wavelengths, similar to the concept discussed in Qian et al., 2017. In the 6-layer period plots, resolution limitations

cause partial cutoff at the bottom. Parameter 𝑎 is equal to the total thickness of a single period, 𝑘𝑦 is the transversal
wavenumber, also referred to as 𝑘𝑡𝑣 in this thesis.

To compare the periodic solutions with the non-periodic ones, the contrasts of both are plotted. In
the periodic case, this means the contrast of a structure made of N periods, with N being an integer,
such that the total amount of layers in the thin film stack matches that on the x-axis. The plots of non-
periodic solutions optimized with tolerance region sizes 0.5 and 2.0 degrees can be seen in figure 3.18.
They are both plotted without taking into account a tolerance region, even though that was included in
the optimization process, to permit fair comparison.
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(a) Max contrast (p-polarization) — 0.5° tolerance region design (b) Max contrast (s-polarization) — 0.5° tolerance region design

(c) Max contrast (p-polarization) — 2° tolerance region design (d) Max contrast (s-polarization) — 2° tolerance region design

Figure 3.18: Maximum contrast found versus number of layers in the structure, for both p- and s-polarized light. Top row:
structures optimized with a 0.5° tolerance region; bottom row: with a 2° tolerance region. In all cases, contrast is plotted

assuming no tolerance region is permitted during evaluation.

This plot shows that situations exist where non-periodic solutions will greatly outperform the periodic
ones. In this case, one can observe that the contrast achieved by non-periodic solutions when the
amount of available layers is below 25, with the given layer thickness boundaries, is much greater
using an optimized non-periodic solution than a periodic one. It is also worth noting that the difference
between the angular stray light filters optimized using a tolerance region size of 0.5 degrees do not
differ much from those with a size of 2 degrees. Zooming in showed slightly higher peaks in the case
of 0.5 degrees, and so for the next plots a non-periodic design from that batch was chosen.

The chosen angular stray light filter is a design with 24 layers, chosen conveniently for comparisons
since 24 is divisible by all periods in the set of periodic solutions. Note that at lower numbers of lay-
ers, the difference between non-periodic and periodic solutions is even larger, but for the sake of fair
comparison they were not chosen here. The transmission profile of the chosen design can be seen in
figure 3.19.
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(a) Transmission intensity for p-polarization (b) Transmission intensity for s-polarization

Figure 3.19: Transmission intensity of angular stray light filter design with 24 layers, with ̄𝑇𝑝 = 0.9352 and �̄�𝑠 = 0.8915.

As these transmission intensity plots show, the cut-off at the maximum acceptance angle is not an
absolute step from T = 1 to T = 0. Instead, a small angular range is needed to transition between
high and low transmission intensity. Ideally, an application of this filter would be a system where the
maximum incidence angle of the desired light is 5 degrees or lower, but the angular stray light to
be filtered only occurs at higher angles, effectively allowing for a tolerance region in the application
requirements. Increasing the size of the tolerance region likely increases the performance of the filter.
The contrast versus tolerance region size of the non-periodic and periodic designs is shown in figure
3.20.

(a) Contrast versus tolerance region size for p-polarized light (b) Contrast versus tolerance region size for s-polarized light

Figure 3.20: Contrast vs tolerance region size of 24-layer angular stray light filter designs.

The tolerance region size ranges from 0 to 85 degrees, since it needs to fit between 𝜃𝑚𝑎𝑥 = 5
and 90 degrees. These plots show that contrast is only very slightly worse overall in p-polarization in
comparison to s-polarization, which can be explained by the fact that the transmission coefficient of p-
polarized light at an interface is always larger than that of s-polarized light at the same incoming angle.
This difference becomes more clear when plotting the transmission intensity values in a log scale, like
in figure 3.21.
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(a) Transmission intensity for p-polarization (b) Transmission intensity for s-polarization

Figure 3.21: Transmission intensity of the same design as shown in figure 3.19, with a log scale to show the actual attainable
values.

Interesting behavior shows when plotting the suppression ratio versus tolerance region size instead,
as shown in figure 3.22. For p-polarized light, the suppression ratio starts going down at a tolerance
region size of approximately 27 degrees, after which it shoots back up after a tolerance region size of
approximately 65 degrees. This is due to the increase in transmission intensity around 65 degrees for
p-polarized light. However, since the expected applications would probably need a tolerance region
size lower than 65 degrees, this effect seems trivial.

(a) Suppression ratio versus tolerance region size for p-polarized light (b) Suppression ratio versus tolerance region size for s-polarized light

Figure 3.22: Suppression ratio vs tolerance region size of 24-layer angular stray light filter designs.

With angular stray light filters, just as with spaceplate action before, the sensitivity toward precision
errors is important to consider. Therefore, 200 samples of each of the considered structures were
generated and had defects introduced to their layer thicknesses. The defects were randomly generated
according to a normal distribution around zero, with a given standard deviation. The resulting contrast
and suppression ratio (with a tolerance region size of zero) depending on precision error can be seen in
figure 3.23. From these plots, it is clear that the suppression ratio of the non-periodic angular stray light
filter remains better than that of periodic solutions. However, the contrast versus precision plot shows
that the non-periodic mean contrast goes lower than the periodic ones. This is likely due to the fact that
at lower values of ̄𝑇𝑤, contrast will go down quicker than suppression ratio. Still, the area around the
mean shows a possibility of structures that still outperform the periodic ones at standard deviations of
layer thicknesses above 4 nanometers.
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(a) Contrast vs standard deviation for p-polarized light (b) Contrast vs standard deviation for s-polarized light

(c) Suppression ratio vs standard deviation for p-polarized light (d) Suppression ratio vs standard deviation for s-polarized light

Figure 3.23: Contrast and suppression ratio versus standard deviation of intended layer thicknesses of 24-layer angular stray
light filter designs. Each plot shows the mean value as a line, with one standard deviation indicated by the surrounding color.

By assuming that it is allowable that only a certain percentage of the products of manufacturingmake
the cut, one can select the best samples. Taking the 90th percentile of all samples plotted previously
shows what would happen if only the best 10 percent of produced filters are considered. The results
of this are shown in figure 3.24. This shows that the non-periodic structure can outperform periodic
structures if production losses are accepted.

(a) Average contrast of best 10% of defect structures versus
standard deviation of layer thicknesses

(b) Average suppression ratio of best 10% of defect structures
versus standard deviation of layer thicknesses

Figure 3.24: Average contrast and suppression ratio of the best 10% of defect structures, in which all non-labeled gray lines
are the results from the periodic devices, with no permitted tolerance region.
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Reviewing the transmission intensity data of these selected defect structures shows in figure 3.25
that the average remains above 0.5, meaning they could feasibly be used in real applications.

Figure 3.25: Average �̄�𝑤 and �̄�𝑓 from best performing 10% of defect structures in terms of contrast.

Also noteworthy, though not explored further in this thesis, is the difference in transmission intensity
over a broader spectrum of wavelengths. Figure 3.26 shows that the non-periodic angular stray light
filter only allows transmission for a few select wavelength ranges, while the periodic filter allows trans-
mission in a relatively broad wavelength band. This implies the possibility of also using non-periodic
filters to filter out other wavelengths. This could be an added functionality, if an application calls for it.
However, at oblique angles a small range of wavelengths lower than the intended wavelengths will still
have a nonzero transmission due to the curve of the transmissive band.

(a) Transmission intensity spectrum of periodic filter of 24 layers with 2
layer period (orange line in previous plots).

(b) Transmission intensity spectrum of the non-periodic filter of 24
layers.

Figure 3.26: The transmission intensity of the periodic and non-periodic filter depending on wavelength and incoming angle,
displaying a very different distribution depending on periodicity.

3.4.2. Unintended spaceplate action
When evaluating the transmitted phase profile, an unexpected correlation emerges. It appears as if any
time a thin film stack has the desired transmission intensity profile, spaceplate action is automatically
guaranteed. The phase fits of the specific angular stray light filter discussed in the previous sections
can be seen in figure 3.27. In the region of high transmission, the phase profiles of the filter almost
perfectly coincide with the scaled free space propagation phase profiles.
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(a) Phase fit of simulated phase profile for p-polarized light (b) Phase fit of simulated phase profile for s-polarized light

Figure 3.27: Phase fit of simulated phase profile for both polarizations, with a compression ratio for p- and s-polarized light of
9.9533 and 13.4485 and Strehl ratios 0.9947 and 0.9816 respectively.

To ensure this is not a fluke, this behavior was also analyzed for a angular stray light filter with
𝜃𝑚𝑎𝑥 = 30. This also shows a very decent match of the phase within the optimized angular range.
Interestingly, the compression factor of this filter is very close to 1. This is somewhat consistent with
the relation implied by figure 3.7 in section 3.2, of having lower compression ratios for larger 𝜃𝑚𝑎𝑥.

(a) Phase fit of simulated phase profile for p-polarized light (b) Phase fit of simulated phase profile for s-polarized light

Figure 3.28: Phase fit of simulated phase profile for both polarizations, with a compression ratio for p- and s-polarized light of
1.0155 and 1.1726 and Strehl ratios 0.9566 and 0.8576 respectively.

Lastly, to ensure it is not an artifact or bug of some sort in the optimization code, a random structure
was generated with layer thicknesses between 150 and 300 nm and its transmission intensity depend-
ing on wavelength was reviewed, after which a wavelength was chosen for which it could technically
function as an angular stray light filter. Its transmission intensity and phase fit for p-polarized light can
be seen in figure 3.29. The transmission intensity profile shows some high values at higher angles,
since no optimization was performed on either phase or transmission of the structure.
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(a) Transmission profile of a random structure for p-polarized light
(b) Phase fit of simulated phase profile of random structure for

p-polarized light

Figure 3.29: Transmission properties of a random structure for p-polarized light at a wavelength of 1474 nm, with compression
ratio of 12.1602 and Strehl ratio of 0.9846.

In an attempt to find the cause of this phenomenon, the phase behavior of general thin film stacks is
evaluated here. To derive the phase dependent on incoming angle of light transmitted through an arbi-
trary thin film structure, one can attempt using the Bloch wavenumber 𝐾. As mentioned in section1.5,
within photonic bands, 𝐾 is a real number, which as a result means that the transmission phase de-
pendent on 𝜔 and 𝑘𝑦 is equal to 𝐾Λ, where 𝑘𝑦 = 𝑘𝑡𝑣 is the magnitude of the transversal component
of angular wave vector k. Important to realize is that this is equivalent to saying the phase dependent
on wavelength 𝜆 and incoming angle 𝜃, since 𝜔 = 2𝜋

𝑐 and 𝑘0 sin𝜃 = 𝑘𝑦. Then, taking a non-periodic
thin film structure as simply being a single period of a structure (meaning the thickness of the structure
equals Λ) and assuming the relevant angular and wavelength range to be within a photonic band, the
phase of transmitted light through that structure can be written:

𝜑 = 𝐾(𝜆, 𝑘𝑦)Λ (3.7)

Expanding 𝐾 around 𝑘𝑦 = 0 can lead to a parabolic phase at small angles (i.e. small 𝑘𝑦), which is
required to construct a spaceplate:

𝐾(𝜆, 𝑘𝑦) = 𝐾(𝜆, 0) +
1
2𝐾

”(𝜆, 0)𝑘2𝑦 + 𝒪(𝑘4𝑦) (3.8)

Then assuming small angles, one can formulate the phase relationship for a spaceplate:

𝑘𝑧𝑑𝑒𝑓𝑓 + 𝜑𝑔𝑙𝑜𝑏𝑎𝑙 ≈ 𝑘0𝑑𝑒𝑓𝑓 −
𝑘2𝑦
2𝑘0

𝑑𝑒𝑓𝑓 ≈ 𝐾(𝜆, 0)Λ +
1
2𝐾

”(𝜆, 0)𝑘2𝑦Λ (3.9)

Only taking non-global phase components, meaning the ones dependent on incoming angle, this
allows one to find the approximate compression factor:

−
𝑘2𝑦
2𝑘0

𝑑𝑒𝑓𝑓 ≈
1
2𝐾

”(𝜆, 0)𝑘2𝑦Λ (3.10)

𝑅 ≈ −𝐾”(𝜆, 0)𝑘0 (3.11)

This implies that for small angles, any structure that operates within a photonic band for a certain
angular and wavelength range will mimic free space, just as a spaceplate would, within that same
range. However, just from these equations, there is no guarantee that 𝑅 will be larger than one, and
so it does not guarantee that a thin film structure operating within a photonic band will make it a good
compressive spaceplate for that regime. One could try to find it through finding a formula for 𝐾”(𝜆, 0)
but this is a variable dependent on a series of matrices, which makes it very hard to do analytically, and
still won’t help in finding whether there is a fundamental rule at work here.
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There is also a somewhat intuitive way the compressive spaceplate behavior could be explained,
though it is very far from being a rigorous proof. Whenever a thin film structure successfully transmits
light, this implies there is a state in which the electromagnetic wave can sustain itself within the structure
through a (near) resonant state.

Whenever such a state is reached, it automatically means many reflections must occur inside the
thin film structure itself, as these reflected waves are necessary to uphold the resonance. Considering
only a single film for the moment, the situation is like what is shown in figure 3.30. When the out-
going rays experience a path length difference equal to 𝑗𝜋 with j an integer number, they are able to
constructively interfere with one another, effectively adding them up. Using the assumption that the
location of the observed outgoing beam would then be at the center of energy of the constructively
interfering beams, one could interpret this as a lateral shift of the center of the transmitted beam in
regards to the incident beam. This lateral shift, as described in figure 1.1 in the introduction, is the
reason a spaceplate can compress space.

Figure 3.30 only shows the result of transmission through a single layer, and so most of the trans-
mitted energy is most likely in the least shifted beam (since |𝑡| < 1 and |𝑟| < 1), making the lateral shift
quite small. However, when multiple layers are stacked atop one another, more internal reflections of
will occur, which will result in a bigger lateral shift of the center of energy of the beam. This may offer an
intuitive explanation of why angular stray light filters with a certain highly transmissive angular regime
also automatically attain compression ratio significantly higher than 1. However, as said before, no
actual formula or rigorous analytical explanation has yet been found to pinpoint the exact relation.

Figure 3.30: Transmission through single thin film where incoming field at interface is taken to be 1 and 𝜑 signifies phase
accumulated when crossing the film once. Image adapted from Tchenka et al., 2024.

3.4.3. Accounting for polarization dependent compression
Since angular stray light filters automatically compress space, once again, polarization dependent com-
pression factors need to be taken into account when designing a angular stray light filter. This is not
focusing on good spaceplate action with high compression numbers and perfectly shaped phase pro-
files, but instead onmatching the distance experienced by both p- and s-polarized light traveling through
the filter and this way ensure polarization independence. By optimizing for this, and the same param-
eters as before, one can again plot the maximum contrast found, versus the number of layers in the
structure, which is shown in figure 3.31. The contrast reached using this extra requirement is generally
slightly lower, which is to be expected since angular stray light filtering was no longer the sole priority
in the optimization algorithm. Still, for structures with less than 25 layers, the non-periodic filters are
shown to perform better than the periodic ones.
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(a) Max contrast for p-polarization (b) Max contrast for s-polarization

Figure 3.31: Maximum contrast found versus number of layers in the structure, optimized with tolerance region size of 0.5
degrees and with matching effective distances for p- and s-polarized light.

Using the previous plot, a angular stray light filter was chosen with 20 layers. At 20 layers, there is
still a significant difference in performance of the different filters, and the periodic solutions with periods
of 2 and 4 layers can both compare fairly at 20 layers as well since 20 is divisible by 2 and 4. The
chosen filter displayed compressive behavior, with a compression ratio for p-polarization of 7.6437 and
one for s-polarization of 7.6314, with the structure itself being 4.01 𝜇m thick. The Strehl ratios for p-
and s-polarized light were equal to 0.9989 and 0.9993 respectively. The resultant shift in experienced
effective distance was 0.05 𝜇m. Its transmission intensity profile can be seen in figure 3.32.

(a) Transmission intensity for p-polarization (b) Transmission intensity for s-polarization

Figure 3.32: Transmission intensity of angular stray light filter design with 24 layers, with ̄𝑇𝑝 = 0.9352 and �̄�𝑠 = 0.8915.

Repeating the same plots as for the filter in section 3.4.1, shows this filter has very similar properties.
The contrast and suppression dependent on tolerance region size for both polarizations both still show
a well-performing angular stray light filter, as can be seen in figures 3.33.
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(a) Contrast vs tolerance region size for p-polarized light (b) Contrast vs tolerance region size for s-polarized light

(c) Suppression ratio vs tolerance region size for p-polarized light (d) Suppression ratio vs tolerance region size for s-polarized light

Figure 3.33: Contrast and suppression ratio versus tolerance region size for 20-layer angular stray light filter designs.

Taking, once again, the best 10 percent of produced filters from 200 samples in which defects were
introduced using a normal distribution, this filter still proves to be outperforming its periodic counterparts,
as shown in figure 3.34. However, the constraint of matching polarizations did significantly lower the
contrast in comparison to the filter of section 3.4.1, even when accounting for the difference in the
number of layers.

(a) Contrast of best 10% of defect structures versus standard deviation
of layer thicknesses

(b) Suppression ratio of best 10% of defect structures versus standard
deviation of layer thicknesses

Figure 3.34: The result of choosing the best 10% of defect structures, in which all non-labeled gray lines are periodic solutions.
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Once again reviewing the resulting transmission intensity values shows that these structures have
average transmission intensities above 0.5 as shown in fig 3.35 which points to a reasonable feasibility
for real life applications.

Figure 3.35: Average �̄�𝑤 and �̄�𝑓 from best performing 10% of defect structures in terms of contrast.

3.5. Multifunctional spaceplates
As the previous section shows, it is possible to create spaceplates which have both stray light filtering
properties and a decent compression ratio. These would be a different type of multifunctional space-
plates than those shown by Shao et al., 2024 which are discussed in section 1.4. However, since the
transmitted phase profiles of the structures was not consciously optimized to fit perfectly, it may be
possible still to improve upon the phase fit. This may be done by adding back the term for phase fitting
(𝑤𝑓𝑖𝑡𝜎𝑓𝑖𝑡) into the figure of merit (FOM). The resulting maximum contrast dependent on the number of
layers can be seen in figure 3.36. This still shows that the non-periodic filter is significantly better than
the periodic counterparts at a number of layers below 25. However, due to the added constraint in the
optimization algorithm, the values have once again shifted down slightly.

(a) Max contrast for p-polarization (b) Max contrast for s-polarization

Figure 3.36: Maximum contrast found versus number of layers in the structure, optimized with tolerance region size of 0.5
degrees, for matching effective distances between polarizations and a good phase fit.

By focusing, once again, on the best performing structure with 20 layers, the transmitted phase and
intensity for each polarization of this structure are shown in figure 3.37:

Strangely, this spaceplate does not outperform the one shown in section 3.4.3, neither in its Strehl
ratio nor in the difference of effective distance. It appears adding the constraint only made the opti-
mization landscape more complex, while similar or better results are achievable solely by optimizing
for good transmission. However, if one wants to optimize to get close to a desired compression factor
R, then optimizing for the specific phase parabola may still prove fruitful.
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(a) Transmission intensity for p-polarized light (b) Transmitted phase for p-polarized light

(c) Transmission intensity for s-polarized light (d) Transmitted phase for s-polarized light

Figure 3.37: Transmitted intensity and phase profiles with compression ratios of 6.8713 and 6.7331 and Strehl ratios of 0.9943
and 0.9955 for p- and s-polarized light respectively, and a thickness of 4.92 𝜇𝑚 resulting in a difference of 𝑑𝑒𝑓𝑓 of 0.02 𝜇𝑚.
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Conclusions and outlook

Successful implementation of physical principles
Part of this thesis work included implementing the numerical side of the methods named in chapter 2 in
python code. In the case of transfer matrix methods, the characteristic method was already successfully
implemented by J. Pagé and Reshef, 2021, and was independently validated by implementing the
Fresnel approach and comparing results. The optimization protocol and evaluation protocols for all
designs were also rewritten specifically for this thesis, as was part of the plotting infrastructure. Lastly,
the numerical implementation for plotting photonic bands was also created for this thesis. The code is
available upon reasonable request to the author.

General properties of thin film spaceplates
This thesis has shown using simulations that spaceplates made by optimizing thin film structures have
certain properties. Firstly, as expected from the formulation of the limits as in section 1.3, at higher nu-
merical apertures, the achievable compression ratio lowers significantly. This also implies that achiev-
ing the same effective distance with a spaceplate at higher numerical apertures requires significantly
more layers, making their manufacturing increasingly difficult. The results also show that it is techni-
cally possible to design a multilayer thin film spaceplate in such a way that the effective distance is,
to a certain extent, the same for both p- and s-polarized light. This indicates polarization independent
spaceplates are possible using this design approach.

Another property displayed by the spaceplates in this thesis is that added requirements almost
always led to worse performance with respect to the original optimization targets. This, however, may
not be a general property of thin film spaceplates themselves, instead being caused by a more complex
optimization space with different local optima. Still, when doing inverse design through optimization
like this, adding requirements will usually worsen the performance overall, which should be considered
before using this design methodology.

Maximizing theoretical effective distances
The results of the simulations where single spaceplates are repeatedly stacked seem to indicate some
practical possibilities. Firstly, they show that under ideal manufacturing conditions, assuming no layer
thickness deviations or other defects, effective distances of a few centimeters are achievable for the
chosen parameters while retaining a Strehl ratio above 0.8, meaning diffraction will generally limit image
resolution more than introduced aberrations. These simulations show that transmission intensity within
the desired angular range does not have to suffer from repeating the structure in this way, and neither
does the compression factor.

Secondly, the results seem to indicate that there are some properties which makes the RMSE of
the phase profile increase at different rates with the number of repetitions. This could be a combination
of the quality of the unit cell phase fit, variance of layer thickness, or potential other factors yet to be
identified. Pinpointing these properties or blindly optimizing by writing an evaluating function for the
behavior may still improve the largest reachable effective distance assuming perfect manufacturing.

61
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In general, this shows that this strategy of repeating a spaceplate design is a decent way to extend
the theoretical effective distance of the structure.

Maximum effective distances considering manufacture
As soon as defects of reasonable size are introduced (say, ≥1 nm), the big difference in achievable
effective distance observed between designs in the perfect manufacturing case is significantly reduced.
The thin film structures are very susceptible to precision errors, and the bigger the error, the less impor-
tant the initial base structure properties become in the eventual effective distance reached. Achieving
manufacturing errors smaller than 0.5 nm across thousands of layers thicker than 100 nm is extremely
difficult Hattrick-Simpers et al., 2019 and so from these results can be concluded that physical space-
plates using thin film multilayer structures with a half-angle of 5 degrees will probably not reach effective
distances much larger than a millimeter. However, possible applications at such effective distances
may still be feasible, such as in small cameras (Peng, 2013, Steinich and Blahnik, 2012) and microlens
arrays for 3D-imaging (Yuan et al., 2018).

In conclusion, for single wavelength operation, thin film spaceplates show some promise, especially
for applications with needed effective distances <1 mm and with low numerical apertures.

Manufacturing error representation
The introduced manufacturing errors in this thesis are not completely consistent between sections. At
the different sections discussing manufacturing errors (sections 3.3.3 and 3.4) two different distributions
were used to represent defects in the layer thicknesses. In the first, a uniform distribution was used.
The decision to use a uniform distribution was made early in the project and reconsidered only after
most simulations had already been completed. In the latter case, the error distribution was changed to
a normal distribution, which should more accurately represent the distribution of manufacturing errors
that can occur in real life. Unfortunately, due to time constraints, the first of the two could not be redone
with a normal distribution, and is therefore a less realistic model of actual manufacturing processes.
However, the results still give an idea of the effect of a manufacturing error on the properties of the
spaceplates, and were kept in the thesis report to illustrate general trends. Should this particular study
very much be of interest, then repeating it for a normal distribution is advisable.

Even with a normal distribution however, the errors presented in this thesis still cannot fully represent
real manufacturing processes. In reality, manufacturing errors would not solely be uniform thickness
variations along the entire film. Instead, manufacturing errors exist in three dimensions, and can be
started by dust particles getting caught and those defects propagating through subsequent layers or by
local differences in relevant variables like local temperature, local deposition rates, and other factors.
Further research into error tolerances is advisable if these structures are to be produced, especially if
they require many layers. This could be done both in simulations and through physical experimentation.

Angular stray light filtering
The results of the exploration into monochromatic angular stray light filtering strongly suggest there
are situations in which a non-periodic, optimized structure will have better angular stray light filtering
properties than a periodic one with the same amount of layers, both in terms of contrast and suppression
ratio. Even when defects of a reasonable size (>3 nm) are introduced, the top ten percent of the non-
periodic solutions consistently outperform their periodic counterparts. Therefore, more research into
this specific application of optimized non-periodic thin film structures should be performed.

Additionally, when examining the spectral response difference between periodic and non-periodic
angular stray light filters, the simulations showed a higher selectivity in wavelength by the non-periodic
solution. This was not further explored in this thesis, but may point to an extra possible functionality of
these structures as spectral filters.

Lastly, an effect was observed where optimizing for a high transmission intensity in a certain angular
range starting at normal incidence will automatically give it a phase profile which satisfies the conditions
for a spaceplate with a compression factor significantly greater than one within that same angular range.
Since no rigorous analytical explanation has yet been found for this behavior, it should be studied more
extensively in order to get a greater understanding of thin film spaceplates.
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Multifunctional spaceplates
The results of this thesis definitively show that polarization independent spaceplates which also act as
angular stray light filters are a viable option, at least theoretically. They are able to compress space
with effective distances in the 𝜇𝑚 range for low numerical apertures (i.e. small 𝜃𝑚𝑎𝑥) and at a single
wavelength, while also filtering out transmission at higher incoming angles. Furthermore, figure 3.26
seems to suggest further optimization of filtering capabilities may be possible, specifically filtering out
a limited range of wavelengths around the desired band. This could lead to a spaceplate with two
different added filtering functions. Whether these functions could also be combined with those talked
about in Shao et al., 2024 is a topic which demands further research.

Metasurfaces
The technique discussed in this thesis was to make a spaceplate using thin film layers, and in that
way manipulate the transmitted phase profile. Multilayer thin film structures only allow for variations in
material choice, layer thicknesses, and numbers of layers. However, as mentioned in chapter 1, it is
possible to manipulate the properties of the transmitted electric field with metasurfaces, which have an
explicitly designed 2D geometry, which significantly expands the available design space.

Furthermore, combining thin film spaceplates or even metasurface spaceplates (like those dis-
cussed in section 1.2.5) may open up more possibilities for fully monolithic optical systems.

Optimization limitations
There are a few limitations inherent to using optimization processes for design. First of all, the optimiza-
tion itself operates solely based on the objective functions and constraints defined by the designer. The
consequence of this is that the input parameters can be tweaked and chosen precisely to attempt to get
the best result for a given situation. One could even try to optimize the input parameters themselves by
doing multiple runs with different inputs and evaluating the performance of the different designs. This
has not been attempted in this study, but may still yield better results than have been shown here.

Secondly, it is within the nature of optimization algorithms on landscapes with many local optima
that one can not be completely certain that a global optimum is reached. In the case of the optimizations
done in this thesis, it is likely that the global optimumwas not reached, due to a large optimization space
with as many dimensions as there are layers, which cannot feasibly be fully explored with the available
computing power. Therefore, better solutions most likely exist for most of the structures shown in this
thesis. However, the shown structures usually are already handpicked from a batch of optimization
attempts, and therefore it is assumed that they are somewhat close to the global optimum for their
specific input parameters.

Lastly, the scientific field of optimization is quite big and complex, and many different algorithms
could have been applied to optimize the given problems. The choice wasmade here to use optimization
techniques which are still relatively simple, and in the end only two optimization steps were used;
particle swarm optimization for a global search followed by the Fletcher-Reeves conjugate gradient
method to refine the found optimum. Whether or not other techniques could be more successful is not
certain, and may still deliver improvements.

Periodic angular stray light filter representation
The periodic representations of angular stray light filters were not optimized using a true ”infinite”
amount of layers. The situation called for a representation of periodic structures and simulating re-
peated structures and optimizing those was already very convenient due to pre-existing code, but op-
timizing using a theoretical infinite periodic structure is possible through Bloch theory, like that shown
in section 1.5 and appendix A. Using this method may still result in better periodic solutions than those
shown in this thesis and could hence be worth exploring.

Situational statements
Many of the statements made in this thesis can only be applied to real situations as long as they occur
under the conditions matching those in the simulations present in this study. For instance, non-periodic
angular stray light filters have only been found to be better than the periodic solution when using the
layer thickness boundaries of 150 to 300 nm for both structures, and only at certain numbers of layers.
This means that applying this knowledge to a known application will require a repeat of this study for
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the situation at hand, and may have different results. However, though situational, the study still shows
that this may be worth the effort, like in the given example.

Additionally, many of the spaceplates in this thesis, and also in the literature, are designed for
operation on either p- or s-polarized light, but not on both at the same time. When one imagines a cone-
shaped focusing beam of light onto a surface (such as one resultant of a parallel beam going through a
typical focusing lens), a simple linear polarizer would be insufficient to ensure the correct polarization
state at that surface. The needed polarization state is either radial or azimuthal polarization, for which
polarizers do exist (Edmund Optics, n.d.), though they can be rather costly. One should take this into
account when designing a spaceplate for their own application, which is also why the added interest in
polarization independence existed in this thesis.

Final remarks
This thesis demonstrates both the potential and the limitations of designing multilayer thin film space-
plates using inverse design through optimization techniques. While achieving large effective distances
remains a significant manufacturing challenge, the simulations suggest that distances of up to several
centimeters may be theoretically attainable. Moreover, the combination of angular stray light filtering
with spaceplate functionality appears promising, warranting further research in this direction.
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A
Photonic bands of periodic media

The theory in this appendix was taken from chapter 12 from Yariv and Yeh, 2007.
A periodic thin film stack is equivalent to a one-dimensional crystal, meaning one can move through

the structure with a distance equal to an integer amount of periods and find the same exact structure
as before the translation. As an equation:

𝑛2(𝑧) = 𝑛2(𝑧 + Λ) (A.1)
Where Λ is the length of a single period. An example of a finite version of such a structure can be seen
in figure A.1.

Figure A.1: A finite periodic structure with a period consisting of two layers. Figure adapted from Joannopoulos et al., 2011

Using the Bloch theorem, one can state that the electric field vector of a normal mode of propagation
in a periodic medium can be written as:

E = E𝐾(𝑧)𝑒−𝑖𝐾𝑧𝑒𝑖(𝜔𝑡−𝑘𝑦𝑦) (A.2)
Where E𝐾(𝑧) is a periodic function, depending on 𝐾 (the Bloch wavenumber) and with a period Λ

such that:

E𝐾(𝑧) = E𝐾(𝑧 + Λ) (A.3)
Furthermore, within a periodic medium, one can relate the forward and backward traveling wave at

either end of a single period inside the structure by using the transfer matrix formalism which is laid
out in section 2.1.1, which leads to a single 2x2 matrix representing the transformation done through a
single period (the unit-cell translation matrix):

( 𝑣𝑛−1
𝑤𝑛−1 ) = (

𝐴 𝐵
𝐶 𝐷 )( 𝑣𝑛

𝑤𝑛 ) (A.4)

Where 𝑣 and 𝑤 represent the forward and backward traveling wave, respectively and subscripts 𝑛
and 𝑛 + 1 represent the number of periods Λ at which they occur.
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By combining equations A.2, A.3 and A.4, one can come to:

( 𝑣𝑛−1
𝑤𝑛−1 ) = (

𝐴 𝐵
𝐶 𝐷 )( 𝑣𝑛

𝑤𝑛 ) = 𝑒
𝑖𝐾Λ ( 𝑣𝑛

𝑤𝑛 ) (A.5)

This is an eigenvalue problem, which can be solved to find:

𝑒𝑖𝐾Λ = 1
2(𝐴 + 𝐷) ±

√1
4(𝐴 + 𝐷)

2 − 1 (A.6)

Which is equivalent to:

cos𝐾Λ = 1
2(𝐴 + 𝐷) (A.7)

Finally, this allows derivation of 𝐾 itself:

𝐾(𝜔, 𝑘𝑦) =
1
Λ arccos(12(𝐴 + 𝐷)) (A.8)

In which A and D are themselves dependent on 𝜔 and 𝑘𝑦. Here 𝑘𝑦 is the transverse component
(meaning perpendicular to the optical axis) of the k-vector of the transmitted plane wave.

Additionally, one can see that finding the forward and backward traveling wave through a stack
consisting of many periods can now simply be expressed as:

( 𝑣𝑛
𝑤𝑛 ) = 𝑒

−𝑖𝑛𝐾Λ ( 𝑣0
𝑤0 ) (A.9)

In which 𝑛 and Λ are always real numbers. The consequence of equations A.8 and A.9 is that with
purely real Bloch wavenumbers 𝐾(𝜔, 𝑘𝑦), factor 𝑒−𝑖𝑛𝐾(𝜔,𝑘𝑦)Λ will merely represent a phase transforma-
tion of incoming light. However, should 1

2(𝐴 + 𝐷) exceed a value of 1, then 𝐾 will have an imaginary
component, which will lead to an evanescent wave, meaning it would exponentially decay through the
structure like in figure A.2a. These cases represent a photonic bandgap, a region of (𝜔, 𝑘𝑦) which can-
not be transmitted through the crystal structure, assuming it consists of an infinite amount of periods.
If there are defects in these structures, transmissive states may occur however, like in figure A.2b.
Explicitly taking this resonance into the period of the structure instead shows that the transmissive
property increases massively, as in figure A.2c.

An example of photonic bands of a perfectly periodic structure is given in figure A.3. The Brewster
angle in this specific case exists only in states that have no possible incoming angle from air, meaning
that for p-polarization it is possible to find a wavelength (range) for which no transmission is possible
at any angle.
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(a) Bragg mirror without defects

(b) Bragg mirror with single defect, being a double layer thickness

(c) Repeating structure of subsequent quarter-wave and half-wave thicknesses

Figure A.2: Electric field amplitude of light at normal incidence traveling through selected structures. (a) Exponentially decaying
waves in a Bragg mirror with refractive indices 3.48 and 1.44 with 10 periods. (b) The result of a single defect layer with

half-wave instead of quarter-wave thickness. (c) A periodic structure with alternating quarter-wave and half-wave thick layers.
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Figure A.3: Photonic bands of a quarter-wave stack with dielectric constants 𝜀 of 13 and 2. Incoming angles through air only
exist above the straight red line, the light line (𝜔 = 𝑐𝑘𝑦). The white dashed line represents the Brewster angle, causing a

crossing at B. The yellow shaded region between lower edge L and upper edge U represents the range of wavelengths that will
be reflected in air regardless of incoming angle. Figure adapted from Joannopoulos et al., 2011.



B
Fabry-Pérot spaceplate derivation

To come to equations 1.15 and 1.17, a comparison of the structure with a series of parallel LC-circuits
(electrical inductor capacitor circuits) was made (supplementary text of Chen and Monticone, 2021).
This comparison can be seen in figure B.1.

Figure B.1: a A single resonant structure. b A parallel LC resonator representing the structure in a. c A number 𝑛 resonant
structures in series. d A series of 𝑛 parallel LC resonators in series with quarter-wavelength transmission line segments in

between, representing the structure in c.

To make this comparison, a few assumptions are made. First and foremost, it is assumed that the
frequency of light traveling through the structure is very close to the first even Fabry-Pérot resonance.
Secondly, in this narrow band of frequencies the spacers of 𝜆0/4 give a global added phase of 𝜋/2
each, regardless of (angular) frequency. Lastly, the LC-circuit comparison assumes normal incidence,
meaning 𝑘𝑥𝑦 = 0. However, at oblique incidence it approximates the response relatively well, if a shift
of the resonant frequency 𝜔𝑟 = 𝜔𝑟(𝑘𝑥𝑦) is taken into account.

Taking the assumptions as true, this comparison can be made using the derivation found in the
supplementary text of Monticone and Alù, 2016, and in this case delivers:

𝐿 = 2𝜀1𝜂0
𝜋𝜔𝑟(𝜀1 − 1)(1 + √𝜀1 + 𝜀1)

(B.1)

𝐶 = 𝜋(𝜀1 − 1)(1 + √𝜀1 + 𝜀1)
2𝜀1𝜂0𝜔𝑟

(B.2)

According to Chen and Monticone, 2021, a single LC-resonator will then have the complex trans-
mission coefficient:

𝑡 = −2𝑖𝜔𝐿
−2𝑖𝜔𝐿 + 𝜂0 − 𝐿𝐶𝜂0𝜔2

(B.3)

By using the fact that 𝐿𝐶 = 𝜔−2𝑟 and by using parameter 𝛾0 =
𝜔2𝑟𝐿
𝜂0

one can rewrite to get:
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𝑡 = 2𝜔𝛾0
2𝜔𝛾0 − 𝑖(𝜔2 − 𝜔2𝑟)

(B.4)

By assuming then that 𝜔 ≈ 𝜔𝑟, the right term in the denominator can be rewritten:

𝜔2 − 𝜔2𝑟 = (𝜔 − 𝜔𝑟)(𝜔 + 𝜔𝑟) ≈ 2𝜔(𝜔 − 𝜔𝑟) (B.5)

This results in a complex transmission for a single resonator:

𝑡 = 𝛾0
𝛾0 − 𝑖(𝜔 − 𝜔𝑟)

(B.6)

With a non global phase:

arg (𝑡) = arctan(𝜔 − 𝜔𝑟𝛾0
) ≈ 𝜔 − 𝜔𝑟

𝛾0
+ 𝒪 [(𝜔 − 𝜔𝑟𝛾0

)
3
] (B.7)

Chen and Monticone, 2021 then states that for a chain of 𝑛 of these resonators the resonators
can be assumed to be decoupled if 𝜔 ≈ 𝜔𝑟. This makes the total complex transmission of the stack,
including the quarter wavelength spacers, equal:

𝑡 = 2𝑦(𝛾0𝜔𝑟)𝑛
(𝑖𝑦 − 𝛾0𝜔𝑟)(𝜔𝑟(𝜔𝑟 − 𝜔) − 𝑦)𝑛 + (𝑖𝑦 + 𝛾0𝜔𝑟)(𝜔𝑟(𝜔𝑟 − 𝜔) + 𝑦)𝑛

(B.8)

In which:

𝑦 = 𝜔𝑟√(𝜔 − 𝜔𝑟)2 − 𝛾20 (B.9)

This is then expanded in a Taylor series:

𝑡 = (𝑖)𝑛−1 [1 + 𝑖𝑛(𝜔 − 𝜔𝑟𝛾0
) + 𝒪(𝜔 − 𝜔𝑟)2] (B.10)

Here (𝑖)𝑛−1 represents the contribution of the spacers with 𝜋/2 per spacer, which is assumed to be a
global phase, and the right part of the equation represents the phase imparted depending on incoming
angle. By only looking at the phase contribution of the right term, this leaves the imparted phase of 𝑛
resonators as:

arg (𝑡) = arctan(𝑛𝜔 − 𝜔𝑟𝛾0
) ≈ 𝑛𝜔 − 𝜔𝑟𝛾0

+ 𝒪 [𝑛𝜔 − 𝜔𝑟𝛾0
]
3

(B.11)



C
Different situations of three-lens

spaceplate
This appendix shows the functioning of the three-lens system as a spaceplate in different situations.
This is to highlight the fact that regardless of position in the beam, the system will still work as a
spaceplate. It also shows that the light within the second space between lenses inside the system will
not always be collimated, underlining the need for the space between these lenses from a ray optics
perspective. All of the situations drawn out in this appendix have the same exact incoming/outgoing
angle. Ideal thin lenses are in black, and focal planes of the external lenses in red.

Figure C.1: Situation with focus at focal distance of last lens.
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74 C. Different situations of three-lens spaceplate

Figure C.2: Situation with focus before focal distance of last lens.

Figure C.3: Situation with focus behind focal distance of last lens.

Figure C.4: Situation with off-axis incoming beam, focus again at focal distance of last lens, showcasing the mirroring about the
optical axis.



D
Periodic angular stray light filters

For the sake of readability of figures, not all periodic angular stray light filter representations could be
shown in section 3.4. In total, there were six periodic filters, of which two were optimized with a period
of two layers, two with a period of four, and two with a period of six. Every pair had one version which
was optimized by repeating the period 500 times before evaluating the figure of merit, and one which
was repeated 1000 times instead. The intention is that this simulates the design strategy used when
designing a periodic angular stray light filter based on photonic bands, which are generated under the
assumption of infinite periodicity.

Of all designs shown here, consistently, the ones used in section 3.4 were the ones corresponding
to the brown and orange line in the plots shown in this appendix. They were chosen based on their
performance in the figures shown in this appendix, and so most other periodic solutions will have worse
performance than those shown in section 3.4.
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76 D. Periodic angular stray light filters

The contrast and suppression ratio versus the number of layers of each of the periodic designs for
a tolerance region of 0 degrees can be seen in figure D.1.

(a) Max suppression ratio (p-polarization) (b) Max suppression ratio (s-polarization)

(c) Max contrast (p-polarization) (d) Max contrast (s-polarization)

Figure D.1: Maximum contrast and suppression ratio found versus number of layers in the structure, for both p- and s-polarized
light, plotted assuming no tolerance region is permitted.
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Using 24 layers just as in section 3.4.1, the resulting contrast and suppression ratio of the periodic
designs can be seen in figure D.2. One of the periodic solution has a very low contrast at an approximate
tolerance region size of 80 degrees, which is due to a transmission intensity peak at this location. In
the worst cases, this could even become negative, as the definition for contrast assumes �̄�𝑤 > �̄�𝑓 and
otherwise will become negative.

(a) Suppression ratio versus tolerance region size (p-polarization) (b) Suppression ratio versus tolerance region size (s-polarization)

(c) Contrast versus tolerance region size (p-polarization) (d) Contrast versus tolerance region size (s-polarization)

Figure D.2: Contrast and suppression ratio found versus number of layers in the structure, for both p- and s-polarized light for a
24-layer structure.



78 D. Periodic angular stray light filters

Continuing with the 24-layer design, the mean contrast and suppression ratio at a tolerance region
of 0 degrees of the generated defect samples of all periodic designs are shown in figure D.3. Lastly,
the resulting best 10% of samples are shown in figure D.4. Here, the nonperiodic solution from figure
3.24 are still shown and colored, with all periodic solutions being grayed out.

(a) Suppression ratio versus standard deviation (p-polarization) (b) Suppression ratio versus standard deviation (s-polarization)

(c) Contrast versus standard deviation (p-polarization) (d) Contrast versus standard deviation (s-polarization)

Figure D.3: Mean contrast and suppression ratio found versus standard deviation of layer thicknesses, for both p- and
s-polarized light for a 24-layer structure with a tolerance region of 0 degrees.

(a) Average contrast of best 10% of defect structures versus
standard deviation of layer thicknesses

(b) Average suppression ratio of best 10% of defect structures
versus standard deviation of layer thicknesses

Figure D.4: Average contrast and suppression ratio the best 10% of defect structures, in which all non-labeled gray lines are
the results from the periodic devices, with no permitted tolerance region..
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