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Abstract
The cyber arms race has red and blue teams continuously at their toes to keep ahead. Increasingly ca
pable cyber actors breach secure networks at a worrying scale. While network monitoring and analysis
should identify blatant data exfiltration attempts, covert channels bypass these measures and facili
tate surreptitious information extraction. The many legitimate uses and widespread availability of DNS,
the “phone book” of the internet, make it an attractive protocol for such covert channels. Covert DNS
storage channels encode information in the payload of outbound DNS queries.

This thesis aims to assess the effectiveness of using machine learning methods to detect covert DNS
storage channels. Our literature survey identified distinct differences in 1) algorithm type, either un
supervised anomaly detection or supervised classification, and 2) the information source for features,
either isolated DNS queries or query sequences.

We performed experiments with (Extended) Isolation Forest algorithms for anomaly detection and
Random Forests for classification, combined with different feature set compositions to evaluate their
relative performance. Payloadonly features were derived from isolated queries and behavioral features
were extracted from timebased or fixedlength sliding windows over perdomain query sequences. We
evaluated our models using a largescale corporate DNS dataset of realworld proportions and a novel
dataset of connection tunneling traffic and simulated credit card exfiltration malware.

We found that the majority of experiments were able to achieve high detection rates of 98.6% or more
on a variety of storage channel threats, at low false positive rates. Classification models significantly
outperform anomaly detection models on threats seen during training. Evaluation on unseen threats,
however, revealed that generalization is difficult, provided the limited set of training threats and showed
anomaly detection models more capable at detecting a variety of threats than classification models. We
furthermore showed that feature sets with a behavioral component consistently outperform payload 
only features, although our experiments were inconclusive regarding the relative performance between
composite feature sets.

Given the prevalence of benign storage channels misusing DNS for legitimate data transfer, we rec
ommend rigorous filtering of training data beforehand to improve model optimization and evaluation.
Furthermore, extending the malicious training set with DNS commandandcontrol (C2) malware is a
promising future research direction to improve generalization of classification models.
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I like to think that the preface is the one part of your thesis that you reread when you’re older, bringing
back memories and producing a melancholy (or pitiful) smile while musing about bygone times. In
hindsight, everything seems easy. Looking back, however, neither takes into account other possible
outcomes nor the efforts spent at finding your way towards a moving finish line.
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1
Introduction

Increasingly advanced and capable actors are active at presentday cyber battlegrounds. Secure net
works are compromised at worrying scale, leading to numerous highlevel data breaches and the disclo
sure of sensitive information. This has resulted in a need to continuously monitor and analyze network
traffic in securitysensitive networks, in order to prevent exfiltration attempts. Every network packet
leaves a trace, but you need to know where to look.

The Domain Name System (DNS) is the phone book of the internet [60]. It allows you to specify host
names instead of IP addresses to reach other devices in a network. DNS is inextricably linked with
the contemporary internet and is as such widely available. Legitimate use of DNS entails looking up
resource records associated with a domain – e.g. an IP address. However, the nature of DNS and its
widespread availability have attracted actors with malicious intentions.

Covert channels are a means to communicate information “in a manner that hides the fact that a com
munication channel is actually established at all” [36]. DNS is a facilitator of a particularly stealthy
covert channel that allows for arbitrary data exchange, shrouded by benign interactions. Covert DNS
channels are not a novel threat: security researchers discussed their potential as early as in 1998
[33]. However, their prevalence today makes effective detection of covert DNS storage channels as
important as ever.

For instance, in 2014, U.S. retailers Sally Beauty and Home Depot announced that their payment
systems had been compromised and that credit card details were stolen. In both cases, a variant
of PointofSale (PoS) malware FrameworkPOS was used to scrape information from the memory of
payment terminals. While the Sally Beauty breach was limited to (reportedly) 25,000 payment details
due to themalwaremalfunctioning [48], HomeDepot reported over 56,000,000 credit card details stolen
during a period of six months [47]. FrameworkPOS uses a covert DNS channel to exfiltrate stolen
information [71].

Advanced actors use covert channels to surreptitiously communicate with and control compromised
devices. An advanced persistent threat (APT) is “an adversary that possesses sophisticated levels
of expertise and significant resources which allow it to create opportunities to achieve its objectives
by using multiple attack vectors (e.g., cyber, physical, and deception)” [20]. In 2019, APT WINNTI
GROUP was observed using an open source DNS connection tunneling tool for covert communication
[84]. Covert DNS channels are still used in cyber campaigns as of today [32].

The covert DNS storage channels used in these scenarios encode (or store) outbound information
in the DNS query. Optional downstream information is received via DNS responses. Queries to an
appropriately configured domain are resolved through an attackercontrolled DNS server that, as a
result, receives the encoded information. DNS provides for an attractive covert channel, because at
no point a direct connection is established between victim and attacker devices: queries are resolved

1



2 1. Introduction

via a (trusted) intermediate server.

Given the ever increasing amounts of network traffic produced in enterprise networks, manual inspec
tion of DNS traffic to uncover possible threats is infeasible. Moreover, detecting known threats is insuf
ficient given the diversity of storage channel implementations. Current research is therefore focused
at developing automated and generalizable methods, aided by the rise of machine learning in the field
of cyber security.

In recent years, there have been proposed many different methods to describe and classify DNS traffic
using machine learning. This work aims to assess and compare the effectiveness of different algorithm
types and feature engineering rationales to detect a diverse set of storage channel threats, comprising
opensource connection tunneling tools and data exfiltration malware.

1.1. Research Questions
This thesis is aimed at understanding the effectiveness of machine learningbased DNS storage chan
nel detection systems. We investigate the detection capability of different algorithm types as well as
(combinations of) features extracted from either isolated queries or query sequences. The main re
search question is therefore formulated as follows:

How effective are machine learning methods at detecting covert DNS storage channels?

We decompose the main question into the following three individual subquestions.

SQ1: In current literature, what (traditional) machine learningbased DNS storage channel detection
methods exist, what features are effective and how is detection capability measured?

SQ2: What is the difference in detection capability between unsupervised anomaly detection and
supervised classification?

SQ3: What are the effects of considering only payload features, only behavioral features or using
composite feature sets?

We first identify which current methods are effective at detecting DNS storage channels, which features
best describe storage channel characteristics and which properties of models are important to measure
detection performance. Based on these insights, we design classification and anomaly detection ex
periments using combinations of features extracted from single query instances and query sequences,
in order to analyze both the effects of different algorithm types and feature engineering rationales.

1.2. Threat Model
Given the diversity of legitimate as well as malicious DNS uses, we impose the following restrictions
on the problem setting considered in this thesis.

1. We only consider traffic valid by the DNS specification, as malformed DNS queries may be re
jected by legitimate DNS servers. In practical settings, when e.g. corporate networks require
DNS traffic to flow through internal DNS servers, these malformed queries would not reach the
malicious DNS server.

2. We assume that every storage channel uses a single primary domain. While storage channels
could possibly distribute queries across multiple domains, common DNS connection tunneling
tools use a single domain (e.g. [27, 29]), as have all four malware strains considered in this work
in the past ([22, 38, 49, 72]). This threat model is in line with other storage channel detection
research [16, 54, 62]. Note that our methods may still be able to detect multidomain storage
channel threats, as each domain can be viewed a distinct storage channel.
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1.3. Contributions
• We create a novel malicious DNS threat dataset, comprising iodine and dns2tcp connection tun
neling tools andBernhardPOS, FrameworkPOS,MULTIGRAIN andUDPoS credit card exfiltration
malware. We design and capture traffic from a challenging tunneling scenario, varying tunneling
parameters, and simulate all data exfiltration aspects of the respective malware at different time
intervals.

• We provide for the first time a comprehensive comparison between different DNS storage chan
nel detection methodologies based on either unsupervised anomaly detection and supervised
classification algorithms, using (combinations) of payload and behavioral features.

1.4. Outline
This work is structured as follows. Chapter 2 provides background information about the DNS pro
tocol and covert DNS storage channels. Chapter 3 contains a literature survey of current machine
learningbased detection methodologies and feature extraction techniques. Chapter 4 describes how
the realworld benign and simulated malicious datasets used in this research are collected and pro
cessed. Chapter 5 then describes our feature extraction and detection methods and experiment design.
Chapter 6 presents and analyzes the outcomes of our experiments. Chapter 7 discusses the context
in which the results are to be interpreted and provides recommendations for future work. Finally, the
conclusions and limitations of this research are presented in Chapter 8.





2
Background

In this chapter, we introduce background knowledge about key topics used throughout this thesis. First,
the purpose, terminology and syntax of the domain name system (DNS) are explained in Section 2.1.
Then, covert DNS storage channels and data encoding techniques are introduced in Section 2.2. Fi
nally, Section 2.3 describes different techniques to collect and analyze network traffic.

2.1. Domain Name System
The domain name system is a framework to store and retrieve arbitrary information associated with
a named host in a network. A common use of DNS is to retrieve the IP address associated with an
internet domain name. For example, the DNS lookup for the IPv4 address (Arecord) associated with
www.tudelft.nl returns (at the time of writing) 54.73.174.150. DNS can be considered the phone
book of the contemporary internet.

The DNS protocol was first introduced in 1983 to provide a consistent name space for network re
sources and a more descriptive and ergonomic alternative to using IP addresses directly. Its initial
purpose was to provide a mapping of host names to IP addresses, as applications started to span
multiple hosts and IP addresses changed dynamically [59]. Over the years, the DNS specification has
been extended considerably and now allows for a wide variety of information types.

DNS consists of three core components: the domain name space and associated resource records,
name servers and resolvers [60].

Domain Name Space / Resource Records
The treestructured domain name space defines the hierarchy of domain names within the domain
name system. Each node in the name space has one or more associated resource (data) records.
The hierarchy of an example domain name is illustrated in Figure 2.1.

Name Servers
Name servers describe the domain name space and resource records for one or more domains.
A name server is authoritative for a domain name when it provides its definitive resource records.
Nonauthoritative name servers can delegate (sub)domains to other name servers.

Resolvers
Resolvers facilitate the DNS protocol by searching for and providing the requested resource
records for a DNS query. Queries are resolved recursively: the name server for every part of the
queried domain name (righttoleft) is queried until the resolver reaches the authoritative name
server for a definitive answer.

DNS is a distributed and decentralized system in which has multiple zones (subspaces in the domain
name space) controlled by different entities. Every zone has an authoritative name server that provides
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6 2. Background

"com."
zone

root zone
(".")

"example.com." 
delegated zone

com ... ...

example

storage-
channel

covert

... ...

Figure 2.1: Tree structure of the domain name space, illustrated by means of example domain name “covert.storage‐
channel.example.com.”.

its definitive resource records. Authoritative name servers can delegate lowerlevel zones to other
name servers. Every zone has a (domain) name, except for the root zone, which has the empty label
[60].

The DNS hierarchy is illustrated by means of example domain name “covert.storage‐channel.
example.com.” in Figure 2.1. The example.com domain and its subdomains are assumed to be in the
same zone, which is a common scenario for e.g. websites.

DNS operates at Layer 7 (application layer) of the OSI networking model, in parallel with for example
HTTP, and uses port 53 by default. As DNS requests and responses are isolated transmissions and
do not require an open connection to a server, the stateless UDP protocol is used. Clients or servers
may elect for TCP, e.g. when the expected DNS response is too large for UDP [17]. A sideeffect of
using a stateless protocol is that DNS clients often repeat the same query, for example after a timeout
or even preemptively for performance reasons.

2.1.1. Terminology
This section introduces the DNS terminology used throughout this thesis. As DNS and its naming
conventions have evolved organically over the years, not all terms have an exact or nonambiguous
definition. We consider the RFC 8499 document “DNS Terminology” [35], published in 2019, to be
authoritative in this regard.

The different parts (labels) of a domain name, separated by a period, have a distinct purpose and
designation, introduced below. Refer to Figure 2.2 for a visual dissection of example domain name
“covert.storage‐channel.example.co.uk.”.

Label
Sequence of zero or more characters that identify a node in the domain name space. The root
label is the empty label that is the root node in the domain name space.

Domain name
A list of one or more labels, ordered by decreasing distance from the root. Labels are separated
with a period (‘.’) in domain names.

Host name
Historically used to identify actual machines (“hosts”) in the domain name space, but nowadays
considered a domain name that follows the preferred name syntax (see Section 2.1.2).
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public suffix domain

separator

fully-qualified domain name

second-level domain

top-level domain

root label

primary domain

subdomain

label

covert . storage-channel example. . co . uk .

Figure 2.2: DNS terminology illustrated by means of the dissected example domain name “covert.storage‐
channel.example.co.uk.”.

FullyQualified Domain Name (FQDN)
Domain name that is specified up to the root label.

TopLevel Domain (TLD)
The first label below the root label.

SecondLevel Domain (2LD)
The first label below the toplevel domain.

Public Suffix Domain
Ordinalfree term to denote domains under which endusers can directly register a domain name
[61]. Sometimes referred to as eTLD (effective toplevel domain).

Primary Domain
Domain name that comprises a public suffix domain and one label below.

Subdomain
Lowerlevel domain contained within another domain. In this research, we consider all labels
below the primary domain subdomains.

Every resource record associated with a domain name has a type. The record type describes the pur
pose of the record and the kind of information it contains (e.g. an IP address or arbitrary text). Record
types impose restrictions on the size and format of a resource record. A bidirectional communication
channel over DNS, for example, requires a different number of queries to transmit the same amount of
data depending on the resource record.

When DNS resolvers perform a lookup, the following terminology is used in the remainder of this thesis.
A lookup for a domain name and record type consists of a DNS request originating from a client and
a DNS response from a DNS server. A request contains, among other information, a DNS query (the
domain name) that is considered its payload. In similar fashion, the payload of a DNS answer contains
the requested resource record(s).

Common record types used in the remainder of this thesis are A (IPv4 address), AAAA (IPv6 address),
NS (nameserver) and TXT (arbitrary text data).

2.1.2. Syntax
The syntax of DNS domain names is fragmentarily defined in numerous RFC documents. We summa
rize the aspects relevant to our research below and consider RFC 8499 and RFC 2181 (Section 11)
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[17, 35] definitive information sources about DNS syntax.

Domain names consist of one or more labels. The size of a label is defined in octets1 (or: bytes).
Labels can be at most 63 octets long. The root label is unnamed; all other labels have to contain at
least one character. Labels are concatenated with a period (‘.’) to form a fullyqualified domain name
(FQDN) of at most 253 characters.

Host names only contain characters from the letters, digits and hyphens (LDH) subset. Although
the DNS standard does not explicitly impose restrictions on the content of labels – any arbitrary octet
is allowed, including e.g. unicode characters – the preferred name syntax [60] is to use only LDH
characters. Therefore, conforming programs transcode unicode domain names to punycode, a uni
code representation in ASCII [25]. Newer standards also allow the use of a leading underscore to
distinguish nonhostname domain names [17]. Hyphens may furthermore never lead or trail a label or
occur adjacently.

Conforming DNS domain names contain one or more labels with one or more LDHcharacters and
possibly underscores, although arbitrary bytes are not explicitly disallowed. We strengthen this notion
of validity by assuming that a valid, publicly accessible domain name has a primary domain name that
contains only LDHcharacters and has a suffix included in the Public Suffix List [61].

However, as DNS lookups may be issued for any domain name, “DNS servers must not refuse to
serve a zone because it contains labels that might not be acceptable to some DNS client programs”
[17]. Whether or not a perceived noncompliant request is processed is at the discretion of the DNS
server. Therefore, DNS queries have to be processed without presuming they conform to the standard
beforehand.

2.2. Covert DNSBased Storage Channels
Besides the benign and intented use of DNS described in the previous section, the protocol can also
be misused for arbitrary data exchange. Covert channels are a means to communicate information “in
a manner that hides the fact that a communication channel is actually established at all” [36]. Covert
channels using the DNS protocol are referred to as covert DNS channels.

2.2.1. Methodology
DNS is an attractive protocol for covert channels because, even though information can be exfiltrated
from a secure network in myriads of ways, there is no direct connection established with the malicious
server. Queries are often relayed via trusted (local) resolvers and DNS is widely available.

A covert DNS channel operates as follows. Any individual is free to register an available domain name.
Its zone can be delegated to another, authoritative nameserver, which will receive incoming queries
for the configured domain. When the delegated server is under our control, we can communicate
information using DNS queries to the registered domain by encoding it in the subdomain labels.

Assuming we have registered and delegated the example.com domain and wish to exfiltrate the
message secret, all we have to do is issue a DNS lookup for secret.example.com. The query
is possibly relayed and resolved by a local DNS server, which recursively looks up the autoritative
nameserver for first .com and then example.com. It then queries the server under our control, which
now receives the query and as such the encoded information. This scenario is illustrated in Figure 2.3.

Covert channels that “transfer information (...) by writing to a shared storage location” [2] are referred
to as covert storage channels. While there exists no exact definition, current research agrees that
the covertness of a covert channel is proportional to the difference between its theoretical capacity
and actual use, i.e. covertness ∝ (capacity  transmission rate) [36]. In the context of DNS storage
channels, the covertness is therefore dependent on the utilization of the maximum query capacity and
time interval between subsequent queries.

Covert DNS storage channels can further be characterized by their data flow. Figure 2.3 describes
a scenario with unidirectional data flow: the exfiltration is oneway and the optional DNS response
1We often measure the length of a label in characters, as ASCIIcharacters are one octet in size.
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A secret.example.comClient Local DNS server

Root server 
Zone: .

Authoritative name server 
Zone: .com.

(DNS response)

Authoritative name server 
Zone: example.com.

NS .com NS example.com

A secret.example.com

Trusted local network

(DNS response)

Received: 
"secret"

Figure 2.3: Schematic overview of a covert DNS channel, using a delegated DNS server.

is irrelevant. Bidirectional storage channels also use the DNS response to return a (malicious) pay
load. A common threat in either category is infostealer malware for unidirectional channels and DNS
(connection) tunnels using bidirectional data flow (see Section 3.1).

2.2.2. Data Encoding
Textual data can often be embedded asis in DNS queries. Other data may need to be encoded as LDH
characters for successful transmission. This section contains a brief overview of the data encoding and
encryption techniques used by the storage channel threats considered in this thesis.

Base encoding
Base encoding is a method to convert binary data to ASCII characters. A Basen encoding uses a
reduced ASCIIalphabet of size 𝑛 to represent log2 𝑛 bits of input data per character. Common 𝑛 values
include 64 (6bit chunks), 32 (5bit chunks) or 16 (4bit chunks). Although any printable ASCIIsubset
may be used for the encoding alphabet, conventions exist for Base64, Base32 and Base16 [78]. The
process of encoding THESIS in Base64 and Base16 is demonstrated in Figure 2.4.

UTF8 T H E S I S
Binary 01010100 01001000 01000101 01010011 01001001 01010011

6bit chunks 010101 000100 100001 000101 010100 110100 100101 010011
Decimal (index) 21 4 33 5 20 52 37 19
Base64 V E h F U 0 l T

4bit chunks 0101 0100 0100 1000 0100 0101 0101 0011 0100 1001 0101 0011
Base16 / hex 5 4 4 8 4 5 5 3 4 9 5 3

Figure 2.4: Demonstration of the encoding process of THESIS in Base64 and Base16.

Base16 is also referred to as hex encoding, as the hexadecimal numeral system represents numbers
using radix (base) 16.

Base encoding inherently introduces space overhead. Representing the 8bit input by 6bit chunks in
Base64 results in a string 8/6 ∗ 100% = 133.33% the original size. This is 160% and 200% for Base32
and Base16, respectively. The input data additionally has be padded to reach a length that is a multiple
of the chunk size.

Conveniently, the default Base64 alphabet – excluding the padding character – is equal to the (case
insensitive) LDH character set plus underscore. The default Base32 alphabet includes only lowercase
letters and digits and the Base16 alphabet contains only digits and the letters AF. All encodings can
therefore be used to construct valid DNS names.

The aforementioned (standardized) Baseencodings all encode to printable ASCII characters. How
ever, other alphabets can be used for Baseencoding as well, especially since the DNS specification
does not explicitly forbid nonprintable bytes in DNS query names. DNS tunnel iodine [29], for example,
uses a custom Base128 encoding.
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Encryption
Adversaries may hide the actual information transmitted via a storage channel with encryption. The
threats considered in this thesis that apply encryption use either a substitution cipher, an XOR cipher
or RC4 encryption. While an indepth description of each technique is beyond the scope of this thesis,
a brief overview is included below.

Substitution cipher Provided a mapping from plaintext units to ciphertext units, substitute each unit it
in the plaintext with its corresponding ciphertext. Units are often single letters, and
plaintext units for which no substitution exists are passed through.

XOR cipher Additive cipher that perfoms a bitwise XOR (⊕) operation between a plaintext and
encryption key. The key is repeated when it is shorter than the plaintext.

RC4 Symmetric stream cipher that constructs a ciphertext by performing a bitwise XOR
between the RC4 keystream, based on an encyption key, and the plaintext.

RSA Asymmetric publickey cryptosystem that relies on large prime number factoriza
tion for security. Encrypts the plaintext using a RSA key, commonly 1024 to 4096
bits in size.

The output of any encryption algorithm can be (Base) encoded to produce valid LDHciphertext for use
in DNS queries.

Benign Storage Channels
Covert DNS storage channels, i.e. with the purpose of surreptitiously transferring information, are
considered malicious by definition in this work. However, regular DNS traffic may contain lookups that
resemble covert storage channels, but do not have malicious intent.

Chen et al. [21] examined disposable domain names, designated for onetime use, similar to DNS
storage channel queries. The authors show a number of prevalent examples: McAfee embeds file
hashes in a DNS query to establish file reputation scores and Google has used disposable domains
for an IPv6 availability experiment. Two such domain names (from [21]) are for example:

0.0.0.0.1.0.0.4e.135jg5e1pd7s4735ftrqweufm5.avqs.mcafee.com

p2.a22a43lt5rwfg.ihg5ki5i6q3cfn3n.191742.i1.ds.ipv6‐exp.l.google.com

We refer to DNS storage channels that (mis)use DNS for data exchange without malicious intent as
benign storage channels.

2.3. Network Traffic Analysis
In this section, we introduce three techniques to capture and analyze DNS traffic: packet capture, flow
monitoring and traffic analysis. Each method provides a different level of granularity.

Traffic that passes through (part of) a computer network can be intercepted and logged with a packet
analyzer. The resulting packet captures (or pcaps) contain decoded copies of the network packets in
the captured data stream.

Pcaps provide access to the individual fields of packets and are as such suitable for e.g. analyzing
lowlevel network problems. This level of detail, however, comes at a cost as packet capture requires
expensive hardware and substantial infrastructure for storage and analysis in highspeed networks [39].

A less computationally expensive alternative to packet capture is flowmonitoring. Flows describe sets
of IP packets that are aggregated by a common properties, e.g. source and destination IP, protocol
and port number [39]. Flows describe only the metadata of a connection (inbound and outbound bytes,
TCP flags, etc.).

Flow monitoring is too limited for this research, because flows only describe connections between
users and DNS servers. While anomalies in these statistics could possibly be used to identify hosts
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that use highthroughput tunneling, lowerthroughput exfiltrations fall well within the bounds of benign
DNS flows.

Traffic analysis is a compromise between packet capture and flow monitoring. Specialized tools an
alyze packet captures and generate traffic logs that describe every connection – much like flows – but
annotated with the salient details of that connection.

Zeek (formerly Bro) is a passive, opensource network traffic analyzer [64]. Zeek can analyze DNS
traffic and generates (among others) a log file that describes every observed DNS lookup. This traffic
log contains all decoded DNS packet fields, without other lower level (IP) packet information. Zeek
provides the required level of detail, i.e. the timestamp, query name and query type of DNS queries,
without the storage overhead of pcaps. Zeek DNS logs are used as data source in this thesis.

2.4. Summary
In this chapter, we provided background knowledge about key concepts used throughout this thesis.
The purpose, terminology and syntax of the domain name system protocol was explained in Section 2.1.
We introduced the concept of DNS storage channels that (mis)use DNS by storing arbitrary information
in DNS queries in Section 2.2. Unidirectional storage channels – commonly infostealer malware – only
exfiltrate information; bidirectional storage channels tunnel arbitrary connections by facilitating both
sending and receiving.

Furthermore, we provided a brief introduction to Baseencoding, data encryption techniques used to
encode and obfuscate information in DNS queries and benign storage channels. Lastly, we described
three techniques to capture and analyze DNS traffic in Section 2.3: packet capture, flow monitoring
and traffic analysis. Opensource network traffic analyzer Zeek is used to process DNS traffic in this
thesis.





3
Literature Review

This chapter provides an overview of research efforts that have been made in the field of DNS storage
channel detection. The purpose of this chapter is to answer the first research question: “In current
literature, what (traditional) machine learningbased DNS storage channel detection methods exist,
what features are effective and how is detection capability measured?”.

The scope of this review is defined by the problem setting and research questions. We only include
works that attempt to detect DNSbased storage channels with (classic) machine learning techniques,
i.e. with manually derived features, in order to be able to combine feature sets. Papers that focus on
e.g. DNS timing channels are excluded under our threat model.

Furthermore, works that rely primarily on features extracted from DNS response payloads are only
included if they provide valuable additional insights, as these features are not descriptive of unidirec
tional storage channel threats.

This chapter is structured as follows. Firstly, an overview of common research subjects is provided in
Section 3.1. Section 3.2 then surveys features used to describe these threats and Section 3.3 contains
an overview of the methods and algorithms used for detection. Section 3.4 summarizes common
performance evaluation measures and attempts to define detection capability. Lastly, related work
is briefly surveyed in Section 3.5.

3.1. Threat Landscape
Different types of DNS storage channels are considered in current literature. It is important to establish
the nature of these threats, in order to better understand the detection methods. We identify two threat
categories: connection tunneling (Section 3.1.1) and arbitrary data transfer (Section 3.1.2). Most re
search focuses only on tunneling: all of the surveyed works use these threats for evaluation. Arbitrary
data transfer is only considered by [1, 16, 26, 62, 67, 73].

3.1.1. Connection Tunneling
DNS tunnels relay arbitrary networking data via DNS by encapsulation of its packets, i.e. they pro
vide a means to tunnel another protocol over DNS. Tunnels require both a clientside and serverside
component to split and reassemble tunneled networking data [73].

Upstream data is encoded in the DNS query name, downstream data is sent back via the DNS
response. As DNS requests have to be initiated at the client, tunneling tools poll for queued downstream
data at regular intervals [29]. Because of the stateless nature of DNS, tunneling tools implement a
custom TCPlike protocol on top of DNS to maintain the order and integrity of the transferred data [12].

A wide variety of open source and readily available tunneling tools exist. Table 3.1 contains an overview
of research subjects observed in the surveyed works. We briefly describe the prevalent iodine, dem
bourHSCOutilsDns2tcp2007 and dnscat2 tunneling tools below, which differ at the level of encapsula
tion, data encoding and resource record types used.

13
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dns2tcp TCPoverDNS port forwarding tool that encapsulates connections at the TCP level [27].
The serverside application specifies available resources (ports) that are forwarded using
a DNS tunnel upon client request. Dns2tcp supports TXT and KEY record types and uses
Base64 for both up and downstream data encoding.

dnscat2 Provides a custom CommandandControl (C2) channel over DNS and also supports tun
neling of any TCP connection (e.g. SSH sessions) [12]. Combinations of TXT, CNAME, MX,
A or AAAA query types are supported and the up and downstream data is hexencoded.

iodine Highly configurable IPv4overDNS tunneling tool that encapsulates connections at the
IP level [29]. Iodine requires a dedicated (virtual) TUN/TAP adapter, all of whose traffic
is tunneled over DNS. Upstream data can be encoded with either Base128, Base64 or
Base32 and downstream queries use NULL, PRIVATE, TXT, SRV, MX, CNAME or A record
types. Downstream data is optionally compressed to increase throughput. Iodine probes
the configured DNS server on initialization to find the optimal tunneling parameters.

Connection tunneling is ergonomic: existing applications or protocols can be used as if there was
no tunnel. Tunneling, however, provides little control over the emitted query structure and causes
significant overhead (up to 1500% in [58] and 2000% in [83]).

3.1.2. Arbitrary Data Transfer
Arbitrary data transfer over DNS, without other protocol constraints, allows for more finegrained con
trol over the query structure and exfiltration schedule. Adversaries can tune their exfiltration to make
detection as difficult as possible.

The main threats in this category are malware: Remote Access Trojans (RAT) that establish a C2
channel over DNS and infostealer malware that exfiltrate credit card details. Besides malware, other
research subjects include a tool for file transfer over DNS and custom exfiltration scripts.

As with DNS tunnels, the main distinction between threats is based on the upstream data encoding
and query types. The exfiltration schedule (or timing) is also relevant, as the frequency is often low to
prevent detection.

Saeli et al. [73] evaluate their detection method using numerous realworld malware samples, from
which DNS traffic was captured in a sandbox environment. These threats comprise Remote Access
Trojans (RAT) and PointofSale (PoS) malware that use Base32, Base64, hex or custom data encod
ings and optionally encrypt the transmitted information. The authors also use the dnsfilexfer tool to
transfer arbitrary files via DNS.

Nadler et al. [62] simulate the FrameworkPOS and Backdoor.Win32.Denis malware variants. The
FrameworkPOS simulation exfiltrates three sets of Base64encoded credit card details per second.
Beaconing queries with a custom encoding from Backdoor.Win32.Denis were generated every 1.5

Table 3.1: DNS tunneling tools used in current literature.

Name Description Used by

dns2tcp Opensource tunneling tool that forwards TCP ports over DNS. [3, 4, 6–8, 14, 16, 54,
62, 73]

dnscat2 Opensource C2 and connection tunneling tool. [9, 16, 54, 73, 75]
iodine Opensource IPv4overDNS tunneling tool. [6, 7, 14, 16, 41, 54,

62, 73, 75]

Cobalt Strike Commercial adversary simulation and red team operations software. The DNS
Beacon feature establishes a communication channel over DNS.

[16]

DNScapy Opensource tunneling tool to encapsulate SSH connections. Uses Python pack
age Scapy for packet manipulation.

[14, 73]

dnscat Opensource IPoverDNS tunneling tool. Unrelated to dnscat2. [26]
OzymanDNS Opensource tunneling tool that encapsulate SSH sessions. [54, 75]
TUNS Simple opensource IPoverDNS tunnel. [14]
YourFreedom Allinone firewall and proxy bypassing tool, with DNS tunneling mode. [73]
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seconds. The exfiltration intervals are based on incident reports of realworld campaigns in which the
malware was used.

Das et al. [26] synthesize four datasets of which one is based on the BernhardPOSmalware. These
queries contain a Base64encoded credit card number and a fixed primary domain.

Ahmed et al. [1] use the DNS module of opensource Data Exfiltration Toolkit (DET) to encode and
encrypt random credit card details in DNS queries. DET uses AES256 to encrypt information and hex
for data encoding. The authors further evaluate their system with a small sample of 17 queries from
PoSmalware (BernhardPOS, FrameworkPOS) and RATmalware (DNSMessenger, DNSpionage).

A custom DNS exfiltration mechanism is used in two other works. Buczak et al. train and evaluate
their system on data from their Pick Pocket tunneling tool, which was “created with the purpose of
circumventing IDS defenses” [16]. Preston [67] creates a comprehensive DNS exfiltration suite that
varies numerous parameters, including the amount of data exfiltrated, record type, data encoding, use
of encryption and query lengths.

3.2. Features
This section provides an overview of the machine learning features used in current literature to de
tect DNS storage channels. In machine learning, features are individual measurable quantities that
describe an observed phenomenon [74]. In order to effectively detect storage channels, informative
and descriptive features have to be engineered that capitalize on the difference between benign and
malicious DNS traffic. Current literature proposes many such features1.

Most works share common feature engineering rationales: their features are based on storage channel
characteristics or benign traffic characteristics and consider the limitations of the DNS specification.
Some works also consider the practicality of deployment (e.g. [26]) or take privacy implications into
account (e.g. [42]).

A major distinction between observed features, however, is the information source from which they
are derived. We first describe singleinstance features in Section 3.2.1 and summarize query sequence
features in Section 3.2.2

3.2.1. SingleInstance Features
Singleinstance features, or payload features, are extracted from a single DNS packet or query. Be
cause the surveyed works use different combinations of features to detect different threats, we provide
a thematic overview based on the underlying feature engineering rationale.

Query space utilization
By definition of DNS storage channels, all data is stored in the DNS query name, which is restricted by
the standard to at most 253 characters. Storage channels have a tendency to use more of the available
query space to increases their efficiency.

The following four features that describe query space utilization in current literature are derived
from either “pockets” in DNS packets where data can be stored without affecting the DNS process [16],
experimental evidence from the datasets used [54] or prior success in related work [42].

Packet size [7, 16, 42, 54]
The size of the IP packet or encapsulated DNS packet.

Query length [1, 7, 16, 26, 42, 62, 75]
The length of the DNS query name. Some works only consider the concatenated subdomains
to remove the influence of the primary domain length. Yu et al. [85] additionally derive the ratio
between processed and original query length.

Open space [16]
Describes the lack of query space used, calculated as 253 − query length.

1N.B.: based on the scope of this review, features derived from the payload of a DNS response are omitted. DNS responses
are fully controllable by malicious actors and are not used by unidirectional storage channels.
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Fill ratio [73]
The fraction of available query space used, calculated as query length

253 .

Amajor concern with query space utilization features is the fact that storage channels do not necessarily
use long queries. While these features may be effective at separating tunnels from other DNS traffic,
lowthroughput malware would be indistinguishable from benign traffic.

These features should also take the length of the primary domain into account, or queries to benign
but long primary domains would inadvertently appear more suspicious.

Query structure
Using more query space must result in either longer or more labels in a DNS query. Therefore, the
amount or labels or label lengths might be predictive of storage channels.

Ahmed et al. [1] demonstrate that the vast majority of benign DNS queries have an average label
length of at most 10 characters.

Number of subdomains [1, 16, 26, 85]
The total number of subdomains, or all labels in a FQDN.

Average subdomain length [1, 67]
The average length of all subdomains, or the average length of all labels in a FQDN.

Maximum subdomain length [1, 16, 73]
The length of the longest label or subdomain in a FQDN. Saeli et al. [73] use the ratio between
the longest label and maximum label length of 63 characters instead.

Because information can be freely divided over labels in a query, query structure features are most
effective when used together, as a change in one feature also influences other features (given the
same amount of characters in a query).

As with query space utilization features, the structure of the primary domain should again be taken
into account. Private suffixes with many labels would else reduce the effectiveness of these features.

Information density
As the purpose of DNS storage channels is to transfer information, measuring the information density
(or: randomness, uncertainty) in queries has proven to be an effective predictor of storage channels.
The reason behind this is twofold:

1. Increasing information density by compressing query names allows for shorter queries that con
tain the same amount of information, or for more information contained in queries of the same
length

2. Welldesigned encryption algorithmsmake it difficult to distinguish ciphertexts from random noise,
hence have a high information density

The following three features are used to measure information density in current literature. 𝑋 denotes a
DNS query name.

Entropy [1, 7, 14, 26, 42, 54, 62, 67, 73, 75, 85]
(Shannon) entropy [76] is a widely used measure of the uncertainty of a random process. Char
acter entropy in the context of DNS query names describes the average amount of information
conveyed per character. Given a sequence of characters 𝑋, character entropy is defined as:
𝐻(𝑋) = −∑𝑐∈𝑋 Pr(𝑐) ⋅ log2 Pr(𝑐)
Entropy with the base2 logarithm is measured in bits. Character entropy values are bounded by
the number of possible characters, i.e. log2 64 = 6 for LDHqueries and log2 256 = 8 for queries
with arbitrary byte values.
Besides (single) character entropy, other feature variants include bi or trigram entropy [54], nor
malized entropy [26], the entropy of only LDHcharacters [62], the maximum entropy between the
full query and longest label [73] or the (binary) entropy of the full DNS packet [7].
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Gini impurity [85]
The Gini impurity of a character sequence measures the probability that two randomly selected
characters from the character distribution are not the same. Gini impurity is calculated as follows.
𝐺(𝑋) = 1 − ∑𝑐∈𝑋 Pr

2(𝑐)
This measure is closely related to character entropy, but is bounded by zero (all characters are
the same) and one (all characters are different).

Compressed query length [65, 75]
The length of the DNS query name after compression, using e.g. gzip or bzip compression algo
rithms. A more rudimentary approach to measuring information content.

Entropybased features have a nontrivial relation to the query length. The maximum entropy of short
queries is bounded by the query length, as fewer possible characters could have been used. The
maximum entropy of a query of length 8 is for example only log2(8) = 3. Normalizing by query length
(metric entropy, 𝐻/|𝑋|) to mitigate this effect, however, would generate high values for very short queries
(e.g. length 1 or 2), which is not the intended effect of this feature.

Alternatively normalizing by maximum entropy (efficiency, 𝐻/𝐻𝑚𝑎𝑥) has drawbacks as well. The
amount of possible characters is used to calculate the maximum entropy, but LDHcharacters are far
more prevalent than other arbitrary bytes. Regardless, this method too would result in high values for
short query names.

Lexical properties
Lexical features are related to the words or vocabulary of a language. We adopt a loose interpre
tation of language that also includes features influenced by the DNS (preferred name) syntax (see
Section 2.1.2).

The following four features observed in current literature exploit either the difference in character distri
bution between benign and malicious traffic or draw on similarities with human languages. 𝑋 denotes
a DNS query name.

Character type frequency [1, 16, 26, 67, 73, 85]
The intuition behind character type features is that benign traffic uses the preferred name syntax
and encrypted or encoded traffic does not [1].
Different features variants either describe the absolute count or relative frequency of character
groups. The features with their corresponding character sets are included below.

Uppercase count [1] [AZ]
Numeric count [1] [09]
Lowercase ratio [26] [az]
Nonlowercase ratio [85] ^[az]
Uppercase ratio [26, 73] [AZ]
Numeric ratio [26, 73] [09]
Alphabetic ratio [26] [azAZ]
Alphanumeric ratio [67] [azAZ09]
Distinct ratio [16] {𝑐 ∈ 𝑋}

Ngram distribution [73, 85]
Character ngrams are contiguous overlapping character subsequences of length 𝑛. The set of
bigrams for “NGRAM” is for example {NG, GR, RA, AM}. The frequency distribution of a collection of
ngrams is expressive of the underlying dataset. Born and Gustafson [11] empirically show that
bi and trigram models of DNS tunneling traffic are significantly different from those of a corpus
of English texts.
Yu et al. [85] train bi and trigram character models of English words and calculate percentile
based scores for each query name. Saeli et al. [73] create uni and bigram models of English
and Italian corpora and sum the statistical distances between these distributions and those for a
given query name.
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Longest meaningful word (LMW) ratio [62, 67]
The longest subsequence of characters in a DNS query label that exists in a predefined vocabu
lary of “meaningful” words, divided by the total query length.
This feature is presumed to be effective as “subdomains [usually] contain meaningful [and read
able] English words” [62].

English content ratio [67]
Similar to the LMWratio, defined as the number of characters that represent English words,
divided by the total query length. The English content is calculated by recursively searching for
the longest English word in the sequence of remaining characters.

Features based on human language characteristics are inherently biased towards those languages.
The underlying assumptions about DNS traffic are not necessarily valid in every deployment setting.
The quality of ngram features depends further on the comprehensiveness and diversity of the training
corpora.

DNS usage
The final category of singleinstance features describes uncommon query types and unique query traffic
characteristics.

Query type [16, 54, 62, 75]
Query (or: record) types have a characteristic distribution in normal DNS traffic, e.g. A, NS and
PTR records are very common, while NULL records are not [54, 85]. DNS tunneling tools often
use uncommon record types that hold more information than other (common) types [29].
The query type can be used as categorical singleinstance feature by e.g. onehot encoding [75].

Request / response delta [54, 85]
While not strictly a singleinstance feature, when both DNS request and corresponding response
packets are available for feature extraction, the time delta between those packets is descriptive
of DNS storage channels. Liu et al. [54] observe that the uncached unique queries of storage
channels take longer to resolve than the (often) cached benign queries.

A major concern of query type features is that they are fully controllable by an adversary. While DNS
tunneling tools may have to resort to obscure query types for efficiency, arbitrary data exfiltrations can
simply use the common A record type to appear benign. Also, the response delta feature is not only
subject to DNS server behavior, but to any networking irregularities. This feature may therefore be
unstable in unreliable networks.

3.2.2. Behavioral Features
Singleinstance features may not be descriptive enough of storage channels that resemble benign DNS
traffic. The context in which particular queries exist then helps to determine whether or not they are
malicious. This context can be provided by analyzing query sequences. Query sequence features
describe the behavior of storage channels and are also referred to as behavioral features.

This section provides an overview of query grouping techniques for feature extraction, as well as as
overview of common behavioral features.

Aggregation Methods
In order to generate query sequences, isolated queries have to be grouped by a common denominator.
This denominator determines which entities are ultimately classified as suspicious, e.g. endusers or
primary domains2. Four different aggregation levels are used in current literature.

Time [3, 4]
Timebased aggregation groups DNS traffic by time intervals, regardless of origin, destination or
primary domain.

2Note that aggregation options may be restricted by the underlying dataset. In our research, for example, client IP addresses
cannot reliably be determined (see Chapter 4), which prohibits peruser query sequence analysis.
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Domain [16, 62, 67]
Perdomain aggregations group queries that share a common suffix. This common suffix is e.g.
the full primary domain or the second and top level domains.

User + Domain [16, 26, 85]
User + Domain aggregations group queries by origin IP and domain. Note that user in this context
may also refer to a (resolving) DNS server, depending on the packet capture position in the
network.

User + Server + Domain [54]
This aggregation considers source IP, destination IP as well as domain.

Perdomain aggregations are able to identify isolated storage channels, as, by our definition, storage
channels exfiltrate to a single primary domain. Timebased aggregations, in contrast, identify suspi
cious temporal activity that has to be manually analyzed in order to determine the actual threat [41].

Given a sequence of aggregated queries, features can be extracted by either reducing the query group,
or by using a sliding window.

Sequence Reduction [3, 4, 26]
Sequence reduction considers all queries in the group, and is therefore able to incorporate all
available information per group at once. This technique produces one feature vector per group.
Aiello et al. [3, 4] extract statistical features from queries in contiguous, nonoverlapping time bins.
Das et al. [26] extract features from the concatenated subdomains of all queries with a common
primary domain.

Sliding Window [16, 54, 62, 67, 85]
Sliding (or: rolling) window feature extraction operates on a sliding partition of queries in the
sequence. The window is either statically sized, i.e. contains a fixed number of queries, or
dynamically sized based on a (time) offset. Sliding window analysis produces one feature vector
per window, i.e. as many feature vectors as observations when sliding over queries.
Compared to the sequence reduction approach, sliding windows are more memoryefficient as
only the queries in the current window have to be retained. Sliding windows can also be used in
streaming settings where not all data is available beforehand.

Time Nadler et al. [62] slide over contiguous time bins instead of queries. The authors rec
ommend a window size of 24 and 15 minute bins. The use of time bins reduces the
required processing power of the system while still retaining its ability to detect exfiltra
tions that occur within 24 ⋅ 15 = 360minutes. Features not related to query frequencies
are extracted from the concatenated payloads in the window.

Fixed Buczak et al. [16] use a sliding window of size 50 for feature extraction and Preston [67]
computes its windowed features in a window of size 20. Liu et al. [54] experiment with
fixed window sizes between 1 and 20.
Fixed sliding windows can identify extremely slow exfiltrations, as the time interval be
tween queries is ignored. However, this can also be achieved by time windows of
sufficient length, as demonstrated by Nadler et al. [62].
Fixed windows have predictable space complexity, i.e. they bounded by the number
of possible aggregations in the dataset (e.g. primary domains) and the size of the
window. Dynamically sized sliding windows, however, may grow arbitrarily large for
highfrequency domains.

Hybrid Yu et al. [85] use a hybrid window with a fixed capacity that optionally expires queries
based on a time delta before the capacity is reached. The motivation behind this hybrid
approach is to “guarantee the data freshness and preserve storage space” [85].

Aggregation levels and feature extraction techniques influence the resulting dataset. Class imbalance,
for example, decreases when using a perdomain aggregation in combination with sequence reduction,
as there are fewer distinct primary domains than queries. It is furthermore only possible to combine
behavioral features with singleinstance features when using sliding window analysis.
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Features
This section provides an overview of query sequence features used in current literature. Most query
sequence features are grounded in storage channel characteristics: high query frequencies and/or
many unique queries. These behavioral storage channel traits are invisible when only looking at single
instances.

Singleinstance feature statistics [16, 54, 62, 67, 85]
Many works derive statistical features from separate singleinstance features in the window.
These features include the average query length [62], average subdomain length [67], total en
tropy of all payloads in the window [85], the mean and variance of the request / response delta,
request packet size and entropy features [54] and average LMWlength or LMWratio [62, 67].
Aiello et al. [3] and Buczak et al. [16] consider the average, variance, skewness and kurtosis
of all windowed features. Yu et al. [85] use the count, sum, min, max and average values per
singleinstance feature in the window.

Query volume [73]
The number of queries in the window. Saeli et al. [73] exclude DNS retransmissions from this
count.

Unique query volume [62, 67, 73]
The number of unique queries in the window.

Unique query ratio [62, 67]
The amount of unique queries, divided by the total number of queries in the window.

Unique subdomain volume [26]
The amount of unique subdomains in the window.

Query type ratio [16, 62]
The number of queries with a specific query type, divided by the total number of queries in the
window. Nadler et al. [62] consider the ratio of A and AAAA records, Buczak et al. [16] create
separate features for 12 common and uncommon query types.

Query similarity [16, 67]
Buczak et al. [16] determine the similarity between lowestlevel domains in the window. Preston
[67] calculates the average character overlap between query pairs in the window.

Behavioral features are able to capture context that singleinstance features cannot describe. The level
of aggregation, in conjunction with the feature extraction method, defines at what granularity threats
can be identified: per query, per domain, per user or per time interval. Behavioral features can be
paired with singleinstance features to paint a more complete picture, as demonstrated by e.g. Buczak
et al. [16].

3.3. Detection Methods
This section provides an overview of the different machine learningbased detection methodologies
proposed in current literature. We observe a clear distinction between works in terms of learning type:
either supervised classification or unsupervised anomaly detection.

3.3.1. Supervised Classification
When a labeled set of training data is available, supervised learning algorithms exploit this a priori
known information about the classes to find a decision boundary [74]. Although labeled datasets are
often not available in our domain – labeling large realworld network traffic datasets by hand is infeasible
– ground truth can be derived by either presuming normal traffic clean (e.g. [75]) or by using allowlists
of reputable domains (e.g. [26]). Supervised learning is further enabled by generating or synthesizing
network traces from known storage channel threats [73].

The following works use supervised learning for classification. Given the large number of parame
ters, i.e. differences in the considered storage channel threats, feature sets, query aggregation levels,
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datasets and evaluation metrics, we only briefly summarize their methods and reported conclusions.

We first review approaches that use only singleinstance features.

Das et al. [26] propose a twostage approach: suspicious queries are first tagged using heuristics,
and tagged queries are subsequently grouped by their primary domain for feature extraction. Their
feature set describes information density, query lengths, character frequencies and query structure. A
logistic regression model is used to classify queries as either benign or malicious. Their method reportly
achieves a recall of 94.5% and a false positive rate of 0.19% on a realworld dataset of 16M queries
with query type TXT and artificial exfiltration traffic.

Shafieian et al. [75] experiment with ensembles of random forest (RF), multilayer perceptrons and
knearest neighbour (kNN) classifiers. Their feature set describes DNS usage, query length and in
formation density, and similar features are also extracted from DNS responses. Different ensemble
configuration and combination rules are evaluated, benign traffic which all show “very high” accuracy,
misclassify at most 100 out of 500K test instances and at most 37 false positives. The authors show
that a welltuned ensemble of classifiers outperforms single classifiers, although addingmore classifiers
does not always increase performance.

Almusawi and Amintoosi [7] use a multiclass support vector machine (SVM) classifier to detect and
predict tunneled protocols. Their feature set, comprising request and response packet size, query
length and information density features, is discretized using kmeans clustering to bound and scale
feature values. The authors show that the kernel SVM approach outperforms a Bayesian classifier, but
their testbed is limited (only 530 samples in total) and the false positive rate is at best 3.3%.

Bubnov [14] uses multiclassclassification to detect specific tunneling tools with a threelayer feedfor
ward neural network. Features extracted from the payload of DNS requests and responses are based
on information density and record type usage. While the model is able to correctly identify large por
tions of tunneling traffic, it is only 83% accurate on the (limited) set of normal traffic. The test bed is
limited as well, comprising only 65,000 samples in total.

The following works use behavioral features as well.

Aiello et al. [3, 4] use a pertime aggregation and experiment with various algorithms: the Naive Bayes
and Boundary classifiers in [4] and linear discriminant analysis (LDA), kNN, multilayer perceptron and
SVM algorithms in [3]. Suspicious timeintervals are identified using a small set of statistical behavioral
features. Experiments with different ratios of mixed tunneling traffic demonstrate the feasibility of their
supervised learning approach, although the performance worsens significantly as the concentration of
malicious traffic in the dataset decreases. Repeated trials and majority voting reduce this error rate.

Buczak et al. [16] use a comprehensive set of 59 features that describe various characteristics of both
queries and corresponding responses. Statistics of a subset of singleinstance features are calculated
using a sliding window and perdomain aggregation.

Two Random Forest models using data that is either collected inside a network or at the network
perimeter. Both models are able to achieve a very high detection rates (> 99.9%) on known threats,
whilst reporting almost no false positives. Queries from a custom, unseen threat were also correctly
identified, albeit at varying recall (27.6% – 95.89%).

Liu et al. [54] compare the efficacy of the decision tree, logistic regression and SVM classifiers using
behavioral features based on query space utilization, information density and DNS usage. Features
are extracted using a sliding window of fixed size over DNS request and response pairs.

While all three classifiers show high detection rates (> 95.9%), the SVM model outperforms the
others (at most 99.3%). The authors acknowledge, however, that their malicious tunneling dataset
is insufficient to train models that generalize well over unknown threats and stress the importance of
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dataset quality for supervised model training.

Preston [67] experiments with a variety of supervised learners: different bagging (Random Forest and
a generic tree bagging classifier) and boosting (AdaBoost and Gradient Tree Boosting) algorithms, as
well as SVMs with a linear or radial kernel. The feature set is based on information density, lexical
properties and query structure and is computed from a perdomain fixed sliding window.

The system is evaluated with a sizeable dataset of real DNS traffic, from which only queries with
types A, AAAA and TXT are retained. This dataset is filtered using an Isolation Forest model to mitigate
the concern that the dataset would contain malicious traffic.

All trained models achieve high precision and recall, reportedly over 99.6% on both metrics, with
the bagging and boosting algorithms slightly outperforming SVM. A subsequent test with simulated (un
seen) malware queries and the RandomForest model confirmed the efficacy of the approach. However,
it is unclear whether the final results are obtained used the filtered benign class, which would severely
inflate the results. Few information is reported about the custom exfiltration queries as well.

Supervised classifiers are predominantly used for DNS tunneling detection, which is motivated by the
relative ease with which malicious training traffic can be acquired. The choice of algorithm is seemingly
irrelevant: works that compare different classifiers report minor performance differences. Treebased,
often Random Forests, and SVMclassifiers are prevalent and seem to perform well. However, it is diffi
cult to compare the relative performance of surveyed works, given the large variability in datasets used.
The effectiveness of detectors against unknown or unseen threats is, unfortunately, rarely evaluated
as well.

3.3.2. Unsupervised Anomaly Detection
The focus of recent research has shifted towards unsupervised anomaly detection, motivated by its
improved ability to generalize over unseen threats. To date, few works ([1, 62, 73]) have experimented
with an anomaly detection approach in conjunction with features derived from DNS queries.

Nadler et al. [62] build an anomaly detection system using the Isolation Forest (iForest) algorithm.
Their (behavioral) feature set is based on traffic characteristics, information density and lexical proper
ties. Features are extracted from groups to distinct primary domains at predefined time intervals. The
anomaly threshold of the system is tuned by a predefined acceptable false positive rate. The authors
evaluate their system on a large and diverse dataset of DNS traffic and report a detection accuracy
(per domain) of 100% for a variety of storage channel threats, whilst maintaining a low false positive
rate of 19 primary domains during six days of operation.

Ahmed et al. [1] propose a similar iForestbased system, but advocate for stateless (singleinstance)
features instead, as they allows for faster intervention after detection and reduce the amount of state
to be kept. Their stateless feature set is based on query space utilization, information density and
character frequencies. Ground truth for training queries are based on primary domain reputation in a
public allowlist.

The amount and height limit of trees and contamination rate (a proxy for the anomaly score thresh
old) hyperparameters of the iForest model are tuned to improve accuracy. While the system is able to
detect up to 98.5% of malicious queries, a significant amount of at least 1.6% (top 10,000 most pop
ular domains) or 21.6% (remaining domains) of benign queries is flagged as anomalous. This would
suggest that their feature set is too limited for use in practical situations. A small sample of unseen
malware queries, however, were all correctly identified as anomalous.

The authors also train, for comparison, a Random Forest classifier on a balanced dataset containing
presumed benign queries and queries from one exfiltration threat. The supervised model outperforms
the unsupervised approach on a holdout set, but performs rather poorly on unseen threats, presumably
due to the limited malicious query diversity in the training set.

Saeli et al. [73] propose a threestage detection system based on the OneClass Support Vector Ma
chine (OCSVM). The first step comprises rigorous filtering of queries in the dataset, based on e.g.
allowlisting, query response codes and query length.

The second offline phase comprises the training of the OCSVM model on a set of filtered (and
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presumed benign) queries, using four features based on character frequency and query structure. In
the subsequent online phase, DNS queries that are flagged as anomalous are further analyzed by
computing an anomaly score based on behavioral, lexical and information density features. When the
final anomaly score exceeds a preconfigured threshold, the query is flagged as malicious.

The system is evaluated with a diverse set of data exfiltration malware and tunneling samples, all
of which are successfully detected at various detection rates (between 12% and 100% of queries).
However, the false positive rate on a limited set of benign traffic is reportedly 10%, which is significant
but in line with [1].

In summary, unsupervised anomaly detection systems use either the Isolation Forest or OCSVM al
gorithms. The main benefit of anomaly detection over classification is the fact that no class labels are
required for training and the increased ability of detecting unknown and unseen threats, at the expense
of a higher false positive rate.

3.3.3. Data Collection Remarks
Researchers with access to unlabeled, realworld datasets often distill a groundtruth for the benign
class by considering only popular domains, using The Alexa Top Sites, Majestic Million and Cisco Um
brella lists, ranking popular websites. This, however, introduces bias as less popular benign domains
are not included in the training set. The model performance may also be inflated when evaluated on the
same subset of known domains. Furthermore, research has shown that popularity lists can possibly
contain malicious domains [80].

Some works (e.g. [7]) also synthesize the benign class by querying domains in bulk. Real DNS
traffic, however, is vastly more diverse, which is why systems cannot be properly evaluated using this
method.

For the malicious class, we commonly see artificially generated tunneling traffic in a controlled en
vironment. This tunneling traffic originates in the majority of cases from offtheshelf tunneling tools,
but sometimes from custom tunneling applications developed by the researchers as well.

3.4. Detection Capability
Whether by means of supervised classification or unsupervised anomaly detection, detection systems
label DNS traffic as either benign or malicious. Multiple metrics can be used to describe different as
pects of detection performance. This section provides an overview of commonly reported performance
metrics and how they are calculated. We further attempt to arrive at a definition of detection capability
to effectively compare different DNS storage channel detection models.

Note that not all works report the following metrics over the same type of observation. Detection meth
ods that use solely singleinstance features report, for example, the number of correctly classified
queries. Works that use only behavioral features would report metrics over their aggregations, e.g. the
amount of correctly classified domains. It is possible for models to be able to detect few queries but
many threats, or many queries but few distinct threats, and report high performance in either situation.

All metrics discussed in this section are based on the amount of correct and incorrect predictions. The
four possible categories for binary classification are expressed in the confusion matrix in Table 3.2.

Table 3.2: Confusion matrix.

Predicted

Benign Malicious
Actual Benign True negatives (TN) False positives (FP)

Malicious False negatives (FN) True positives (TP)

The majority of reviewed papers report one or more of the following common performance metrics.

Accuracy 𝑇𝑃+𝑇𝑁
𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

(Classification) accuracy describes the ratio of correctly predicted observations, either benign or ma
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licious. Some works report the classification error rate or classification error probability, defined as
1 − accuracy, instead.

Precision 𝑇𝑃
𝑇𝑃+𝐹𝑃

Precision, or positive predictive value (PPV), describes the fraction of predicted malicious observations
that is actually malicious.

Recall 𝑇𝑃
𝑇𝑃+𝐹𝑁

Recall, true positive rate (TPR), sensitivity, or detection rate, describes how well a system is able to
find all malicious samples.

F1score
2⋅precision⋅recall
precision+recall

There is often a tradeoff between precision and recall, i.e. higher precision leads to lower recall, and
vice versa. The 𝐹1score is combines both metrics using their harmonic mean.
These metrics predominantly focus on the ability of a system to identify attacks (true positives). How
ever, there is low tolerance for false positives in practice as well [75], given the scarcity of data exchange
over DNS [62] and large DNS traffic volumes (e.g. [85] and our own research). The false positive rate
is the most often reported metric in this regard.

False Positive Rate 𝐹𝑃
𝐹𝑃+𝑇𝑁

The false positive rate (FPR), or probability of false alarm (PFA), describes the fraction of incorrectly
classified samples from the benign class. Specificity, or true negative rate (TNR), is defined as 1−FPR.
The false positive rate is a key indicator of the feasibility of use of a model in practice. It is also “portable”
and comparable between datasets, as it is invariant to the size of the benign class.

Next, the area under the receiver operating characteristic (ROC) curve, or AUC, is sometimes reported
as well.

AUC
The ROC curve describes the sensitivity and specificity at all possible decision thresholds of a clas
sifier. The area under this curve therefore describes the overall performance of a model. The AUC
is “equivalent to the probability that the classifier will rank a randomly chosen positive instance higher
than a randomly chosen negative instance” [34].

The AUC is a robust metric to describe model performance. It is, in contrast to e.g. precision and
recall, insensitive to changes in class distribution [34]. However, higher AUC values do not necessarily
result in better models, as “it is possible for a highAUC classifier to perform worse in a specific region
of ROC space than a lowAUC classifier” [34]. This is a relevant shortcoming for DNS storage channel
detection, as we arguably only care about (and optimize for) the single best operating point of a model.

Finally, the amount of identified threats is a metric that is not often reported due to the fact that many
works use few different research subjects. While it is similar to recall for perdomain aggregations, it is
also relevant in situation where isolated queries are considered (e.g. [73]).

All metrics described in the section express different qualities of a model. There is, in summary, no
consensus about a definitive method to evaluate detection capability in current literature. Besides the
obvious goal of a system to detect as much threats as possible, authors also stress the importance a
low false positive rate [62, 75].

Some metrics are ineffective or misleading when used in conjunction with imbalanced datasets and
have to be carefully interpreted. Accuracy, for example, overstates model performance. Many of the
described metrics are also influenced by either dataset size and/or class distribution. As such, different
metrics may be more appropriate in different settings.

In conclusion, detection capability depends on three measures: the amount of true positives and
false positives and the number of distinct identified threats. The relevant metrics depend on class
distribution and dataset size.
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3.5. Related Work
Besides the machine learningbased methods introduced in the previous sections, numerous other
techniques exist to detect DNS storage channels. This section contains a brief overview of filtering,
signaturebased detection and other nonML approaches.

Filtering is a method where successively applied handcrafted rules are used to filter DNS traffic until
a manageable subset of potentially malicious traffic remains. This result set is then either classified as
malicious as a whole, or further examined by experts.

Paxson et al. [65] filter DNS traffic by excluding cached queries, uninteresting queries (based on tim
ing, volume and payload entropy), estimated compressed information content and allowlisted domains.
The system is evaluated on unlabeled DNS traffic of 230B realworld queries and iodine tunneling traf
fic. Tunnels with a traffic volume of more than 4kB per day could be found with a minimal burden on
analysts.

Tatang et al. [81] present a similar approach, but only focus on newlyobserved hostnames and
use simpler features and filters. They first group their data by resource record and apply rules based
on known domains, subdomain depth, query volume per fully qualified domain name (FQDN) and
known special use cases to each group. Manual analysis of filtering results shows that the approach
is effective, as numerous tunnels, both benign and malicious, are uncovered in a large, aggregated
dataset of real DNS traffic.

Lastly, Aiello et al. [6] perform rule extraction by first clustering DNS traffic with kmeans clustering
and then extracting rules that capture most of the malicious traffic using a Logic Learning Machine.

Signaturebased detection is method to find threats by matching specific characters or byte sequences
in network traffic. Numerous signatures and rules are provided in nonscientific publications by Farn
ham [33], Sheridan and Keane [77] and Jaworski [44], to be used with e.g. the Snort intrusion detection
system (IDS) and Splunk security information and event management software. The main drawback
of signaturebased detection is that only known threats can be detected.

Other nonmachine learning methods rely on character frequency analysis [11, 69], statistical tests
[5, 18, 28, 30, 42], are grounded in decision theory [15, 56] or use a manually defined decision boundary
[19, 79].

3.6. Summary
The variety of features and methods identified in this survey demonstrates the feasibility of using ma
chine learningbased systems to detect DNS connection tunneling and arbitrary data exfiltration. Many
proposed methods are able to achieve high to very high detection rates in challenging scenarios.

We identify an emphasis on tunneling detection as opposed to lowthroughput exfiltrations. All of
the surveyed works are evaluated on tunneling traffic and few ([1, 16, 26, 62, 73]) on more difficult
exfiltration traffic as well.

Effective features are derived from either isolated DNS query instances (payloads) or from sequences
of queries describing behavioral traits. Behavioral features are extracted from aggregations sequences
based on (a combination of) time, primary domain, origin IP or destination IP. Query sequence extraction
reduces aggregations to produce one feature vector per aggregation, or uses a timebased or fixedsize
sliding window to produce one feature vector per observation.

A multitude of payloadonly features proposed in current literature describes one of five aspects:
query space utilization, query structure, information density, lexical properties or DNS usage. Behav
ioral features are based on statistics of payloadonly features (e.g. their sum or average), or storage
channel characteristics (e.g. unique query ratio or number of unique labels).

We observed a clear distinction between proposed methods in terms of learning type. Unsupervised
detectors are easily applied to realworld datasets and not inhibited by potentially problematic artificial
ground truth datasets. However, these algorithms focus on anomalies, but benign traffic is diverse by
nature and malicious traffic may potentially appear benign. Supervised detectors, on the other hand,
attempt to learn a more intricate model of exfiltration training traffic, but need (preferably balanced)
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annotated training data and risk overfitting on known threats.

A major concern is the lack of a common baseline (dataset). Studies cannot be compared directly,
because (i) the problem they solve differs (e.g. detecting one specific type of tunnel or many different
exfiltrations), (ii) the validation datasets vary in both size and diversity and (iii) incompatible or dataset
dependent performance metrics are reported. This makes it impossible to conclusively identify the
stateoftheart in this field.

Furthermore, the evaluation scenarios of some works can be considered unrealistic. It is apparent
that artificial datasets that lack diversity or are too clean provide for a considerably easier detection
problem.

The practical usefulness of presented approaches is another aspect to consider, as requirements
besides a high detection rate may be required. A low false positive rate (FPR) is for example more
important than a high detection rate in highvolume scenarios, when all reported alerts have to be
processed by human analysts.

Finally, as established in Section 2.2.2, the DNS protocol is sometimes misused for legitimate data
transfer. There is no consensus in literature about how to handle this traffic category. Many works
ignore this aspect completely, other works (e.g. [16]) consider it – perhaps justifiably – as regular
tunneling traffic, whereas still others mitigate the problem by ignoring known benign tunneling domains
(e.g. [1]). It follows that the way this traffic is to be handled depends on the context in which the system
operates.

3.6.1. Research Gaps
Having surveyed relevant works in the field of DNS storage channel detection, we identify the following
two research gaps that are addressed in this thesis.

• Payloadonly features are cheap and fast to extract, because they do not depend on other queries
in the dataset and no state has to be kept. While detectors based on either payload or behavioral
features show promising results, it is unclear to what extent behavioral features improve detection
capability over payloadonly methods.

• In similar fashion, both anomaly detection and supervised classification show promising results.
However, their ability to detect a diverse set of storage channel threats at low false positive rates
is difficult to establish, as current research cannot be compared due to the lack of a baseline
dataset, different preprocessing and incompatible performance metrics. Few research compares
both methods ([1, 67]), but arguably in a biased setting.
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Datasets

To effectively evaluate DNS storage channel detection methods, sizeable datasets comprising both
benign and malicious DNS traffic are required. This chapter describes all datasets used in this re
search. Having been provided a dataset of realworld, enterpriselevel DNS traffic, we manually gen
erate dataset for a variety of storage channel threats.

This chapter is structured as follows. The malicious dataset collection is described in Section 4.1.
The preprocessing of both benign and malicious datasets is explained in Section 4.2. Section 4.3 then
provides an overview and traffic statistics of all datasets used in this research.

4.1. Malicious Dataset Collection
In Section 3.1, we reviewed the landscape of threats considered in current literature. This analysis has
shown that DNS storage channels are predominantly from one of two categories: connection tunneling
or arbitrary data exfiltration. An effective detection strategy therefore has to be able to generalize
over both threat categories. This requires a large and diverse dataset of threats for training as well
as evaluation purposes. Unfortunately, few suitable and public datasets are available. As a result, we
collect our own dataset of both DNS connection tunneling and arbitrary data exfiltration. Themotivation,
methods and research subjects are described in this section.

4.1.1. Motivation
Supervised classifiers require both large and diverse datasets and a reasonable balance between
classes to be effective. Given a large dataset of benign DNS traffic, many malicious samples are
needed to maintain an acceptable class balance. In practice, however, DNS tunneling is scarce.

Also, multiple different storage channel threats have to be considered to reduce bias towards a
possibly small amount of threats in the training dataset. Artificially generated datasets may not consider
diverse, realworld resembling scenarios and lack characterizing behavior.

Table 4.1 contains an overview of relevant open research datasets from current literature. For this re
search, only the timestamp and payload of DNS requests is required (see Chapter 5). Having reviewed
existing open datasets, we conclude that most datasets do not provide the required level of detail, are
too limited in size, are not diverse enough or contain only the author’s extracted features.

Table 4.1: Publicly available datasets of DNS storage channel threats.

Source Origin Format Suitable? Reason

Ahmed et al. [1] Artificial CSV 7 No timestamps, payload only.
Bubnov [14] Artificial CSV 7 No timestamps, payload only.
Palau et al. [63] Artificial CSV 7 No timestamps, payload only. Few tunneling samples.
Homem and Papapetrou [41] Artificial JSON 7 Processed features only.
Berg and Forsberg [9] Artificial PCAP 3 Packet capture from one DNS tunneling application.

27
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Of these datasets, only the dnscat2 dataset by Berg and Forsberg [9], comprising three longlasting
packet captures of DNStunneled file transfers, has the required level of detail. However, as considering
only one DNS tunneling threat is too limited, we use this dataset only for evaluation purposes (see
Section 4.3.3).

Besides academic datasets, numerous online sandbox environments exist (see [1]) in which malware
can be safely executed and analyzed. For most DNS exfiltration malware, network packet captures are
available. However, their behavior in sandbox environments is not representative when, for example,
no credit card details are processed on the target systems – hence nothing is exfiltated – or when
malware has sandbox evasion techniques. As a result, most packet captures are small in size.

We decide to create a new and diverse dataset of DNS traffic from real data exfiltration and tunneling
threats, because 1) there is a lack of suitable and public DNS storage channel datasets, 2) packet
captures from DNS malware in sandboxes are too limited and 3) network traffic generated under the
same conditions allows for a fair comparison of detection performance between different models.

4.1.2. Data Collection Experiments
As established in Section 3.1, the DNS storage channel threat landscape is diverse and the most
prevalent threats are (opensource) connection tunneling tools and infostealer malware. We design
and enact a threat scenario with two tunneling tools and collect the resulting network traffic. For info
stealer malware, we implement and simulate four strains with different characteristics based on publicly
available malware reports and simulate credit card exfiltration.

Connection Tunneling
DNS tunnels encapsulate an existing connection in DNS packets. Opensource connection tunneling
tools iodine and dns2tcp have been selected for this research, primarily due to their prevalence in
current literature, public availability, configurability and easeofuse. We now briefly describe these
tunneling tools and configuration parameters.

Iodine [29] tunnels IPv4 connections over DNS. The client application processes all network traffic
flowing through a dedicated (TUN/TAP) adapter and constructs DNS queries to a configured domain.
The serverside application is installed on the authoritative DNS server for the configured domain to
process the incoming DNS requests and reply with downstream data.

Iodine has various configuration parameters. We vary the maximum query length, query type and
upstream data encoding. Note that because iodine autonegotiates the best available upstream en
coding and does not provide a manual override option, we have compiled four different binaries with
hardcoded upstream encoding from its source code.

While iodine by default tries to establish a direct connection between client and server (providing
considerable speed advantages), we choose to disable this option and force all traffic to flow through
a local DNS server.

Iodine is still in active development, but has no clear versioning system. We use the latest available
version at the time of data collection: “Git version 814a1fd”1 (2020), as the most recent stable
release dates back to 2014.

Dns2tcp [27] forwards TCP ports via DNS. The server side publishes available services (ports) which
can be consumed by clients. In contrast to iodine, dns2tcp requires no dedicated network adapter.
According to the original authors, dns2tcp is able to achieve higher throughput, because smaller DNS
packets are generated by encapsulating at the TCP level.

Dns2tcp supports fewer configuration options: it always uses Base64 for up and downstream data
encoding and the query lengths are fixed. However, the query type can be configured, as well as
whether to use compression or not.

We use the most recent dns2tcp release at the time of data collection, v0.5.2.

The tunnel parameter grid used for data collection is described in Table 4.2. Note that query types
are varied even though we only focus on the DNS query side for detection, because different resource
1https://github.com/yarrick/iodine/commit/814a1fd7b0a6cf376f38bfc01056084c301d0873

https://github.com/yarrick/iodine/commit/814a1fd7b0a6cf376f38bfc01056084c301d0873
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record types have a different maximum downstream capacity and as such influence DNS traffic char
acteristics. Also, the maximum query length for iodine has been extended from 100 to 150 when used
together with Base32 encoding, as it proved to be impossible to establish a reliable tunnel with shorter
queries.

Table 4.2: Connection tunneling parameters.

iodine dns2tcp

Query type MX, NULL, PRIVATE, SRV, TXT KEY, TXT
Max. query length 100|150, 255 —
Upstream encoding Base{32, 64, 64u, 128} —
Compression — No, Yes

The main purpose of our connection tunneling scenario (Scenario 1) is to simulate realistic workloads,
with realistic durations and intervals. In order to capture real and diverse DNS tunneling traffic, an
exfiltration script was designed that alternates between highthroughput data exchange and periods of
no activity. The scenario is executed independently for every combination of experiment parameters
for each tunneling subject.

This scenario highlights various aspects of DNS tunneling: prolonged maximum throughput, inter
mittent bursts and pauses. We perform a speedtest, exfiltrate files of different sizes with or without
encryption, establish a SSH session with the victim and exfiltrate sensitive information, and perform
regular internet browsing.

The scenario differs slightly between tunneling tools and parameter settings, because not all op
erations are always supported. For example, ping uses the ICMP protocol, which can be forwarded
through the iodine IP tunnel, but not with the dns2tcp TCP forward. These optional exceptions are
mentioned at their respective step.

Scenario 1 Connection tunneling
1: Generate files of 1K, 10K, 100K, 1M and 10M in size with random data to simulate sensitive data
extraction.

2: Request a listing of available tunneling services (ports). (dns2tcp only)
3: Pause 20s.
4: Initiate tunneling software, perform handshake and setup connection.
5: Pause 20s.
6: Ping server 10 times via the tunnel. (iodine only)
7: Pause 20s.
8: Perform a regular and reverse speed test. Sleep 30 seconds in between.
9: Pause 20s.
10: Transfer the randomly generated data files without encryption, using netcat (nc). Sleep 30 sec

onds between each transfer.
11: Pause 20s.
12: Transfer the randomly generated data files with encryption, using scp. (iodine: only configurations

with query length ≥ 150)
13: Pause 20s.
14: Establish a SSH session between server and client and execute the following sensitive commands

at twosecond intervals. (iodine only and query length ≥ 150)

1. id
2. uname a
3. ps aux
4. env

5. ls la ~
6. find / perm /6000 2>/dev/null
7. cat /etc/passwd
8. cat /etc/group

9. cat /etc/shadow
10. ip a
11. ip route

15: Pause 20s.
16: Simulate internet browsing for 10 minutes.
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The speed tests were performed with iperf32. Regular internet browsing was simulated using a mod
ified version of web‐traffic‐generator3, which uses a headless web browser instead of direct re
quests to better resemble actual web usage, as not only the requested page is loaded, but also all
dependencies (stylesheets, scripts, etc.). A selection of 15 popular web pages is the starting point for a
recursive browsing journey, until a random depth is reached and a new starting page is selected. The
customized web browsing code is made publicly available4.

Arbitrary Data Transfer
While connection tunneling focuses on relaying an existing protocol as well as possible, arbitrary data
exchange over DNS has no such restrictions. We have observed a variety of threats that use different
query structures, data encodings and possibly encryption (see Section 3.1).

PointofSale (PoS) infostealer malware is a notorious abuser of DNS for data exfiltration. Installed
on PoSterminals, this malware collects payment details and exfiltrates them at low rate. We select
four such malware strains, based on their popularity in current literature (e.g. [1, 62]) and distinct data
encapsulation methods: BernhardPOS, FrameworkPOS, MULTIGRAIN and UDPoS.

It is important to exfiltrate “real” information using the actual exfiltration mechanism of the malware
samples, because changes in encoded data are visible in the prepared exfiltration queries. For exam
ple, using random data instead of credit card details changes query characteristics and propagates to
e.g. features based on entropy.

However, most actual malware samples are not publicly available, employ sandbox evasion tech
niques to prevent analysis or pose a significant risk to the researcher. Furthermore, it is difficult to obtain
or resemble PoS terminal software to simulate payments. Therefore, we decide to reverseengineer
and implement only the DNS exfiltration methods of the four malware strains – based on public incident
reports – and simulate exfiltrations using imitation credit card details and a given exfiltration schedule.

In order to understand PoSmalware, some background about credit card payments is required. Most
PoSmalware silently monitors the memory of infected terminals for bytes resembling data from the
magnetic stripe of credit cards. This stripe contains two relevant tracks: track 1 and track 2 [43].
Both tracks contain enough information to complete a transaction, i.e. card number, expiration date
and security codes, but track 1 data is more detailed and also contains for example the name of the
customer.

The maximum record length of track 1 data is 79 characters and 40 characters for track 2 records.
Track 1 data may contain alphanumeric characters, whilst track 2 can only contain digits. Both records
fit comfortably within a DNS query.

Furthermore, the length (between 16 and 19 digits) and format of credit card number differs per
vendor. We select three common schemes for our research: VISA (16 digits), MasterCard (16 digits)
and MasterCard (19 digits). Naturally, no actual credit card details are used, but generated instead
within the constraints of the selected schemes. We use Python Faker library5 to this end. The credit
card generating code is made publicly available6.

Having established the global functioning of PoSmalware, we now provide an overview of the exfil
tration methods of the selected malware samples. Note that this information is gathered from multiple
public incident reports. When insufficient information is available, however, implementation details of
the respective malware are at the discretion of the author.

BernhardPOS [38]
Simple infostealer malware that exfiltrates only Track 2 credit card data in a single DNS label.
The credit card details are encrypted with an XOR cipher and subsequently Base64encoded.

FrameworkPOS [31, 49, 57]
Malware family that has many different incarnations. We implement a variant that sends an install

2https://iperf.fr/
3https://github.com/ReconInfoSec/web‐traffic‐generator
4https://github.com/tudelft‐cda‐lab/dns‐storage‐channel‐detection/thesis‐web‐traffic‐generator
5https://faker.readthedocs.io/en/master/providers/faker.providers.credit_card.html
6https://github.com/tudelft‐cda‐lab/dns‐storage‐channel‐detection/thesis‐ccgen

https://iperf.fr/
https://github.com/ReconInfoSec/web-traffic-generator
https://github.com/tudelft-cda-lab/dns-storage-channel-detection/thesis-web-traffic-generator
https://faker.readthedocs.io/en/master/providers/faker.providers.credit_card.html
https://github.com/tudelft-cda-lab/dns-storage-channel-detection/thesis-ccgen
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beacon and possibly notices about running malware analysis software upon activation. Then,
it listens for and exfiltrates track 1 and track 2 credit card information. Each exfiltration query
contains a host identifier, campaign identifier, the name of the executed command and the actual
payload. The payload section is hexencoded after encrypted with a substitution cipher and XOR
cipher.

MULTIGRAIN [22, 55]
Infostealer malware derived from earlier versions of NewPosThings PoSmalware. Send an
install beacon on successful activation and scrapes and exfiltrates track 2 credit card details.
Includes a host identifier in the payload to distinguish between targets. All information is encrypted
using RSA with a 1024bit key and encoded with Base32.

UDPoS [72, 82]
UDPoS is the most featurerich malware strain we consider. On install, it collects and exfiltrates
a large amount of sensitive information about the infected device. Then, it sends notices if any
active process debuggers are detected and finally emits an install beacon. UDPoS exfiltrates
both track 1 and track 2 credit card details. Exfiltration queries are encrypted with RC4 and hex
encoded. Analyzing real UDPoS queries revealed that each payload is terminated with newline
characters (\r\n) before encryption.

Table 4.3 provides an overview of the encryption and data encoding techniques applied.

Table 4.3: PoSmalware data encryption and encoding techniques.

Name Source Encryption/Obfuscation Encoding

BernhardPOS [38] XOR cipher Base64
FrameworkPOS [31, 49, 57] Substitution + XOR cipher Hex
MULTIGRAIN [22, 55] 1024bit RSA Base32
UDPoS [72, 82] RC4 Hex

As mentioned, most samples exfiltrate more information besides credit card details, i.e. send install
beacons, notices about running malware analysis programs, or sensitive information about the infected
host. To generate an accurate reproduction of malware traffic, this behavior is simulated as well. Ta
ble 4.4 describes the malware behavior at different three stages: reconnaissance just after installation,
beaconing after activation and actual data exfiltration. Each distinct query structure is denoted with an
identifier (e.g. > Notice), for which sample queries are provided in Appendix A.3.

Table 4.4: PoSmalware exfiltration techniques.

BernhardPOS FrameworkPOS MULTIGRAIN UDPoS

Recon — Scan for running
debuggers.
> Notice

— Collect and exfiltrate
machine information.
> Info

Scan for running
debuggers.
> Notice

Install — Send install beacon.
> Install

Send install beacon.
> Install

Send install beacon.
> Install

Exfil
(repeat)

Collect track 2 data.
> Exfil T2

Collect track 1 data.
> Exfil T1

Collect track 2 data.
> Exfil T2

Collect track 2 data.
> Exfil T2

Collect track 1 or track 2
data.
> Exfil

Lastly, the exfiltration rate (or: schedule) has to be defined. We aim to simulate a scenario with real
istic intervals, while still generating enough data to support supervised classifiers. Unfortunately, little
credible and detailed figures about actual exfiltration campaigns are available.
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Nadler et al. [62] face this problem as well and decide to simulate three credit card exfiltrations
per second, based on the ballpark figure of 56M stolen credit card details in six months during the
Home Depot campaign. Following this intuition, we select three different malware operating points
to emphasize (extremely) lowthroughput: once per second, once per minute and once per five
minutes. Random jitter of up to 5% is added for a more realistic scenario.

Regarding malware implementation details, we use the A query type – resembling the actual malware
queries – and simulate a valid and corresponding server response for completeness. All exfiltration
queries are sent to the (locally emulated) primary domains used in their respective malware campaigns;
none of which exists in the normal DNS dataset. The malware simulation code is made publicly avail
able7.

4.1.3. Network SetUp
A local network of hosts is setup for the collection the described malicious datasets. Three virtualized
hosts are configured to resemble a realworld situation: a client (or: victim), server (or: adversary) and
a local DNS server to facilitate the storage channels.

Figure 4.1 depicts the network setup used for the collection of malicious datasets. We use Docker
in conjunction with docker‐compose to configure, deploy and execute the different containers and
experiments: a Local DNS, Client and Server container.

Internet

External DNS

Docker

ClientServer

Local DNS

tcpdump

Figure 4.1: Containerized network setup for the collection of malicious datasets.

Local DNS
The local DNS server (BIND8 v9.14.12) is configured to delegate zones for the following malicious
domain names to the “Server” container:

• tun[.]lan
• 29a[.]de
• ns[.]a23333754deployakamaitechnologies[.]com
• dojfgj[.]com
• ns[.]servicelogmeln[.]network

The local DNS is configured to reject DNS traffic to other domains. Tunneling scenarios that
require web browsing resolve other lookups via public DNS server 1.1.1.1 (CloudFlare).
DNS BIND is a widely used DNS server implementation. We therefore consider the constraints
imposed on queries and responses in our experiments representative of realworld situations.

Client
The Client container is considered the victim in data exfiltration scenarios and the enduser in
tunneling scenarios. This container either runs the infostealer exfiltration software or the client
side DNS tunneling software.
Direct traffic between the client and server containers is avoided, and filtered during preprocessing
for completeness, such that all communication passes through the local DNS server.

7https://github.com/tudelft‐cda‐lab/dns‐storage‐channel‐detection/thesis‐dns‐malware
8See https://www.isc.org/bind/ for more information.

https://github.com/tudelft-cda-lab/dns-storage-channel-detection/thesis-dns-malware
https://www.isc.org/bind/
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Server
The Server container is on the receiving end of the DNS storage channels. It hosts custom DNS
servers to accept and answer DNS queries for the delegated domains. This is, for tunneling
scenarios, the serverside tunneling application and for data exfiltration scenarios a custom DNS
server written in Python.
This container is only connected to the internet in tunneling scenarios, to be able to e.g. load
actual web pages during DNStunneled web browsing.

Network traffic is captured by means of tcpdump at the network adapter of the client container. All
exfiltration queries are considered relevant to our malicious datasets and not just those that reach the
adversary. The collected packet captures are then processed by Zeek (see Section 2.3) to generate
traffic logs. We store the for each experiment individually generated dns.log files as final output of
the data collection process. These log files are used used for further analysis and feature extraction in
Chapter 5.

Limitations
The most significant drawback of this data collection method is that the capitalization of characters in
DNS queries is lost due to Zeek v3.1.4 storing queries in lowercase. Starting with Zeek v3.2.0, however,
the unmodified query is also preserved. This version was unfortunately not available at the time our
datasets were collected.

As a consequence, the amount of information that was originally conveyed by a query is not nec
essarily the same in the one that is logged. This complicates the detection of data encoding in DNS
queries, as e.g. Base32 and Base64 encodings now appear similar.

Furthermore, as all DNS data exchange happens on the same device and is directed via one DNS
server, the latency is very low and packet drops are rare. In realworld scenarios, resolving a DNS
request via possibly many intermediate DNS servers takes more time and has a higher risk of failing.
Themain consequence is that DNS retransmissions are rare in the collected datasets. Retransmissions
may influence features based on the amount or ratio of unique queries.
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4.2. Preprocessing and Filtering
The purpose of this processing phase is to prepare the datasets for feature extraction, by filtering
redundant or invalid observations and parsing the DNS queries. A comprehensive overview is provided
by Figure 4.2 in Section 4.2.5.

4.2.1. Cleaning
Both the collected malicious datasets and the corporate DNS traffic dataset (see Section 4.3.1) are
in the common Zeek dns.log format. The Zeek logs are stored as plain text files and contain only
ASCII characters for portability. Because the use of nonASCII characters is discouraged by the DNS
standard, this should – in theory – not pose a problem. In practice, however, most DNS servers accept
nonstandard characters in queries. NonASCII characters are stored by Zeek as unicode byte es
capes. For example, a DNS query for “exämple.com” is logged as “ex\xc3\xa4mple.com”. Because
byte escapes prevent proper feature extraction, we convert escaped sequences back to characters.

Note that UTF8 graphemes (symbols) may span multiple bytes. The escaped ä glyph from the
example, for example, is constructed from two code points, even though it visually appears as one
character. These byte escapes are decoded but not combined, as the query length is measured in
bytes and not in symbols.

NonASCII characters are uncommon in regular DNS traffic. Conforming applications should convert
such characters in domain names (i.e. internationalized domain names) to punycode [25]. The puny
code equivalent of exämple.com is for example xn–exmple‐cua.com. Tunneling tools, however, dis
patch DNS queries without this conversion layer and purposefully use nonASCII characters to achieve
a higher information density. Domains in punycode are considered valid DNS usage and are left asis.

Having processed the log files to obtain the original DNS query, the first filtering step consists of dis
carding any DNS requests without an actual query or with an empty query. The empty query, used to
retrieve the DNS root server locations, can by definition of storage channels not contain any relevant
information. Also, in edge cases when Zeek is unable to process a DNS transmission, an empty query
may be logged that is filtered as well.

4.2.2. Parsing
A key preprocessing step is the parsing of DNS queries. We split a query into three parts: its subdo
mains, primary domain and public suffix domain (see Section 2.1.1). The purpose of this processing
step is to allow analysis of different label characteristics, independent from the primary domain, as well
as query aggregations per domain.

Although DNS queries have a clear structure, determining which parts belong to the suffix, primary
domain or subdomains is not straightforward. Suffixes may span any number of labels, whose policy
is determined by the respective toplevel domain (TLD) registry.

To illustrate this problem, consider two toplevel domains: .nl and .co.uk. Domain names may
be registered directly below the .nl suffix. The governing body for the .uk TLD, on the other hand,
has imposed a secondlevel hierarchy with namespaces for designated entities. Suffix .co.uk is for
example intended for companies and .ac.uk for academic institutions.

These irregularities prevent naive parsing approaches like splitting on the two rightmost separators,
as this would result in considering co the primary domain and uk the suffix for example.co.uk, instead
of example and co.uk, respectively.

An additional circumstance is the existence of private suffixes. A private suffix is a lowerlevel
domain that is used in practice as if it were a public suffix. Operators of those domains allow users to
register their own domain names directly below it. For example, the Blogger blogging service by Google
assigns domain names [name].blogspot.com. Considering blogspot.com the primary domain in this
case would obfuscate the query streams to the underlying domains.

The allencompassing solution to FQDN parsing is a suffix lookup table. The Mozilla Foundation main
tains the canonical Public Suffix List (PSL) [61], which is a list of all known public and private suffixes.
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The list is accompanied by a set of rules and algorithm9 to determine which labels of a FQDN are to
be considered the suffix. We parse the DNS queries in our datasets using this PSL, using the ver
sion that was current at the time the corporate DNS traffic dataset was collected, and Python package
TLDExtract (version 2.2.3).

4.2.3. Filtering
A significant part of all DNS queries can be excluded from consideration beforehand, now that more
granular information about subdomains and suffixes is available. All excluded entries would be labeled
benign in a production setting.

Firstly, following the argumentation from Section 4.2.1, queries without subdomains are removed.
Queries with only the www subdomain are discarded as well, given its prevalence and inability to convey
data for DNS storage channels. This label is the de facto standard label for websites and is, for that
reason, often hidden by contemporary web browsers10.

Next, queries without a toplevel domain (TLD) and queries for domains with the following internal or
specialuse suffixes are filtered.

• .intranet
• .internal
• .private
• .corp

• .home
• .lan11
• .arpa
• .example

• .example.com
• .example.net
• .example.org
• .invalid

• .local
• .localhost
• .test

The listed suffixes are reserved for (local) infrastructure [51, Appendix G] and/or specialuse purposes
[50]. Users cannot register domains below these suffixes by design and it follows that storage channels
outside a network perimeter cannot exist using these suffixes. The same reasoning holds for queries
without a TLD.

Then, the remainder of invalid queries are filtered by validating primary domains. Real and diverse
DNS traffic may contain noise, broken or improperly structured queries and bogus transmissions. We
have observed lookups to, among others, fully qualified URLs (with protocol and port number), email
addresses, arbitrary byte sequences and invalid, nonexistent domain names.

By our threat model and definition of storage channels, data can only be exfiltrated from a network
to a valid primary domain. We use a lenient validation rule based on the domain name syntax in DNS
specification [17, see Section 11] to filter all queries to nonconforming primary domains, using the
following regular expression:

^([_]?[a‐zA‐Z0‐9]+[a‐zA‐Z0‐9\.‐]*[a‐zA‐Z0‐9]?)$

This rule forces primary domains to contain at least one alphanumeric character, start with an alphanu
meric character or underscore and optionally contain hyphens or dots or end with alphanumeric char
acters. While this rule does not fully conform to the DNS standard – e.g. primary domains with a trailing
dot or hyphen are not filtered – it is performant, comprehensible and filters the majority of unwanted
noise.

The final filtering step removes fast retransmissions. A retransmission of the same packet occurs when
the sender believes that the original packet was not received correctly. DNS predominantly uses the
stateless UDP protocol, which does not acknowledge deliveries. Therefore, clients may resend DNS
queries multiple times when an answer is not received in time, or even as a preemptive measure.

Because retransmissions are essentially the same as the original query, we deduplicate these
queries. From a sequence of queries with the same origin IP, response IP, transaction ID, query and
query type, observed within 100 milliseconds of each other, only the first query is kept.

Note that this method does not filter similar queries with a different transaction ID, which are con
sidered deliberate duplicates.
9See https://publicsuffix.org/list/ for additional information.
10For background on this matter, refer to https://url.spec.whatwg.org/#url‐rendering‐simplification and https:
//bugs.chromium.org/p/chromium/issues/detail?id=883038#c114.

11An exception is made for “tun.lan”, which is used for the malicious tunneling dataset collection (see Section 4.1).

https://publicsuffix.org/list/
https://url.spec.whatwg.org/#url-rendering-simplification
https://bugs.chromium.org/p/chromium/issues/detail?id=883038#c114
https://bugs.chromium.org/p/chromium/issues/detail?id=883038#c114
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4.2.4. DatasetSpecific Processing
Malicious Datasets
Some DNS service discovery queries, unrelated to the experiment, were captured during the exfiltration
and tunneling experiments. As traffic is captured at the client side of the exfiltration, queries that did
not originate from the client device, but that were observed in the packet capture, are filtered.

Moreover, the exfiltration clients had internet access to facilitate DNS lookups during the web brows
ing phase. While any ensuing network traffic was sent via the DNS tunnel, these lookups originated
from the client itself and are filtered from the final dataset.

Corporate DNS Dataset
Due to the corporate DNS dataset traffic capture method, the same DNS query could end up multiple
times in the Zeek log file, outside the retransmission filtering window of 100 milliseconds. To mitigate
this problem, we have identified major relay nodes in the dataset that process the majority of observed
unique domain names. Only queries passing through these nodes are retained.

While this approach may discard valuable unique traffic to smaller DNS servers, it greatly reduces
the amount of duplicate queries. We believe this filtering methods is valid, as it is highly probable that
the vast majority of queries have passed through the selected nodes.

4.2.5. Summary
This section provided an overview of preprocessing and filtering steps applied to every dataset prior
to feature extraction. During the first phase, the Zeekgenerated DNS logs are cleaned by unescaping
nonASCII byte escapes and filtering empty or erroneously processed entries.

Next, the DNS queries are parsed into its primary domain, public suffix domain and subdomains.
The subsequent filtering steps remove queries that cannot be part of a storage channel: queries without
subdomains, with the “www” subdomain, with internal or specialuse suffixes or invalid primary domains.
Then, fast retransmissions of the same query are removed.

Finally, based on the type of dataset, malicious datasets are filtered to only retain relevant (stor
age channel) queries, and the benign dataset is processed to remove duplicate queries outside the
retransmission window, that are artifacts of the data collection method.

Note that the filtering steps presented in this section have a negligible impact on the malicious datasets
collected in Section 4.1, as the nature of the data collection methods ensures they are clean. These
steps are aimed primarily at the corporate DNS dataset. For completeness and a fair comparison,
however, all datasets have been preprocessed the same.

Figure 4.2 contains a complete overview of the data preprocessing pipeline.
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Figure 4.2: Dataset preprocessing pipeline.
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4.3. Dataset Overview
This section presents an overview of all filtered and processed datasets used in the remainder of this
research. Section 4.3.1 introduces the corporate DNS traffic dataset containing normal DNS traffic,
Section 4.3.2 describes the collected malicious datasets and Section 4.3.3 contains an overview of
unseen traffic samples used only for evaluation purposes.

4.3.1. Corporate DNS Dataset
We have been provided a large and unfiltered dataset of DNS traffic, originating frommultiple corporate
networks. The data collection period spanned three consecutive days (3x 24h) in 2020. The dataset is
provided in the same format as the Zeek dns.log files generated in Section 4.1.

Traffic statistics of the corporate DNS dataset are included in Table 4.5. Besides the query volume per
day, the number of (distinct) primary domains per day and queries per domain are provided as well,
which are relevant to the feature extraction process described in Chapter 5. Due to privacy concerns,
the dataset and actual DNS queries cannot be disclosed.

Table 4.5: Summary of the corporate DNS dataset.

Day Queries Unique primary domains (unseen) Queries per primary domain
Min. Mean ± Std. Max.

Day 1 5.8 × 107 1.5 × 105 (100%) 1 400 ± 9.2 × 103 1.4 × 106

Day 2 7.0 × 107 2.1 × 105 (47%) 1 324 ± 1.0 × 104 2.5 × 106

Day 3 4.7 × 107 1.9 × 105 (31%) 1 253 ± 7.2 × 103 1.7 × 106

Total 1.8 × 108 3.1 × 105 1 574 ± 2.0 × 104 5.5 × 106

4.3.2. Malicious Datasets
All malicious datasets described in this section have been collected using the methodology described
in Section 4.1.2. The experiments have been performed sequentially – no two experiments ran at the
sime time – to prevent any interference. Our datasets are available online12.

Table 4.6 describes the aggregated query statistics of the collected malicious datasets. A detailed
dissection per dataset is available in Appendix A, Tables A.1 to A.5.

Table 4.6: Collected dataset statistics (aggregated).

Dataset # config. # queries Mean queries / dataset Duration (mean ± std.) Max. burst / sec.

dns2tcp 4 1,711,049 427,762 19m ± 0m 6,814
iodine 40 10,765,229 269,131 22m ± 3m 2,403

BernhardPOS 3 43,807 14,602 11h 57m ± 2m 2
FrameworkPOS 3 43,784 14,595 12h 24m ± 2m 2
MULTIGRAIN 3 43,736 14,579 12h 24m ± 1m 2
UDPoS 3 44,153 14,718 12h 23m ± 2m 2

Data collection remarks
DNStunneled connections are not reliable. Query behavior is sometimes erratic, even in our controlled
environment. This is especially visible in e.g. the data collection duration and number of queries for
different datasets running the same tunneling scenario (see Tables A.1 and A.4).

Iodine, for example, may stall for an arbitrary period of time during operations and only transmit
beaconing queries, outside a scheduled pause window. The experiments have not been rerun in
an attempt to reduce or prevent this behavior, as we consider these irregularities realworld tunneling
behavior and keep the datasets asis. Figure 4.3, subfigure iodine (2), clearly shows the effects of this
behavior. The tunnel stalls for approximately two minutes at the 6m mark and then again briefly at 10m.
12https://github.com/tudelft‐cda‐lab/dns‐storage‐channel‐detection/thesis‐malicious‐dns‐datasets

https://github.com/tudelft-cda-lab/dns-storage-channel-detection/thesis-malicious-dns-datasets
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Figure 4.3: Time series plot of query volume (per second). The shortest iodine dataset has configuration PRIVATE / Base128 /
100 and is visualized in subplot (1), the longest iodine dataset has configuration MX / Base32 / 150 and is visualized in subplot
(2), and the visualized dns2tcp dataset in subplot (3) has configuration TXT / no compression.

Furthermore, dns2tcp crashed regularly during the web browsing phase. As the cause of this issue
could not be determined, the issue was mitigated by restarting the tunneling service as soon it crashed
to continue browsing. As the web browsing phases of both iodine and dns2tcp show similar character
istics in Figure 4.3, the impact on the dataset quality is assumed to be minimal.

4.3.3. Unseen Storage Channel Threats
In addition to the generated malicious datasets, we assess the practical detection capability of our
models with unseen threats. This set comprises traffic from the dnscat2 tunneling tool, packet captures
from real malware samples and custom exfiltrations based on the generated malware in Section 4.1.
All datasets are processed as described in Section 4.2 as well.

dnscat2
Berg and Forsberg [9], as mentioned in Section 4.1.1, published a dataset of packet captures from the
dnscat2 tunneling tool. Although this dataset is deemed suitable for training purposes, we keep it for
evaluation only, as all other malicious datasets are generated under the same conditions.

The dataset has been generated in a similar setting, as the authors “set up an authoritative DNS
server (...) running the DNS tunneling software dnscat2, a set of virtual computers, hosted on one of
our own computers, to control through the DNS tunnel” and record traffic with tcpdump [9]. The authors
transfer a large file by DNS tunneling either the SFTP, SSH or TELNET protocol.

The traffic statistics of this dataset are provided in Table 4.7.

Table 4.7: Statistics of the dnscat2 dataset by Berg and Forsberg [9].

Tunneled protocol # queries (unique) Duration Mean q/s Max. q/s

SFTP 994,564 (100%) 43h 46m 6 20
SSH 1,358,727 (100%) 34h 51m 11 24
TELNET 1,148,598 (100%) 38h 44m 8 24

Preliminary analysis shows that, surprisingly, the mean and maximum amount of queries per second
are significantly lower than our generated tunneling datasets. The evaluation of our models with this
dataset will therefore prove their effectiveness on a tunneling threat with different characteristics.

Real malware samples
Up to this point, all malicious datasets considered have been generated in a controlled environment.
Malicious DNS storage channels employed “in the wild” are presumably more diverse. For a complete
assessment of our models, we therefore also consider network traffic from real DNS malware. These
analyzed samples have generated too little traffic to be used for training purposes, but are suitable for
model evaluation.
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Saeli et al. [73] graciously provided the public sandbox reports of the malware used in their work.
In these sandboxes, malware is executed in a controlled and monitored environment and all network
activity is recorded. We download the packet captures for each malware strain and process them
accordingly. Table 4.8 summarizes these datasets.

Three malware strains fall outside our defined threat model. Denis uses multiple domains for exfil
tration. Carbanak and Cobalt Strike are DNS payload droppers, which download malicious data via
DNS responses. Nevertheless, we include these samples to assess the effectiveness against related
threats as well.

Table 4.8: Dataset statistics – sandbox samples

Malware variant Encoding Domain(s) # queries (unique) Duration Mean q/s Max. q/s

BondUpdater Hex withyourface[.]com 23 (100%) <1m 6 12
Carbanak – google4ssl[.]com 791 (100%) 2m 6 7
Cobalt Strike – cisc0[.]net 262 (100%) 3m 1 17
Denis Base64 teriava[.]com

tulationeva[.]com
notificeva[.]com
vieweva[.]com

23 (100%) <1m 1 1

DNSpionage Base32 0ffice36o[.]com 13 (31%) <1m 1 6
ISMDoor Base64 basnevs[.]com 2,296 (26%) 4m 8 58
Pisloader (1) Base32 itdesktop[.]com 13 (100%) 2m 0 1
Pisloader (2) Base32 itdesktop[.]com 78 (33%) 4m 0 3
UDPoS Hex servicelogmeln[.]network 121 (100%) 1m 1 2

Plaintext exfiltration
Finally, we implement a custom DNS credit card exfiltration scheme using the same experiment setup
as the simulated malware in Section 4.1.2. All four samples described in that section use encryption
and data encoding. However, credit card details contain predominantly LDHcharacters and can be
embedded with minimal processing in DNS queries. The intuition is that “hiding in plain sight” may be
an effective strategy to circumvent models that focus on encoded and/or encrypted data.

Table 4.9 summarizes this final evaluation dataset. We exfiltrate both track 1 and track 2 credit card
data, in the format described by the following two sample queries:

• 4453359077797003.12256437021961772782 .example.com

• 4719942928801031.patricia‐jacobson.11205500 .example.com

Table 4.9: Dataset statistics – custom plain text exfiltration

Malware variant Schedule Duration # queries (unique) Mean q/s Max. q/s

Plain Text Per second 11h 59m 42,948 (100%) 1 2
Per minute 11h 59m 720 (100%) 0 1
Per 5 minutes 11h 55m 144 (100%) 0 1

4.4. Summary
This chapter introduced the datasets used in this research. Several malicious datasets are gener
ated by means of existing connection tunneling tools and simulating DNS data exfiltration malware.
Section 4.1 provides an overview of the data collection methodology and experiments. Section 4.2
describes the preprocessing methods used to clean, parse and filter all datasets. Clean and consistent
data is important for the feature engineering process addressed in the following Chapter 5. Finally, a
summary of all datasets and their traffic statistics is provided in Section 4.3. Besides the aforemen
tioned collected malicious datasets, a sizable dataset of realworld corporate DNS traffic is introduced,
as well as a collection of unseen samples used solely for evaluation.
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Methodology

In Chapter 3, we surveyed existing detection methods for DNS storage channels. It followed that exist
ing detection mechanisms use different feature engineering rationales and different kinds of machine
learning algorithms. The main distinction between these categories is made between supervised clas
sification and unsupervised anomaly detection, and features extracted from single query instances or
sequences of queries.

Unfortunately, directly comparing existing approaches is difficult due to the use of proprietary datasets
and incompatible performance metrics. As a result, it was necessary to design a novel DNS storage
channel detection framework which allows us to analyze both the effects of different feature sets and
machine learning methods, in order to answer the following two research questions:

SQ2: What is the difference in detection capability between unsupervised anomaly detection and
supervised classification?

SQ3: What are the effects of considering only payload features, only behavioral features or using
composite feature sets?

To the best of our knowledge, no other research has compared the effects of both different feature
extraction methods as well as detection methods for DNS storage channel detection.

This chapter is structured as follows. First, in Section 5.1, the main assumptions about our datasets
and detection methods are stated. Then, the feature engineering process and feature sets used for
detection are described in Section 5.2. The modelling methods and algorithms used are described
in Section 5.3. Lastly, the experiment design, evaluation metrics and configurations are provided in
Section 5.4.

5.1. Assumptions
Besides the constraints imposed by the scope and threat model (see Section 1.2), we make the follow
ing additional assumptions about our problem setting.

Firstly, we assume that covert DNS storage channels are detectable in DNS traffic using only their
timestamps and DNS query names. The intuition is that these characteristics are significantly differ
ent from regular traffic: either due to longer query lengths, a high amount of (unique) queries, an
abnormal amount of labels, or the use of encoded or encrypted subdomains. Our feature survey (Sec
tion 3.2) identified many such features in current literature. Using this limited amount of information
allows for fast extraction of comprehensible features and limits adversarial evasion possibilities (see
Section 5.2.1).

Next, we presume the corporate DNS dataset to be attackfree. Based on the low probability of DNS
tunneling and exfiltration in the wild and manual inspection of the dataset, it is deemed highly unlikely
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that the dataset contains storage channels with malicious intent. We additionally verified that the cor
porate DNS dataset does not contain any of the malicious domains used by our simulated malware.

However, benign DNS storage channels may be present in real DNS traffic. This phenomenon is
also observed in several other works [1, 16, 62, 73]. Filtering benign storage channels beforehand is
challenging: their prevalence is expected to differ between networks and expert knowledge is required
to correctly identify them. Removing benign storage channels beforehand might cloud the performance
evaluation, as it is influenced by the quality of the filtering.

While we acknowledge the presence of benign storage channels in the corporate DNS dataset, the
total contamination is presumed to be low and insignificant. We choose to ignore their effects during
training and evaluation.

Lastly, we assume that it is impossible to obtain usable information about endusers from the corporate
DNS traffic dataset. Due to the nature of the data collection method, the DNS traffic cannot reliably be
attributed to either a single user or a device that processes traffic of multiple users. The total amount
of users in the dataset is, as a result, unknown as well. This is common for traffic captured at different
locations in large and complex networks. The main consequence is that the possible aggregation levels
for behavioral features are limited.

5.2. Feature Extraction
This section describes the feature engineering methods used to describe covert DNS storage channels.
We create three different feature sets based on either single query instances or query sequences, in
order to assess their relative performance.

First, we briefly describe adversarial evasion possibilities and our preemptive mitigation strategies
in Section 5.2.1. The features used for detection are then designed and analyzed in Section 5.2.2
(payloadonly features) and in Section 5.2.3 (behavioral features).

5.2.1. Robustness
Under our threat model, an attacker has complete control over both the DNS queries as well as re
sponses, with the only restriction that they are valid by the DNS standard. Many aspects of a DNS
packet can be trivially altered by an attacker – e.g. query type, flags in the header section, response
code, response type, response content, etc. – in an attempt to evade detection, without impacting
exfiltration ability. Current literature does not always take this into account.

For example, Saeli et al. [73] ignored unsuccessful DNS lookups and assume that no exfiltration can
take place with those queries. However, as the response code is controlled by the attacker, any re
sponse to an exfiltration query can be marked “unsuccessful” to evade detection. At that point, the
payload has already reached the malicious DNS server.

Buczak et al. [16], Nadler et al. [62] considered query type frequencies per domain. Query types
are only relevant to the format and capacity of the DNS answer, and have therefore no influence on
the exfiltration capability of an attacker, as the format of DNS queries is the same regardless of query
type. The malware we use for training, for example, all use the common A query type.

Both examples demonstrate the importance of only taking into account properties of DNS transmis
sions that are difficult to modify without incurring a significant cost in terms of exfiltration capability.

By definition of DNS storage channels, any information has to be exfiltrated via the DNS query. Fur
thermore, every DNS request is sent at a defined point in time, which is recorded by the observer
such that the order of a sequence of requests can reliably be determined, without possible adversarial
modification by the sender.

We therefore consider the payload and timestamp of a DNS request the definitive information source
for covert DNS storage channel detection. All other aspects of DNS requests and responses can be
modified by an attacker without impacting exfiltration capability. Modifying the query or timing between
requests, however, directly influences the exfiltration throughput and/or covertness.

An added benefit of this approach is that our method can be used with packet capture, (Zeek) traffic
analysis logs or DNS server logs, since each data source contains the required information.
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5.2.2. SingleInstance Features
We first consider features extracted from single query instances, or payload features. These features
have an inherent computational advantage over query sequence features because no state has to be
kept.

The payload features presented in this section are based on proven effectiveness and storage chan
nel characteristics as described in current literature (see Section 3.2.1). We argue that the most impor
tant payload features are based on query space utilization, information density and lexical properties
of queries. These characteristics are valid in any network setting (i.e. are not domain or language
dependent) and capture both theoretical capacity and actual use aspects of the covertness proposition
(Section 2.2).

The influence of primary domains (with different lengths) is removed by only considering subdomains
for feature extraction. That is, any lengths, character frequencies, etc. are based on the “subdomains”
portion of subdomains.example.com. Furthermore, the labelconnecting dots are ignored for any lex
ical features. This results in nearidentical features for queries with the same payload but different
primary domains.

Some works (e.g. [52]) do consider the primary domain a valuable source of information, from
e.g. the intuition that malware authors use disposable or algorithmically generated domain names for
exfiltration. In our experience, realworld covert DNS channels use readable and inconspicuous domain
names to appear benign, using for example typosquatting or combosquatting ([46]). Most importantly,
however, the domain name is fully controllable by the attacker and is easily changed to evade detection.

We define a payload feature extraction function fe𝑝 to transform a single DNS query 𝑄𝑖 = (𝑆𝑖 , 𝐷𝑖) to
a feature vector, where 𝑆𝑖 is the subdomain portion of the query and 𝐷𝑖 the primary domain. 𝑆𝑖 may
be split on the labelseparating dot to obtain the tuple of subdomain labels 𝐿𝑖 = (𝑙𝑖,1, 𝑙𝑖,2, … , 𝑙𝑖,𝑛). The
concatenated payload, equal to 𝑆𝑖 without the labelseparating dots, is denoted as 𝑃𝑖 = 𝑙𝑖,1‖𝑙𝑖,2‖…‖𝑙𝑖,𝑛.

We extract the following eight features from single query instances, defined in Equations 5.1 to 5.8.

(i) Number of unique characters
The amount of distinct characters in the payload.

fe𝑝,0(𝑄𝑖) = | { 𝑐 ∶ 𝑐 ∈ 𝑃𝑖 } | 5.1

(ii) Unique character ratio
The ratio between the amount of distinct characters and total characters in the payload.

fe𝑝,1(𝑄𝑖) =
| { 𝑐 ∶ 𝑐 ∈ 𝑃𝑖 } |

| 𝑃𝑖 |
5.2

(iii) Number of digits
The amount of distinct characters in the payload.

fe𝑝,2(𝑄𝑖) = | ⟨ 𝑐 ∈ 𝑃𝑖 ∶ isdigit(𝑐) ⟩ | 5.3

(iv) Number of nonstandard characters
The amount of nonalphanumeric, nonhyphen and nonunderscore characters in the payload.

fe𝑝,3(𝑄𝑖) = | ⟨ 𝑐 ∈ 𝑃𝑖 ∶ ¬isalphanum(𝑐) ∧ ¬ishyphen(𝑐) ∧ ¬isunderscore(𝑐) ⟩ | 5.4

(v) Average subdomain length
The average length of a subdomain in the payload.

fe𝑝,5(𝑄𝑖) = ∑
𝑠∈𝐿𝑖

| 𝑠 |
| 𝐿𝑖 |

5.5
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(vi) Maximum subdomain length
The maximum length of a subdomain in the payload.

fe𝑝,6(𝑄𝑖) = max { | 𝑠 | ∶ 𝑠 ∈ 𝐿𝑖} 5.6

(vii) Entropy
The (Shannon) character entropy of the data payload. Note that the effectiveness of this feature is
impacted by the lowercasing of DNS queries (see Section 4.1.3), as there are 26 less (uppercase)
characters to observe.

fe𝑝,7(𝑄𝑖) = −∑
𝑐∈𝑃𝑖

Pr(𝑐) ⋅ log Pr(𝑐) 5.7

(viii) Fill ratio
The payload length (including label separators) divided by the theoretical maximum amount of
payload space. The maximum payload space is determined by subtracting the length of the
primary domain and the payloadconnecting dot from themaximum query length of 253 characters
(see Section 2.1.2).

fe𝑝,8(𝑄𝑖) =
| 𝑆𝑖 |

253 − |𝐷𝑖 | − 1
5.8

5.2.3. Behavioral Features
While we consider payload features effective at describing anomalous single queries, they may not
describe storage channels using many inconspicuous queries well. Instead of maximizing storage
channel throughput by constructing long and anomalous queries, an attacker can exfiltrate a given
amount of information just as well with shorter queries, that have ordinary information entropy and no
invalid characters, by using more queries and/or shorter intervals.

Moreover, payload features may cause large amounts of false positives or false negatives for benign
observations that resemble malicious observations, and vice versa. Ahmed et al. [1], for example,
report a significant amount of false positives using anomaly detection with payload features.

In order to detect lowandslow exfiltrations and to better characterize benign observations, we look
beyond isolated payloads and extract features derived from local context. By considering sequences
of queries, latent exfiltration behavior can be recognized even when isolated queries appear benign.

Defining Context
The global aggregation levels identified in Chapter 3 are either based on time, users or primary do
mains. A pertime grouping considers queries within a certain time period, a peruser grouping consid
ers queries to (or from) distinct IP addresses and a perdomain grouping considers queries to distinct
primary domains. Based on the following considerations, we propose a method that incorporates con
text by grouping DNS requests per primary domain:

• Features from perdomain sequences are not influenced by temporal characteristics of a network,
e.g. differences in traffic volume at different times of day or between different users.

• Storage channels are by definition isolated from other traffic in a perdomain aggregation, as they
use a single domain name under our threat model. Detection at this level would enable network
administrators to block a domain name as soon as an exfiltration is detected.

Considering all queries in a aggregation at once, however, limits the usability of the detection system,
as all data has to be present beforehand, analysis of streaming data is no longer possible and keeping
a full query history per domain name is costly. Also, temporal peculiarities or outliers may be smoothed
away.

We therefore propose a feature extraction method based on local context, by continuously consider
ing a limited query history per aggregation. Perdomain sequences are analyzed with sliding windows
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that contain for a given observation either a fixed amount of queries 𝜆, or all queries from the last 𝛿
seconds (including the current observation).

The intuition behind two different sliding window types is that timebased windows are assumed
to be effective at detecting query bursts – often observed in tunneling traffic – and that fixedlength
windows are effective at detecting lowandslow exfiltrations with significant pauses between queries –
as is the case with infostealer malware.

Note that the sliding feature extraction method produces one feature vector per original observation.
This enables us to create different compositions of feature sets – also with payload features – and
compare their effectiveness.

Feature Extraction
For behaviorial feature extraction, both DNS query 𝑄 and corresponding timestamp 𝑇 of a DNS request
tuple 𝑅𝑖 = (𝑇𝑖 , 𝑄𝑖) are required. The sequence 𝐺𝐷𝑖 = (𝑅0, 𝑅1, … , 𝑅𝑛) consists of all observations for a
primary domain 𝐷𝑖, ordered in time.

We define a behavioral feature extraction function fe𝑏 to transform a perdomain sliding window to a
feature vector. The size of the sliding window is defined by either a time delta 𝛿 in seconds or by a
fixed number of queries 𝜆. The sequence of observations in a sliding window for primary domain 𝐷𝑖 at
index 𝑢 is given by Equation 5.9 for time windows and by Equation 5.10 for fixedlength windows.

𝑊𝐷𝑖
𝛿,𝑢 = {𝑅𝑗 ∶ 𝑅𝑗 ∈ 𝐺𝐷𝑖 ∧ (𝑇𝑢 − 𝛿) < 𝑇𝑗 ≤ 𝑇𝑢} 5.9

𝑊𝐷𝑖
𝜆,𝑢 = {𝑅𝑗 ∶ 𝑅𝑗 ∈ 𝐺𝐷𝑖 ∧ (𝑢 − 𝜆) < 𝑗 ≤ 𝑢} 5.10

Fixedlength sliding windows are expanding until the maximum amount of observations 𝜆 is reached.
That is, after the first query, a 𝜆 = 2 window contains one query, after two queries, two, and after three
queries, again two, etc.

In cases where the extraction procedure is indifferent to the sliding window type, i.e. fe𝑏,𝑖(𝑊𝛿) =
fe𝑏,𝑖(𝑊𝜆) for a feature 𝑖, the window type is omitted for brevity and the sliding window is denoted by
𝑊. Also, building on the notation introduced in Section 5.2.2, the following convenience notations are
used:

• 𝑆𝑊 = ⋃𝑅𝑗∈𝑊 𝑆𝑗 is used to denote the set of unique subdomain portions (i.e. the query without
primary domain) of queries in a sliding window𝑊.

• 𝐿𝑊 = ⋃𝑅𝑗∈𝑊 𝐿𝑗 is used to denote the set of unique subdomain labels in a sliding window 𝑊.

• 𝑝𝑊 =
f
𝑆𝑗∈𝑆𝑊 𝑃𝑗 is used to denote the concatenation of unique data payloads in a sliding window𝑊,

where
f
denotes the concatenation operation. The order in which the payloads are concatenated

is not important as we only consider the total length and entropy.

We extract six features (Equations 5.11 to 5.16) from both sliding time and fixedlength windows and
two features (Equations 5.17 and 5.18) from time windows only. The behavioral feature sets com
prise features of proven effectiveness in current literature and emphasize the uniqueness, volume and
information transfer of storage channel queries.

Because fixedlength windows have variable time duration, any feature based on time is unstable:
the duration may either approach zero for hightraffic domains, or become arbitrarily large. The unique
query rate and unique transfer rate are therefore only calculated for time windows.

(i) Number of unique subdomains
The amount of distinct subdomains in the sliding window.

fe𝑏,0(𝑊) = | 𝐿𝑊 | 5.11
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(ii) Entropy
The character entropy of the concatenated payloads in the sliding window.

fe𝑏,1(𝑊) = 𝐻(𝑃𝑊) 5.12

(iii) Average unique subdomain length
The average length of unique subdomains in the sliding window.

fe𝑏,2(𝑊) = ∑
𝑠∈𝐿𝑊

| 𝑠 |
| 𝐿𝑊 |

5.13

(iv) Fill ratio (unique)
The fraction of the theoretical maximum amount of payload spaced filled in the sliding window.
Only unique queries in a window are considered.

fe𝑏,3(𝑊𝐷𝑖) = | 𝑝𝑊 |
| 𝑆𝑊 | ⋅ (253 − |𝐷𝑖 | − 1)

5.14

(v) Maximum subdomain length
The maximum length of a subdomain label in the sliding window.

fe𝑏,4(𝑊) = max { | 𝑠 | ∶ 𝑠 ∈ 𝐿𝑊} 5.15

(vi) Unique query ratio
The fraction of queries that is unique in the sliding window.

fe𝑏,5(𝑊) =
| 𝑆𝑊 |
|𝑊 | 5.16

(vii) Unique transfer rate
The amount of data (characters) transmitted per second.

fe𝑏,6(𝑊𝛿) =
| 𝑝𝑊 |
𝛿 5.17

(viii) Unique query rate
The amount of unique queries per second.

fe𝑏,7(𝑊𝛿) =
| 𝑆𝑊 |
𝛿 5.18

Example
Consider the following FrameworkPOS queries from the malicious dataset collected in Section 4.1. The
gap between the first beaconing query and subsequent exfiltration queries highlights the significance
of two different window types.

Timestamp Query

0m 0.00s 4940a08c.grp1.ping.adm.cdd2e(…)dd2cd.cdc4c(…)9defe.f0e197ecfdec.ns .example.com
25m 57.06s 4940a08c.grp1.tt2.c8fed0cd(…)dd2c8c8dc.d2c4fefed(…)e9e9e9e9e9.ns .example.com
25m 58.07s 4940a08c.grp1.tt1.dcd(…)4fc.99c(…)8c8.cdc(…)9e9.c4c(…)4d0.ns .example.com
25m 59.09s 4940a08c.grp1.tt2.dcdcfed2(…)ecddccdc8.d2fcfed0d(…)e9e9e9e9e9.ns .example.com
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The behavioral features extracted from these queries using either a threequery window or three
second window are included in Table 5.1. The first observation is that both windows have aggregated
different amounts of queries after different queries. This is visible in the resulting features to varying
extents, as for example the number of unique labels is impacted, but the maximum label length is not.

Furthermore, this example illustrates the erratic behavior of the unique query rate and unique trans
fer rate features in the fixedlength sliding window. The large gap between the first and second query
and the subsequent small intervals make these features unstable and are discarded as a result of this.

Table 5.1: Comparison of sliding window features.
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Fixed window, 𝜆 = 3

Query 1 (1) 8 (10.000) 3.610 (790.000) 9.875 0.410 26 1.000
Query 2 (2) 11 (0.001) 3.532 (0.121) 15.818 0.476 60 1.000
Query 3 (3) 16 (0.002) 3.500 (0.246) 22.188 0.638 60 1.000
Query 4 (3) 13 (1.478) 3.385 (206.494) 29.846 0.692 60 1.000

Time window, 𝛿 = 3𝑠

Query 1 (1) 8 0.333 3.610 26.333 9.875 0.410 26 1.000
Query 2 (1) 6 0.333 3.368 36.333 18.167 0.543 60 1.000
Query 3 (2) 11 0.667 3.407 101.333 26.364 0.752 60 1.000
Query 4 (3) 13 1.000 3.385 139.667 29.846 0.692 60 1.000

5.2.4. Feature Distribution
The following plots summarize the probability densities of the extracted features, per class. Figure 5.1
visualizes payloadonly features, Figure 5.2 contains features extracted from a sliding time window of
length 2 seconds and Figure 5.3 contains features from a sliding fixedlength window of size 20. An
overview of the probability density for every feature set used during experiments (see Section 5.4.3),
as well as a dissection of the distributions for each group within the malicious class, is provided in
Appendix B.

For the benign class, only features extracted from traffic of the second and third days are used,
to reduce the effect of novel primary domains and empty sliding windows. For the malicious class, all
dns2tcp andmalware datasets are included, and for iodine the datasets with query types TXT and NULL,
to improve the balance between queries per group in the malicious class.
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Figure 5.1: Feature distribution, payloadonly features
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Figure 5.2: Feature distribution, time window (𝛿 = 2 seconds)
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Figure 5.3: Feature distribution, fixedlength window (𝜆 = 20)
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Although single features do not have to be discriminative by themselves and algorithms use combi
nations of features to model the input space, these density plots show that the selected features are
clearly descriptive of the benign and malicious classes.

For payloadonly features, especially the maximum subdomain length and fill ratio features – de
scribing query structure and query space utilization – discriminate well between classes. Some sliding
window features are highly descriptive as well: for example, the feature values for the number of unique
subdomains in the sliding time window and unique query ratio in the fixedlength window predominantly
fall within one histogram bin for the malicious class. The feature distributions between sliding window
types differ as well, which make it interesting to evaluate different window combinations.

Clear separations per feature are especially useful for anomaly detection, as it shows that the
“anomalies” (malicious class) are sufficiently distant from the benign class to prevent swamping and
masking, and that there is little overlap between classes. Overall, the feature sets look promising for
use with both classification and feature selection.

5.3. Modeling
Current literature shows promising detection results in both supervised (twoclass) classification and
unsupervised anomaly detection settings. We use (combinations of) the feature sets proposed in the
previous section to model either only the benign class for anomaly detection or both benign and mali
cious classes for classification.

In this section, we first describe the algorithm selection criteria (Section 5.3.1) and then introduce
the Random Forest (Section 5.3.2) and two Isolation Forest algorithm variants (Section 5.3.3).

5.3.1. Algorithm Selection
Every machine learning algorithm has its advantages and disadvantages. The following constraints
and requirements apply to our research:

• We perform a considerable amount of experiments, considering multiple algorithms and feature
set compositions. Combined with the size of the training set and hyperparameter optimization,
algorithms that are slow in terms of training and/or evaluation cannot be used for our experiments.

• Detection models should generalize well over all threats in the class of DNS storage channels,
as well as unseen threats.

• Many features are derived from current literature. Algorithms that have been shown to perform
well in current research are preferred.

• Given the difference between classification and anomaly detection, algorithms that require no or
similar feature processing (e.g. scaling or normalization) are preferred for a fair comparison.

Themain algorithm selection criteria are therefore speed, generalization performance and proven effec
tiveness in current research, and if possible using the same feature processing. Treebased algorithms
satisfy these requirements.

Treebased Models
Datasets can be modeled with decision trees, which recursively split the input space in unique regions
that belong to a class. Starting from the root of the tree, each node represents a decision rule to split the
data based on one feature, to arrive at the leaves which represent class labels. Learning a decision tree
means determining the best split at a node for a given subset of remaining training samples. Different
implementations use different metrics for ”best”, but information gain (entropy) orGini impurity are most
commonly used.

Fully grown decision trees describe the training data very well, but are highly sensitive to changes:
small changes in the data may result in a completely different tree. They are also prone to overfitting,
which can be mitigated by e.g. reducing the maximum tree depth or increasing the minimum required
samples to remain per leaf.

While single decision trees do not fit our algorithm selection criteria, numerous treebased algorithms for
classification as well as anomaly detection algorithms do suit our needs. These algorithms improve on
the shortcomings of decision trees by combining many ”weak” trees trained on a sample of training data
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and/or a subset of features, to create one strong learner. Advantages of these treebased ensembles
are:

• Fast training and evaluation.

• High generalization power.

• Less prone to overfitting.

• Promising performance in current literature (e.g. [1, 16, 62]).

An added benefit is that decision trees do not require normalized or scaled features, as each split is
based on independent features. Also, decision trees require no costly distance calculations between
observations, which is beneficial when using large training datasets.

Treebased algorithms exist for both supervised classification and anomaly detection. We select the
Random Forest algorithm for the supervised setting and two Isolation Forest variants for anomaly de
tection.

5.3.2. Random Forest
The supervised Random Forest classifier [13] combines multiple decision trees that are trained on
different (random) subsets of features and training samples. Each tree independently predicts the
output class, and the majority voted wins. The basis of this algorithm lies in bootstrap aggregating (or:
bagging): aggregating the decisions of many trees trained on random samples, with replacement, from
the training data. Random Forests additionally sample the features available for each split.

The main advantages of Random Forests are their ability to handle large and high dimensional datasets
(by sampling) and that they are less prone to overfitting. Furthermore, the feature importance can
be determined by measuring which features produce the most valuable splits. However, care has to
be taken when interpreting importances, as feature correlation influences the importance. Lastly, a
practical benefit of using many independent trees is that computations can be trivially parallelized for
faster training and evaluation.

Disadvantages of Random Forests are moderate complexity for models with many deep trees
(slower training and evaluation speeds) and difficult to interpret models (black boxes). Neither aspect
is problematic for our research, as the model complexity is restricted by our choice of hyperparameters,
the training speed is deemed sufficiently fast and explainable models are not a requirement.

5.3.3. Isolation Forest
The unsupervised Isolation Forest (iForest) anomaly detection algorithm [53] combines multiple in
dependent isolation trees. Similar to Random Forests, the algorithm uses bagging to train trees on
sampled training data. The trees, however, resemble decision trees but have no notion of class labels
or splitting criteria. Isolation trees are constructed from input data by recursively splitting on a random
feature at a random split point.

Isolation Forests are built on the assumption that anomalies are both few and different from nor
mal observations. The intuition is that points that are difficult to “isolate” – i.e. require many splits –
share many characteristics with other instances. Conversely, observations that are easy to isolate are
apparently different and distanced from other observations and as such anomalous.

The anomaly score for a given sample is based on the (normalized) average path length and the
actual path length, i.e. the number of splits until isolation, averaged over all trees in the forest. When
the anomaly score crosses a predefined threshold, the sample is marked as anomalous.

Isolation Forests suffer from swamping and masking [53]. When anomalies are too close to normal
instances, more splits are required to isolate points, lowering the average anomaly scores and as a
result marking more normal instances as anomaly (swamping). Masking, on the other hand, refers
to concentrated groups of anomalies that as a result appear normal. By (rigorously) subsampling the
training data per isolation tree, both swamping and masking effects are reduced. We optimize the
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training sample size during experiments.

The main advantages of the Isolation Forest algorithm are stateoftheart performance combined with
fast training and evaluation, as opposed to other anomaly detection methods based on (Euclidian)
distance or density. It also scales well with large and highdimensional datasets. Moreover, Isolation
Forests can be fit on training data containing anomalies.

However, the algorithm suffers from bias introduced by onedimensional splits on a single feature,
which may also cause “ghost” anomaly clusters if the input space contains clusters [37]. This bias
produces different anomaly scores and ultimately different output labels for observations of similar
importance. The Extended Isolation Forest algorithm attempts to mitigate this problem.

Extended Isolation Forest
The Extended Isolation Forest (EIF) algorithm [37] modifies the original Isolation Forest algorithm by
allowing splits on multiple features. Higherdimensional hyperplanes produce more effective splits of
complex input spaces. Figure 5.4 illustrates the effects of the different splitting methods and clearly
shows that the anomaly scores produced by the Extended Isolation Forest better capture the sinusoidal
shape of the training samples.

(a) Training observations (b) Isolation Forest (c) Extended Isolation Forest

Figure 5.4: Training data with sinusoidal shape and corresponding anomaly score heatmaps of the regular Isolation Forest and
the Extended Isolation forest. Source: Hariri et al. [37].

The Extension Level of the algorithm denotes the amount of additional features to consider at each
split. Extension Level 0 is equivalent to the original Isolation Forest algorithm. We experiment with
Extension Levels 1 and 2, considering either two or three features per split, as recommended by Hariri
et al. [37].

Note that because a combination of features is used to produce a split, features do need to be scaled
beforehand, in contrast to the regular Isolation Forest. The EIF package we use for experiments stan
dardizes features at each step (centering features around the mean with unit variance). This approach
does not bound features by a range and as such retains outliers in the data.

While we expect no significant issues using regular Isolation Forests, which have shown promising
results in previous research ([1, 62]), we also experiment with the Extended Isolation Forest algorithm
in an attempt to further improve detection performance.

Anomaly Threshold
Isolation Forest algorithms calculate anomaly scores for each sample. A threshold on this score is
used to determine whether or not a sample is malicious. The authors of the iForest algorithm propose
a threshold of 0.5 in [53], based on the characteristics of the scoring function.

Another method is to use the contamination of the training set to determine the threshold, as used
by the ScikitLearn iForest implementation [66]. The contamination represents the expected fraction
of anomalies in the training data. The threshold is then defined after fitting the model by the anomaly
scores in the (1contamination)th percentile.

Given that the actual contamination (by benign storage channels) of our training set is unknown,
the original threshold of 0.5 is used instead of determined by a contamination of zero. The latter would
effectively define the threshold as the score of the most anomalous point in the benign class, which is
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likely very anomalous. This would cause models to be unable to detect malicious but less anomalous
samples.

Note that another common technique, selecting the topn samples with the highest anomaly scores, is
not a viable solution. Given that there are multiple heterogeneous threats in our dataset, with distinct
behavior and query characteristics, this approach would only identify observations belonging to the
most anomalous threats.

5.4. Storage Channel Detection
Combining the feature sets and machine learning algorithms proposed in the previous sections, this
section introduces the storage channel detection experiments. In order to create effective and general
izable detection models, we require carefully partitioned datasets for training and testing. Section 5.4.1
explains which datasets are used and how they are combined. Then, the evaluation strategy and
metrics used to determine detection capability of models is described in Section 5.4.2. Finally, the
experiment design and parameters are outlined in Section 5.4.3.

5.4.1. Data Partitioning
The DNS traffic datasets used in this research have been introduced in Section 4.3. At our disposal are
a sizable dataset of 180M normal DNS queries and malicious datasets of four different storage channel
malware and two connection tunneling tools.

Machine learning models are trained on samples from a training set, and their performance is es
timated using a holdout test set. Using the same data for training and validation is fundamentally
incorrect, as it does not provide insight into how well unseen data is classified and overestimates the
performance of overtrained models.

Besides singlesplit holdout validation, kfold cross validation is a popular technique that estimates
model performance by averaging over 𝑘 different traintest splits. The dataset is split in 𝑘 folds and on
each iteration, a different fold is selected for testing and the remainder for training. Cross validation
is generally preferred when limited data is available, as every sample is at some point considered for
testing. The resulting performance estimate is therefore less biased. However, given our large and
diverse datasets for testing and the computational overhead of cross validation, we opt for holdout
validation.

Naively dividing the data in two partitions, however, may still result in a biased performance estimate.
We first identify and address three concerns that apply to both unsupervised and supervised experi
ments and then two concerns that only apply to supervised learning:

Hyperparameter optimization
We optimize the hyperparameters of the machine learning algorithms used during experiments.
However, the holdout test set cannot be used to determine the optimal set of parameters, as that
would imply that the model learns from test samples, violating the independency rule. Instead, we
designate a portion of the training data validation set which is only used for optimization purposes
and not for training.

Data leakage
Data leakage introduces “information about the data mining target, which should not be legiti
mately available to mine from” and leads to overestimation of the performance of a model [45].
While there are many different data leakage causes, our main concern is training example leak
age in terms, and more specifically time leakage in general and group leakage in the benign
class.
Time leakage occurs when training uses observations that would not have been available at
testing time. While this issue is not deemed critical for payloadonly features, as single queries are
presumed independent in that scenario, behavioral features do incorporate temporal information
and should be divided over datasets in contiguous segments and not be shuffled.
Furthermore, while the corporate DNS dataset is large and diverse, traffic to the same primary
domain is likely to be correlated or perhaps even identical. Analogous to e.g. the medical domain,
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Figure 5.5: Train, validation and test dataset partitioning process.

where observations from the same patient are not to be shared across traintest splits, we make
sure that queries to a distinct primary domain end up in either the train or test set, but never both.

Coldstart problem
Query sequence features suffer from coldstart problems. When extracting features from a sliding
window over queries to a distinct primary domain, newly observed domains have no prior queries
in the window. One or few queries cannot describe behavioral aspects well and effectively pro
duce singleinstance features. To mitigate this concern, we discard the first day of features from
the threedayspanning benign dataset. Note that still a considerable amount of newly observed
domains exists in the remaining data (see Table 4.5).

Unsupervised anomaly detection uses only the benign class for training. The following concerns regard
class distribution and balance and therefore only apply to supervised learning.

Class imbalance
The malicious class is significantly smaller than the benign class. Decision trees, and therefore
Random Forests, are sensitive to class balance as 1) the minority class has less chance of being
in the random sample to construct a tree and 2) splits are affected by class balance. We mitigate
this problem by assigning different weights to the benign and malicious classes during training:
either globally balanced – the same weight for all trees in the forest, computed beforehand –
or balanced per subsample – weights computed independently for each bootstrap sample. This
class weight strategy is optimized during hyperparameter optimization.

Threat Groups
The malicious data originates from multiple different storage channel threats and is therefore not
independent and identically distributed (i.i.d.). While that is not necessarily a problem, as decision
trees (and by extension Random Forests) and Isolation Forests do not make any assumption
about the underlying data, uniform random data sampling to build each tree requires a balance
between groups. Otherwise, some groups would be considered more important than others.
Furthermore, sufficient data is required to properly estimate the model performance. Therefore,
we start with the smallest group (malware) and create a 50% traintest split. As the other groups
are significantly larger, we first select only one query type configuration (TXT) and then sample the
queries in the resulting subsets at different rates to achieve reasonable balance between groups.
The imbalance between groups is resolved by introducing sample weights that weigh each group
proportionally.

Based on these concerns and mitigation strategies, the overarching data composition process, visual
ized in Figure 5.5, is as follows. First, the corporate DNS dataset is labeled benign and the malware
datasets malicious. Then, features are extracted from these datasets as a whole.

The benign class is subsequently split based on the threeday data collection period. The first day
of features is discarded to mitigate the coldstart problem of sliding windows. The third day is used for
evaluation purposes.
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The Day 2 dataset is then split into a train and validation partition by the amount of queries per
distinct primary domain. We create a fair split by alternating between assigning primary domains to
either train or test dataset by their rank (query count). The domain with most queries is included in the
training set, the domain with the secondmost queries in the test set, etc. This yields an equal split
between primary domains and an approximate even split between (the number of) queries.

Finally, due to memory constraints, the benign class is uniformly sampled at 50% for both train and
test datasets. This is not expected to cause undesired sideeffects, as the modeling algorithms also
rigorously sample the training data. The undersampling also improves class balance.

The malicious datasets are split by their group and configuration. From all queries in the respective
dataset, 10% of iodine TXT, 25% of dns2tcp TXT and 50% of every malware dataset is reserved for
training and validation, and the remainder is used for testing.

For anomaly detection experiments, all malicious data is assigned to the validation set as it is not
required for training. For Random Forest experiments, however, the malicious training data is addi
tionally partitioned into two equal parts using a nonshuffled stratified group split. This divides the data
such that the relative frequency of each group is retained across splits. The split is stratified by the
dataset parameter configuration, evenly distributing queries from every underlying dataset per threat
(see Appendix A.1).

The size and composition of the final datasets is described in Table 5.2.

Table 5.2: Train – validation – test split

Source dataset Class Training set Validation set Test set

Corporate DNS Benign 1.78 × 107 1.70 × 107 4.73 × 107

iodine Malicious 9.64 × 105 9.64 × 105 1.06 × 107

dns2tcp Malicious 1.01 × 106 1.01 × 106 1.51 × 106

malware Malicious 4.38 × 105 4.38 × 105 8.78 × 105

Total: 1.80 × 107 1.73 × 107 5.94 × 107

Imbalance ratio: 0.014 0.014 0.26

5.4.2. Evaluation
The purpose of this thesis is to assess the performance between algorithms as well as between feature
sets. Different evaluation methods used in current literature are described in Section 3.4. However, as
no consensus about detection capability exists, we choose to evaluate multiple aspects that we deem
important: seen threat detection rates, unseen threat detection rates (generalization performance) and
false positive rates. Combined, these describe all relevant aspects of detection capability.

Recall that all metrics are based on the number of correctly and incorrectly predicted observations per
class, summarized in a confusion matrix (Table 5.3).

Table 5.3: Confusion matrix.

Predicted

Benign Malicious
Actual Benign True negatives (TN) False positives (FP)

Malicious False negatives (FN) True positives (TP)

Four metrics have been selected that describe different aspects of detection capability: balanced ac
curacy, detection rate, false positive rate and the number of false positive domains.

Balanced Accuracy
𝑇𝑃

𝑇𝑃+𝐹𝑁+
𝑇𝑁

𝑇𝑁+𝐹𝑃
2 ≡ 𝑇𝑃𝑅+𝑇𝑁𝑅

2
Balanced accuracy is defined as the arithmetic mean between the true positive rate (sensitivity) and the
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true negative rate (specificity), equivalent to the average recall per class, and is invariant to class bal
ance. While the range of this metrics is [0…1], a model that predicts either all positives or all negatives
scores a balanced accuracy of 0.5.

Balanced accuracy is a composite metric of sensitivity and specificity. Both metrics independently
provide valuable insight in the relative performance between models as well: correctly classifying ob
servations in either class.

Recall 𝑇𝑃
𝑇𝑃+𝐹𝑁

Recall (or: detection rate) describes the fraction of correctly classified observations in the malicious
class. Recall may be calculated separately per group and averaged to produce a metric (macrorecall)
that accounts for query imbalance between groups.

False Positive Rate 𝐹𝑃
𝐹𝑃+𝑇𝑁

The false positive rate, or 1 − 𝑇𝑁𝑅, describes the fraction of misclassified observations in the benign
class.

The aforementioned metrics are based on (the number of) queries. By aggregating results per primary
domain, we can measure the amount of detected storage channels, as well as the number of false
positive domains. In terms of the practical usability of a model, the number of false positive domains is
especially relevant, as fewmisclassified domains with many queries, perhaps benign storage channels,
can be added to an allowlist.

Amount of False Positive Domains
The number of misclassified domains in the benign class, i.e. benign domains for which at least one
query was classified as malicious. The number of required detected queries per domain can be in
creased to reduce the number of alerts (see Section 6.3).

Lastly, all models are evaluated using multiple datasets of unseen threats as well. These datasets
comprise traffic from real malware, an unseen DNS tunneling tool and simulated plaintext credit card
exfiltration. Refer to Section 4.3.3 for statistics about these datasets. The generalization performance
is measured by the detection rate per threat, macrorecall over all threats, as well as the number of
identified threats.

5.4.3. Experiments
Our experiments vary different feature sets as well as machine learning algorithms. Table 5.4 pro
vides an overview of the considered machine learning methods (i.e. which algorithm, package and
configuration) and feature sets.

Table 5.4: Machine learning algorithms and feature sets used for experiments.

Machine learning methods Feature sets

Type Algorithm Package Configuration

×

Type Parameter

Classification Random Forest scikitlearn – Payloadonly –
Fixed window 𝜆 = 10

𝜆 = 20
Anomaly detection Isolation Forest IsoTree (Extension Level 0) Time window 𝛿 = 1sec

Extended iForest IsoTree Extension Level 1 𝛿 = 2sec
Extended iForest IsoTree Extension Level 2 𝛿 = 5sec

Besides experiments with singular feature sets, we also experiment with feature set combinations. For
example, payloadonly features may be combined with either a single fixed window feature set, a single
time window feature set, or with both. However, feature sets of the same type are never combined as
they are likely to be highly correlated.
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Figure 5.6: Experiment design: hyperparameter optimization, model training and performance evaluation.

There are 23 possible combinations: 6 individual, 11 combinations of two and 6 combinations of
three feature set types. As every combination is also used in conjunction with all of the four algorithms,
we perform a total of 4 × 23 = 92 different experiments.

The scikitlearn [66] Python package is used for the Random Forest implementation. While scikitlearn
also includes the Isolation Forest algorithm, it does not implement the extended variant. We therefore
use the IsoTree package [24], which implements both regular and extended Isolation Forest variants.
The experiments have been performed with scikitlearn 0.24.2 and IsoTree 0.2.7–post4, of which
the latter includes bugfixes identified by this research1.

Experiment design
Having established all information necessary to perform the detection experiments, this section de
scribes the experiment design. The full experiment pipeline is visualized in Figure 5.6.

Given training and validation datasets, we iteratively train and scoremodels using different hyperparam
eters to find the most optimal combination. Hyperparameters control the learning process of machine
learning algorithms and are therefore not learned from the training data. Tuning these parameters may
result in better models. The best performing hyperparameters are used to fit the final model on both
the training and validation data.

The hyperparameters are optimized with respect to a certain metrics. Given the large number of
experiments, optimizing with respect to overall performance, using for example the AUC, is not feasible
as it takes too long to compute. Furthermore, many common optimization metrics are influenced by
class balance and may produce unrepresentative results. Figure 5.7 demonstrates this phenomenon
by visualizing the scoring landscape in terms of sensitivity and specificity of the 𝐹1score (a common
optimization metric), accuracy and balanced accuracy, at different rates of class imbalance.

At perfect class balance, accuracy is equally sensitive to changes in the positive and negative class.
The F1score, however, is already biased towards the positive class, as there is little variation in speci
ficity at lower sensitivity values.

Increasing the imbalance to a ratio of 10:1, the existing bias in terms of F1score is exaggerated,
as changes in sensitivity now become increasingly irrelevant. The accuracy is instead barely affect
by changes in the true positive rate. At an imbalance ratio of 100:1, the effects on both accuracy and
F1score are even more pronounced. Balanced accuracy, however, weighs both classes equally and
is unaffected by class imbalance.

In practice, using accuracy or the F1score for optimization would produce models that are biased
towards either the the negative class or positive class. Instead, the scoring function should be either
impartial to class balance, or weigh different errors according to domain requirements (e.g. prefer

1See https://github.com/david‐cortes/isotree/issues/17 and https://github.com/david‐cortes/isotree/
pull/19.

https://github.com/david-cortes/isotree/issues/17
https://github.com/david-cortes/isotree/pull/19
https://github.com/david-cortes/isotree/pull/19
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Figure 5.7: Score landscape over sensitivity and specificity of the F1score, accuracy and balanced accuracy, at imbalance ratios
of 1:1, 10:1 and 100:1.

false negatives over false positives to reduce the amount of alerts). As determining a suitable cost
sensitivemetric is outside the scope of this research, we choose to optimize with respect to the unbiased
balanced accuracy metric.

The next step is to determine which parameters to optimize. Firstly, the number of trees can be tuned
for all (treebased) algorithms. Tuning this parameter beforehand incurs unnecessary computational
cost, because the error rate converges for growing number of trees and the expected gain is low, which
is demonstrated by Probst and Boulesteix [68] for the case of Random Forests.

Therefore, to reduce the execution time of each experiment, we initially fix number of trees to 25
– a tradeoff between performance and computational time – and optimize the other hyperparameters
(Table 5.5). Afterwards, the newly found parameters are fixed and the number of trees is (briefly)
optimized. As Probst and Boulesteix [68] explicitly mention that their error rate convergence statement
generalizes to “any ensemble method that uses a randomization technique”, we also initially fix the
number of trees for our Isolation Forest experiments.

For Isolation Forests, besides the number of trees, only the sample size parameter is tuned. This
determines the size of the subsample used to construct Isolation Trees. While the original paper rec
ommends a setting as low as 256, we also experiment with values that are orders of magnitude larger
(see Table 5.5), given the diversity of traffic in our benign class.

For Random Forests, the main purpose of hyperparameter optimization is to control the tree growth
and reduce overfitting. To that extent, the maximum depth of trees in the forest is limited by parameter
max_depth, the minimum required samples before a node may split by min_samples_split and the
minimum number of samples to remain at leafs by min_samples_leaf. Additionally, the number of
features considered at each split is reduced using the max_samples parameter, performing implicit
feature selection.

Similar to Isolation Forests, we sample the training data from which trees are built. The classes
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are then assigned weights based on either global (dataset) balance or the balance in the subsample.
Finally, we do not optimize the splitting criterion and use Gini impurity instead of Information Gain,
because it is faster to compute and both criteria rarely disagree [70].

The full parameter search space per algorithm is provided in Table 5.5. Common optimization strategies
are grid search – trying every combination of parameters – and randomized search – randomly trying
parameter combinations for a fixed number of iterations. We use a different, probabilitybased search
strategy provided by Python package hyperopt instead. Hyperopt uses a Treestructured Parzen
Estimator (TPE) to estimate the density of the parameter space [10], in order to make more informed
decisions about the search direction. Hyperopt is shown to produce better hyperparameters in less
time compared to random search [10], which is beneficial given the large number of experiments to
execute. This further allows us to explore a wider parameter range than with grid search.

Table 5.5: Hyperparameter search space, per algorithm and package.

Algorithm Package Hyperparameter Search space (interval or set)

Random Forest scikitlearn n_estimators [5; 125] (step 10)
max_depth [4; 32] (step 2)
max_samples [28; 219]
min_samples_split [2; 10]
min_samples_leaf [1; 10]
max_features [10%; 100%]
class_weight {balanced, balanced_subsample}

(Extended) Isolation Forest IsoTree ntrees [5; 125] (step 10)
sample_size [28; 219]

The hyperparameters are optimized for either 100 (Isolation Forest) or 200 (Random Forest) iterations,
given the difference in search space size. Although hyperopt supports nonuniform search spaces,
we make no assumptions about the shape of the parameter space and define them as either uniform
(for discrete and continuous variables) or choice.

Having determined the best hyperparameter values, the final model is trained on all available training
data. This model is subsequently scored using the test set and the metrics described in Section 5.4.2.
The optimized hyperparameter configuration for every experiment is provided in Appendix C.

5.5. Summary
This chapter describes the covert DNS storage channel detection methodology.

First, Section 5.1 stated the assumptions about our datasets and feature engineering. We presume
our corporate DNS dataset to be attackfree and the contamination of benign storage channels low and
insignificant. We further argue that robust features can be derived from only the payload and timestamp
of DNS queries.

Section 5.2 presented our feature extraction method for both payloadonly features and behavioral
features. Behavioral features are extracted from a sliding window over perdomain query sequences
and are either timebased or of fixed length. We produce three distinct feature sets that are descriptive
of query space utilization, information density and lexical properties of queries for payload features and
storage channel behavior for sliding window features.

Next, Section 5.3 introduced the (Extended) Isolation Forest variants and Random Forest classifier
used for detection, selected by our requirements of fast training and evaluation, generalization ability
and promising performance in current literature.

Finally, Section 5.4 described our experiment design, evaluation metrics and detection methodology
based on the proposed features and algorithms. We identify data partitioning difficulties based on data
leakage, class imbalance, groups in the malicious class and potential coldstart problems for sliding
windows, and adjust our experiments accordingly.
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Results

This chapter presents the results of our storage channel detection experiments. First, the performance
and detection capability on seen threats is analyzed in Section 6.1. Then, the capability of models to
detect unseen threats is tested in Section 6.2. Lastly, the nature and cause of misclassifications – false
positives and false negatives – is investigated in Section 6.3.

Detailed results per experiment are included in Appendix D. Recall that behavioral features are ex
tracted from sliding windows of either a fixed length, denoted by “𝜆=length”, or timebased, denoted by
“𝛿=duration”.

In this chapter, we use the MannWhitney U and Wilcoxon signedrank statistical tests to determine
whether or not distributions of (subsets of) results are significantly different. Both tests are nonparametric,
because we cannot assume normality of the experiment results, and test the null hypothesis that there
is no significant difference in the medians between groups [40]. The corresponding 𝑃value denotes
the probability that the null hypothesis is correct. We reject the null hypothesis when 𝑃 < .05. The
Wilcoxon signedrank test is similar to the MannWhitney U test, but is used when samples are paired
(e.g. between all results of two algorithms) [40].

6.1. Seen Threat Detection
This section analyzes the detection capability of our models on the test set. The test set contains one
full day (24h) of DNS traffic from the corporate dataset and all DNS traffic from iodine, dns2tcp and all
malware traffic that was not part of the training set (see Figure 5.5). We refer to these malicious threats
as seen threats, as they have been seen by the models during training.

Detection capability is measured by balanced accuracy, false positive rate and recall. To account
for imbalance between threats with different number of samples, the recall is calculated per threat and
then averaged (macroaveraged recall or macrorecall).

Note that experiments may be grouped at different levels of granularity to derive general conclusions
and reduce clutter in visualizations. As feature sets are composed of payload and/or behavioral fea
tures, they are grouped either by their composition – i.e. “Payload”, “Fixed”, “Time” and combinations
– or by the less detailed composition type: payloadonly, behavioralonly or both.

First, we present our results for anomaly detection (Section 6.1.1) and classification (Section 6.1.2)
experiments. Then, we compare the results between algorithms (Section 6.1.3) and feature set com
positions (Section 6.1.4). Lastly, we analyze the detection rates between models in Section 6.1.5.

6.1.1. Anomaly Detection
Table 6.1 contains the test set results for the iForest, EIF1 and EIF2 anomaly detection experiments.
Every algorithm is paired with 23 different feature set combinations. We include the results for the three
best performing and three worst performing experiments in terms of balanced accuracy.
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Table 6.1: Top3 and bottom3 anomaly detection experiment results, by balanced accuracy. Bolded values denote best scores
across all experiments for the respective metric.

(a) iForest

# Payload Time Fixed Balanced Acc. MacroRecall FPR (queries) FP (domains)

1 3 1s 20 0.99575 0.99920 0.77% 2,328
2 7 1s 10 0.99556 0.99927 0.82% 2,866
3 7 5s 10 0.99539 0.99962 0.86% 3,479

21 7 – 20 0.94341 0.92845 8.66% 69,402
22 7 – 10 0.92678 0.91649 11.15% 74,186
23 3 – – 0.88983 0.78924 2.05% 20,925

(b) Ext. iForest (level=1)

# Payload Time Fixed Balanced Acc. MacroRecall FPR (queries) FP (domains)

1 3 5s 10 0.99748 0.99936 0.42% 456
2 3 5s 20 0.99733 0.99956 0.48% 470
3 7 1s 10 0.99711 0.99895 0.48% 883

21 7 – 10 0.97302 0.90795 1.49% 31,139
22 3 – 20 0.96226 0.90466 0.89% 6,064
23 3 – – 0.89423 0.78725 1.03% 7,291

(c) Ext. iForest (level=2)

# Payload Time Fixed Balanced Acc. MacroRecall FPR (queries) FP (domains)

1 7 2s 10 0.99776 0.99929 0.38% 723
2 3 2s 20 0.99753 0.99901 0.38% 332
3 7 2s 20 0.99730 0.99913 0.45% 748

21 3 – 20 0.95126 0.89627 0.78% 5,188
22 7 – 20 0.95067 0.92650 7.12% 57,024
23 3 – – 0.89496 0.78733 0.90% 6,358

These results demonstrate that anomaly detection is a viable approach to detect DNS storage channels.
The best configurations per algorithm type had a detection rate on seen threats of more than 99.5%with
a false positive rate of at most 0.77%. Consistent outliers are experiments with payloadonly features,
with a considerably lower recall and as a result balanced accuracy.

The results also show a major difference in false positives between the best and worst performing
models, both in terms of false positive query rates and the number of misclassified domains. Isolation
Forest experiments had an FPR of at least 0.77% and at most 11.15%, EIF1 experiments 0.42%
to 1.66% and for EIF2 experiments 0.38% to 7.12%. The amount of false positive domains ranged
between 1,345 to 74,186 for the regular iForest, 231 to 33,976 for EIF1 and 198 to 57,024 for EIF2
experiments.

6.1.2. Classification
The classification experiment results are presented in Table 6.2. The 23 experiments in total comprise
all different feature sets combinations with the Random Forest classifier.

Table 6.2: Top3 and bottom3 Random Forest experiment results, by balanced accuracy. Bolded values denote best scores
across all experiments for the respective metric.

# Payload Time Fixed Balanced Acc. MacroRecall FPR (queries) FP (domains)

1 3 1s 20 0.99991 0.99972 < 0.001% 10
2 3 2s 10 0.99985 0.99971 < 0.001% 9
3 7 1s 20 0.99984 0.99939 < 0.001% 8

21 7 – 10 0.99394 0.99785 0.74% 109
22 7 2s – 0.99249 0.99849 1.38% 147
23 7 – 20 0.99185 0.99943 1.60% 24,785

The results show that classification models were able to nearperfectly separate the benign from the
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malicious class, achieving both a recall of 99.99% and false positive rate of less than 0.001%. Re
markably, all experiments were able to detect at least 99.94% of the malicious queries, irrespective of
feature set used.

False positive rates vary, however, between < 0.0001 and 1.60% and the worstranked experiment
misclassified queries for as many as 24,785 domains. Nevertheless, the classification experiment with
feature set 𝛿 = 2𝑠; 𝜆 = 20 (not in this table) had only two false positive domains while maintaining
a recall of 99.92%. Overall, twelve experiments produced at most 27 (0.009%) of 310,000 primary
domains in the dataset.

6.1.3. Algorithm Comparison
Comparing the anomaly detection (Section 6.1.1) and classification (Section 6.1.2) results from the
previous sections, we find that models using either algorithm type are able to detect seen DNS storage
channels with high detection rates and low false positive rates.

Firstly, we compare anomaly detection and classification performance. The median balanced accuracy
scores for anomaly detection and classification experiments are 0.9956 and 0.9993, respectively. The
distributions in the two groups differ significantly (Mann–Whitney U = 223.0, 𝑛1 = 23, 𝑛2 = 69, 𝑃 <
.0001). Overall, our classification experiments outperformed anomaly detection experiments.

Between anomaly detection algorithms, Extended Isolation Forest experiments (median 0.99653) per
formed significantly better than Isolation Forest experiments (median 0.99382) in terms of balanced
accuracy (Mann–Whitney U = 235.0, 𝑛1 = 46, 𝑛2 = 25, 𝑃 < .0001). However, between the bal
anced accuracy distributions of EIF1 (median 0.99651) and EIF2 (median 0.99670) experiments, no
statistically significant difference is observed (Wilcoxon signedrank test, 𝑊 = 129.0, 𝑛1 = 𝑛2 = 23,
𝑃 = .80).

In summary, classification models have been shown to outperform anomaly detection models on bal
anced accuracy. Between anomaly detection algorithms, Extended Isolation Forest models achieve a
significantly lower balanced accuracy than Isolation Forest models, although there is no such difference
observed between extension levels of Extended Isolation Forest experiments.

6.1.4. Feature Set Comparison
Besides algorithms, feature sets were also varied between experiments. We evaluate the relative
performance between payloadonly, behavioralonly and composite feature sets in this section.

We first determine whether or not combining behavioral features with payload features improves de
tection capability. Using the Wilcoxon signedrank test, we find that no significant difference between
the balanced accuracy distributions of behavioralonly and composite feature sets exists, neither for
anomaly detection experiments (𝑊 = 189.0, 𝑛1 = 𝑛2 = 33, 𝑃 = .10) nor classification experiments
(𝑊 = 19.0, 𝑛1 = 𝑛2 = 11, 𝑃 = .24). This means that we cannot reliably attribute improved performance
to the addition of payload features to behavioral feature sets.

Figure 6.1 shows, however, that especially the false positive rate distributions are consistently narrower
for composite feature sets. We use again the Wilcoxon signedrank test to determine whether or not
a significant difference between false positive distributions exists and find that this is indeed the case
for anomaly detection experiments (𝑊 = 137.0, 𝑛1 = 𝑛2 = 33, 𝑃 < .05), but not for classification
experiments (𝑊 = 25.0, 𝑛1 = 𝑛2 = 11, 𝑃 = .52). We conclude that the addition of payload features
to behavioralonly feature sets does significantly decrease false positive rates for anomaly detection
experiments.

Finally, payloadonly feature sets are among the worst performing experiments. Figure 6.1 shows
payloadonly anomaly detection experiments as clear outliers in terms of balanced accuracy, caused
predominantly by lower recall. Also, a cluster of outlier anomaly detection experiments appears around
a recall of 0.900. The cause of this lower anomaly detection recall is investigated further in Section 6.1.5.
Classification experiments showed no such outliers and its payloadonly experiment was within the
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Figure 6.1: Balanced accuracy, false positive rate and macrorecall distributions, visualized per algorithm and split for behavioral
only and composite feature sets. The payloadonly experiment scores are added as well.

bandwidth of other experiments, for every metric.

Overall, anomaly detection models had higher false positive rates than classification models. Breaking
down the results per feature set composition reveals that this behavior is caused by fixedonly feature
sets. Figure 6.2 visualizes the balanced accuracy, false positive rate and macrorecall per feature set
composition and clearly shows a fixedonly false positive distribution that is considerably wider and has
a higher median value. This figure also indicates that anomaly detection experiments with considerably
lower recall use either payloadonly, fixedonly or a combination of both feature sets.
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Figure 6.2: Balanced accuracy, false positive rate and macrorecall distributions, visualized per algorithm and split for behavioral
only and composite feature sets. The payloadonly experiment scores are added as well.

The experiment results seemed to indicate that feature sets with a time component score better than
the same feature sets without it. We use the MannWhitney U test to verify whether or not a significant
difference exist between the balanced accuracy distribution of experiments with a time component and
those without, and do the same for fixedlength sliding window features. We exclude the clear payload
only outliers from this analysis.

For anomaly detection, feature sets with a time component (median 0.99640) have a significantly
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higher balanced accuracy than feature sets without it (median 0.96162, U = 1.0, 𝑛1 = 12, 𝑛2 = 54, 𝑃 <
.0001). For fixedlength sliding window features, the medians are 0.99581 for nonfixed and 0.99573
for fixed, and no significant difference was observed (U = 425.0, 𝑛1 = 18, 𝑛2 = 48, 𝑃 = .46).

For classification, adding time features (median 0.99959) also provides a significant improvement
over feature sets without (median 0.99434, U = 6.0, 𝑛1 = 4, 𝑛2 = 18, 𝑃 < .05). For fixedlength sliding
window features, no significant difference was observed as well (U = 40.0, 𝑛1 = 6, 𝑛2 = 16, 𝑃 = .29),
although the medians of both distributions – 0.99938 and 0.99920 for nonfixed and fixed, respectively
– are consistently high.

In summary, our experiments showed that both behavioralonly and combined payload and behav
ioral feature sets outperform payloadonly features. We observed no significant difference in balanced
accuracy between behavioralonly and composite feature sets. However, we did find a significant
decrease in false positive rates for anomaly detection experiments using combined payload and be
havioral feature sets. We also found that fixedonly feature sets cause high false positive rates and that
fixedonly, payloadonly or combinations thereof are the only feature sets showing considerably lower
recall. Lastly, feature sets with a time component showed a significant increase in balanced accuracy
compared to feature sets without it.

6.1.5. Recall Analysis
In order to understand the cause of the lower recall outliers observed in the previous section, we vi
sualize of the recall distributions of the underlying malicious threats in Figure 6.3 and juxtapose the
dissections (a) per algorithm and (b) per feature set composition. Performance metrics for every ex
periment, ranked by macrorecall on the test set, are included in Table D.9 for reference.
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Figure 6.3: Recall distribution for each threat in the malicious class.

Figure 6.3 shows that, regardless of algorithm or feature set, malware traffic is almost perfectly sepa
rable from benign traffic. Two outliers are caused by Extended Isolation Forest models using timeonly
feature sets (𝛿 = 1𝑠). Therefore, poor (anomaly detection) recall with payloadonly features can be
attributed to tunneling traffic only.

Payloadonly features score consistently worse for both tunneling tools, although there are espe
cially large discrepancies in recall of dns2tcp traffic. Payloadonly experiments recognize just over
50% of malicious queries. The remaining outliers, ranging between 70% and 80% recall, are experi
ments with fixedonly or payload combined with fixedwindow features. Interestingly, this behavior is
similar across all anomaly detection algorithms and can therefore not be attributed to unfortunate sam
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pling during training. We have identified that most of the missed tunneling observations are beaconing
instead of data transfer queries, which are further analyzed in Section 6.3.2.

Lastly, Figure 6.3 confirms the excellent class separation abilities of RandomForest models, as each
model detected most to all queries for each threat contained in the malicious class, with no outliers.

Table 6.3 contains the top10 experiments in terms of macrorecall on seen threats. This shows that,
while the overall tendency is that classification experiments outscore anomaly detection experiments,
the latter are able to achieve high recall as well, at the expense of higher false positive rates.

Table 6.3: Top10 experiments with highest macrorecall on threats in the test set.

# Algorithm Payload Time Fixed MacroRecall FPR (queries) FP (domains)

1 Random Forest 3 1s 20 0.99972 < 0.001% 10
2 Random Forest 3 2s 10 0.99971 < 0.001% 9
3 iForest 7 5s 20 0.99970 1.17% 2,116
4 Random Forest 3 1s 10 0.99964 < 0.001% 77
5 iForest 3 5s 20 0.99964 1.03% 2,375
6 iForest 7 2s 20 0.99962 0.99% 3,873
7 iForest 7 5s 10 0.99962 0.86% 3,479
8 iForest 7 5s – 0.99958 4.60% 4,619
9 EIF1 3 5s 20 0.99956 0.48% 470
10 EIF2 7 5s 10 0.99954 0.73% 749

Finally, 77 out of 92 experiments (84%) had a macrorecall of more than 98%. Of the remaining 15
experiments, the macrorecall varies between 93% and 79%, no feature set has a time component and
all use an anomaly detection algorithm.

6.1.6. Conclusion
Based on the analysis provided in the previous sections, we conclude the following about the detection
capability on seen threats:

• Anomaly detection and classification are both viable DNS storage channel detection techniques.
The best performing anomaly detection experiments had a macrorecall of more than 99.92% and
a false positive rate of at most 0.77%. Classification models achieved a macrorecall of 99.97%
and a low false positive rate of < 0.0001%.

• While the majority of experiments separated benign from malicious queries well, classification
models score significantly (𝑃 < .0001) better than anomaly detection models in terms of balanced
accuracy.

• Anomaly detection experiments had higher false positive rates than classification experiments,
predominantly caused by tunneling threats. Nevertheless, the best performing anomaly detection
experiments outscored the worst classification experiments.

• Extended Isolation Forests had a significantly (𝑃 < .0001) higher balanced accuracy than the
regular Isolation Forest, predominantly due to lower false positive rates. No significant difference
in results between extension levels of Extended Isolation Forest experiments was observed.

• We observed no significant improvement in balanced accuracy by combining payload with be
havioral features over behavioralonly feature sets. However, false positive rates of anomaly
detection experiments do decrease significantly for these composite feature sets (𝑃 < .05).

• Adding a time component to feature sets improved balanced accuracy significantly over feature
sets without it for both classification (𝑃 < .05) and anomaly detection (𝑃 < .0001) experiments.
No such improvement was observed for the fixed feature set component.
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6.2. Unseen Threat Detection
As the majority of experiments achieved high recall on the test set, we now analyze whether or not this
holds for unseen but similar storage channel threats as well. Our evaluation dataset includes traffic
from nine malware samples also used in [73], three dnscat2 tunneling samples from [9] and finally a
custom plain text version of the simulated data exfiltration malware (see Section 4.3.3).

Note that, as discussed in Section 4.3.3, the unseen Carbanak and Cobalt Strikemalware samples
are categorized as DNS payload droppers that embed information in the DNS response instead of the
query. These threats are included in visualizations for a better understanding of our detection models,
but are excluded from macrorecall analysis for a fair comparison. Furthermore, the UDPoS threat is
not strictly unseen as it also occurs in the training data. The unseen data, however, originates from
actual malware instead of simulated traffic and is included to confirm detection capability and the quality
of the simulated dataset.

6.2.1. Anomaly detection
Table 6.4 contains the experiments results on unseen threats, ordered by macroaveraged recall over
all threat samples but payload droppers. The false positive query rate and number of false positive
domains on the benign class are included for comparison.

Table 6.4: Top3 and bottom3 anomaly detection experiment results, by macroaveraged recall over unseen threat samples.
Bolded values denote best scores across all experiments for the respective metric.

(a) iForest

# Payload Time Fixed MacroRecall Detected Incl. droppers FPR (queries) FP (domains)

1 7 – 20 0.90412 11 13 8.66% 69402
2 7 – 10 0.88616 11 13 11.15% 74186
3 3 – – 0.64418 9 9 2.05% 20925

21 7 2s – 0.54350 8 9 2.40% 1,345
22 3 1s 20 0.53893 8 8 0.77% 2328
23 7 1s – 0.52360 8 8 1.39% 3191

(b) Ext. iForest (level=1)

# Payload Time Fixed MacroRecall Detected Incl. droppers FPR (queries) FP (domains)

1 7 – 20 0.67237 10 12 1.66% 33976
2 7 – 10 0.64121 10 12 1.49% 31139
3 3 2s 20 0.59651 8 8 0.64% 1320

21 7 2s 20 0.49213 8 9 0.73% 368
22 7 1s 10 0.48302 8 8 0.48% 883
23 3 2s 10 0.46212 8 8 0.56% 388

(c) Ext. iForest (level=2)

# Payload Time Fixed MacroRecall Detected Incl. droppers FPR (queries) FP (domains)

1 7 – 20 0.75911 11 13 7.12% 57024
2 3 – – 0.59697 9 9 0.90% 6358
3 3 – 20 0.59217 9 9 0.78% 5188

21 3 1s 10 0.46447 8 8 0.45% 268
22 3 2s 20 0.46306 8 8 0.38% 332
23 7 1s 10 0.45312 8 8 0.44% 635

The results show large differences in unseen threat detection capability between experiments. Across
all experiments, disregarding DNS payload droppers, iForest models detected at least 8 and at most 11
samples (median=9), EIF1 models 7 to 10 samples (median=8) and EIF2 models 7 to 11 unseen sam
ples (median=8). The experiments with highest unseen threat macrorecall are among the experiments
with the highest number of false positive domains as well.

Interestingly, the experiments with the lowest balanced accuracy on the test set (feature sets 𝜆 = 10,
𝜆 = 20 and payloadonly, see Table 6.4) achieve the highest macrorecall on the unseen threats.
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6.2.2. Classification
The unseen threat detection results for classification experiments are included in Table 6.5. Again,
ordered by macroaveraged recall over all threat samples but payload droppers and with false positive
statistics on the benign class.

Table 6.5: Top3 and bottom3 RandomForest experiment results, bymacroaveraged recall over unseen threat samples. Bolded
values denote best scores across all experiments for the respective metric.

# Payload Time Fixed MacroRecall Detected Incl. droppers FPR (queries) FP (domains)

1 7 – 20 0.59589 11 11 1.60% 24785
2 7 2s – 0.41966 7 7 1.38% 147
3 7 – 10 0.35440 6 6 0.74% 109

21 3 2s 20 0.13485 6 6 0.00% 21
22 7 1s – 0.09496 4 4 0.03% 452
23 3 1s – 0.09452 6 6 0.01% 246

Only a single classification model (fixedonly, 𝜆 = 20) was able to recognize all nondropper threats.
This experiment is also the only one that was able to approach the macrorecall of anomaly detection
experiments. However, this is again the experiment with the most false positive domains. All other
classification experiments had lower macrorecall than every anomaly detection experiment.

The negative outlier (barely) detected four threats and uses only timebased (𝛿 = 2𝑠) features.
Overall, our Random Forest models were able to detect 4 to 11 unseen threats (median=6).

6.2.3. Detection Capability Analysis
It is clear from the results presented in Section 6.2.1 and Section 6.2.2 that anomaly detection ex
periments consistently detected more queries from more unseen threats. The MannWhitney U test
confirms the significance of these differences in (unseen) macrorecall distribution (𝑈 = 52, 𝑛1 = 69,
𝑛2 = 23, 𝑃 < .0001). However, detection rates varied both between unseen threats and experiments,
as shown by the visualized detection rates per malicious sample (left) and number of distinct threats
detected per feature set (right) in Figure 6.4.
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Figure 6.4: Detection rate distributions for each unseen threat (left) and the distinct threats detected distributions for each feature
set composition (right), split per algorithm type.

Overall, this visualization shows that anomaly detection experiments recognized more unseen threats
for every feature set type: the distributions for anomaly detection experiments have a higher median
and their minima are higher than or similar to the maxima of classification distributions.

Table 6.6 provides an overview of the amount of experiments that were able to recognize at least one
query per threat. The results show that only four out of 92 experiments were able to recognize every
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unseen threat (excluding droppers). The combined variety in detection rates andmany experiments that
missed samples altogether demonstrates the importance of using unseen threats for model evaluation.

Table 6.6: Number of experiments that detected at least one malicious query for the respective threat.

Threat Overall Payloadonly Behavioralonly Payload + Behavioral Anom. Det. Classification

UDPoS 92 (100%) 4 (100%) 44 (100%) 44 (100%) 69 (100%) 23 (100%)
dnscat2 (SFTP) 92 (100%) 4 (100%) 44 (100%) 44 (100%) 69 (100%) 23 (100%)
dnscat2 (SSH) 92 (100%) 4 (100%) 44 (100%) 44 (100%) 69 (100%) 23 (100%)
dnscat2 (TELNET) 92 (100%) 4 (100%) 44 (100%) 44 (100%) 69 (100%) 23 (100%)
BondUpdater 91 (99%) 4 (100%) 43 (98%) 44 (100%) 69 (100%) 22 (96%)
ISMdoor 90 (98%) 3 (75%) 43 (98%) 44 (100%) 69 (100%) 21 (91%)
Custom – Plain Text 74 (80%) 3 (75%) 34 (77%) 37 (84%) 67 (97%) 7 (30%)
Win32.Denis 70 (76%) 3 (75%) 34 (77%) 33 (75%) 69 (100%) 1 (4%)
DNSpionage 27 (29%) 4 (100%) 13 (30%) 10 (23%) 25 (36%) 2 (9%)
Cobalt Strike 21 (23%) 0 (0%) 18 (41%) 3 (7%) 21 (30%) 0 (0%)
Carbanak 6 (7%) 0 (0%) 6 (14%) 0 (0%) 6 (9%) 0 (0%)
Pisloader (1) 5 (5%) 0 (0%) 5 (11%) 0 (0%) 4 (6%) 1 (4%)
Pisloader (2) 5 (5%) 0 (0%) 5 (11%) 0 (0%) 4 (6%) 1 (4%)

Overall, more than 97% of anomaly detection experiments were able to detect at least five unseen
malware samples (including UDPoS) and all three tunneling samples. Classification experiments were
also able to detect the tunneling samples, although only consistently (> 90% of experiments) identifying
three malware samples.

Dissecting the performance per unseen threat, an important observation is that all experiments are
able to detect UDPoS traffic at high detection rates. This validates both our experimental setup and
the quality of simulated malware traffic.

Of the most difficult to detect threats, Pisloader stands out. Only five experiments were able to
detect any of the two samples. The difference between samples is a larger number of queries as well
as more duplicated payloads in sample Pisloader (2). Figure 6.4 shows that experiments using either
algorithm type lack detection capability for this threat. Pisloader uses DNS for commandandcontrol,
for which no related storage channel threats are included in the training data.

Next, although recognized by every experiment, the difference in detection rates between tunneled
dnscat2 protocols shows that tunneling traffic can be diverse and that the behavior of the tunneled con
nection influences the characteristics of the resulting DNS traffic. Themain difference between samples
are shorter queries and a longer duration for the SFTP dataset, compared to the other protocols.

There is a significant difference between the detection rates of Win32.Denis as well. All anomaly
detection models correctly identify every query, in contrast to classification models of which only one is
able to identify this threat.

Lastly, the varying detection rates for the Custom – Plain Text show that omitting encryption and
encoding complicates detection significantly. Recall that these queries follow the same exfiltration
schedule as the simulatedmalware in the training set. Table 6.6 shows that almost all anomaly detection
models flag this threat, but far fewer classification models.

False negatives are further analyzed in Section 6.3.2.

Table 6.6 also confirms our initial expectation that some models would be able to detect DNS payload
droppers (Carbanak,Cobalt Strike) as well, although detection is limited to behavioral features. Isolated
dropper queries are short and not anomalous. No classification models are unable to detect these
threats.

High detection rates on unseen threats come at a cost. Experiments that generalize well suffer from
high false positive rates, both in terms of queries and domains. The results of experiment with the
highest macrorecall over all unseen threats, all using an anomaly detection algorithm, are included in
Table 6.7. Two Random Forest experiments with the highest macrorecall are added for comparison
as well, as is the (Random Forest) experiment with the lowest false positive rate.
These results show that anomaly detection experiments that were able to recognize every threat also
suffered from high false positive rates. The one classification model in line with anomaly detection
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Table 6.7: Top10 experiments with highest macrorecall on unseen threats, including the two highest scoring Random Forest
experiments and the experiment with the lowest false positive rate. The macrorecall excludes DNS payload droppers.

# Algorithm Payload Time Fixed MacroRecall Num. threats FPR (queries) FP (domains)

1 iForest 7 – 20 0.9041 13 8.66% 69,402
2 iForest 7 – 10 0.8862 13 11.15% 74,186
3 EIF2 7 – 20 0.7591 13 7.12% 57,024
4 EIF1 7 – 20 0.6724 12 1.66% 33,976
5 iForest 3 – – 0.6442 9 2.05% 20,925
6 EIF1 7 – 10 0.6412 12 1.49% 31,139
7 iForest 3 – 10 0.6343 10 1.51% 13,878
8 iForest 3 – 20 0.6342 9 1.61% 13,102
9 iForest 7 5s – 0.6279 9 4.60% 4,619
10 iForest 3 5s 10 0.6249 10 1.16% 3,160

18 Random Forest 7 – 20 0.5959 11 1.60% 24,785

71 Random Forest 7 2s – 0.4197 7 1.38% 147

77 Random Forest 7 2s 20 0.3025 6 0.00% 2

performance also suffered from many false positive domains. Other classification experiments, not
included in this table, still recognized six or seven distinct threats (except one outlier at four) at lower
macrorecall than anomaly detection experiments, but at sub1% false positive rates.

Note that a high false positive rate does not automatically result in many false positive domains, and
vice versa. The interaction between these metrics, as well as the cause of high false positive rates, is
further analyzed in Section 6.3.

In summary, our experiments showed that anomaly detectionmodels are able to recognizemore distinct
samples and achieve significantly (𝑃 < .0001) higher macrorecall on unseen threats than classification
models. However, only four models were able to recognize every unseen threat. Overall, detection
rates vary between samples and experiments, although every experiment achieved high recall on real
traffic from our simulated UDPoS, validating our simulation and experiment setup.

6.2.4. Feature Set Comparison
Having analyzed the detection capability of both seen and unseen threats, we now compare the overall
detection capability of different feature sets. A combined overview of our results dissected per feature
set is presented in Figure 6.5. We visualize the macrorecall on seen and unseen threats separately
and also indicate the corresponding amount of distinct unseen threats recognized. Moreover, the false
positive query rates and the amount of domains for the respective feature sets are plotted for compar
ison. The unseen macrorecall scores of the same feature set with and without payload features are
connected with a line (in orange) to emphasize the relative performance difference.

Anomaly detection algorithms, paired with fixedonly feature sets, achieved the highest macrorecall on
unseen threats. These experiments also had the lowest macrorecall for seen threats, confirming our
observations in Section 6.2.1. Unseen macrorecall of the other feature sets is within a similar range
and shows no distinctive patterns, although the amount of threats detected fluctuates. Combining
payload features with fixedonly feature sets, however, decreases unseen macrorecall considerably
and reduces performance to the level of the other experiments.

Classification experiments show a more pronounced pattern when combining payload features with
a behavioral feature set, which consistently decreases unseen macrorecall. While the number of dis
tinct threats detected is generally low, it does not fluctuate as much as combined to anomaly detection
experiments. The observed decreases in unseen macrorecall generally do not lead to fewer distinct
threats recognized, but of course lowers the confidence in detection. One outlier experiment, using
fixedonly features, was able to recognize all nondropper threats, again at the highest false positive
rate of all classification experiments.

Overall, fixedonly feature sets outperformed all other feature sets in both the number of distinct threats
detected and achieved unseen macrorecall. However, their false positive rates were considerably
higher than for other experiments. This possibly indicates that 1) other classification models overfit on
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Figure 6.5: Detection capability comparison between feature sets. Visualized is the macrorecall for seen and unseen threats,
the false positive (query) rate and amount of false positive domains. Feature set pairs with and without payload features are
linked with a line (in orange) to emphasize the relative change in recall. Note the different yaxis ranges for false positive query
rates and the log scale on the false positive domains axis.

seen threats, to which fixedonly features are less receptive, 2) that other features are not descriptive
enough of traffic from the unseen threat set and/or 3) that the flagged false positives are actually mostly
benign storage channels that pollute the scoring metrics. Misclassifications are further analyzed in
Section 6.3.

Because the experiments that performed well suffered from high false positive rates and that little varia
tion in detection capability is observed for the remaining experiments, we conclude that our experiments
provide insufficient evidence to reliably rank specific feature sets or combinations and recommend in
stead to incorporate the selection of window types, combinations and sizes in the model optimization
process.

In summary, behavioral fixedonly feature sets were able to detect most unseen threats regardless
of algorithm type, although at high false positive rates. Combining behavioral with payload features
consistently lowered unseen threat detection for classification experiments, although this effect was
only present in anomaly detection experiments with fixedonly features. The experiments provided
inconclusive evidence to rank or recommend window types or sizes.

6.2.5. Conclusion
Unseen threat classification has proven to be an important aspect of evaluation, since our analysis
showed that high test set performance does not translate to models that generalize well over similar
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but unseen threats. The most important observations are:

• Anomaly detection models were able to recognize more distinct samples and achieved signifi
cantly (𝑃 < .0001) higher macrorecall on unseen threats than classification models. However,
only four out of 92 experiments were able to detect every DNS storage channel threat (except
DNS payload droppers).

• All three dnscat2 tunneling samples were recognized by all experiments. Anomaly detection
experiments furthermore consistently detected at least five unseen malware samples, opposed
to three for classification experiments.

• Every experiment achieved high recall on real traffic from our simulated UDPoS malware, vali
dating our simulation and experiment setup.

• In terms of feature sets, behavioral (fixedonly) feature sets detected most unseen threats re
gardless of algorithm type, although at high false positive rates. The variability in unseen threat
detection capability between the remaining feature sets causes our experiments to be inconclu
sive regarding ranking or recommending window types or sizes.

6.3. Misclassification Analysis
6.3.1. False Positives
To investigate the characteristics of alerts per domain, we recorded for every experiment the average,
standard deviation and maximum amount of false positive queries for every domain. The distributions
of these three metrics are plotted in Figure 6.6, per algorithm (left) and per feature set composition type
(right). Note the logscale on the yaxis.
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Figure 6.6: Distributions of the average, standard deviation and maximum number of alerts per domain.

Overall, the maximum amount of alerts for a domain was multiple orders of magnitude larger than the
average number of alerts. The standard deviation was approximately one order of magnitude larger
than the average, indicating a large spread in the number of detections per domain.

Every anomaly detection experiment flagged more than 100,000 queries for at least one domain.
In contrast, there are classification models which flagged at most 10 queries per domain. Between
anomaly detection experiments, all metrics are within the same order of magnitude. Increasing the
extension level increases the average and standard deviation of the number of alerts, although our
results have shown that EIF experiments have fewer false positive domains in general.

Classification experiments show less consistent distributions for each metric, although the median
standard deviation and maximum is orders of magnitude lower than for anomaly detection experiments.

Within feature set composition types, distributions overlap and are therefore difficult to compare. Again,
however, the standard deviation is often larger than the average alerts per domain. Only feature sets
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with a behavioral component are able to achieve few alerts per domain. Note that the payloadonly
distributions are narrower, because only four experiments have been performed.

Lastly, given the wide variety in misclassified domain names and queries between experiments, we
are unable to reliably identify common causes for misclassification unique to a particular algorithm or
feature set.

Benign Storage Channels
A key assumption made about benign storage channels, i.e. legitimate services that use DNS for data
transfer, is that the “total contamination is presumed to be low and insignificant” (see Section 5.1). As
benign storage channels are not clearly defined, we provide a brief, qualitative analysis of false positive
domains and whether or not they are actual mistakes or not.

By aggregating all misclassifications and analyzing the most often occurring domains and domains
with either the most or the least alerts, we find that a considerable portion of false positive domains can
attributed to benign storage channel services in the following categories:

• Security products, using unique DNS queries for lookups.
• DNS / DDoS protection services, using unique DNS query names to reroute traffic.
• Reverse (IP) lookups, outside the .arpa infrastructure that is filtered from our dataset.
• DNS experiments, by e.g. Google testing IPv6 [21].
• Email providers, using DNS for e.g. spam protection.

These findings are in line with reports of benign storage channels in current literature [1, 16, 21, 62, 73].

To illustrate the impact of benign storage channels, the three most often occurring security product
domains account for, on average, 56.3% of false positive queries across all experiments. It is our belief
that including benign storage channels in training data is harmful to both anomaly detection models and
classification models. For both algorithm types, optimizing with respect to a polluted metric produces
suboptimal models. Furthermore, benign storage channels confuse classification models, because
similar feature vectors are present in both the benign and malicious class. Benign storage channels
should therefore be identified and filtered before training.

Reduction Techniques
We experiment with three techniques to reduce the amount of false positive domains by filtering the
generated alerts. First, we filter the top 10,000 domains from the Cisco Umbrella list of popular domains
[23]. As this list is regularly updated, we have used the version actual at the time of benign data
collection. Filtering popular domains is a common technique to reduce false positives [1, 26, 73, 85].
Next, we ignore domains with three or less alerts, as domains with more than a few alerts are arguably
more interesting. Finally, we assess the effectiveness of combining both techniques. These techniques
do not significantly impact detection capability for storage channel threats generating at least three
alerts, using primary domains not contained in the Umbrella list.

Figure 6.7 shows the distributions of the amount of false positive domains for algorithms and feature set
composition types. Overall, the visualization shows that anomaly detection suffers frommore false pos
itive domains, before as well as after the application of reduction techniques. The reduction techniques
show similar behavior across algorithms and feature set composition types.

Using the Umbrella allowlist indeed reduces both the median and minima. However, as at most
10,000 domains are removed, the maxima arises mostly unaffected. Thresholding at three alerts per
domain, however, reduces the amount of domains considerably for every algorithm and feature set.
In contrast to using an allowlist, this technique is especially useful for experiments with flagged many
positive domains to begin with. Furthermore, no classification experiment now falsely flags more than
1,000 domains, which is still the median amount of domains for Isolation Forest experiments. As many
of the observed benign storage channel domains are not included in the Umbrella allowlist, the practical
impact of filtering is presumed to be even more significant.

Combining reduction techniques improves the minimum, median and maximum amount of false
positive domains for every algorithm and every feature set. For classification, the median is now less
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Figure 6.7: Reduction in the number of flagged domains after either allowing the top 10,000 domains from the Umbrella list, after
ignoring the first three alerts per domain, or both, visualized either per algorithm or feature set composition type.

than 10 false positive domains. However, anomaly detection experiments still flag at least 200 domains.
Between anomaly detection algorithms, increasing the extension level reduces the mean and minima,
but has no clear influence on the maxima.

In conclusion, filtering the first 𝑛 alerts per domain clearly reduces the number of false positive domains.
We recommend experimenting with different thresholds to find the optimal tradeoff given the setting
in which a detection system is deployed. Furthermore, following the observations from the previous
section, using finetuned allowlists by including the most common benign storage channel domains
should further reduce the amount of false positives.

6.3.2. False Negatives
Seen Threats
The most interesting false negatives are caused by iodine and dns2tcp and (combinations of) payload
only and behavioral features from a fixedlength sliding window.

Firstly, payloadonly anomaly detection experiments have the highest false positive rates on tunnel
ing queries. The average query length of unrecognized queries never exceeds 10, for both iodine
and dns2tcp traffic. This indicates that predominantly beaconing queries (see Appendix A.2) are the
cause of diminished detection rates, instead of the (longer) data transfer queries. We conclude that
our payload features are not descriptive enough of short beaconing queries.

Secondly, fixedonly behavioral feature sets (𝜆 = 10, 𝜆 = 20) also show a decrease in recall on tunneling
threats. Using the same analysis, we find that again predominantly beaconing queries are missed,
although at considerably higher rates for dns2tcp than for iodine. We again conclude that the fixed
length sliding window queries are not descriptive enough of short queries.

Lastly, there are two outlier experiments (Extended Isolation Forest) using timebased sliding window
features (𝛿 = 1𝑠) and malware detection. The misses are caused by BernhardPOS exfiltration at a
time interval of 1 second.

The majority of misclassified windows (> 87%) contained two queries instead of one, which influ
ences the unique transfer rate and unique query rate. However, more queries in a window produce
more anomalous feature vectors, other windows with two queries were identified correctly and mal
ware using the same exfiltration schedule has no such false negatives. The main difference between
BernhardPOS and other malware are fewer labels per query.

Missed queries from the remaining anomaly detection experiments are spread acrossmalicious threats,
without significant outliers. Most false negatives originate from tunneling traffic, as none of the remain
ing anomaly detection experiments misclassify more than 10 malware queries.

Random Forest experiments exhibit high overall detection rates, which can be attributed a higher
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detection rate on beaconing queries. Compared to anomaly detection experiments, malware detection
is slightly worse, missing at most 129 queries.

Unseen Threats
As detection rates vary between experiments for unseen threats, we provide a qualitative analysis of
samples that stand out.

The Pisloader and DNSpionage samples are short, have few queries and relatively short payloads.
This renders sliding windows ineffective. We presume that too few payload features are anomalous
for anomaly detection models to flag these queries and that no similar threats in the training set cause
diminished classification performance. Given the many unique queries in the sample, fixedlength
sliding windows eventually collect enough queries for detection.

TheWin32.Denis sample comprises four storage channels to different domains, and has few queries
in total. All anomaly detection models detect all queries from this threat, in contrast to only a single
classification models that is able to recognize this sample. Win32.Denis queries contain a long prefix
of a single repeated character and additionally one subdomain of one character, which may produce
features just different from seen threats and on the wrong side of the learned classification boundary.

Regarding theCustom – Plain Text threat that we simulated solely for this research, the difference in
detection between anomaly detection and classification is notable, given that the queries are generated
by the same process as the other malware. By not applying encoding and encryption, only few clas
sification models were able to detect a subset of malicious queries. Although more anomaly detection
models detect queries from this type, detection rates vary and no clear pattern is distinguishable.

The same is true for ISMDoor. As this sample has almost 2,300 queries, it is long enough to provide
reliable insights, a worrying observation is that most classification models either fail to detect this threat
or flag only few queries. Anomaly detection experiments perform relatively better, but again show
variability in detection rates. ISMDoor is a quintessential storage channel malware and should have
been detected.

Between the three samples of the dnscat2 tunneling threat, a sharp contrast arises between tunneling
SFTP data as opposed to the other SSH and Telnet samples. We attribute this contrast to a signifi
cant difference in (average) query length: 22 for SFTP, opposed to 224 and 218 for SSH and Telnet,
respectively. The difficulty with shorter queries highlights a shortcoming of our feature selection, even
though every experiment was able to detect at least one query per tunneled protocol.

In summary, we observe that using unseen threats for evaluation is crucial to uncover otherwise un
known shortcomings of the detection models. Short queries that are anomalous in only a few aspects
are most difficult to detect, which we partially attribute to a lack of similar threats in the training data.
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Discussion

7.1. Comparison with Current Literature
Although it is difficult to compare results obtained on different datasets, we attempt to place our findings
in the context of other research in this section.

Nadler et al. [62] propose an anomaly detectionbased system using behavioralonly features extracted
from contiguous time windows containing queries to distinct primary domains. Their feature extraction
method is different to our approach, as we generate feature vectors from sliding windows per observa
tion instead of per time bin. Our detection latency is therefore effectively zero, instead of the window
size (recommended 60 minutes) in their approach.

Our features share the same rationale. Their selection, however, includes features based on re
sponse type ratios in the window and the longest meaningful (English) word in the query name, which
we presume to be either nonportable to other networks and/or susceptible to adversarial manipulation.
We further expect their entropy feature to be more effective due to the availability of unprocessed query
names, including capitalization.

The authors place a strong limit on the anomaly score threshold to reduce the amount of false
positive domains. During six days of evaluation, only 18 domains were flagged in a dataset larger than
ours. Our experiments, with the least amount of false positive domains, detect 2 (classification) or 198
(anomaly detection) in 24 hours of traffic. Their method is still able to detect simulated FrameworkPOS
andWin32.Denis traffic and tunneling traffic from iodine and dns2tcp.

The filtering of lowvolume domains as well as the optimization of the anomaly score threshold is
expected to contribute considerably to the reduced amount of domains. Both techniques can be applied
to our methods as well and are worth exploring to further improve the practical usability. It would,
however, be interesting to see to what extent this prevents detection of related but more challenging
storage channel threats, e.g. Pisloader.

The proposed twostep anomaly detection approach by Saeli et al. [73] first identifies anomalous
queries based on their payload and subsequently calculates an anomaly score based on additional
behavioral characteristics per domain or user. They rigorously filter benign traffic by removing popular
domains, known benign storage channel domains, queries with unsuccessful responses, lowvolume
domains and queries containing IP addresses.

The authors have graciously shared the malware traffic samples used to validate their approach,
which we use for unseen threat detection capability evaluation. Saeli et al. [73] are able to detect every
threat at high detection rates. Only Pisloader (96%) and ISMDoor (91%) have a recall of less than
100%. In contrast, our detection rates vary between experiments and only few are able to detect at
least one query for every threat.

Other test subjects used for validation are dns2tcp and iodine, also among our training subjects,
and dnscat2, which is in our unseen evaluation set. However, the total amount of malicious queries (all
subjects included) is less than 20,000. Their approach detects 100% of dns2tcp and dnscat2 queries
and iodine detection varies between 85% and 88%, depending on the configuration. The majority of

75



76 7. Discussion

our experiments achieve a detection rate of over 99% on an arguably more diverse tunneling dataset
of more than 12.5M dns2tcp and iodine queries. Our dnscat2 detection varies between tunneled pro
tocols, although most configurations are detected at similar rates.

Their benign class (1.2 × 105 queries) used for testing is several orders of magnitude smaller than
ours (4.7 × 107 queries) and the reported false positive rate is 1.7%. The authors share three such
queries, which resemble benign storage channels. In comparison, our best performing anomaly de
tection models in terms of FPR achieve 0.38%, although models that are capable of detecting every
unseen threat as well have a FPR of at least 7.1%. However, we identified that most of the false
positives belong to benign storage channels, which are more prevalent in our more diverse benign
class.

Ahmed et al. [1] propose an anomaly detectionbased method using payloadonly features similar to
our payloadonly feature selection. Their approach is evaluated using a DNS traffic dataset of similar
size to ours.

We agree with their findings that anomaly detection methods outperform classification in terms
of detecting new malicious DNS queries. Our payloadonly anomaly detection experiments outscore
classification experiments on unseen threat macrorecall as well. However, our analysis has shown that
payloadonly features achieved consistently lower recall on seen threats compared to other feature sets
and that behavioral features do improve detection capability.

Their approach has a false positive rate of at least 1.6% on the top 10,000most popular domains and
at least 21.6% for the remaining domains. In contrast, our payloadonly anomaly detection experiments
have a FPR between 0.9% and 2.1% over all queries in our dataset.

We speculate that the difference in performance stems from 1) the fact that their model is only trained
on the top 10,000 most popular domains in the dataset, whose traffic may not be diverse enough to
capture characteristics of other domains and 2) their final Isolation Forest model comprises only two
isolation trees, which may be insufficient to produce stable anomaly scores.

Other works, using classification methods, predominantly focus on connection tunneling detection.
Buczak et al. [16] report a recall of over 99.9% on e.g. dnscat2 and iodine traffic and varying per

formance (> 27%) on unseen tunneling traffic, with a reported false positive rate of 0%. Shafieian et al.
[75] combine payload and behavioral features and report 14 false positives for their single Random
Forest classifier, further reducing that number to one false positive by stacking classifiers. Misclassifi
cations account for less than 0.02% of traffic. Preston [67] reports a recall and precision of over 99.6%,
but his benign class is stripped of anomalies beforehand and only one tunneling subject is considered.
Das et al. [26] report an (average) recall of 94.5% and a false positive of 0.2%.

Note, however, that the benign class corresponding to each of the aforementioned results is either
(very) limited in size or affected by filtering, inflating the reported metrics. Furthermore, none of these
works use DNS malware for evaluation.

We conclude that our best classification models achieve similar or better performance compared to
current literature, considering that:

• not only tunneling traffic is detected with high recall but DNS malware traffic as well

• our classification models are able to detect at least one other tunneling threat – and often more
unseen threats – at low false positive rates

• our experiments had both low false positive query rates and few false positive domains, con
sidering the 47M queries in the benign class of the test set and the presence of benign storage
channels

Furthermore, our payloadonly anomaly detection experiments improves over a similar method pro
posed in [1]. The results of other anomaly detection experiments, combined with the reported results
in current literature, are insufficient to determine whether or not they provide a tangible advantage over
other approaches.
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7.2. Recommendations and Future Work
Improving ground truth for training, by incorporating domain knowledge, is a promising future research
direction to increase model performance.

Firstly, the observation that many false positive queries actually belong to benign storage channels
calls for better and more rigorous cleaning of benign training data. Benign storage channels pollute
evaluation and optimization metrics and cause overfitting on seen threats. Identifying and removing
benign storage channel domains from the training data therefore improves the quality of ground truth.

Secondly, when acceptable within the risk profile of the deployment setting, increasing the minimum
exfiltration threshold for detection by ignoring lowvolume domains and/or short queries reduces the
amount of uninteresting traffic in the benign class. In addition to our current approach of filtering queries
without subdomains or with the www subdomain, other common but nontunneling subdomains are for
example mail, ns1, ns2, dns0, dns1, etc.

Thirdly, sliding window feature extraction allows for finegrained filtering rules, based on for example
the amount of (unique) characters or the information density in a window. Thresholding windows on
these metrics improves ground truth by filtering uninteresting traffic, while at the same time improving
class balance and reducing training time.

Lastly, extending the Public Suffix List used to parse domain names with known local domain ex
tensions enables either filtering of internal domains or better detection of storage channels to these
domains.

Regarding features, we recommend future research to incorporate feature selection for both anomaly
detection and classification experiments. While the number of features used for Random Forest ex
periments is already optimized during training, it is a rudimentary approach and our anomaly detection
experiments still use all features. It is expected that, especially when combining fixedlength and time
based windows for lowvolume domains, some features will be correlated and redundant. While all
algorithms considered in this research should handle correlated features well, it is worth exploring
whether or not feature selection improves performance.

Moreover, we expect that tailoring features to a specific window type improves the performance
of composite feature sets. Fixedlength window features should focus on uniqueness and information
content, while timebased windows best capture anomalous transfer rates and query frequencies.

For classification models, including payload features rarely improves performance and even decreases
the overall detection rate of unseen threats, even though the number of distinct unseen threats detected
is relatively stable. As we optimize the number of features during hyperparameter optimization, it is
unlikely that ineffective features are cause of the problem, but instead overfitting on the limited selection
of threats in the test set.

Considering a wider variety of storage channel threats is expected to improve performance. It
remains to be seen, however, to what extent this increases false positives as well. We recommend
including in particular C2overDNS threats for training, besides connection tunneling and credit card
exfiltration malware, as this threat category is among the most difficult to detect by our current models.

Without increasing the number of threats used for training, using crossvalidation and leaving (part
of) the malicious groups out of each fold could reduce overfitting on seen threats as well. Currently,
our datasets used for training, validation and testing contain every configuration of each tunneling and
malware threat. Training on for instance only tunneling threats and then attempting to classify malware
traffic, and vice versa, may well produce models that are able to detect more unseen threats.

Note that although not every unseen threat was consistently detected, all models are able to cor
rectly identify at least one unseen tunneling threat (dnscat2) and real traffic from the otherwise simulated
UDPoS malware, validating our current experiment setup.

While impossible to confirm using our benign dataset, we expect that analyzing traffic more granularly
than perdomain could reduce false positive rates, e.g. by also incorporating origin IP addresses.
Malicious storage channels are scarce and often originate from a single device, while benign storage
channels are often in use by many endpoints. Combining globally behavioral traits per domains, as
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confirmed effective in this work, with local behavior would be an interesting extension to this research.

We further expect models to be circumventable by hiding exfiltration queries between many duplicate
regular queries, nullifying the advantages of sliding windows. This effect is already noticeable in the lack
of recall for the Pisloader (2) sample, which contains many duplicate queries. Larger sliding window
sizes would be increasingly affected by this evasion technique.

Possible mitigation strategies are to only focus on unique queries in a window or to discard features
that are easily polluted by these evasion methods. However, this would require a reassessment of
effective features and could be part of a broader feature selection approach. It is our recommendation
to confirm detection capability of models when using extreme evasion strategies, e.g. asmany duplicate
queries as the window size, regardless.



8
Conclusion

In this work, we investigated the effectiveness of machine learningbased methods at detecting covert
DNS storage channels. We first answer the subquestions of this research to arrive at an overarching
conclusion and answer to the main research question.

SQ1: In current literature, what (traditional) machine learningbased DNS storage channel de
tection methods exist, what features are effective and how is detection capability measured?

Current research considers both unidirectional and bidirectional storage channel threats, where the
former only exfiltrates information using DNS queries and the latter additionally receives information
via DNS responses. Arbitrary data transfer and connection tunneling are the main threats in these
categories, respectively. The majority of reviewed works only considers tunneling and only few include,
arguably more challenging to detect, lowthroughput data transfer threats.

We identified the algorithm type used for detection as a major distinction between works: either un
supervised anomaly detection or supervised classification. Supervised classification is often used to
detect tunneling, for which the malicious class can be readily generated. Unsupervised anomaly de
tection is used when insufficient malicious traffic is available for training, which is often the case for
malware.

Besides algorithm type, we identified two different feature engineering rationales: feature extraction
from isolated query instances and from query sequences. Query sequences are formed by grouping
queries by (a combination of) time, IP address or primary domain. Features are then derived from either
all queries in the sequence at once, resulting in a single feature vector, or by using a sliding window
over queries to produce as many vectors as observations.

Payloadonly features proposed in current literature describe query space utilization, query struc
ture, information density, lexical properties and DNS usage. Common query sequence features are
statistics of aggregated payload features (e.g. average query space utilization) or describe behavioral
characteristics (e.g. ratio of unique queries).

We were unable to derive a common definition of storage channel detection capability from current
research. Works report incompatible performance metrics or metrics that are tied to the dataset used
for research, exacerbated by benign class filtering to the extent that it no longer resembles realworld
scenarios.

Nevertheless, common evaluation aspects are the detection rate of malicious threats and corre
sponding false positive rate. We argue that, besides threats seen during training, unseen threats should
be incorporated for evaluation as well, as an important reason to use machine learning over rulebased
detection is generalization. We therefore arrive at a notion of detection capability that consists of three
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aspects: known threat detection, unseen threat detection and the amount of false alerts.

SQ2: What is the difference in detection capability between unsupervised anomaly detection
and supervised classification?

Experiments with unsupervised (Extended) Isolation Forest anomaly detection algorithms and the su
pervised Random Forest classifier showed that models based on either learning type were able to
achieve high recall on seen threats. The majority of experiments attained a macroaveraged recall of
98.6% or more over both connection tunneling and malware threats.

Classification experiments had significantly higher balanced accuracy scores on seen threats than
than anomaly detection experiments. Classification models were able to almost perfectly separate
the benign and malicious classes and the best configuration misclassified queries for just two primary
domains.

Anomaly detection models suffered more from false positives query and domains than classification
models. Between anomaly detection experiments, Extended Isolation Forest models (at least 0.38%
FPR or 198 domains) improved over the regular Isolation Forest (at least 0.77% FPR or 1,345 domains)
in terms of false positives, at similar detection rates.

Evaluation with traffic from 11 unseen storage channel threats showed that anomaly detection mod
els generalize better than classification models. Although few experiments were able to detect every
unseen threat, anomaly detection models consistently (> 90% of experiments) identified five DNS mal
ware samples and three tunneling samples. While classification models also identified the tunneling
samples, only three malware threats were consistently identified, at lower recall.

SQ3: What are the effects of considering only payload features, only behavioral features or
using composite feature sets?

We extracted payload features from single DNS query instances and behavioral features from a time
based or fixed length sliding window over perdomain query sequences. Based on effective detection
strategies identified in the literature survey, we designed distinct feature sets describing either payload
or behavioral characteristics. Besides considering singular feature sets, we also combined features
from different types to assess composite feature set performance. Our features use only the timestamp
and payload of DNS queries, demonstrating the feasibility of this limited source of information.

Firstly, our experiments showed that classification models are mostly unaffected by feature selection
and were able to detect at least 99.6% of queries from seen threats, irrespective of the feature selection.
Anomaly detection experiments, on the other hand, achieved considerably lower macrorecall on the
test set using payloadonly features (78.7%) than behavioralonly features (at least 90.8%) or composite
feature sets (at least 89.5%).

Besides high recall, our classification models achieved low false positive rates for all feature sets:
the best performingmodels for each feature set composition type had 0.3% (payloadonly) or <0.0002%
(behavioralonly or composite).

Anomaly detection experiments had false positive rates significantly lower for composite feature
sets than for others. The lowest observed rates were 0.9% (payloadonly) or 0.38% (behavioralonly
or composite), all by Extended Isolation Forest models.

In general, behavioral feature sets with a time component had a significantly higher balanced ac
curacy on seen threats than feature sets without it. This effect was not observed between behavioral
features from a fixedlength sliding window.

Evaluation on unseen threats showed, however, that high recall on the test set did not translate to
generalizable models. Out of our 92 experiments, only four were able to identify at least one query
for every unseen sample. Overall, anomaly detection models were able to detect more unseen threats
at higher detection rates than classification models. Behavioral features from a fixedlength window
detected most unseen threats at the highest detection rates. However, wellgeneralizing models often
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also generate many false positives.

Classification models demonstrated a distinct decrease in unseen threat macrorecall when adding
payload features to a behavioral feature set. We therefore conclude that classification models overfit
on threats in the training set when using payload features and that our training set did not contain
diverse enough threats.

Given the variability in unseen threat detection rates and discrepancies between different sizes for
the same window type, our experiments provide inconclusive evidence to rank or recommend window
types, sizes and combinations. We recommend instead to 1) optimize the window size(s) during model
optimization, 2) perform feature selection to remove redundant or uninformative features and 3) tailor
features to the window type, e.g. focus only uniqueness and information content in fixedlength windows
and transfer rate in time windows.

How effective are machine learning methods at detecting covert DNS storage channels?

Combining the insights gained by answering the subquestions of our research, we find that both unsu
pervised anomaly detection and supervised classification models are viable solutions to detect covert
DNS storage channels. We showed that stateoftheart performance is attainable with either algorithm
type, achieving nearperfect recall on malicious storage channel traffic from two connection tunneling
threats and four PointofSale malware strains at low false positive rates.

We evaluated our models using a largescale corporate DNS dataset of realworld proportions and
a novel dataset of captured iodine and dns2tcp tunneling traffic and simulated credit card exfiltrations
from BernhardPOS, FrameworkPOS,MULTIGRAIN and UDPoS. The malicious dataset is made public
to support future research.

The majority of experiments achieved, irrespective of feature selection, a macrorecall on seen
threats of more than 98.6%. Moreover, half of the classification experiments produced remarkably few
false positive domains: at most 27 (0.009%) of 310,000 primary domains in the dataset.

Furthermore, real UDPoS traffic was detected accurately by every model, validating our malware
simulation technique and demonstrating that carefully simulated malware traffic can be used to learn
to detect real threats.

The main differences between algorithm types are increased false positive rates for anomaly detection
and in turn decreased generalization performance of classification models. While behavioralonly fea
ture sets consistently outperform payloadonly features, our experiments are inconclusive regarding
the relative performance of (combinations of) fixedlength and timebased sliding window feature sets.

Although an allencompassing comparisonwith current literature is difficult due to differences in datasets,
reported metrics and benign class filtering, we found that our payloadonly method has a considerably
lower false positive rate than a similar method proposed by Ahmed et al. [1]. Furthermore, evaluation on
unseen threats is rarely substantially covered by current research, complicating accurate comparison.

Lastly, an important observation is that benign storage channels – DNS queries used for data transfer
for legitimate purposes – have a considerable presence in our benign class. Benign storage chan
nels influence both training and evaluation and pollute false positive metrics. We invalidate our initial
assumption that their contamination is low and insignificant and recommend to direct efforts towards
identifying and filtering benign storage channels before training.
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8.1. Limitations
• We considered only one (core) algorithm for unsupervised anomaly detection and supervised
classification. Other algorithms, e.g. logistic regression, (OneClass) Support Vector Machines
or boosting, instead of bagging, classifiers could produce different results. However, given the
magnitude of the difference between the tested algorithms, we suspect that using different algo
rithms will not close this gap.

• Our data processing and query aggregation pipeline assumes that queries arrive in order. We
enforce this constraint by sorting queries per domain prior to feature extraction. When deploy
ing this method on live (streaming) network traffic, however, order is not guaranteed and sliding
window features may not be as effective.

• Due to limitations of our data collection method, queries are stored in lowercase, which reduced
the effectiveness of features describing e.g. information density and lexical properties. Applying
our methods to unaltered queries is expected to improve detection capability.

• Our results are based on a sizable sample of DNS traffic spanning three consecutive days. Al
though all models have been training and validated on traffic from separate days, the effects of
concept drift, e.g. seasonal effects, have not been investigated and could influence detection
performance on future traffic.

• Each experiment configuration has been executed only once, using a preset randomization seed.
We have not investigated the stability of our results across multiple different seeds.
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Acronyms

Acronym Meaning

APT advanced persistent threat
DNS domain name system
EIF Extended Isolation Forest
FPR false positive rate
FQDN fully qualified domain name
i.i.d. independent and identically distributed
IDS intrusion detection system
iForest Isolation Forest
kNN knearest neighbour
LDA linear discriminant analysis
LDH letters, digits and hyphens
PSL Public Suffix List
RF random forest
SVM support vector machine
TLD toplevel domain
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A
Malicious Dataset Reference

A.1. Statistics
Tables A.1 to A.5 provide an overview of detailed traffic statistics, per dataset. Query frequency values
are expressed in queries per second (q/s).

Table A.1: Dataset statistics – dns2tcp

Query type Compression Duration # queries (unique) Mean q/s Max. q/s

KEY no 19m 412,275 (95%) 350 6,671
yes 19m 490,970 (93%) 409 6,735

TXT no 19m 422,272 (91%) 356 6,814
yes 19m 385,532 (95%) 324 5,774

Table A.2: Dataset statistics – Berg2019 (dnscat2)

Tunneled protocol Duration # queries (unique) Mean q/s Max. q/s

SFTP 43h 46m 994,564 (100%) 6 20
SSH 34h 51m 1,358,727 (100%) 11 24
TELNET 38h 44m 1,148,598 (100%) 8 24

Table A.3: Dataset statistics – simulated malware

Malware variant Schedule Duration # queries (unique) Mean q/s Max. q/s

BernhardPOS Per second 11h 59m 42,945 (100%) 1 2
Per minute 11h 58m 718 (100%) 0 1
Per 5 minutes 11h 54m 144 (100%) 0 1

FrameworkPOS Per second 12h 25m 42,918 (100%) 1 2
Per minute 12h 25m 720 (100%) 0 1
Per 5 minutes 12h 22m 146 (100%) 0 1

MULTIGRAIN Per second 12h 25m 42,871 (100%) 1 2
Per minute 12h 24m 720 (100%) 0 1
Per 5 minutes 12h 23m 145 (100%) 0 1

UDPoS Per second 12h 25m 43,057 (100%) 1 2
Per minute 12h 24m 838 (100%) 0 2
Per 5 minutes 12h 21m 258 (100%) 0 2
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Table A.4: Dataset statistics – iodine

Qtype Encoding Max. len. Duration # queries (unique) Mean q/s Max. q/s

MX Base128 100 19m 251,542 (94%) 220 2,079
255 23m 235,381 (98%) 168 1,745

Base32 150 28m 399,935 (96%) 232 2,056
255 25m 268,963 (96%) 173 1,932

Base64 100 19m 225,960 (90%) 197 2,172
255 23m 265,898 (97%) 187 1,883

Base64u 100 19m 234,647 (92%) 205 2,097
255 23m 258,331 (97%) 186 1,860

NULL Base128 100 19m 229,372 (95%) 198 2,154
255 21m 202,654 (97%) 154 1,816

Base32 150 30m 365,301 (97%) 197 2,165
255 25m 257,098 (95%) 169 2,057

Base64 100 19m 201,223 (89%) 173 2,174
255 24m 235,652 (96%) 162 1,933

Base64u 100 19m 198,042 (92%) 171 2,218
255 25m 226,884 (96%) 149 2,004

PRIVATE Base128 100 17m 277,253 (95%) 268 2,046
255 22m 320,593 (97%) 236 1,973

Base32 150 30m 446,138 (97%) 245 2,403
255 24m 377,482 (96%) 261 2,067

Base64 100 18m 267,675 (93%) 240 2,119
255 22m 327,494 (98%) 240 1,914

Base64u 100 18m 251,619 (95%) 221 2,236
255 23m 369,417 (97%) 263 2,036

SRV Base128 100 21m 246,591 (94%) 188 2,097
255 23m 216,968 (97%) 157 1,777

Base32 150 28m 384,484 (100%) 226 2,090
255 24m 261,004 (96%) 176 1,927

Base64 100 18m 248,645 (92%) 219 2,072
255 25m 267,422 (97%) 176 1,936

Base64u 100 19m 248,460 (91%) 216 2,157
255 25m 272,359 (97%) 175 1,890

TXT Base128 100 18m 241,593 (93%) 212 2,185
255 23m 188,039 (99%) 133 1,798

Base32 150 27m 377,525 (96%) 227 2,139
255 22m 234,182 (96%) 173 1,964

Base64 100 18m 242,199 (92%) 212 2,141
255 24m 213,154 (96%) 144 1,956

Base64u 100 18m 218,453 (90%) 192 2,204
255 19m 209,597 (95%) 175 1,952

Table A.5: Dataset statistics – sandbox samples

Malware variant Duration # queries (unique) Mean q/s Max. q/s

BondUpdater <1m 23 (100%) 6 12
Carbanak 2m 791 (100%) 6 7
CobaltStrike 3m 262 (100%) 1 17
Denis <1m 23 (100%) 1 1
DNSpionage <1m 13 (31%) 1 6
ISMDoor 4m 2,296 (26%) 8 58
Pisloader (1) 2m 13 (100%) 0 1
Pisloader (2) 4m 78 (33%) 0 3
UDPoS 1m 121 (100%) 1 2
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A.2. Sample Tunneling Queries
Example connection tunneling queries generated by iodine and dns2tcp are provided below. Note that
these queries have been processed by Zeek v3.1.4, i.e. nonASCII characters are hexescaped and
the letter case is lost.

iodine

Handshake z2lhaa‐la‐fl\xfbte‐na\xefve‐fran\xe7aise‐est‐retir\xe9‐\xe0‐cr\xe8te[.]tun.lan

Beacon paaahpvy[.]tun.lan

Data (Base32) rbkadzz123twoz1hm3twoz1hm3twoz1hm3twoz1hm3twoz1hm3twoz1hm3twoz.
1hm3twoz1hm3twoz1hm3twoz1hm3twoz1hm3twoz1hm3twoz1hm3twoz1.hm3twoz1hm3twoz1hm3[.]
tun.lan

Data (Base64) 0iaa9enpjyobgcgvgsenpdwbwynvrxcxiyatejjtawc‐nswcdzwccbuwstm9+m.
dawsba3stbxcj1iobibemdkzmya[.]tun.lan

Data (Base64u) 02fa3enpjyobgcgvgsei447dgwlb_lhcjixmqm55bxmppokn60bltae9dbop_n.
9sygbgzobho5e1bdrf‐gbwda‐mr[.]tun.lan

Data (Base128) 0udaw82\xca2hb\xbe\xeey\xd6ro\xe3\xf1\xc1\xbe\xeewg\xec\xd6\xbeujr\xc2\xe0dz7\xf5\
xbf1e4\xe4i\xd9p\xcfd9\xd3w\xe6\xc8z\xfdo\xed\xc4tb\xbe\xe2\xf04.nsk\xdb\xdc\xf5\
xe9\xdb\xf6\xc6\xc4k\xc7k\xdf8\xd6ulyvc\xfcrgux[.]tun.lan

dns2tcp

Handshake tnybgaabadjbree5mkvfnzu4rjm0qkuwourenevdmdgwmta0mzg0rdvemky5mtc.=auth[.]tun.lan

List Resources tnxqegj9aa.=resource[.]tun.lan

Beacon ko8agaawba[.]tun.lan

Data ko8amabick2swmj1k/3fwiw5su+iyyaa4z9fex24kvj4r6dthqrdahxfyndautr.5+
opnfvgibqttstvktbwngy7geaf/jjybxm/asmc2t/f3q+zjfpgaq+tuqy1ols.
olnhsyph8hm1mg71evppkwrhosg9al09mtzugjmnbxb5qb27xlawjyt7qa[.]tun.lan
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A.3. Sample Malware Queries
An overview of the implemented query structures for the PoSmalware variants BernhardPOS, Frame
workPOS,MULTIGRAIN andUDPoS is included below. Refer to https://github.com/tudelft‐cda‐lab/
dns‐storage‐channel‐detection/ for implementation details.

BernhardPOS

Exfil T2 Pz0lOSwoPjouOikpOTggOicvPzgiPC4uODMjPyktOT8gOSktOgAA[.]29a.de

FrameworkPOS

Notice de9186ef.grp3.notice.eec79fc2e9f9ccf9[.]ns.a23‐33‐37‐54‐deploy‐akamaitechnologies.com

Install de9186ef.grp3.ping.adm.cdd2e9d2e9cde9cdd2cd.cdc4cde9cdded2e9fcfce9defe.f0e197ecfdec[.]ns.
a23‐33‐37‐54‐deploy‐akamaitechnologies.com

Exfil T1 de9186ef.grp3.tt1.dcdccdc4dcc8e8d2dec4c8d2e8c8e8fc.
d8c3ced8c3cec3e792fdeded97cee9e9e9e9e9e9e9e9e9e9e9e9e9e9e3d2.
defec4fcdec8d0dee8d0fcdce8fec8d2c8cdcdcdfcdedefec8c4ded0dcde95.fee8fefcc8d2e8dcc8cd[.]ns.
a23‐33‐37‐54‐deploy‐akamaitechnologies.com

Exfil T2 de9186ef.grp3.tt2.fefec4fec8c4d2defec8dcfcc8dcd0fe.
d2e8fecdc4c8d0dedecdfec4fefed2e8c8d2cdc4e9e9e9e9e9e9e9e9e9e9[.]ns.
a23‐33‐37‐54‐deploy‐akamaitechnologies.com

MULTIGRAIN

Install install.oa6viscfknevgjtnhuzdiobxge3denjwgathmpjtfyya[.]dojfgj.com

Exfil log.gi2dqnzrgyzdknrq.klipzogcfmuw2el7q4uurokievjeprybazrwlhi37tn4mkjzwop6mkpyluhzg3n.
euweezoz45mzt2bo2lpqdmeuldrea6gmpjrtyoky4h2t5tmojfh3vn57uctjgpr.
o47q5vrl45jssaix5tuziuyu5szjq2f3mshfpzvu3iyjljinh5mmay4tqjke2rd.g37zthe4qidl2lqo[.]dojfgj.
com

UDPoS

Info e1ccdb67afe76cc.bin.9213523bf7cf221106ae8cc13f4005.bdd9e1fdf110dc5f741d58e289dea4.
d104180cfb76dc7a8b39d074de8e8c.bcd7ca60892470c848172950c3d588[.]ns.service‐logmeln.network

Notice e1ccdb67afe76cc.note.c375522792b747677cd1a8cd3a4d1.6b7d3f2f8fe0dbc42640036abc68a.
f78b19435eb3258567df6ad7699b8.585e5889073d16128d5580a1967.ns.service‐logmeln[.]network

Install e1ccdb67afe76cc.ping.c375522792b747677cd1a8.cd3a4d16b7d3f2f8fe0dbc.42640054f283ceabdc0b15.
6ef772d2729b35dd44e9[.]ns.service‐logmeln.network

Exfil T2 e1ccdb67afe76cc.trp.da60294782b5516e77d7b6cb.324d0ab5d2828d857fa02c0d.
614a92fdb7daa47c697d987a.d1758031d571d28b8e8ce0[.]ns.service‐logmeln.network

https://github.com/tudelft-cda-lab/dns-storage-channel-detection/
https://github.com/tudelft-cda-lab/dns-storage-channel-detection/


B
Feature Distribution Visualizations

This appendix contains probability density plots for all feature sets used in this work. The following
Figures B.1 to B.6 show for each class, as well as for group within the malicious class, the probability
density per feature.

For the benign class, only features extracted from traffic of the second and third days are used,
to reduce the effect of novel primary domains and empty sliding windows. For the malicious class, all
dns2tcp andmalware datasets are included, and for iodine the datasets with query types TXT and NULL.
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B.1. Payloadonly
The features visualized in this section are extracted from single query instances (see Section 5.2.2).
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Figure B.1: Feature distribution, payloadonly features
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B.2. TimeBased Sliding Window
The features in this section are extracted from a timebased sliding window, with lengths 𝛿 = 1, 2, 5
(see Section 5.2.3).
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Figure B.2: Feature distribution, time window (𝛿 = 1 second)
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Figure B.3: Feature distribution, time window (𝛿 = 2 seconds)
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Figure B.4: Feature distribution, time window (𝛿 = 5 seconds)
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B.3. FixedLength Sliding Window
The features in this section are extracted from a fixedlength sliding window, with lengths 𝜆 = 10, 20
(see Section 5.2.3).
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Figure B.5: Feature distribution, fixedlength window (𝜆 = 10)
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Figure B.6: Feature distribution, fixedlength window (𝜆 = 20)





C
Optimized Hyperparameters

C.1. (Extended) Isolation Forest
Tables C.1 to C.3 contain the optimized hyperparameter configurations for each Isolation Forest and
Extended Isolation Forest experiment.

Table C.1: Final hyperparameters, regular Isolation Forest (Extension Level = 0).
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7 – 10 30 1,097
7 – 20 25 8,037
7 1s – 25 427,329
7 1s 10 25 361,472
7 1s 20 25 351,927
7 2s – 25 66,903
7 2s 10 25 200,436
7 2s 20 30 382,424
7 5s – 25 1,086
7 5s 10 50 427,329
7 5s 20 25 391,657

3 – – 25 483,091
3 – 10 25 523,868
3 – 20 25 474,669
3 1s – 30 318,277
3 1s 10 25 507,876
3 1s 20 30 411,625
3 2s – 25 204,020
3 2s 10 25 430,030
3 2s 20 30 461,366
3 5s – 25 328,953
3 5s 10 25 316,279
3 5s 20 30 281,838
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Table C.2: Final hyperparameters, Extended Isolation
Forest (Extension Level = 1).
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ze

7 – 10 25 415,196
7 – 20 25 372,233
7 1s – 25 507,222
7 1s 10 25 516,682
7 1s 20 30 240,050
7 2s – 25 254,419
7 2s 10 25 412,481
7 2s 20 25 271,421
7 5s – 40 45,980
7 5s 10 30 461,366
7 5s 20 25 183,116

3 – – 50 480,132
3 – 10 25 509,625
3 – 20 30 460,970
3 1s – 25 511,627
3 1s 10 25 453,433
3 1s 20 25 405,372
3 2s – 25 461,366
3 2s 10 25 203,238
3 2s 20 25 435,424
3 5s – 25 433,240
3 5s 10 30 523,790
3 5s 20 25 503,223

Table C.3: Final hyperparameters, Extended Isolation
Forest (Extension Level = 2).
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7 – 10 25 119,671
7 – 20 25 1,240
7 1s – 25 327,190
7 1s 10 30 522,649
7 1s 20 25 196,020
7 2s – 25 495,196
7 2s 10 25 444,436
7 2s 20 25 380,355
7 5s – 25 36,516
7 5s 10 25 171,134
7 5s 20 25 254,588

3 – – 25 512,697
3 – 10 30 461,366
3 – 20 25 288,551
3 1s – 25 381,892
3 1s 10 25 435,424
3 1s 20 25 306,496
3 2s – 25 460,809
3 2s 10 25 426,848
3 2s 20 25 523,531
3 5s – 25 508,298
3 5s 10 25 435,424
3 5s 20 25 468,398
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C.2. Random Forest
Table C.4 contains the optimized hyperparameter configurations for each experiment using the Random
Forest classifier.

Table C.4: Final hyperparameters, Random Forest.
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7 – 10 25 6 514,851 5 5 0.85419 balanced
7 – 20 30 4 388,782 2 4 0.86989 balanced_subsample
7 1s – 25 26 513,722 8 9 0.39394 balanced
7 1s 10 25 26 485,841 9 4 0.65006 balanced
7 1s 20 25 20 443,740 7 9 0.48577 balanced
7 2s – 25 4 192,137 9 4 0.45191 balanced_subsample
7 2s 10 25 28 281,135 8 4 0.65804 balanced_subsample
7 2s 20 40 30 298,768 2 8 0.30877 balanced_subsample
7 5s – 30 14 483,644 4 7 0.55994 balanced
7 5s 10 25 14 431,189 7 3 0.68572 balanced_subsample
7 5s 20 25 16 246,256 4 7 0.30927 balanced_subsample

3 – – 25 8 504,785 7 7 0.66058 balanced
3 – 10 25 6 345,847 5 8 0.97046 balanced_subsample
3 – 20 25 6 476,539 3 4 0.56188 balanced_subsample
3 1s – 25 20 309,453 9 8 0.18739 balanced
3 1s 10 25 18 271,319 8 3 0.43102 balanced
3 1s 20 25 16 410,949 9 4 0.42161 balanced_subsample
3 2s – 25 8 129,879 9 2 0.26138 balanced
3 2s 10 25 30 493,988 6 7 0.32741 balanced_subsample
3 2s 20 30 24 389,763 5 2 0.48502 balanced_subsample
3 5s – 25 12 345,306 2 6 0.27083 balanced_subsample
3 5s 10 30 8 298,050 9 2 0.49741 balanced
3 5s 20 25 10 302,631 3 3 0.46623 balanced





D
Experiment Results

D.1. Seen Threat Detection
Tables D.1 to D.4 contain the experiment results for seen threat detection, i.e. the balanced accuracy,
macrorecall, false positive query rate and the number of false positive domains on the test set.

Table D.1: Experiment results, iForest

Payload Time Fixed Balanced Acc. MacroRecall FPR (queries) FP (domains)

7 – 10 0.92678 0.91649 11.15% 74,186
7 – 20 0.94341 0.92845 8.66% 69,402
7 1s – 0.99237 0.99906 1.39% 3,191
7 1s 10 0.99556 0.99927 0.82% 2,866
7 1s 20 0.99481 0.99948 1.00% 4,222
7 2s – 0.98747 0.99938 2.40% 1,345
7 2s 10 0.99361 0.99943 1.21% 2,325
7 2s 20 0.99488 0.99962 0.99% 3,873
7 5s – 0.97661 0.99958 4.60% 4,619
7 5s 10 0.99539 0.99962 0.86% 3,479
7 5s 20 0.99397 0.99970 1.17% 2,116

Payload Time Fixed Balanced Acc. MacroRecall FPR (queries) FP (domains)

3 – – 0.88983 0.78924 2.05% 20,925
3 – 10 0.96097 0.89897 1.51% 13,878
3 – 20 0.97693 0.91984 1.61% 13,102
3 1s – 0.99382 0.99899 1.10% 1,907
3 1s 10 0.99468 0.99903 0.98% 2,157
3 1s 20 0.99575 0.99920 0.77% 2,328
3 2s – 0.99362 0.99922 1.17% 2,726
3 2s 10 0.99486 0.99938 0.96% 2,921
3 2s 20 0.99519 0.99945 0.91% 2,721
3 5s – 0.99355 0.99949 1.21% 3,672
3 5s 10 0.99390 0.99952 1.16% 3,160
3 5s 20 0.99465 0.99964 1.03% 2,375
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Table D.2: Experiment results, Ext. iForest (level=1)

Payload Time Fixed Balanced Acc. MacroRecall FPR (queries) FP (domains)

7 – 10 0.97302 0.90795 1.49% 31,139
7 – 20 0.97602 0.91604 1.66% 33,976
7 1s – 0.99676 0.98702 0.48% 495
7 1s 10 0.99711 0.99895 0.48% 883
7 1s 20 0.99571 0.99943 0.81% 2,682
7 2s – 0.99527 0.99919 0.84% 682
7 2s 10 0.99684 0.99920 0.54% 758
7 2s 20 0.99610 0.99942 0.73% 368
7 5s – 0.99197 0.99901 1.47% 231
7 5s 10 0.99693 0.99951 0.56% 1,207
7 5s 20 0.99578 0.99947 0.78% 2,009

Payload Time Fixed Balanced Acc. MacroRecall FPR (queries) FP (domains)

3 – – 0.89423 0.78725 1.03% 7,291
3 – 10 0.97632 0.91453 0.86% 2,693
3 – 20 0.96226 0.90466 0.89% 6,064
3 1s – 0.99691 0.99889 0.47% 389
3 1s 10 0.99645 0.99875 0.60% 993
3 1s 20 0.99673 0.99904 0.55% 935
3 2s – 0.99651 0.99907 0.56% 600
3 2s 10 0.99652 0.99892 0.56% 388
3 2s 20 0.99654 0.99943 0.64% 1,320
3 5s – 0.99654 0.99784 0.51% 414
3 5s 10 0.99748 0.99936 0.42% 456
3 5s 20 0.99733 0.99956 0.48% 470

Table D.3: Experiment results, Ext. iForest (level=2)

Payload Time Fixed Balanced Acc. MacroRecall FPR (queries) FP (domains)

7 – 10 0.97167 0.90785 1.76% 37,119
7 – 20 0.95067 0.92650 7.12% 57,024
7 1s – 0.99654 0.98857 0.46% 429
7 1s 10 0.99716 0.99874 0.44% 635
7 1s 20 0.99645 0.99902 0.63% 752
7 2s – 0.99636 0.99882 0.55% 198
7 2s 10 0.99776 0.99929 0.38% 723
7 2s 20 0.99730 0.99913 0.45% 748
7 5s – 0.99117 0.99951 1.69% 417
7 5s 10 0.99606 0.99954 0.73% 749
7 5s 20 0.99627 0.99918 0.65% 2,341

Payload Time Fixed Balanced Acc. MacroRecall FPR (queries) FP (domains)

3 – – 0.89496 0.78733 0.90% 6,358
3 – 10 0.95385 0.89464 0.63% 1,907
3 – 20 0.95126 0.89627 0.78% 5,188
3 1s – 0.99717 0.99870 0.39% 422
3 1s 10 0.99706 0.99869 0.45% 268
3 1s 20 0.99691 0.99909 0.53% 522
3 2s – 0.99711 0.99877 0.42% 264
3 2s 10 0.99723 0.99899 0.42% 340
3 2s 20 0.99753 0.99901 0.38% 332
3 5s – 0.99670 0.99853 0.48% 470
3 5s 10 0.99711 0.99918 0.47% 299
3 5s 20 0.99722 0.99909 0.46% 317
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Table D.4: Experiment results, Random Forest

Payload Time Fixed Balanced Acc. MacroRecall FPR (queries) FP (domains)

7 – 10 0.99394 0.99785 0.74% 109
7 – 20 0.99185 0.99943 1.60% 24,785
7 1s – 0.99946 0.99926 0.03% 452
7 1s 10 0.99965 0.99854 <0.001% 85
7 1s 20 0.99984 0.99939 <0.001% 8
7 2s – 0.99249 0.99849 1.38% 147
7 2s 10 0.99699 0.99624 <0.001% 16
7 2s 20 0.99957 0.99918 <0.001% 2
7 5s – 0.99972 0.99903 <0.001% 16
7 5s 10 0.99799 0.99732 0.02% 16
7 5s 20 0.99962 0.99940 <0.001% 3

Payload Time Fixed Balanced Acc. MacroRecall FPR (queries) FP (domains)

3 – – 0.99725 0.99887 0.30% 1,539
3 – 10 0.99473 0.99743 0.50% 505
3 – 20 0.99783 0.99936 0.40% 200
3 1s – 0.99931 0.99875 0.01% 246
3 1s 10 0.99984 0.99964 <0.001% 77
3 1s 20 0.99991 0.99972 <0.001% 10
3 2s – 0.99676 0.99867 0.52% 75
3 2s 10 0.99985 0.99971 <0.001% 9
3 2s 20 0.99974 0.99927 <0.001% 21
3 5s – 0.99961 0.99924 0.02% 26
3 5s 10 0.99752 0.99931 0.42% 27
3 5s 20 0.99882 0.99927 0.18% 16
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D.2. Unseen Threat Detection
Tables D.5 to D.8 contain all experiment results regarding unseen threat detection, i.e. detection rate
of every threat in the unseen storage channel set.

Table D.5: Experiment results, unseen threat recall, iForest

Payload Time Fixed dnscat2
SFTP

dnscat2
SSH

dnscat2
Telnet

Custom
Plain

BondUp
dater

Carbanak Cobalt
Strike

Win32.
Denis

DNSpio
nage

ISMdoor Pisloader
(1)

Pisloader
(2)

UDPoS

7 – 10 0.631 1.000 1.000 1.000 1.000 0.580 1.000 1.000 0.769 0.989 0.385 0.974 1.000
7 – 20 0.870 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 1.000 0.077 1.000
7 1s – 0.034 0.999 0.990 0.010 0.826 0.000 0.000 1.000 0.000 0.901 0.000 0.000 1.000
7 1s 10 0.034 1.000 0.992 0.339 0.957 0.000 0.000 1.000 0.077 0.893 0.000 0.000 1.000
7 1s 20 0.059 1.000 0.992 0.102 0.913 0.000 0.027 1.000 0.231 0.916 0.000 0.000 1.000
7 2s – 0.063 0.999 0.991 0.094 0.913 0.000 0.954 1.000 0.000 0.918 0.000 0.000 1.000
7 2s 10 0.041 1.000 0.992 0.102 0.957 0.000 0.000 1.000 0.077 0.817 0.000 0.000 1.000
7 2s 20 0.063 1.000 0.992 0.195 0.913 0.000 0.912 1.000 0.000 0.882 0.000 0.000 1.000
7 5s – 0.999 1.000 0.991 0.268 0.870 0.000 0.858 1.000 0.000 0.780 0.000 0.000 1.000
7 5s 10 0.134 1.000 0.992 0.058 0.957 0.000 0.592 1.000 0.077 0.954 0.000 0.000 1.000
7 5s 20 0.134 1.000 0.992 0.816 0.870 0.000 0.392 1.000 0.077 0.978 0.000 0.000 1.000

Payload Time Fixed dnscat2
SFTP

dnscat2
SSH

dnscat2
Telnet

Custom
Plain

BondUp
dater

Carbanak Cobalt
Strike

Win32.
Denis

DNSpio
nage

ISMdoor Pisloader
(1)

Pisloader
(2)

UDPoS

3 – – 0.220 0.999 0.981 1.000 1.000 0.000 0.000 1.000 0.077 0.808 0.000 0.000 1.000
3 – 10 0.030 1.000 0.992 0.926 1.000 0.000 0.004 1.000 0.077 0.952 0.000 0.000 1.000
3 – 20 0.063 1.000 0.992 1.000 1.000 0.000 0.000 1.000 0.077 0.844 0.000 0.000 1.000
3 1s – 0.034 0.999 0.990 0.851 0.957 0.000 0.000 1.000 0.000 0.925 0.000 0.000 1.000
3 1s 10 0.033 1.000 0.991 0.606 0.957 0.000 0.000 1.000 0.000 0.598 0.000 0.000 1.000
3 1s 20 0.026 1.000 0.992 0.128 0.913 0.000 0.000 1.000 0.000 0.870 0.000 0.000 1.000
3 2s – 0.062 0.999 0.991 0.820 0.870 0.000 0.000 1.000 0.000 0.605 0.000 0.000 1.000
3 2s 10 0.063 1.000 0.992 0.563 0.913 0.000 0.000 1.000 0.077 0.796 0.000 0.000 1.000
3 2s 20 0.043 1.000 0.992 0.759 0.957 0.000 0.000 1.000 0.077 0.915 0.000 0.000 1.000
3 5s – 0.134 1.000 0.991 0.741 0.957 0.000 0.177 1.000 0.000 0.860 0.000 0.000 1.000
3 5s 10 0.034 1.000 0.992 0.865 0.957 0.000 0.262 1.000 0.077 0.949 0.000 0.000 1.000
3 5s 20 0.116 1.000 0.992 0.703 0.957 0.000 0.000 1.000 0.077 0.925 0.000 0.000 1.000

Table D.6: Experiment results, unseen threat recall, Ext. iForest (level=1)

Payload Time Fixed dnscat2
SFTP

dnscat2
SSH

dnscat2
Telnet

Custom
Plain

BondUp
dater

Carbanak Cobalt
Strike

Win32.
Denis

DNSpio
nage

ISMdoor Pisloader
(1)

Pisloader
(2)

UDPoS

7 – 10 0.031 1.000 0.992 0.766 1.000 0.010 1.000 1.000 0.615 0.637 0.000 0.013 1.000
7 – 20 0.059 1.000 0.992 1.000 1.000 0.374 0.062 1.000 0.385 0.730 0.231 0.000 1.000
7 1s – 0.034 0.999 0.990 0.001 0.826 0.000 0.000 1.000 0.000 0.683 0.000 0.000 1.000
7 1s 10 0.034 1.000 0.992 0.010 0.826 0.000 0.000 1.000 0.000 0.452 0.000 0.000 1.000
7 1s 20 0.041 1.000 0.992 0.346 0.957 0.000 0.000 1.000 0.000 0.892 0.000 0.000 1.000
7 2s – 0.063 0.999 0.991 0.000 0.826 0.000 0.942 1.000 0.000 0.883 0.000 0.000 1.000
7 2s 10 0.063 1.000 0.992 0.089 0.826 0.000 0.000 1.000 0.000 0.481 0.000 0.000 1.000
7 2s 20 0.063 1.000 0.992 0.055 0.826 0.000 0.073 1.000 0.000 0.478 0.000 0.000 1.000
7 5s – 0.134 0.999 0.991 0.000 0.826 0.000 0.885 1.000 0.000 0.928 0.000 0.000 1.000
7 5s 10 0.074 1.000 0.992 0.001 0.826 0.000 0.562 1.000 0.000 0.731 0.000 0.000 1.000
7 5s 20 0.134 1.000 0.992 0.012 0.826 0.000 0.000 1.000 0.000 0.683 0.000 0.000 1.000

Payload Time Fixed dnscat2
SFTP

dnscat2
SSH

dnscat2
Telnet

Custom
Plain

BondUp
dater

Carbanak Cobalt
Strike

Win32.
Denis

DNSpio
nage

ISMdoor Pisloader
(1)

Pisloader
(2)

UDPoS

3 – – 0.006 0.999 0.977 0.993 0.957 0.000 0.000 1.000 0.077 0.390 0.000 0.000 1.000
3 – 10 0.018 1.000 0.992 0.800 0.957 0.000 0.000 1.000 0.077 0.327 0.000 0.000 1.000
3 – 20 0.056 1.000 0.992 0.920 1.000 0.000 0.000 1.000 0.077 0.317 0.000 0.000 1.000
3 1s – 0.031 0.999 0.990 0.524 0.826 0.000 0.000 1.000 0.000 0.342 0.000 0.000 1.000
3 1s 10 0.024 1.000 0.991 0.397 0.870 0.000 0.000 1.000 0.000 0.219 0.000 0.000 1.000
3 1s 20 0.033 1.000 0.991 0.162 0.870 0.000 0.000 1.000 0.000 0.614 0.000 0.000 1.000
3 2s – 0.049 0.999 0.991 0.436 0.826 0.000 0.000 1.000 0.000 0.531 0.000 0.000 1.000
3 2s 10 0.007 1.000 0.991 0.033 0.870 0.000 0.000 1.000 0.000 0.183 0.000 0.000 1.000
3 2s 20 0.061 1.000 0.992 0.679 0.957 0.000 0.000 1.000 0.000 0.874 0.000 0.000 1.000
3 5s – 0.005 0.999 0.991 0.664 0.826 0.000 0.000 1.000 0.000 0.664 0.000 0.000 1.000
3 5s 10 0.009 1.000 0.992 0.308 0.826 0.000 0.000 1.000 0.000 0.529 0.000 0.000 1.000
3 5s 20 0.102 1.000 0.992 0.391 0.826 0.000 0.000 1.000 0.000 0.694 0.000 0.000 1.000
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Table D.7: Experiment results, unseen threat recall, Ext. iForest (level=2)

Payload Time Fixed dnscat2
SFTP

dnscat2
SSH

dnscat2
Telnet

Custom
Plain

BondUp
dater

Carbanak Cobalt
Strike

Win32.
Denis

DNSpio
nage

ISMdoor Pisloader
(1)

Pisloader
(2)

UDPoS

7 – 10 0.031 1.000 0.992 0.344 1.000 0.001 0.004 1.000 0.231 0.613 0.000 0.000 1.000
7 – 20 0.198 1.000 0.998 1.000 1.000 0.006 0.023 1.000 0.462 0.988 0.692 0.013 1.000
7 1s – 0.034 0.999 0.990 0.000 0.870 0.000 0.000 1.000 0.000 0.560 0.000 0.000 1.000
7 1s 10 0.033 1.000 0.992 0.001 0.826 0.000 0.000 1.000 0.000 0.133 0.000 0.000 1.000
7 1s 20 0.034 1.000 0.992 0.000 0.826 0.000 0.000 1.000 0.077 0.323 0.000 0.000 1.000
7 2s – 0.063 0.999 0.991 0.000 0.826 0.000 0.000 1.000 0.000 0.444 0.000 0.000 1.000
7 2s 10 0.062 1.000 0.992 0.000 0.826 0.000 0.000 1.000 0.000 0.378 0.000 0.000 1.000
7 2s 20 0.061 1.000 0.992 0.017 0.826 0.000 0.000 1.000 0.000 0.406 0.000 0.000 1.000
7 5s – 0.134 0.999 0.991 0.002 0.826 0.000 0.000 1.000 0.000 0.791 0.000 0.000 1.000
7 5s 10 0.065 1.000 0.992 0.005 0.826 0.000 0.388 1.000 0.000 0.664 0.000 0.000 1.000
7 5s 20 0.092 1.000 0.992 0.183 0.826 0.000 0.085 1.000 0.000 0.746 0.000 0.000 1.000

Payload Time Fixed dnscat2
SFTP

dnscat2
SSH

dnscat2
Telnet

Custom
Plain

BondUp
dater

Carbanak Cobalt
Strike

Win32.
Denis

DNSpio
nage

ISMdoor Pisloader
(1)

Pisloader
(2)

UDPoS

3 – – 0.005 0.999 0.977 0.981 0.957 0.000 0.000 1.000 0.077 0.572 0.000 0.000 1.000
3 – 10 0.019 1.000 0.992 0.579 0.957 0.000 0.000 1.000 0.077 0.217 0.000 0.000 1.000
3 – 20 0.053 1.000 0.992 0.806 1.000 0.000 0.000 1.000 0.077 0.587 0.000 0.000 1.000
3 1s – 0.006 0.999 0.990 0.436 0.826 0.000 0.000 1.000 0.000 0.177 0.000 0.000 1.000
3 1s 10 0.014 1.000 0.991 0.096 0.826 0.000 0.000 1.000 0.000 0.182 0.000 0.000 1.000
3 1s 20 0.016 1.000 0.992 0.431 0.826 0.000 0.000 1.000 0.000 0.301 0.000 0.000 1.000
3 2s – 0.009 0.999 0.991 0.379 0.826 0.000 0.000 1.000 0.000 0.379 0.000 0.000 1.000
3 2s 10 0.019 1.000 0.991 0.175 0.826 0.000 0.000 1.000 0.000 0.317 0.000 0.000 1.000
3 2s 20 0.026 1.000 0.991 0.008 0.826 0.000 0.000 1.000 0.000 0.243 0.000 0.000 1.000
3 5s – 0.057 0.999 0.991 0.245 0.826 0.000 0.000 1.000 0.000 0.661 0.000 0.000 1.000
3 5s 10 0.023 1.000 0.991 0.072 0.826 0.000 0.000 1.000 0.000 0.608 0.000 0.000 1.000
3 5s 20 0.028 1.000 0.992 0.047 0.826 0.000 0.000 1.000 0.000 0.473 0.000 0.000 1.000

Table D.8: Experiment results, unseen threat recall, Random Forest

Payload Time Fixed dnscat2
SFTP

dnscat2
SSH

dnscat2
Telnet

Custom
Plain

BondUp
dater

Carbanak Cobalt
Strike

Win32.
Denis

DNSpio
nage

ISMdoor Pisloader
(1)

Pisloader
(2)

UDPoS

7 – 10 0.031 1.000 0.992 0.000 0.826 0.000 0.000 0.000 0.000 0.067 0.000 0.000 0.983
7 – 20 1.000 1.000 1.000 0.258 0.826 0.000 0.000 0.353 0.077 0.053 1.000 0.013 0.975
7 1s – 0.000 0.000 0.044 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
7 1s 10 0.013 0.999 0.990 0.000 0.652 0.000 0.000 0.000 0.000 0.070 0.000 0.000 0.983
7 1s 20 0.014 0.999 0.990 0.000 0.696 0.000 0.000 0.000 0.000 0.051 0.000 0.000 0.975
7 2s – 0.062 0.999 0.991 0.468 0.826 0.000 0.000 0.000 0.000 0.270 0.000 0.000 1.000
7 2s 10 0.006 0.999 0.763 0.000 0.652 0.000 0.000 0.000 0.000 0.061 0.000 0.000 0.983
7 2s 20 0.012 0.999 0.771 0.000 0.522 0.000 0.000 0.000 0.000 0.049 0.000 0.000 0.975
7 5s – 0.000 0.003 0.084 0.000 0.783 0.000 0.000 0.000 0.000 0.009 0.000 0.000 1.000
7 5s 10 0.000 0.999 0.750 0.000 0.783 0.000 0.000 0.000 0.000 0.070 0.000 0.000 0.992
7 5s 20 0.000 0.980 0.696 0.000 0.565 0.000 0.000 0.000 0.000 0.051 0.000 0.000 0.967

Payload Time Fixed dnscat2
SFTP

dnscat2
SSH

dnscat2
Telnet

Custom
Plain

BondUp
dater

Carbanak Cobalt
Strike

Win32.
Denis

DNSpio
nage

ISMdoor Pisloader
(1)

Pisloader
(2)

UDPoS

3 – – 0.001 0.000 0.005 0.000 0.783 0.000 0.000 0.000 0.077 0.000 0.000 0.000 0.992
3 – 10 0.027 0.001 0.023 0.000 0.826 0.000 0.000 0.000 0.000 0.070 0.000 0.000 0.983
3 – 20 0.056 0.001 0.024 0.192 0.826 0.000 0.000 0.000 0.000 0.053 0.000 0.000 0.983
3 1s – 0.000 0.000 0.002 0.000 0.043 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.992
3 1s 10 0.026 0.000 0.019 0.000 0.696 0.000 0.000 0.000 0.000 0.060 0.000 0.000 0.992
3 1s 20 0.030 0.001 0.019 0.000 0.783 0.000 0.000 0.000 0.000 0.049 0.000 0.000 0.975
3 2s – 0.002 0.000 0.022 0.232 0.826 0.000 0.000 0.000 0.000 0.113 0.000 0.000 1.000
3 2s 10 0.000 0.000 0.007 0.000 0.739 0.000 0.000 0.000 0.000 0.061 0.000 0.000 0.992
3 2s 20 0.059 0.000 0.008 0.000 0.391 0.000 0.000 0.000 0.000 0.049 0.000 0.000 0.975
3 5s – 0.000 0.001 0.014 0.000 0.696 0.000 0.000 0.000 0.000 0.007 0.000 0.000 1.000
3 5s 10 0.131 0.001 0.022 0.086 0.826 0.000 0.000 0.000 0.000 0.081 0.000 0.000 0.992
3 5s 20 0.056 0.001 0.020 0.000 0.826 0.000 0.000 0.000 0.000 0.051 0.000 0.000 0.975

D.3. Experiment Ranking
Table D.9 (next page) contains an overview of all experiments results, ranked by macrorecall on seen
threats.
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Table D.9: Performance metrics for all experiments, ranked by macroaveraged recall of groups in the malicious class of the test
set. Payloaddropper malware (Carbanak, Cobalt Strike) is excluded from the unseen macrorecall scores.

Algorithm Payload Time Fixed MacroRecall
(seen)

MacroRecall
(unseen)

Detected (unseen) FPR (queries) FP (domains)

Random Forest 3 1s 20 0.9997 0.1689 6 <0.001% 10
Random Forest 3 2s 10 0.9997 0.1635 6 <0.001% 9
iForest 7 5s 20 0.9997 0.6242 10 1.17% 2,116
Random Forest 3 1s 10 0.9996 0.1630 6 <0.001% 77
iForest 3 5s 20 0.9996 0.6153 9 1.03% 2,375
iForest 7 2s 20 0.9996 0.5495 9 0.99% 3,873
iForest 7 5s 10 0.9996 0.5610 10 0.86% 3,479
iForest 7 5s – 0.9996 0.6279 9 4.60% 4,619
EIF1 3 5s 20 0.9996 0.5459 8 0.48% 470
EIF2 7 5s 10 0.9995 0.5047 9 0.73% 749
iForest 3 5s 10 0.9995 0.6249 10 1.16% 3,160
EIF1 7 5s 10 0.9995 0.5112 9 0.56% 1,207
EIF2 7 5s – 0.9995 0.5222 8 1.69% 417
iForest 3 5s – 0.9995 0.6074 9 1.21% 3,672
iForest 7 1s 20 0.9995 0.5648 10 1.00% 4,222
EIF1 7 5s 20 0.9995 0.5133 8 0.78% 2,009
iForest 3 2s 20 0.9995 0.6129 9 0.91% 2,721
iForest 7 2s 10 0.9994 0.5441 9 1.21% 2,325
EIF1 7 1s 20 0.9994 0.5661 8 0.81% 2,682
EIF1 3 2s 20 0.9994 0.5965 8 0.64% 1,320
Random Forest 7 – 20 0.9994 0.5959 11 1.60% 24,785
EIF1 7 2s 20 0.9994 0.4921 9 0.73% 368
Random Forest 7 5s 20 0.9994 0.2963 6 <0.001% 3
Random Forest 7 1s 20 0.9994 0.3387 6 <0.001% 8
iForest 7 2s – 0.9994 0.5435 9 2.40% 1,345
iForest 3 2s 10 0.9994 0.5820 9 0.96% 2,921
EIF1 3 5s 10 0.9994 0.5149 8 0.42% 456
Random Forest 3 – 20 0.9994 0.1941 7 0.40% 200
Random Forest 3 5s 10 0.9993 0.1944 7 0.42% 27
EIF2 7 2s 10 0.9993 0.4780 7 0.38% 723
Random Forest 3 2s 20 0.9993 0.1349 6 <0.001% 21
iForest 7 1s 10 0.9993 0.5719 9 0.82% 2,866
Random Forest 3 5s 20 0.9993 0.1753 6 0.18% 16
Random Forest 7 1s – 0.9993 0.0950 4 0.03% 452
Random Forest 3 5s – 0.9992 0.1561 7 0.02% 26
iForest 3 2s – 0.9992 0.5769 8 1.17% 2,726
iForest 3 1s 20 0.9992 0.5389 8 0.77% 2,328
EIF1 7 2s 10 0.9992 0.4954 8 0.54% 758
EIF1 7 2s – 0.9992 0.5238 8 0.84% 682
Random Forest 7 2s 20 0.9992 0.3025 6 <0.001% 2
EIF2 7 5s 20 0.9992 0.5309 9 0.65% 2,341
EIF2 3 5s 10 0.9992 0.5018 8 0.47% 299
EIF2 7 2s 20 0.9991 0.4820 8 0.45% 748
EIF2 3 5s 20 0.9991 0.4877 8 0.46% 317
EIF2 3 1s 20 0.9991 0.5060 8 0.53% 522
EIF1 3 2s – 0.9991 0.5302 8 0.56% 600
iForest 7 1s – 0.9991 0.5236 8 1.39% 3,191
EIF1 3 1s 20 0.9990 0.5155 8 0.55% 935
Random Forest 7 5s – 0.9990 0.1708 7 <0.001% 16
iForest 3 1s 10 0.9990 0.5623 8 0.98% 2,157
EIF2 7 1s 20 0.9990 0.4774 9 0.63% 752
EIF2 3 2s 20 0.9990 0.4631 8 0.38% 332
EIF1 7 5s – 0.9990 0.5344 9 1.47% 231
EIF2 3 2s 10 0.9990 0.4843 8 0.42% 340
iForest 3 1s – 0.9990 0.6141 8 1.10% 1,907
EIF1 7 1s 10 0.9990 0.4830 8 0.48% 883
EIF1 3 2s 10 0.9989 0.4621 8 0.56% 388
EIF1 3 1s – 0.9989 0.5193 8 0.47% 389
Random Forest 3 – – 0.9989 0.1688 6 0.30% 1,539
EIF2 7 2s – 0.9988 0.4838 8 0.55% 198
EIF2 3 2s – 0.9988 0.5075 8 0.42% 264
EIF1 3 1s 10 0.9988 0.5001 8 0.60% 993
Random Forest 3 1s – 0.9987 0.0945 6 0.01% 246
EIF2 7 1s 10 0.9987 0.4531 8 0.44% 635
EIF2 3 1s – 0.9987 0.4940 8 0.39% 422
EIF2 3 1s 10 0.9987 0.4645 8 0.45% 268
Random Forest 3 2s – 0.9987 0.1997 7 0.52% 75
Random Forest 7 1s 10 0.9985 0.3370 6 <0.001% 85
EIF2 3 5s – 0.9985 0.5255 8 0.48% 470
Random Forest 7 2s – 0.9985 0.4197 7 1.38% 147
Random Forest 7 – 10 0.9978 0.3544 6 0.74% 109
EIF1 3 5s – 0.9978 0.5591 8 0.51% 414
Random Forest 3 – 10 0.9974 0.1755 6 0.50% 505
Random Forest 7 5s 10 0.9973 0.3267 6 0.02% 16
Random Forest 7 2s 10 0.9962 0.3149 6 <0.001% 16
EIF2 7 1s – 0.9886 0.4957 8 0.46% 429
EIF1 7 1s – 0.9870 0.5030 8 0.48% 495
iForest 7 – 20 0.9285 0.9041 13 8.66% 69,402
EIF2 7 – 20 0.9265 0.7591 13 7.12% 57,024
iForest 3 – 20 0.9198 0.6342 9 1.61% 13,102
iForest 7 – 10 0.9165 0.8862 13 11.15% 74,186
EIF1 7 – 20 0.9160 0.6724 12 1.66% 33,976
EIF1 3 – 10 0.9145 0.5608 9 0.86% 2,693
EIF1 7 – 10 0.9080 0.6412 12 1.49% 31,139
EIF2 7 – 10 0.9079 0.5646 11 1.76% 37,119
EIF1 3 – 20 0.9047 0.5783 9 0.89% 6,064
iForest 3 – 10 0.8990 0.6343 10 1.51% 13,878
EIF2 3 – 20 0.8963 0.5922 9 0.78% 5,188
EIF2 3 – 10 0.8946 0.5309 9 0.63% 1,907
iForest 3 – – 0.7892 0.6442 9 2.05% 20,925
EIF2 3 – – 0.7873 0.5970 9 0.90% 6,358
EIF1 3 – – 0.7872 0.5816 9 1.03% 7,291
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