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Prioritizing Cyclists at Signalized
Intersections Using Observations from
Connected Autonomous Vehicles

Alphonse Vial1 , Maria Salomons1 , Winnie Daamen1 ,
Bart van Arem1 , Sascha Hoogendoorn-Lanser2,
and Serge Hoogendoorn1

Abstract
When making trips in urban environments, cyclists lose time as they stop and idle at signalized intersections. The main
objective of this study was to show how augmenting the situational awareness of traffic signal controllers, using observa-
tions from moving sensor platforms, can enable prioritization of cyclists and reduce lost time within the control cycle in
an effective way. We investigated the potential of using observations from connected autonomous vehicles (CAVs) as a
source of new information, using a revised vehicle-actuated controller. This controller exploits CAV-generated observa-
tions of cyclists to optimize the control for cyclists. The results from a simulation study indicated that with a low CAV
penetration rate, prioritizing cyclists by tracking reduced cyclist delays and stops, even with a small field of view. As the
delay of car directions were not taken into account in this study, the average car delay increased considerably with an
increasing number of cyclists. Future work is needed to optimize the control that balances the delays and stops of cyclists
and cars.
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To make mobility systems greener, safer, fairer, more
efficient, and ultimately cheaper, traffic and transpor-
tation systems must continue to be geared toward mul-
timodal strategies. When making trips in urban
environments, motorized vehicles, cyclists and pedes-
trians lose time when they stop and idle at signalized
intersections. This increases the level of discomfort for
cyclists, especially during complete stops, where at
least one foot has to touch the road (1). This is rele-
vant because we know that the number of cyclists in
cities increases with lower levels of discomfort along
the bike network (2). The impetus to reduce delays for
cyclists at signalized intersections has recently been
drawing increasing attention from the traffic commu-
nity (3, 4). The objective of this study was therefore to
investigate the potential of early cyclist detection for
responsive signal control that prioritizes cyclists, so
this mode of transport will experience fewer stops and
long delays.

In the Netherlands (NL), signalized intersections are
managed by vehicle-actuated (VA) control. VA control
uses information about the current traffic state to control
the use of conflict areas, that is, the areas where two con-
flicting movements meet. The order in which opposing
directions receive green is based on a fixed control struc-
ture, with stages of nonconflicting movements con-
structed with the aid of pairwise conflicts (5). The order
of the phases is red–green–yellow, and yellow time is
based on the speed of the traffic and the distance within
which traffic can choose whether to proceed or stop, the
so-called dilemma zone. Actuation is mostly done by
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means of loop detector information (6). VA control is
phase controlled, in which the green duration of an indi-
vidual movement is determined by the occupation of its
detectors. Although multiple detectors are recommended
for all traffic modes (7), two to three inductive loops are
typically used upstream of the intersections for cars,
whereas for cyclists, only one inductive loop is used,
placed near the stop line.

More recently, VA control has been extended to enable
certain movements to be prioritized, that is, VA control
with priority (VAP). These extended, ‘‘intelligent’’ traffic
light controllers (iTLCs), are enhanced by communication
with the traffic (8). The aim of iTLCs is to inform the
approaching traffic, to optimize control, and to prioritize
target groups. For example, a public transport vehicle, a
truck, or an emergency vehicle can initiate the end of
green time of conflicting movements to pass as soon as
possible. Similarly, VAP can be used to prioritize cyclists
based on conditional priority, for example, with rain sen-
sors that are used to prioritize cyclists during rainfall only
(9, 10). Eventually iTLCs will improve estimation of traf-
fic states (11). Communication with cars is done via
onboard computers or mobile apps, whereas cyclists rely
on communication enabled by radar at a fixed location
(12), or from smartphone apps (13). The number of
cyclists using mobile apps, however, is still low as not all
cyclists are willing to use an app or remember to initiate
them (13). This mismatch results in a higher proportion
of cars than cyclists communicating with the iTLCs.

Because cycling is encouraged in the NL (6, 14), more
solutions are needed to balance out the lack of informa-
tion about cyclists approaching intersections. Eventually,
this will make it possible to prioritize this environmen-
tally friendly traffic mode more effectively than is cur-
rently the case. Other solutions to increase traffic
controllers’ situational awareness of cyclists include
installing additional sensing infrastructure, for example,
extra detector loops, fixed cameras, or radars (4). This
approach, however, comes at a considerable cost from
deployment and maintenance (15).

Recent studies have utilized connected automated
vehicles (CAVs) as a means for learned ecodriving con-
trol policies to reduce idling time at signalized intersec-
tions (16). The broad sensing, processing, and
communication capabilities of CAVs make them well-
suited to advanced traffic monitoring and control appli-
cations. As they must continuously sense the environ-
ment in which they operate, CAVs may also provide
relevant traffic information about cyclists, and could
thus be utilized as mobile sensing platforms (17).
Observations generated from their field of view can be
shared using wireless communication with nearby vehi-
cles (e.g., for cooperative vision) or infrastructure such
as traffic signal controllers (e.g., with iTLCs). The

benefits of using observations from CAVs is that the
position and speed of cyclists could be observed by mul-
tiple CAVs at different locations (e.g., to confirm their
presence at a location), and cyclists would not need to
use traffic-related apps. However, since prioritization of
cyclists may increase the delay of other traffic modes,
robust observations are necessary to avoid giving them
priority too early or for too long.

The main aim of this study was to show how augment-
ing the situational awareness of traffic signal controllers
using observations from CAVs could enable prioritiza-
tion of cyclists and reduce lost time in the control cycle in
an effective way. The current study makes the following
contributions:

1. Proposes a control method that uses available
cyclist observations from moving sensor plat-
forms (here exemplified by CAVs) to prioritize
and optimize traffic conditions for cyclists;

2. Quantifies the effect on cyclist and car delays, on
the number of stops and on effective green use
for cyclists, for different levels of car and bicycle
demand;

3. Highlights the extent to which different traffic
and environmental conditions might influence
these results (i.e., CAV settings, penetration rate,
occlusion); and

4. Shows how observing the absence of cyclists
appears to be valuable controller information
(e.g., reducing lost time by phase truncation).

We showcase this with a VA control application that
prioritizes cyclists, and uses a microscopic traffic simu-
lator to simulate cyclists and car traffic approaching a
signalized intersection. Note that in this work we con-
sidered cyclists to be indistinguishable from each other,
that is, no additional information from sensors (e.g.,
clothing color) that could help strengthen discrimina-
tion between different cyclists was given. Available
observations from CAVs were used to estimate the
dynamic states (i.e., positions and speeds) of an
unknown and varying number of cyclists using a
multiple-target tracking (MTT) approach. Detector
information was then augmented with estimated cyclist
states as input for the cyclist priority request logic of
the proposed cyclist prioritizing vehicle-actuated con-
troller with tracking (VAT). The cyclist and car delays
from the implemented VAT were empirically evaluated
against state-of-the-art VA and VAP controllers. This
work promotes optimized designs that will better bal-
ance delays in more involved traffic situations.

The remainder of this paper is organized as follows.
The next section gives an overview of the proposed VAT
approach. We then describe the MTT approach used to
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track cyclists from individual observations and present
the related models that were used in this study. Models
used for priority requests and lost time reduction in the
control cycle are introduced in the fourth and fifth sec-
tions. The experimental design and simulation setup are
presented in the sixth section, followed by the results
from the empirical evaluation. Conclusions and sugges-
tions for future work are presented at the end of the
paper.

Approach

The objective of the proposed method was to use addi-
tional information from moving sensor platforms to
inform, prioritize and optimize intelligent traffic signal
controllers. The term moving sensor platform here refers
to a general description of technological subsystems that
generate data about their surroundings for their safe
functioning (e.g., CAVs, drones, or other types of
robots). Later in the paper, we will describe the proposed
approach based on CAVs in a simulation. The general
idea and main elements of our approach are outlined in
this section and depicted in Figure 1.

When a cyclist enters the field of view (FoV) of a sen-
sor platform, an observation may be generated. Based on
the architecture of iTLCs, in which road users share their
position, speed, and intended route by wireless communi-
cation with the traffic controller (18), this work assumed
sensor platforms to similarly share available observations
of cyclists with the traffic controller. For the traffic con-
troller to make use of available observations over time,
the dynamic state of observed cyclists (e.g., position and

speed) must be estimated along the cycle path so that, at
a suitable moment, the priority request of the signal con-
troller can be activated. The way iTLCs process the input
from sensor platforms to grant priority to individual
cyclists, or a platoon of cyclists, is comparable to the way
data from static cameras or radar are handled. An exam-
ple where bicycle priority is applied using smart cameras
detecting bicycle platoons of three or more cyclists can be
found in the municipality of Hengelo (NL) (19), whereas
bicycle priority using cyclist observations from static
radar was applied in the municipality of Delft (NL) (12).

The unknown and varying number of cyclists compli-
cates the task of associating available observations with
the cyclists present on the cycle path. In addition, sensor
platform observations are not perfect. They may be
‘‘noisy,’’ include clutter, or miss a cyclist because of
occlusion. And with no a priori information about which
observation originated from which existing or newly
detected cyclist, the many possibilities of assigning a
measurement to an individual complicate the task. We
therefore used an MTT approach to infer the number of
cyclists present on the cycle path and estimated their
dynamic state at each time instant.

For the case in which cyclists were estimated to be
located in the priority request zone (i.e., the area
upstream of the traffic signal where the decision about
cyclist priority is made) a priority request logic was initi-
ated. The VAT controller then ended green time for con-
flicting traffic at the next possible moment, and the
desired signal state (i.e., green) was set for the cyclists. In
this way, cyclists could be prioritized earlier; unlike
VAP, where cyclists had to continue up to the stop line
and come to a complete stop before priority was granted.
For the case in which cyclists were estimated not to be in
the defined priority request zone, a phase truncation
logic was initiated that reduced the lost time in the con-
trol cycle.

Inferring the Number and States of
Indistinguishable Cyclists

For the traffic signal controller to act according to infor-
mation provided from the sensor platforms’ FoV, we
used an MTT approach to infer the number of cyclists
and estimate their dynamic states (e.g., position, speed)
from a sequence of available observations. MTT is an
extension of the state estimation problem that includes a
data association component, because which observation
originated from which cyclist is not known, not to men-
tion which observations were clutter or missed detec-
tions. In this section, we introduce the MTT approach
used, relevant state–space models, and discuss the applic-
ability and assumptions made using this approach in a
traffic signal control setting.

Figure 1. Bicycle priority vehicle-actuated control with tracking
(VAT) using observations from moving sensor platforms (e.g.,
connected autonomous vehicles [CAVs]).
Note: PR zone = zone where priority can be requested.
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Road Network-Constrained Multiple Hypothesis
Tracking

We used the network-constrained multiple hypothesis
tracking (NC-MHT) approach proposed in research by
Vial et al. (19) to update the information about a target’s
position along a defined road network from a temporal
sequence of observations.

At each time step, an association event represented a
set of valid assignments of observations to existing tracks
(of already observed targets), new targets, or false obser-
vations, in which a track corresponds to a data associa-
tion sequence, ti

1:k , for target i up to time k. Each track
was modeled as a single target tracking filter (i.e.,
Bayesian filtering) following prediction steps or updates,
in case it was associated with an observation. The deci-
sion to update an existing track or not following an
observation was made using gating, a technique used to
simplify the association problem by removing potential
associations that are too unlikely. If the observation lay
outside the gating area predicted for a track (i.e., based
on the state estimate, the next observation of the track
was predicted), the track to observation association was
ignored.

A complete solution to the MTT problem is given by a
global tracking hypothesis, which represents the inferred
number of targets and their respective states along the
road network. We refer the interested reader to the origi-
nal work (19) for more details on, for example, data asso-
ciation logic, track likelihood computations, or handling
of the road constraints, as we focus on the target state
description and estimation models for the rest of this
section.

State–Space Models

Let us assume that cyclists evolve independently of each
other and that the state of each cyclist at time k is repre-
sented by a vector

Xk =
xk

dk

� �

where the actual position of the cyclist is a combination
of the general position determined from the map, dk (i.e.,
cycle lane), and xk , which specifies the position, velocity,
and acceleration on the cycle lane, such that
xk = ½rk , _rk ,€rk �T .

Cyclist Motion Model. A nonlinear dynamic model
describes the motion of each cyclist, such that

xk + 1 = f (xk , uk)+ vk , vk;N (0,Qk) ð1Þ

where uk is control input (e.g., to specify the traffic signal
state at each time step), and vk is process noise assumed
to be white and Gaussian with covariance matrix
cov vt =Qk .

The kinematic state motion model of cyclists
approaching the intersection follows linear constant
velocity if not within a human-vision distance to the traf-
fic light.

Conversely, within human-vision distance to the traf-
fic light, we assumed signal status to have an effect on
cycling behavior. We used a simple model that describes
cycling movements in response to the color of the traffic
light, as proposed in Dabiri et al.’s study (20). The accel-
eration/deceleration of a cyclist is represented as follows:

�€rk =

� _rk

CS (k)Dt
, 0\lS � rk\Dh,

if signal is red,
0, 0\lS � rk\Dh, _r\_rd ,

if signal is green,
0\lS � rk\Dh, _r\_rd ,

€r
0

1� _rk

_rd

� �2
� �

, if signal is green

8>>>>>>>><
>>>>>>>>:

ð2Þ

where
Dt = discretization time,
_rd = comfortable speed,
€r
0
= comfortable acceleration of the cyclist at time

step k,
And Cs(k) = the number of required time steps to come
to a complete stop before the intersection,

CS(k)=max 1, b 2dj(k)

_rkDt
c

� �
ð3Þ

where dj(k) denotes the distance between the cyclist and
the traffic light at time step k. This model was applied
according to the following cases, where lS represents the
position of the stop line and Dh represents the human-
vision distance from the traffic light. In the first case,
while the cyclist was within human-vision distance of the
traffic light and the signal was red, the cyclist decelerated
until coming to an eventual stop ahead of the traffic
light. In the second case, in which the light turns green
while within human-vision distance, no acceleration was
applied to the cyclist, unless the current speed was lower
than the defined comfortable speed.

For the case in which the cyclist had passed the inter-
section, the kinematic state motion model followed a
constant velocity if cycling at comfortable speed, other-
wise acceleration was represented according to the last
case of Equation 2.

Observation Model. Let us assume the moving sensor plat-
forms have a limited FoV, a known position along the
road network, and that observations can be generated at
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any time. Each observation originates from a single
cyclist, or is a false detection. When a cyclist is visible to
a sensor platform at time k, and thus in its FoV, the
cyclist is detected with probability PD, where the avail-
able observation provides a measurement of the cyclist’s
general position from the road map (e.g., the probability
of being on a specific cycle lane) and specifies the posi-
tion and speed along that road segment (e.g., where on
the cycle lane). A single sensor platform can observe mul-
tiple cyclists at the same time and thus provide multiple
observations at one time step, yet each target produces at
most one observation. Given multiple sensor platforms
operating, a single cyclist may also be observed by sev-
eral sensor platforms simultaneously.

Note that the absence of observations represents a
valuable source of information, because the track
hypotheses score is lowered when the target is not
observed as expected. This helps to reduce the number of
track hypotheses that require consideration.

State Prediction and Update

As stated, tracks were estimated using Bayesian filtering
following prediction steps or updates in case they were
associated with an observation. We used an extended
Kalman filter (21) in cases of nonlinear motion, and the
standard Kalman filter (22) for linear cases. When an
observation is obtained, the continuous part of the cyclist
state can be updated, provided the discrete state is acces-
sible from the observation. If no observation is available,
the update step is simply skipped, and if several are avail-
able, the step is repeated. We refer the interested reader
to Vial et al.’s study (19) for more details on network-
constrained effects and assumptions in the context of the
NC-MHT framework.

Applicability and Assumptions in a Traffic Signal
Control Setting

The flexibility of the NC-MHT framework, particularly
the formulation of the network-constrained target state,
made it generally suitable to associate available measure-
ments with cyclists present on the cycle path. Compared
with more standard MTT approaches in free space, the
inclusion of network constraints allowed for more effi-
cient target predictions over extended periods of time
and simplified the measurement association process. As
this work considered moving sensor platforms as a new
source of cyclist information, it was reasonable to assume
that the knowledge about the network structure and the
sensor platform position would always be known.

Cyclists overtaking other cyclists or approaching a
signalized intersection can influence one another. Their
motion can, for instance, be affected by the behavior of

others, the surrounding environment, or their destination
choice. More advanced motion models that include the
interactions of targets have the potential to be utilized to
improve tracking, thereby improving predictions, in par-
ticular, over extended periods of times without observa-
tions. However, interactions between targets, strictly
speaking, violate a key assumption of the framework
used, and more generally of all classic tracking frame-
works, as they treat targets independently to minimize
complexity. Extending the method to take these interac-
tions into consideration is nontrivial and, more impor-
tantly, has a very negative impact on computational
complexity. To prove the concept of our application, we
therefore considered cyclists to move independently,
because bypassing the violation of this basic assumption
and using more involved behavioral models was outside
the scope of this study.

At the same time, cyclists respond to the colors of the
traffic lights, for example, by adapting their speed. In
contrast to the interactions between cyclists, the traffic
signal color was a fixed input at every time step and was
thus be considered in this study to be additional control
input for the cyclist motion in the approach used.

The NC-MHT framework modeled transitions in the
road network as a discrete Markov chain, in which a tar-
get transitions from one road segment (e.g., cycle lane)
to another once it has reached the end of that segment
(i.e., the intersection), according to a computed transi-
tion probability. When applied to a traffic signal control
setting, for example, where cyclists approach an intersec-
tion, the provided network representation allowed the
specification of different cycle lanes. Each sensor plat-
form observation could thus include the probability that
the cyclist was observed on that cycle lane. To limit com-
putational complexity, this study used a simplification in
which the cycle lane was assumed to be accurately pro-
vided by the sensor platform (i.e., only one cycle path
had nonzero probability).

Note that for some traffic signal control applications
(as exemplified later in this paper) the complete intersec-
tion area (e.g., conflict area) must be included in the con-
tinuous description of the cyclist motion state, so the
network representation used in the NC-MHT had to
ensure a cyclist could be tracked not only before and
after an intersection, but also at the intersection.
Ignoring the presence of a cyclist in such crucial zones
would have considerable negative effects for overall
safety and for the efficiency of the controller.

Arrival Time and Priority Request

To give priority to cyclists at the right moment, the arri-
val time of the cyclist must be calculated. Giving cyclists
priority will have an effect on the delay of other traffic,
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therefore, to avoid causing excessive delays to conflicting
vehicle movements, the priority of the bicycle movement
is conditional.

Arrival Time Calculation

To find the optimum moment to give cyclists priority, the
position, rk , and speed, _rk , are extracted from the tracks
included in the best global hypothesis of the tracker. The
time step between new estimated trajectories, between k

and k + 1, is Dk. The speed of the cyclists is assumed to
be constant between the two observations. After n time
steps, ts, the position of the cyclists is determined by
rk, n = rk + _rknts, where n ł Dk=ts. The time it takes a
cyclist to arrive at the stop line is,

tarr =
rst � rk, n

_rk

ð4Þ

where lS � rk, n is the distance the cyclists has to cover at
time step k + nts to the stop line lS .

Conditional Priority Request

The priority start of the bicycle movement depends on
the arrival time, tarr, of the cyclists, on the controller
state, and on the priority conditions. First we discuss the
priority start moment, followed by describing the condi-
tions for which priority is given or extended.

When the conditions favor priority, the start of the
priority request depends on the controller state:

1. During green, yellow, or clearance times of paral-
lel movements: priority is requested the moment
the cyclist is about to brake, this is tAmin seconds
before arriving at the stop line. The light can turn
green immediately after the request,

tarr ł tAmin ð5Þ

2. During green, yellow, or the clearance time of
conflicting movements: the signal also needs to
turn green here, the moment the cyclist starts to
brake. However, if a conflicting signal, i, is green,
it takes time to end this signal, so the remaining
time, tr, i, before the bicycle green can start should
be taken into account. This request is made if

tarr ł tAmin + max
i

(tr, i) ð6Þ

The remaining time depends on the yellow time, Li, of
the conflicting movement, i, the clearance time, Ci,
between the conflicting movement and the bicycle

movement, and Gend, i, the time that has passed since the
green time of movement, i, ended,

tr, i = Li +Ci � Gend, i ð7Þ

The conditions for starting the priority depend on the
green duration of the conflicting movements, and on the
number of times priority was realized for the bicycle
movement, as follows:

1. Do not truncate conflicting movements too soon,
at least pc% of the maximum green should be
given to a conflicting direction.

2. Limit the number of priority realizations: after
the bicycle priority ends, it should not start again
before the lost time has expired. This ensures that
one of the conflicting movements that have a
green request, will receive green.

Priority extension should also be limited: green time for
cyclists should not be extended for too long:

1. The green may extend to a maximum pb% of the
maximum green.

2. Extend the priority only if a cyclist arrives at the
stop line within tAmax seconds after their predeces-
sor has crossed the stop line.

Since VAT priority is granted when a cyclist is
observed and there is a conditional extension of the
green time, a single cyclist that arrives will be prioritized
over a platoon of cyclists that arrive after tArr, or after
the maximum green extension of the bicycle green has
been reached. This means that the VAT controller does
not optimize the green time with respect to the arrival of
platoons, nor does it consider platoon dispersion.

Reducing Lost Time by Phase Truncation

Moving sensor platform observations can be used to
prioritize approaching cyclists, yet they can also be used
to optimize control by reducing unused green and lost
time in the control cycle by truncation of the minimum
green-, yellow-, or the clearance time, referred to here as
‘‘phase truncation.’’ Since two separate areas need to be
observed, the area from the priority request location to
the stop line (i.e., the PR zone), and the intersection (the
clearance zone), phase truncation is undertaken in two
steps. First the minimum green and yellow truncation is
considered in relation to the PR zone, secondly, if the
conflict zone is clear, the clearance time is ended.

If no cyclists are observed within the PR zone, and
the bicycle signal is showing green because the minimum
green time has not yet expired, the minimum green time
can be ended. The gap-out time of the detectors is not
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needed, since it is certain the queue has been cleared. If
there are no cyclists in the PR zone (which is upstream
of the dilemma zone), no cyclists can decide to go when
yellow is visible, so the yellow time has no function and
can be ended. This truncation should take into account
the speed of the fastest cyclists, _rc, fast (e.g., e-bikes), and
the duration of the yellow signal, Lc,

dtrunc = _rc, fastLc ð8Þ

If there are no cyclists in the priority request location
or in the conflict area, clearance time can be ended, leav-
ing the conflict area clear for conflicting movements. The
safety risks of phase truncation are reduced by the
demand that multiple sensor platforms should observe
these areas, the priority request location and the conflict
area, and these sensor platforms should provide redun-
dant observations that there are no cyclists present.

Experimental Design and Simulation Setup

The aim of this case study was to quantify the potential
of using cyclist observations from moving sensor plat-
forms (here exemplified in a CAV use case) with the
implemented VAT approach by answering the following
questions:

Q1: How do VAT, VA (no priority), and VAP control
(priority on detection) compare in relation to car and
bicycle delays and stops for different levels of car and
bicycle demand?
Q2: What effect does VAT have on the efficient use of
green for cyclists?
Q3: How does the penetration rate and the FoV of
CAVs affect cyclist delay?
Q4: What is the value of observing the absence of
cyclists?

This section first provides more details about the sce-
narios simulated in this study. We then describe the
designed case study, and eventually elaborate on the
assumptions and design choices made for the implemen-
tation of the numerical experiments.

Simulation Scenarios

To answer the aforementioned questions, we evaluated
the benefits of the proposed VAT approach with five
simulated scenarios using PTV Vissim 11 microscopic
traffic simulator (23). The road network was synthetic,
that is, not based on an existing intersection and thus the
microsimulation network was not calibrated with exist-
ing data. The network was made sufficiently complex to
show the proof of concept, yet simple enough to make
the setup feasible. The demand levels were realistic (24).

� To answer Q1, we evaluated the benefits of the
proposed VAT approach against VA and VAP
implementations in relation to the effect of the
bicycle demand (100 to 800 cyclists/h), for various
levels of car demand (50% to 150% of the base-
line car demand, given in Figure 2a).

� For Q2 we assessed how VA, VAP, and VAT
handled green actuation and duration for the
varying bicycle demand.

� For Q3, different tracker variables were changed
to compare VAT scenarios. The VAT base sce-
nario was chosen as having 300 cyclists/h, 50%
CAV, and 30m FoV, as well as no occlusion or
phase truncation. The baseline car demand is
given in Figure 2a. The probability of detection
for each CAV was set to PD = 0:95. The CAV
penetration rate was evaluated based on 50%,
10%, and 5% CAVs. Note that the baseline case
had 50% CAVs since the results from preliminary
tests did not show much variation with a higher
penetration rate. The FoV was set to 30, 20, and
10 m.

� Question Q4 was split into two situations. First, if
a CAV did not observe any cyclists, this may have
been the consequence of occlusion, thus, occlusion
events were added and compared with the VAT
base scenario described above. Second, if observa-
tions from multiple CAVs provided redundant
information about the absence of cyclists and no
occlusion took place, we evaluated the benefits of
the proposed VAT approach against VA- and
VAP implementation in relation to phase trunca-
tion. In particular, we were interested in minimum
green, gap time, yellow time, and clearance time
truncation.

Given stochastic effects and priority, we used seven
different seeds to simulate, with a simulation duration of
900 s (10 to 15 cycles), with sampling time DT = 1s for
the tracker, and the control was updated every DT = 0:1s
yet assuming a constant speed during that second.

Case Study

We simulated cyclists and vehicles moving along the road
network (depicted in Figure 2a). This intersection is close
to a realistic situation and sufficiently complex in the
effect of prioritization. For simplicity, only CAVs paral-
lel to the cycle lane could observe cyclists. To mimic rea-
listic control, a three-block-control was implemented, but
in only one direction, which was not parallel to the cycle
lane. Cyclists traveled from south to north on the (red)
cycle path. A loop detector for cyclists was placed at the
stop line, as this is most commonly used in the NL (6) (a
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benchmark country for bicycle infrastructure). As men-
tioned in the introduction of this paper, the detector was
used as actuator for the VA-, VAP-, and VAT approach.
Vehicles present on the network were either conventional
nonsensing (‘‘car’’) or equipped with sensing capabilities
allowing them to generate observations about objects in
their FoV (‘‘CAV’’). CAVs that had the cycle path within
their defined FoV could generate cyclist observations at
any time. The cyclists moving along the cycle path were
either ‘‘common’’ cyclists with an average speed of 15
km/h, or fast cyclists (e.g., e-bikes) with a speed of 25
km/h. These speed differences were introduced to chal-
lenge the arrival time estimation.

Network Representation

According to the tracking framework introduced earlier,
all observations received from CAVs were network-con-
strained, which can theoretically be represented as a
Markov model in the form of a directed graph. As indi-
cated earlier, the complete intersection must be included
in the continuous description of the cyclist motion state.
We thus represented the entire cycle path as a single line
segment. This design choice allowed us to have cyclist
observations and propagation at the complete intersec-
tion area, without issues of cyclists transitioning from
one segment to the next.

Field of View and Occlusion

As stated, the size of the FoV determines whether a CAV
can observe the cycle path, and if so, which part. Only
cyclists within the FoV can be observed by a CAV. The
shape of a two-dimensional FoV can be approximated
best by an ellipse (25), but for simplicity, we approxi-
mated the FoV with a square. Figure 2b shows that this
approximation was reasonable with respect to the actual
size of the FoV. For the baseline VAT the size of the
FoV was set to 30 m. FoV is determined by the lateral
distance to the cycle path. CAVs with a FoV of 30 m
could observe the cycle path when three lanes away,
whereas with a FoV of 10 m, only CAVs in the lane
directly adjacent to the cycle path could observe cyclists.
In more practical terms, the larger the FoV, the more
information that may be shared with the tracker, which
leads to higher certainty in cyclist the estimates.

For occlusion events, we implemented a simple model
in which only lines of sight between the CAV and the
cycle path, perpendicular to the cycle path, were consid-
ered. If another vehicle was partly within the perpendicu-
lar line of sight, this part of the cycle path could not be
observed by the CAV. Figure 2b illustrates the simplified
occlusion model. Close to the stop line, waiting vehicles
can obstruct this view, so the occlusion is worst near the
stop line. The consequence of this event is that if the

Figure 2. Microsimulation in Vissim, the network and field of view: (a) intersection used in microsimulation, with the control block
diagram and (b) illustration of the simplified occlusion model.
Note: The observed bicycle path areas are hatched, the two cyclists within the circle were not observed because of occlusion from the red car. Bicycle

movement is depicted by the arrow with ‘‘c.’’ The demand for all movements is given in the figure.
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tracker receives conflicting information, that is, from
CAVs that observe the cyclists without occlusion in their
FoV and from CAVs that cannot observe a cyclists but
should be able to, given their position with respect to the
cycle path, the tracker may (depending on track likeli-
hood computations) end the trajectory.

Implementation Details

The Vissim network is controlled by a VA controller
(TRAFCOD [26]), which reacts to the occupancy of
detectors. The COM interface gives information to the
controller adjustment in Matlab, Matlab passes (a part
of) the information through to the tracking algorithm in
Python and C++, then information from the tracking
algorithm is input for the controller adjustment. The
controller adjustment decides when a direction will start
or end green or end yellow, and based on this, certain
detectors will be cleared or occupied, to make sure the
signal timing is as intended.

Results

In this section, the results from the empirical evaluation
for the proposed VAT controller and two state-of-the-art
controllers, VA and VAP, are presented:

� VA: Vehicle-Actuated control, using detectors,
without any priority,

� VAP: Vehicle-Actuated control where cyclists are
Prioritized on the stop line detector,

� VAT: Vehicle-Actuated with cyclist priority using
CAV-based Tracking.

The base scenario was with 50% CAV and 30-m FoV,
without occlusion or phase truncation and the baseline
car demand from Figure 2a.

Figure 3 shows how the tracker dealt with cyclist
observations and estimated cyclist trajectories by com-
paring to the actual trajectories of the cyclist in the simu-
lation. This figure also highlights how a track initiated
by a false observation results in an unjustified priority
start of green.

Q1: VAT Versus Baseline Control Scenarios

In answering Q1, Figure 4 presents an indication of the
performance of the proposed VAT approach against the
baseline cases used in this study. It presents the percent-
age of cyclist stops, and bicycle and car delay as a func-
tion of the demand. As can be seen from Figure 4a, VAT
showed a reduced number of required stops for cyclists
as compared to both VAP and VA. In particular, obser-
ving cyclists ahead of the stop line in a priority scenario

with tracking (VAT) considerably improved the number
of stops when compared to a priority without tracking
scenario (VAP), where there is a high probability that a
cyclist will stop on the detector because the detector is
located close to the stop line.

Delay as a function of cyclist demand (Figure 4b) was
smallest for VAT with a low demand and highest for
VA. This result was logical, given that VA requests can
only be honored when the block of the cyclist movement
can be activated. When the VAT results were compared
with those of VAP, the difference between cyclist delay
was smaller than for stops, the effect of prioritization on
delay reduction was larger than the effect of being
observed further ahead of the stop line.

When the average delay for cyclists was compared to
that of cars (Figure 4c), the effect was smallest when
demand was low, and the difference increased in line with
greater demand. From 400 cyclists/h, it can be observed
that the average car delay started to increase signifi-
cantly, whereas the average delay for cyclists hardly
changed in relation to higher demand (Figure 4a). With
increasing demand, cyclist priority is given more often
and for longer durations, thus leading to greater delays
for cars.

Car demand for the results in Figure 4 was fixed. The
effect of car demand (therefore the number of CAVs)
was also tested in the VAT scenario. The ratio between
the demand of car movements remained the same as for
the original simulations, but demand was set to a per-
centage of this baseline demand (i.e., 100% equaled the
baseline demand). As can be seen from Figure 5a the
delay of the cars is strongly related to the car demand,
with increasing demand the delay increases much,

Figure 3. Trajectories of cyclists: the blue line denotes the actual
trajectory (true positions), the red denotes those observed by
connected autonomous vehicles (CAVs) within the field of view
(FoV), and the position of the cyclists according to the tracker
algorithm (estimated positions). At 300 m the stop line is
indicated by the signal phases (green, yellow, red). False
observations are indicated by gray circles.
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especially if there is also a high bicycle demand (from 60
to 100 s). For the cyclists this effect is less, because the
cyclists receive priority, even when there are fewer CAVs
around to observe them. Once a cyclists is observed it
will, in most cases, be ‘‘remembered’’ by the tracking
algorithm and will receive priority. Furthermore, if there
are fewer cars, the green time of the car movements will
be less, cyclist will receive green earlier and the delay will
be lower. Only for a demand of 200 c/h the effect of a
higher car demand (cq more CAVs) is visible: with 150%
the delay is lower than for 125%.

Q2: Bicycle Green Actuation, Bicycle and Car Green
Duration, and Green Use

This section aims to answer Q2 by showing how VA,
VAP, and VAT each handled bicycle- and car green, and
describes the results this had on effective green use in
relation to cyclist- and car delay. The green handling in
Figure 6 shows (as a function of bicycle demand) how

many cyclists crossed the stop line during green, the aver-
age green duration for the bicycle signal, and how much
time was given per cyclist, that is, per actuation the green
duration divided by the number of cyclists during that
move over the stop line. As can be seen from Figure 6c,
the green allotted per cyclist reduced as cyclist demand
increased, indicating the green time was used more effec-
tively with increasing demand, until about 500 cyclists/h
where it started to level out. For 300 cyclists/h and above,
green time per cyclist was much higher for VAT control
than for VA or VAP, indicating the green time per cyclist
was used less efficiently.

As can be seen in Figure 6, VA control did not actuate
the bicycle signal often (6a), and only for a short dura-
tion (6b). With increasing demand, the green distribution
across cyclists (i.e., the amount of green per cyclist)
decreased (6c), indicating that for high demand many
cyclists crossed the stop line during green.

VAP frequently actuated, therefore briefer green times
were required than for VA, since smaller queues could be

Figure 4. As a function of cyclist demand: (a) stopped cyclists, (b) average delay of cyclists, (c) average delay of cars, and (d) cumulative
delay.
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discharged faster. Since the duration of the signal was at
least the minimum green time, this could have led to
unused green after the cyclists had moved over the stop
line, so the green used per cyclist was higher for VAP
than for VA.

VAT also actuated more often than VA, less than
VAP, but extended the green time for longer periods,
especially when the demand increased because the green
was extended to cater for the approaching cyclists.
Unused green time was present before the cyclists moved
over the stop line. In further developments of the control-
ler, this extension of the green should be assessed, because
for VAT this resulted in high car delays (Figure 7a).
However, this relationship was absent for VA and VAP.

In Figure 7a, average car delay is given as a function
of average bicycle green duration for the demand. The
results indicated a linear relationship between the green
time of the bicycle signal and car delay. For the different
percentages of car demand, the green time needed to
cater for this demand is given in Figure 7b. This green
time was calculated using Webster cycle time (27), which
is optimum for nonuniform arrivals. Webster cycle time
took into account the control structure, car demand, and
the green time used for the bicycle movement. For
demand that was equal to or greater than the base sce-
nario, the desired green time was higher than the actual
green time the car movement received, leading to greater
delays (Figure 7a).

Q3: Impact of CAV Penetration Rate and Field of View

The results presented in Figure 8 show the difference in
weighted average delay between the new- and the base
scenario. The average was weighted for the number of
vehicles, which were different for each simulation. When

the difference was positive, the new scenario assigned a
greater delay than the base scenario.

In answering Q3, Figure 8 indicates that the penetra-
tion rate reduction to 10% had hardly any effect on the
delay: the standard deviation was larger than the differ-
ence. For a CAV penetration rate of 5% the delay was
higher for cyclists. Therefore, FoV appeared to have
made hardly any difference, a smaller FoV would have
yielded slightly more delay on average, but the standard
deviation was larger than the difference. Note that the
FoVs values chosen for this study were believed to be
conservative as compared to setups in practice that which
benefit from much wider FoVs. Overall, and as expected,
both small FoVs and low CAV penetration led to fewer
cyclist observations. Because a cyclist observation initi-
ates the creation of a hypothesized track, when not
assigned to an existing track, that cyclist’s trajectory will
be estimated until the stop line to eventually request for
priority. The lack of interruption of a track may, how-
ever, depend on the configured track-pruning strategies
applied by the tracker. Therefore, if more observations
are generated, either by a larger penetration rate or wider
FoV, cyclists will benefit from the priority requested by a
cyclist that has been observed. Should this happen less
frequently because of a low penetration rate (e.g., 5%),
priority will be given less often and the delay will increase
with respect to the base scenario.

Q4: What is the Value of Observing the Absence of
Cyclists?

In answering Q4, two scenarios were computed that were
representative of situations where cyclists are not
observed. Figure 8 shows that in the case of occlusion,
the delay on average was higher. The tracker removes

Figure 5. Effect of car demand as a percentage of the baseline car demand: (a) average car delay and (b) bicycle delay demand.
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existing tracks when in too much doubt, thus leaving the
cyclist as ‘‘unseen’’ and having no base to request prior-
ity. A more detailed look at the behavior of the tracker
confirmed that track removal was a consequence of
occlusion events in the simulated traffic situation.
Therefore, when a CAV failed to generate a cyclist obser-
vation (because of occlusion) that should have been seen,
the likelihood of that (unobserved) track decreased.
Although the tracker was able to handle a reasonable
amount of occlusion appropriately given the model,
occlusion levels increased significantly close to the inter-
section. A solution to this would be to implement a more
sophisticated place-dependent occlusion model that can
manage various levels of occlusion at different locations.
With more available observations, however, even higher
occlusion levels were handled well by the tracker used, as
indicated in Figure 3.

The second scenario presented here was truncation of
the green phase. When the minimum green phase, yellow
phase, or clearance time is truncated, the gains will be
highest. The cycle will be shorter without unused lost
time, and priority will be granted earlier, leading to less
delay and fewer stops. As can be seen in Figure 8, except
for the phase truncation, the difference in car delay was
opposite to that of cyclists. Where cyclists had more
delay, cars experienced less, although in most cases the
difference was smaller than the standard deviation. Both
cars and bicycles gained from phase truncation: smaller
cycles comprising less lost time were beneficial for both
traffic modes. Overall, although phase truncation led to
a low levels of delay for all traffic modes, this can only
be done when it is absolutely certain that no cyclists are
observed within the dilemma zone, and no cyclists are
observed in the conflict area, since the risk is very high
for a cyclist that is present yet has not been observed.
The prevention of occlusion events and false observa-
tions, that is, through redundancy of measurements, is
thus an important safety factor.

Conclusion

This work has highlighted the potential of cyclist obser-
vations made from moving sensor platforms to augment
the situational awareness of traffic signal controllers. A
simulation study quantified the benefits of the proposed
approach, using a VA controller that employs CAV
observations to prioritize cyclists and reduce lost time in
the control cycle, under two baseline scenarios: with and
without cyclist priority.

In relation to car and bicycle delays and stops, the
results indicated that with a low penetration rate and
occlusion, prioritizing cyclists by tracking (with a small
FoV) reduced the delay for cyclists or avoided stops, via
a simple algorithm. However, the average car delay

Figure 6. Bicycle green handling for VA, VAP, and VAT: (a) average
number of cyclists that moved over the stop line during green,
(b) average green duration of the bicycle movement, and (c) average
green time allotted per cyclist.
Note: VA = vehicle-actuated; VAP = vehicle-actuated with priority; VAT =

vehicle-actuated controller with tracking.
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increased significantly when the number of cyclists
increased, whereas not much variation was found in the
average bicycle delay. Prioritization schemes applied in
real-world traffic situations confirm this finding, for
example, in the city of Rotterdam (NL), when cyclists
were prioritized during rainfall, the queues for car direc-
tions increased substantially (28).

An analysis of efficient green use for cyclists indicated
that unused green for bicycle movement, or several prior-
ity requests by cyclists, led to short green times for cars.
An explanation for this result is that the controller did

not optimize the delay for all traffic participants, nor did
it take into account the platoon dispersion of cyclists.

Both small FoVs and low CAV penetration led to
fewer cyclist observations. The results highlighted the
importance of handling false observations, as they can
lead to unjustified green starts where no cyclists are pres-
ent. Highly occluded areas (i.e., at the intersection) can
have a negative impact on the information available to
the tracker and, thus, lead to, for example, the pruning
of tracks of existent cyclists, which eventually leads to
fewer priority requests.

Figure 7. (a) Average car delay as a function of the average bicycle green duration and (b) comparison between the desired green
duration and the realized green duration of car movement, as a function of the percentage of car demand for different levels of bicycle
demand: 200, 400, 600, and 800 cyclists/h.

Figure 8. Difference with respect to the base scenario for (a) cyclists delay and (b) car delay.
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The results indicated that observational confirmation
that cyclists were not present was beneficial for all traffic,
leading to less lost time in the cycle.

Future Work

Future work from this study could span in multiple direc-
tions. We will outline a set of interesting paths for future
research and discuss some of the practical difficulties
when implementing such methods.

Although the results from the simulation indicated
that a low penetration rate of cyclists can also benefit
from priority by CAV observations, in practice, things
might look a bit different. For instance, we would expect
control cycles in which cyclists are prioritized, and con-
trol cycles in which, owing to absence of CAVs (in cases
of current low CAV penetration rates [29]), cyclists are
not prioritized. This might raise false expectations among
cyclists about such prioritization schemes, which, in turn,
could affect the credibility of the control and potentially
induce red light running (30).

Furthermore, the level of false observations and the
avoidance missed detections, for example, because of
potentially frequent occlusion events in urban areas,
should be tackled, as this may lead to unnecessary losses
and delays. The model used to realize occlusion was very
simple to apply. Further research is needed to determine
how severe the occlusion is when CAVs observe cyclists,
depending on location and time (e.g., place-dependent
occlusion). Further, the value of information in time or
quality, for example, the way in which CAVs communi-
cate the quality of observations in the case of occlusion,
needs to be investigated.

Experiments under real-world conditions must be
performed. Generating real data will provide valuable
insights into how efficient CAVs are in observing
cyclists, and enable the calibration of a microsimula-
tion. Furthermore, communication between iTLCs and
CAVs must be further developed, extending existing
setups in which a few static sensors provide traffic data
to iTLCs.

Cyclist prioritization should be assessed with respect
to safety. When a saturated car queue moves over the
stop line, ending green might be unexpected by the car
drivers, and less credible control could lead to red light
running.

The proposed truncation of phases, especially clear-
ance time truncation, is not yet fit for use in practice.
The certainty that no cyclists are in the conflict area
should be very high before the clearance time can be
ended, therefore, this aspect of the equipment and model
should be tested thoroughly before used in practice.

The method of prioritization used by the current
controller could lead to a situation in which one cyclist

could get 1 s less delay and does not have to stop, but
this could mean, for example, that three cyclists arriv-
ing just at the start of the red bicycle signal have to wait
perhaps 9 s (the time for conflicting movements to start
and clear the conflict area). This led to a large varia-
tion, from simulation to simulation, in the number of
stops and in the delay. Now that the proof of concept
has been given that cyclists benefit from prioritization
by observation, the next step will be to optimize the
control that balances the delay and stops of cyclists and
cars. Suitable for VA control would be a function that
determines the signal phases with an objective function,
based on a weighted combination of the total time
spent by the motorized vehicles and by the bicycles in
the system and their stops.

When cyclists are prioritized, it is beneficial for the
throughput of the intersection that the cyclists are close
together, so that the green extension can be shorter, as
happens in practice in the municipality of Hengelo (NL)
where cyclists are encouraged to form platoons so that
they can be prioritized (31). Furthermore, a combination
of speed advice for cyclists (32) and prioritization should
also be researched in future.
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