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Abstract

This thesis analyses a lumped element circuit proposed for an analogue quantum simulation of opto-

mechanics. The circuit consists of two resonators, a simple LC-resonator, and a similar resonator in

which the inductor is replaced by a SQUID as a �ux tuneable inductance. The interaction between the two

resonators is established by mutual inductance between the inductor in the LC-resonator and the SQUID

loop part of the other resonator. This makes the resonance frequency of the SQUID-resonator a function

of the �ux in the LC-resonator. It is shown that mutual and self inductances in the SQUID loop give rise

to two transcendental constraints, for the magnetic �ux in the SQUID loop, and the generalised �ux

across the SQUID. By an approximate solution for the constraints and under the assumption that the loop

inductance is small compared to the SQUID inductance, we derive an approximate description for the

circuit dynamics. We demonstrate that the circuit Hamiltonian contains the asymmetric opto-mechanical

interaction, but in addition also a self-Kerr non-linearity in the analogue optical cavity, as well as a weak

cross-Kerr interaction between the two resonators.
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Chapter 1

Introduction

The title of this work may be considered a strange one; it encompasses an interaction between an

optical and a mechanical system, yet it is about an electrical circuit formulation that involves neither

optical nor mechanical parts. The essence is that we will analyse an electrically implemented “analogue

quantum simulation” of an opto-mechanical system. This basically means that we analyse an electrical

circuit that presumedly behaves in analogue ways as an opto-mechanical system. It is not that simple

however and therefore I have much to explain. Let us start with a general but short description of what

opto-mechanics entails, and then step by step explain where the idea of an analogue simulation �ts in

one of the possibly realisable paths leading to the goal of achieving full control over the quantum state

of a mechanical object—especially for the generation of macroscopic superposition states, i.e. states

described by a non-Gaussian wave-function. Afterwards we give an answer to the question “why have we
have embarked on this strange endeavour” and explain our motivation, possible applications and further

implications the results of this work may bring forth.

1.1 Cavity opto-mechanics

In a sense, starting with an observation by Kepler [1] in the year 1619 that the tail of a comet always

points away from the sun, the �eld of cavity opto-mechanics, see Ref. [2] for a review, focusses on the

interaction between optical and mechanical degrees of freedom, all based on a Hamiltonian description of

optical radiation re�ecting on a mechanically moveable mirror as �rst derived by Law [3]. Conceptually,

as drawn Fig. 1.1, an opto-mechanical system is constructed from two opposing mirrors set some distance

apart—forming an optical cavity in which light can bounce back and forth and may form standing wave

resonances if the wavelength coincides with a resonance—and one of the mirrors mounted on a spring

such that it can move back and forth, under the in�uence of the radiation pressure, thereby changing the

separation distance between the mirrors and thus the optical resonance frequency.

Mechanical
oscillator

Optical
cavity

Laser

Figure 1.1: Schematic drawing of a typical cavity opto-mechanics setup.
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1.2. Quantum opto-mechanics 5

Because the energy involved in a single quantum of light in an optical frequency is much higher

than the average thermal energy in a degree of freedom at room temperature: ~ωoptics � κbT , the �eld

of quantum optics [4] provides a well established toolbox for manipulating the states of optical systems

due to an absence of thermal de-coherence. The same cannot be said of mechanical systems due to

their much lower resonant frequencies even for nano-scale mechanical resonators. However as we

shall see, interacting optical systems with mechanical systems through a radiation pressure interaction

yields interesting opportunities for exerting control on mechanical degrees of freedom through optical

channels.

The radiation pressure force on the mechanics, being quadratic in radiation and having a back-

action linear in position on the optical cavity by changing the frequency (energy) of the radiation

�eld, constitutes a non-linear and asymmetric interaction between the optical and mechanical part

of the system. This has many interesting consequences and applications, some of which have been

demonstrated experimentally while others are only anticipated theoretically. Some of the already

demonstrated consequences are cooling of the mechanical resonator to its quantum ground state [5, 6],

opto-mechanically induced transparency (OMIT) [7, 8] and absorption/ampli�cation [9, 10], mechanical

position measurements with a precision approaching the standard quantum limit [11]—which states that,

as a trade of between shot-noise in the measurement signal (photon number uncertainty, decreasing

with intensity) and the measurement back-action (increasing with intensity), the total measurement

imprecision in continuous measurements cannot be lower than the zero-point �uctuations of the oscillator,

see Ref. [12] for a thorough discussion—generation of squeezed states of the the optical cavity �eld [13, 14]

and the mechanical oscillator [15, 16, 17] and coherent state transfer of quantum information from one

system to the mechanics [18, 19]. Note that this paragraph constitutes by no means an up to date nor

complete literature survey.

1.2 Quantum opto-mechanics

With most of these phenomena, except for the transfer of a single photon of quantum information, the

expectation values of the measurement outcomes behave according to what classical mechanics would

predict, it is only in the statistics where one might observe quantum noise or limits such as the quantum

ground state (both actually correspond with Heisenberg’s uncertainty relation) that quantum e�ects

are observable. The reason for this is that the optical and mechanical parts of the system constitute

harmonic degrees of freedom and that all so far mentioned phenomena follow from a weak opto-

mechanical coupling that is well described by a linearised variant of the interaction. In this regime, the

interaction always turns Gaussian states (states with a Gaussian wave-function, a subclass of states

whose observable’s average behave according to classical mechanics) into Gaussian states. This means

that it is impossible to generate non-Gaussian states that can not be described in classical mechanics—an

illustrative example of such a state is a cat state which can be described as a superposition of two

Gaussian states akin to Schrödinger’s cat [20] being both dead and alive.

In order to generate such non-Gaussian states from Gaussian states, a signi�cant non-linearity

is needed in the system. In opto-mechanical systems this may be achieved by increasing the opto-

mechanical coupling strength until the interaction generates an e�ective Kerr non-linearity [21] in the

optical cavity that upon the addition or escape of a single photon shifts the cavity frequency by more

than its resonance line-width; this marks what is called the single photon strong coupling regime.

Another options is to combine opto-mechanics with a single photon sources and detectors [22]. An

example is the (non-)emission of a photon to the opto-mechanical cavity that is entangled with the

quantum state of a two level system (a qubit) as a single photon source, this has been demonstrated

in Ref. [19], and has potential applications as a quantum memory and carrier frequency converter for

quantum information. Yet another option is to add intrinsic non-linearity to the cavity or the mechanics,
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but that would conceptually be close to circuit quantum electrodynamics and would therefore not bring

much news to the table; only a mechanical qubit would be a remarkable novelty as well as a low frequency

qubit in a thermal state—on this work is done by other people in the group. Both these alternative options

are outside the scope of this work, but are merely mentioned as alternative approaches for obtaining

quantum state control over mechanical objects.

1.3 Enhanced coupling through the Josephson e�ect
Experimentally speaking, the single photon strong coupling regime has proven to be rather elusive; so far

as at the time of writing it has not been achieved. All current approaches to opto-mechanics have been

widely studied and seem to have reached a plateau in the optimisation of the coupling rate. A new idea,

that has been proposed in a couple of di�erent forms in Refs. [23, 24, 25], is to mediate the movement

of a mechanical element by coupling its movement to the magnetic �ux tuning a superconducting

quantum interference device (SQUID), which as a �ux-tuneable inductance can be seen as to frequency

tune the microwave LC-circuit equivalent of an optical cavity (in contrast to traditional microwave

opto-mechanics where mechanical movement of a capacitor plate tunes the capacitance). Incidentally,

the second reference also proposes to incorporate the dynamical Casimir e�ect into the system by

parametrically driving the SQUID inductance.

The crux of the idea is that the non-linearity in the Josephson inductance as a function of �ux boosts

the coupling. More important is that all of above references conclude that with this kind of approach it is

feasible to reach the single photon strong coupling regime. Another approach using Josephson junctions

in opto-mechanics based on charge tuning the inductance of a single Cooper-pair transistor is proposed

in Refs. [26, 27] and �rst experimental results are reported in Ref. [28] but were far from strong coupling;

a more recent experiment incorporating a piëzo electric mechanical oscillator in the same architecture

achieved near ground state cooling [29].

1.4 Analogue quantum simulation of cavity opto-mechanics
However, such a combination of a SQUID with embedded mechanical resonator is challenging to fabricate,

and recently it has been proposed in Ref. [30] that the mechanical element embedded in the SQUID be

replaced by low frequency electrical resonator whose magnetic �eld tunes the SQUID inductance. We

call this an analogue quantum simulation of an opto-mechanical system since there is no mechanics

involved, but the high level dynamics should be similar enough to call such a system an electrical

equivalent of an opto-mechanical system. The main point is that—even though it is not useful for e.g.

observing quantum-gravitational e�ects (unless the mass of the electrical charge carriers is signi�cant

however unlikely)—such a system may give the opportunity to explore the physics of the single photon

strong coupling regime in an intermediate all electrical circuit before making the step incorporating a

mechanical element.

A �rst experiment with such a circuit is described in Ref. [31] demonstrated opto-mechanical e�ects,

i.e. OMIT, but did not achieve single photon strong coupling.

1.5 Scope of this work
In this thesis we study and derive theoretical models for circuits, see e.g. Fig. 1.2, whose dynamics are

analogue to opto-mechanical systems. Starting from the classical circuit equations of motion we derive

the quantised Hamiltonian and predict from the result its opto-mechanical properties. We do this based

on a careful analysis of a SQUID with its loop inductance sharing a mutual inductance with another
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Figure 1.2: The circuit for the analogue quantum simulation of opto-mechanics. It is a lumped element
version of the transmission line circuit proposed in Ref. [30]. There is a mutual inductance between the
inductor on the le� and the SQUID loop on the right.

disjoint inductor. From the result we predict the strength of the opto-mechanical parameters in the

circuit. We also discuss the e�ect of the intrinsic oscillator anharmonicity due to the Josephson junctions.

The report is structured as follows. In

Chapter 2 we introduce the concept of resonators, the transmission line equations and the most common

way microwave resonators are implemented.

Chapter 3 explains what a SQUID is, discusses its characteristics and how a SQUID as a �ux tuneable

inductance can be used to create frequency tuneable resonators.

Chapter 4 describes the procedure of circuit quantisation and how in �ux variable representation

mutual inductances can be taken into account in the circuit description.

Chapter 5 Applies this to the circuit simulating quantum opto-mechanics. In

Chapter 6 we conclude and provide an outlook for future research directions. In the

Appendix we derive the full Hamiltonian for the simulation circuit in the absence of approximations.



Chapter 2

Resonators

An intuitive example of a resonator is that of a swing as drawn in Fig. 2.1a. If one gives the swing a

push it starts oscillating back and forth (with decaying amplitude due to friction). Now when one gives

pushes periodically with a time period between each push that coincides with the time the swing takes

to oscillate back and forth once, then the amplitude of the oscillatory movements increases on each

consecutive push (until a balance is reached due to friction). On the other hand when the timing of the

pushes is di�erent, the growth in the amplitude of the oscillations does not occur. This is called resonant

behaviour, and a device that exhibits such behaviour is called a resonator.

More formally spoken, a resonator is a device that exhibits higher oscillatory behaviour when peri-

odically driven at one of its resonance frequencies than when driven at other non-resonant frequencies.

(a) (b)

Figure 2.1: An intuitive example of a resonator is that of (a) a swing or equivalently (b) a two-dimensional
pendulum that consists of a mass m hanging on a (massless) rod of length ` a�ached with a hinge to the
ceiling such that the mass can oscillate back and forth over part of a circular trajectory centred around the
a�achment point and in a vertical plane determined by the hinge.

We start with a discussion of lumped element circuit resonators because it turns out that di�erent

kinds of resonators behave similarly when driven near resonance. As such they can be described in terms

of what is called an equivalent lumped element circuit. After reviewing the standard lumped element

resonators, the transmission line resonator is introduced
1
. The chapter concludes with a discussion on

capacitively coupling resonators to a feed-line.

1
The sections on lumped element resonators and transmission line resonators are inspired by the explanations given in the

book by Pozar [32]. A more in depth description of circuit theory can be found in e.g. the book by Peikari [33].
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2.1. Lumped element resonators 9

(a) (b)

Figure 2.2: Lumped element resonant circuits. (a) Series RLC-circuit. (b) Parallel RLC-circuit. Figures from
Ref. [32].

2.1 Lumped element resonators

In circuit theory, two standard textbook examples of linear oscillators are the series and the parallel

RLC-circuit. Both are depicted in Fig. 2.2.

2.1.1 Series RLC-circuit

The series RLC-circuit, depicted in Fig. 2.2a, is considered �rst. From the circuit topology it is evident

that the current I is the same across all elements.

Applying Kirchho�’s voltage law (the sum of voltages across electric components connected in a

loop is zero: Σn∈loopVn = 0) and substituting the voltage current relations for the resistor VR = IR,

capacitorVC =
1

C

∫ t
−∞
I dt ′ and inductorVL = L dI

dt yields after taking a time derivative

L
d

2I

dt2
+ R

dI

dt
+

1

C
I =

dV

dt
. (2.1)

This is the equation of motion for a damped harmonic oscillator with as mechanical analogue mass L,

spring constant
1

C and damping R, driven with a force
dV
dt generated by the source.

Equation (2.1) is most easily solved in the frequency domain. Introducing the Fourier transform

X (ω) =
∫ ∞
−∞
X(t)e−iωt

dt , it is transformed to

I =
V

1

iωC + iωL + R
=

V

Zin

, (2.2)

which directly provides an algebraic solution. In the last step the input impedance at the circuit connection

with the voltage source is de�ned as

Zin ≡
Vin

Iin
=

1

iωC
+ iωL + R . (2.3)

As can be seen in Eq. (2.2) resonance occurs at the frequency where Im{Zin} = 0 (the damping

constant R prevents the oscillations from becoming unbounded). This is the condition that determines

the resonant frequency. In the present case it corresponds to: ω0L −
1

ω0C
= 0, which is easily solved

giving the resonance frequency

ω0 =
1
√
LC
. (2.4)
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In this work the interest is in the behaviour of a resonator near resonance. To simplify in that

regime, the input impedance is usually written in terms of ω0 and is then often approximated by a Taylor

expansion around the resonant frequency

Zin = R + iL

(
ω −

ω0
2

ω

)
≈ R + i2L(ω − ω0) . (2.5)

2.1.2 Parallel RLC-circuit
Next we consider the parallel RLC-circuit as depicted

2
in Fig. 2.2b. In contrast to the series RLC-circuit,

it is the voltageV across each constitutive component that is the same as can be seen from the circuit

topology.

Invoking Kirchho�’s node law (the sum of currents going through the connections of a circuit node

is zero: Σn∈nodeIn = 0) together with the current voltage relations (now in the form emphasising current:

IR =
V
R for the resistor, IC = C

dV
dt for the capacitor and IL =

1

L

∫ t
−∞
V dt for the inductor) gives

C
d

2V

dt2
+

1

R

dV

dt
+

1

L
V =

dI

dt
. (2.6)

Similar to the series RLC-circuit, this is an equation equivalent to a driven damped harmonic oscillator,

but in this case described in terms of voltageV and with mass C , damping
1

R , spring constant
1

L and

driving force
dI
dt generated by the source.

Taking the Fourier transform of Eq. (2.6) gives

V =
I

iωC + 1

iωL +
1

R

=
I

Yin

(2.7)

and subsequently provides a solution in terms of the circuit input admittance

Yin ≡
Iin
Vin

=
1

Zin

= iωC +
1

iωL
+

1

R
. (2.8)

For this circuit the resonance condition is Im{Yin} = 0 which gives for the resonant frequency

ω0 =
1√
LC

, the same as for the series RLC-circuit. A Taylor expansion of the input admittance written in

terms of ω0 gives an approximate expression

Yin =
1

R
+ iC

(
ω −

ω0
2

ω

)
≈

1

R
+ i2C(ω − ω0) , (2.9)

which is valid in the region around the resonant frequency.

2.1.3 Q-factor and decay rate
The Q-factor (also called the quality-factor) of a resonator is de�ned as

Q ≡ ω0

average energy stored

energy dissipated per second
(2.10)

and is proportional to the fraction of stored energy that is dissipated from the resonator per oscillation.

External circuits connected to the resonator decrease the Q-factor as they open additional dissipation

2
There is a subtle error in this �gure. The ideal voltage source should be an ideal current source. The reason is that an in�nite

internal resistance is needed in the source to avoid altering the parallel circuit characteristics.
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channels. The Q-factor of the resonator itself in the absence of loading e�ectsQ0 is denoted the unloaded

Q-factor. The Q-factor with loading e�ects QL is called the loaded Q-factor.

We now work out the unloaded Q-factor for the series RLC-resonator. Substituting the average

magnetic energy
1

4
L|I |2 plus electric energy

1

4
C |VC |

2 = 1

4

1

Cω0
2 |I |

2
, both of which have equal contribution

at resonance
3
, and average energy dissipation

1

2
R |I |2 into the de�nition (2.10) gives

4

Q0 =
ω0L

R
=

1

ω0RC
for the series RLC-circuit . (2.11a)

Next we work out the unloaded Q-factor for the parallel RLC circuit. Substitution of the electric energy
1

4
C |V |2 plus magnetic energy

1

4
L|IL |

2 = 1

4

1

Lω0
2 |V |

2
, which both as with the series RLC-circuit equally

contribute at resonance, and the dissipation rate
1

2

1

R |V |
2

yields

Q0 =
R

ω0L
= ω0RC for the parallel RLC-circuit . (2.11b)

The loading e�ects from external circuits connected to the resonator can be taken into account as a

load resistor RL which in case of the series RLC-circuit adds in series to the internal resistance: R + RL

and combines in parallel in case of the parallel RLC-circuit:
RRL

R+RL
. Then, the external Q-factor is de�ned

as

Qe =

{
ω0L
RL

for the series RLC-circuit ,
RL

ω0L
for the parallel RLC-circuit ,

(2.12)

such that the unloaded and external Q-factor add up reciprocally to the loaded Q-factor:
1

QL
= 1

Q0
+ 1

Qe
.

An analogue parameter is the decay rate which is de�ned as

κ ≡
energy dissipated per second

average energy stored
=
ω0

Q
. (2.13)

The decay rate can also be separated in an internal κi =
ω0

Q0
and external contribution κe =

ω0

Qe
, both of

which however add up directly to the total decay rate: κ = κi + κe.

2.1.4 Adding loss through complex resonant frequency
In the book by Pozar [32], a trick is described for adding loss to a system that is initially modelled as

lossless and whose input impedance or admittance is approximated as a �rst order Taylor expansion

around a resonance frequency.

Because loss in an electrical circuit is described by the real part of its input impedance or admittance,

the idea is to replace the resonant frequency in the ω − ω0 term with a complex resonant frequency

de�ned as

ω0 ← ω0

(
1 +

i

2Q0

)
(2.14)

3
That for an RLC resonator the electrical and magnetic energy are equal when driven at resonance is easily checked by

substituting the resonance frequency into the respective expressions.
4
The expressions for energy can be derived from the de�nition in circuit theory of instantaneous power

P(t ) = I(t )V(t )

and energy

E(T ) =
∫ t

−∞

P(t ′) dt ′

together with the elements constitutive relations. Using the fact that in linear circuits under time harmonic drive all state variables

oscillate with the drive frequency, applying a few trigonometric identities and taking the average by leaving out the time oscillating

terms, gives the used results which are easily expressed in phasor notation. For the energy integral one further assumes that the

currents and voltages are switched on adiabatically between t = −∞ and t = 0.
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such that upon substitution the imaginary part of the complex resonance frequency appears as a real

valued dissipative term in the input impedance. This can be shown to work for both the parallel and

series resonant circuits:

Zin ≈ i2L (ω − ω0) →
ω0L

Q0

+ i2L (ω − ω0) = R + i2L (ω − ω0) for the series RLC-circuit , (2.15a)

Yin ≈ i2C (ω − ω0) →
ω0C

Q0

+ i2C (ω − ω0) =
1

R
+ i2C (ω − ω0) for the parallel RLC-circuit , (2.15b)

where for both circuits in the last step the respective unloaded Q-factor as derived in Eqs. (2.11a) and (2.11b)

is substituted.

This method yields exact results for the dissipation of the series and parallel RLC-circuits where the

losses are independent of frequency. For resonators whose dissipative terms do depend on frequency

this method is an approximation that

• assigns the losses at the resonant frequency to all frequencies,

• requires the resonance frequency to be independent of losses or the losses to be weak such that

any subsequent shift in resonance frequency is negligible, and

• assumes that the losses can be modelled as a linear dissipative element.

This however is reasonable for high Q-factor resonators where the terms relating to dissipation are small,

especially when only the region near the resonant frequency is considered.

2.2 Transmission line resonators
An introduction to transmission line resonators is provided in this chapter where we mainly follow the

book on microwave engineering by Pozar [32]. A derivation for the dynamics of a transmission line

based on circuit theory is given, but �rst the di�erences between a transmission line and the underlying

assumptions of circuit theory are discussed. In the process a solution in the form of time harmonic

propagating waves is found. Then the e�ects of a load by which a transmission line may be terminated

are discussed. As will be explained, it gives rise to re�ection of the input signal and results in the

emergence of standing waves. This will �nally lead us towards the theory of transmission line resonators

and a description of their dynamics in terms of equivalent lumped element circuits.

2.2.1 Transmission line theory

A transmission line consists of two parallel elongated conductors, and is usually depicted as a two-wire

line as in Fig. 2.3a. The conductors can have any geometry as long as they are parallel and elongated.

Examples of geometries are the coaxial cable, but also the coplanar wave-guide that will be discussed

later.

Distributed elements model

The main di�erence between circuit and transmission line theory lies in the size of the corresponding

electrical circuits. Where circuit theory assumes the circuit size to be much smaller than the wavelength

λ of the signals propagating through the circuit, a transmission line has a length that is at least a

considerable fraction of a wavelength. This means that the voltagesV(z, t) and currents I(z, t) will vary

over its length. Therefore the lumped element approach of circuit theory can not be applied directly to a
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I(z, t)

+

V(z, t)

−

∆z z

(a)

I(z, t) I(z + ∆z, t)

+

R′∆z L′∆z

+

G ′∆z C ′∆z

− −

V(z, t) V(z + ∆z, t)

∆z

(b)

Figure 2.3: Schematics illustrating the distributed element model of a transmission line: (a) a two wire
transmission line and (b) a lumped element circuit describing the dynamics of a short transmission line
segment. The length ∆z is much shorter than the wavelength over which the voltage or current vary spatially
such that the lumped element description of the segment is valid.

transmission line, only to in�nitely short line segments. As such a transmission line can be considered a

distributed parameter network.

Now, if one considers only a short segment of length ∆z � λ much smaller then the wavelength

(and the same applies to the separation distance between the two conductors), such a segment can be

modelled as a lumped element circuit as presented in Fig. 2.3b where R′ and L′ respectively denote the

series resistance and inductance and G ′ and C ′ respectively the shunt conductance and capacitance, all

per unit length. A transmission line can be seen as a large sequence of such segments connected in series.

Applying Kirchho�’s voltage- and current law to such a segment gives

V(z, t) − R′∆zI(z, t) − L′∆z
∂I(z, t)

∂t
−V(z + ∆z, t) = 0 , (2.16a)

I(z, t) −G ′∆zV(z + ∆z, t) −C ′∆z
∂V(z + ∆z, t)

∂t
− I(z + ∆z, t) = 0 . (2.16b)

Dividing both equations by ∆z and taking the limit ∆z → 0, letting the segments be in�nitesimally short,

then yields the equations

∂V(z, t)

∂z
= − R′I(z, t) − L′

∂I(z, t)

∂t
, (2.17a)

∂I(z, t)

∂z
= −G ′V(z, t) −C ′

∂V(z, t)

∂t
, (2.17b)

which are known as the “telegrapher equations”.
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Phasor notation for time harmonic signals

When dealing with time harmonic signals
5
, it is convenient to work in so called phasor representation. It

is a short hand notation for time harmonic signals in terms of complex exponentials which are much

easier to work with than the corresponding real valued trigonometric terms.

Let X be a signal of time harmonic form

X(z, t) = X0(z) cos(ωt + ϕX) , (2.18)

where X(z, t) denotes voltage or current, X0(z) the real amplitudes, ω the radian frequency and ϕX the

phase shift of the signal at time t = 0. Its phasor representation is obtained by carrying out the following

substitution

X(z, t) ← X0(z)e
i(ωt+ϕX ) = X (z)eiωt , (2.19)

where X (z) as the signals complex amplitude now incorporates the phase information e
iϕX . Through

Euler’s formula e
ix = cos(x) + i sin(x), the real signals can be (re)obtained as the real part of the complex

phasors

X(z, t) = Re
{
X (z)eiωt } . (2.20)

Phasor representation is however only valid when the mathematical operations involved are linear
6
.

Here non-script letters denote the complex equivalent of the real valued signals denoted by script letters.

Wave propagation

In phasor notation the telegrapher Eqs. (2.17) simplify from two partial di�erential equations to two

coupled ordinary di�erential equations

dV (z)

dz
= −(R′ + iωL′)I (z) , (2.21a)

dI (z)

dz
= −(G ′ + iωC ′)V (z) . (2.21b)

Note how the time dependence carried by the factor e
iωt

shared by all terms drops out of the equation.

These equations can be decoupled by di�erentiating them and substituting the expression from one into

the other, which yields two uncoupled second order di�erential equations

d
2V (z)

dz2
− γ 2V (z) = 0 , (2.22a)

d
2I (z)

dz2
− γ 2I (z) = 0 , (2.22b)

where γ =
√
(R′ + iωL′)(G ′ + iωC ′) is the complex propagation constant. The general solution to the

ordinary second order di�erential equations is

V (z) = V +
0

e
−γ z +V −

0
e
γ z , (2.23a)

I (z) = I+
0

e
−γ z + I−

0
e
γ z . (2.23b)

5
Note there is no loss of generality in assuming a signal time harmonic as any signal can be denoted as a linear combination of

time harmonic signals with di�erent frequencies by its Fourier transform.
6
That is any operator L that satis�es L{aX (z) + bY (z)} = aL{X (z)} + bL{Y (z)}. If that is not the case, one should work

with the full Fourier representation of the involved signals.
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Writing the propagation constant as the sum of its imaginary and real part γ = α + iβ and tagging

on the implied time dependence (converting back to the time domain),

V(z, t) = Re

{
V +

0
e
−αz

e
i(ωt−βz) +V −

0
e
αz

e
i(ωt+βz)

}
, (2.24)

it is seen that the general solution consists of a linear combination of waves, with wavelength (the

spatial distance between two identical points on two successive waveforms at the same instance of

time—neglecting dissipation)

λ =
2π

β
(2.25)

and propagating forward and backward with speed given by the phase velocity

ν =
dz

dt
=

d

dt

(
ωt − constant

β

)
=
ω

β
. (2.26)

In essence, the imaginary part β of the propagation constant, the phase-constant, ful�ls the role of

wave-number. Furthermore, it is seen that the real part α of the propagation constant, the attenuation

constant, quanti�es the decay of the signal with propagation distance z.

Characteristic impedance

Substitution of the voltage solution (2.23a) into the �rst telegrapher Eq. (2.17b) gives a relation between

current and voltage

I (z) =
γ

R′ + iωL′
(
V +

0
e
−γ z −V −

0
e
γ z ) . (2.27)

Comparing this result with the current solution (2.23b) we can de�ne a “characteristic impedance”

Z0 =
R′ + iωL′

γ
=

√
R′ + iωL′

G ′ + iωC ′
(2.28)

to relate the voltage and current amplitudes of the forward and backward propagating waves such that

Z0 =
V +

0

I+
0

= −
V −

0

I−
0

, (2.29)

in essence an impedance for running waves.

The lossless line

In this work we will be dealing with superconducting circuits that will be approximately lossless. As

such we can set the terms R′ and G ′ to zero. In that case γ = iω
√
L′C ′ which implies that the attenuation

constant α = 0 and that the wave-number β = ω
√
L′C ′. From Eq. (2.28), the characteristic impedance of

the line then becomes a real number

Z0 =

√
L′

C ′
. (2.30)

With zero attenuation, the general solution for the voltage along the line becomes

V (z) = V +
0

e
−iβz +V −

0
e

iβz
(2.31)

and through the de�nition for the characteristic impedance the general solution for the current along

the line can then be written as

I (z) =
V +

0

Z0

e
−iβz −

V −
0

Z0

e
iβz , (2.32)
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where the wavelength is

λ =
2π

β
=

2π

ω
√
L′C ′

(2.33)

and the phase velocity is given by

ν =
ω

β
=

1
√
L′C ′

. (2.34)

2.2.2 Loaded transmission lines

Here we consider the properties of a lossless transmission line when one end is connected to a load

impedance ZL as drawn in �gure 2.4.

Figure 2.4: A transmission line terminated with a load impedance ZL. Figure from Ref. [32].

The re�ection parameter

It is assumed that there is an incident wave V +
0

e
−γ z

(generated by a source at z � 0) propagating in

the positive z direction along the transmission line. The ratio between the voltage and current of the

incident wave is the characteristic impedance Z0. However, at the interface at z = 0, the ratio of the net
voltage and net current is set by the circuit impedance ZL of the load. Whenever Z0 , ZL, this causes a

re�ected wave to be excited such that the summed voltage and current of the incident and the re�ected

wave satisfy the interface boundary condition set by the load impedance. Thus for z < 0

V (z) = V +
0

e
−γ z +V −

0
e
γ z , (2.35a)

I (z) =
1

Z0

(
V +

0
e
−γ z −V −

0
e
γ z ) , (2.35b)

while at z = 0 we have the constraint

ZL =
V (0)

I (0)
= Z0

V +
0
+V −

0

V +
0
−V −

0

. (2.36)

This equation can be solved for V −
0

which gives

V −
0
=

ZL − Z0

ZL + Z0

V +
0
= ΓV +

0
, (2.37)

where we have de�ned the voltage re�ection coe�cient as

Γ =
ZL − Z0

ZL + Z0

. (2.38)
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Figure 2.5: A transmission line feeding into another transmission line. Figure from Ref. [32].

With this result the voltage and current along a transmission line with a mismatched load can be written

as

V (z) = V +
0
(e−γ z + Γe

γ z ) , (2.39a)

I (z) =
V +

0

Z0

(e−γ z − Γe
γ z ) . (2.39b)

Input impedance

Because in case of a mismatched load, the voltage amplitudes on the line oscillate with its length, we see

that the line’s (input) impedance also varies with position. This can be seen from Eqs. (2.39) as follows

Zin(−l) =
V (−l)

I (−l)
= Z0

V +
0
(e−γ z + Γe

γ z )

V +
0
(e−γ z − Γeγ z )

= Z0

1 + Γe
−2γ `

1 − Γe−2γ l
. (2.40)

Substituting Eq. (2.38) for Γ then gives

Zin(−l) = Z0

ZL + Z0 tanh(γl)

Z0 + ZL tanh(γl)
, (2.41)

and for a lossless line

Zin(−l) = Z0

ZL + iZ0 tan(β`)

Z0 + iZL tan(β`)
. (2.42)

The transmission parameter

We also consider a line with characteristic impedance Z0 that is loaded with another transmission line of

characteristic impedance Z1 as in Fig. 2.5.

A wave moving in the positive z direction is assumed incident on the feed line, which sees a load

of impedance Z1 from the other load line. As explained in section 2.2.2, when the impedances are not

matched, when Z0 , Z1, then a re�ected wave is excited whose amplitude is related to the amplitude of

the incident wave with the re�ection coe�cient Γ . Thus we have

V (z) = V +
0
(e−γ z − Γe

γ z ) for z < 0 , (2.43)

where just as in the previous sections V +
0

is the amplitude of the incident wave.

At the interface, located at z = 0, the voltage must be the same for both the load line and the feed line.

This leads to a transmitted wave which assuming no further re�ections in the load line can be written as

V (z) = V +
0
T e
−γ z

for z > 0 . (2.44)
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The boundary condition at the interface, equating the voltage of both lines at z = 0, then gives an

expression for the transmission coe�cient

T = 1 + Γ = 1 +
Z1 − Z0

Z1 + Z0

=
2Z1

Z1 + Z0

, (2.45)

where we have used Eq. (2.38) with ZL = Z1.

Z0 Z0Z

Figure 2.6: Transmission line with equal characteristic impedance on both sides and a circuit side-coupled
in the middle of the line at z = 0.

Transmission linewith side-coupled circuit As an extension to above formalisme, we also consider

the case where in the middle of a transmission line some circuit with impedance Z is connected to the

two leads as drawn in Fig. 2.6. The characteristic impedance Z0 of the transmission line on both sides

are taken equal. With an incident wave coming from the left, this system is very similar to the case of

two coupled transmission lines with di�erent characteristic impedances. The di�erence is that interface

impedance as seen from the feedline at z = 0 is a parallel combination of the load lines characteristic

impedance and the circuit impedance of the side-coupled circuit

Zif =

(
1

Z0

+
1

Z

)−1

. (2.46)

Other than that, the boundary conditions for the transmitted and re�ected waves remain identical to the

case of two connected transmission lines. Thus for the re�ection and transmission parameters we have

Γ =
Zif − Z0

Zif + Z0

, (2.47a)

T = 1 + Γ . (2.47b)

2.2.3 Coplanar wave-guides

A type of transmission line of particular importance is the coplanar wave-guide. It consists of a center-line

conductor separated by a narrow gap from conducting ground planes on each side. The conductors

and ground planes are created in a single layer on top of a dielectric substrate as drawn in Fig. 2.7. The

ground plane together with the centerline constitute the two conductors of the transmission line.

Following an explanation in the book by Simons [34], the geometric capacitance per unit lengthC ′ is

determined from a conformal mapping technique in Ref. [35] as

C ′ = 4ε0εe�

K(k0)

K(k ′
0
)
. (2.48)

The e�ective dielectric constant εe� for an in�nitely thick substrate is given as

εe� =
1 + εr

2
, (2.49)
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Figure 2.7: Cross section of a coplanar wave-guide on a dielectric substrate. Figure from Ref. [34].

though this is said to be an approximation [34]. The elliptic integrals are de�ned as

K(kx ) =

∫ π
2

0

dθ

1 − kx
2

sin
2(θ )

(2.50)

together with the moduli

k0 =
S

S + 2W
, (2.51a)

k ′
0
=

√
1 − k0

2 . (2.51b)

The geometric inductance per unit length Lg following Ref. [36] is given as

Lg =
µ0

4

K(k ′
0
)

K(k0)
. (2.52)

In practice there is often also another contribution to the inductance per unit length of the transmission

line. This arises from the inertia of the charge carriers and gives rise to a kinetic inductance Lk (where

the respective energy is stored as kinetic energy in the momentum of the charge carriers). The total

inductance per unit length is then given as L′ = Lg + Lk.

Expressions for the kinetic inductance for the case of superconducting thin �lms in coplanar wave-

guide geometry are presented in Refs. [36] and [37] (the latter reference points to a typo in the former)

as a function of the London penetration depth for the magnetic �eld in the employed superconducting

substrate.

2.2.4 Transmission line resonators
As we have already seen, incident waves propagating over a transmission line are (partially) re�ected at

a mismatched load at the end. We have also seen that this, due to interference between the re�ected and

incident waves, gives rise to standing waves.

In this section we consider transmission lines of speci�c length, loaded with a short-circuit at one

end and an open-circuit at the other end as drawn in Fig. 2.8a for a quarter-wave resonator, and a

line terminated with an open circuit at both ends as drawn in Fig. 2.8b for a half wave resonator. The

motivation for calling the con�gurations as such will be explained.

How to actually couple externally to such devices will be discussed in a later section (usually the

boundary condition is imposed approximately by employing a capacitor or inductor to connect the input

end to an external circuit).
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(a) (b)

Figure 2.8: Transmission lines of length ` (a) loaded with a short-circuit and with an open-circuit imposed
on the input end, and (b) an open termination on both sides. Figures from Ref. [32].

As can be seen from Eq. (2.38), a boundary with an open-circuit leads to a re�ection parameter

Γ = −1, which corresponds to complete re�ection of incoming waves, but with a phase shift of π radians

in the voltage of re�ecting waves. The case where the boundary is terminated with a short-circuit

also leads to complete re�ection of incident waves, but with zero phase shift, i.e. Γ = 1. This shows

that the short-circuited boundary acts as a voltage node and that the open-circuited boundary acts as

a voltage anti-node (with
dV
dz = 0 at the boundary) as follows from Eq. (2.39a). The roles of the two

di�erent boundary conditions are reversed when considering the current along the line as can be seen in

Eq. (2.39b).

Quarter-wave resonator

First we consider the quarter-wave resonator from Fig. 2.8a. The boundary condition imposed by the

open circuit in tandem with the one imposed by the load, allow only a speci�c set of standing waves,

called normal modes, to emerge. The normal modes then consist of interfering forward and backward

propagating waves (bouncing back and forth between the two ends of the transmission line) with such

phase velocity and wavelength that the boundary conditions are satis�ed.

This can be made concrete by considering the input impedance of a short-circuit terminated trans-

mission line as a function of length `, which referring to Eq. (2.41), can be written as

Zin = Z0 tanh
(
(α + iβ)`

)
= Z0

tanh(α`) + i tan(β`)

1 + i tan(β`) tanh(α`)

= Z0

tanh(α`)
(
1 + tan

2(β`)
)
+ i tan(β`)

(
1 − tanh

2(α`)
)

1 + tan2(β`) tanh
2(α`)

,

(2.53)

where the second equality follows from an identity for the hyperbolic tangent [32]. In the limit of small

attenuation, the input impedance is Zin ≈ iZ0 tan(β`) as for a lossless line
7
. It can be seen to be periodic

in length, or equivalently in wave-number β .

Thus, by imposing an open circuit at the lines input end, the input impedance at that point must be

that of an open-circuit: Zin = ∞, which gives the constraint tan(β`) = ∞ that determines the normal

modes. If on the other hand one would place a short-circuit on the input of the line, the constraint would

be
Zin

iZ0
= tan(β`) = 0.

Taking into account the π periodicity in β` of the resonance conditions, two sets of resonance

7
Note that transmission line losses do not in�uence the resonance conditions, but rather cause the input impedance not to

reach to the extremes zero or in�nity as in the lossless case, see the last line in Eq. (2.53).
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conditions are found one for a diverging input impedance and one for a vanishing input impedance

βn` =
ωn

v
` = 2π

`

λn
=

{
π(n + 1) , Zin ≈ 0

π(n + 1

2
) , Zin ≈ ∞

, n ∈ {0, 1, 2, . . .} . (2.54)

Each conditions corresponds with a di�erent normal mode. Here, the length is regarded as given, and

the λn correspond to the di�erent normal modes. We restrict our attention to the case with Zin = ∞ and

the n = 0 fundamental mode, which corresponds with ` = λ0

4
and is as such called the quarter-wave

resonance. Its resonant frequency as determined by Eq. (2.54) is

ω0 =
πv

2`
. (2.55)

The voltage and current distribution corresponding to the normal modes follow from Eqs. (2.39a)

and (2.39b) with Γ = 1 as corresponds to the short circuit loading. Then, for the lossless case we have,

Vn(z) = Vn(`) sin

(ωn

v
z
)
, (2.56a)

In(z) = i
Vn(`)

Z0

cos

(ωn

v
z
)
, (2.56b)

where ωn follows from Eq. (2.54). Note that Vn and In respectively represent the complex voltage and

current amplitude along the line. for the nth mode. In the time domain, this constitutes a waveform of

which every point oscillates around zero at the same frequency and in phase
8
. The voltage and current

distributions corresponding to the �rst few modes are plotted in Fig. 2.9a.
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V I

` = λ0
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n = 0

n = 1
n = 2

(a) �arter-wave resonator

00
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2

n = 0
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(b) Half-wave resonator

Figure 2.9: Voltage standing wave modes for (a) the quarter-wave resonator and (b) the half wave resonator.
The fundamental mode is drawn together with the next two higher modes. The mode shapes for the
corresponding current amplitude distributions are depicted in thin dashed lines.

In order to derive the equivalent lumped element circuit that represents the quarter-wave resonance,

the input admittance, the reciprocal of Eq. (2.53), is Taylor expanded around the quarter-wave resonant

frequency ω0, but �rst the input impedance is simpli�ed somewhat. In the envisioned application to

superconducting circuits, the attenuation constant is assumed to be in the limit α` � 1 such that

8
When adding losses, deviations from the given mode-shapes occur due to the running waves, which give rise to the standing

waveforms as a result of interference, now exponentially decaying with propagation distance. The waveform is no longer real as in

Eqs. (2.56), but carries a position dependent phase, causing the di�erent parts of the waveform to no longer oscillate in phase,

though still at the same frequency.
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tanh(α`) ≈ α`. Then the input admittance is written as

Yin ≈
1

Z0

1 + iα` tan(β`)

α` + i tan(β`)
=

1

Z0

α` − i cot(β`)

1 − iα` cot(β`)

≈
α`

Z0

+ i
`
(
1 − α2`2

)
vZ0

(ω − ω0)

≈
α`

Z0

+ i
π

2ω0Z0

(ω − ω0) ,

(2.57)

where the second step follows from a �rst order Taylor expansion. The last step follows from the

approximation 1 − α2`2 ≈ 1 and substitution of the mode frequency back into the equation.

Referring to section 2.1.2, the last expression is equivalent to the input impedance of a parallel

RLC-circuit (2.9) with

R =
Z0

α`
,

C =
π

4Z0ω0

,
(2.58)

and invoking the resonance condition of an RLC-resonator

L =
1

Cω0
2
=

4Z0

πω0

. (2.59)

A parallel combination of above three components constitutes the equivalent lumped element circuit.

Half-wave resonator

Now we discuss the half wavelength resonator as drawn in Fig. 2.8b. In contrast to the quarter-wave

resonator, the transmission line is terminated with an open circuit on both ends. As discussed, this

requires that the allowed modes have a voltage anti-node at both ends, which results in normal mode

voltage distributions such as drawn in Fig. 2.9b.

To make this concrete we note that the input impedance of a transmission line loaded with an open

circuit referring to Eq. (2.41) after letting ZL →∞ is

Zin = Z0 coth
(
(α + iβ)`

)
= Z0

1 + i tan(β`) tanh(α`)

tanh(α`) + i tan(β`)
.

(2.60)

In the limit of no loss, when α ≈ 0, the input impedance can be approximated as Zin ≈ −iZ0 cot(β`), just

as with the quarter-wave resonator a π-periodic function in β`.
This shows that also in this case two kinds of resonances are possible depending on the input

impedance imposed on the lines input, one for which Zin vanishes and one for which Zin diverges.

Not going into too much detail, we note that an open circuit is imposed on the input, for which the

corresponding resonance condition is cot(β`) = ∞. This implies that

βn` =
ωn

v
` = 2π

`

λn
= π(n + 1) , n ∈ {0, 1, 2, . . .} . (2.61)

The fundamental (n = 0) mode corresponds with ` = λ0

2
, hence the name half wave resonator. The

fundamental resonance frequency is

ω0 =
πv

`
. (2.62)
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Following Eqs. (2.39a) and (2.39b), for this case with the re�ection parameter set as Γ = −1 corres-

ponding to the open circuit boundary condition, and neglecting loss gives for the voltage and current

distribution corresponding to the normal modes

Vn(z) = Vn(`) cos

(ωn

v
z
)
, (2.63a)

In(z) = −i
Vn(`)

Z0

sin

(ωn

v
z
)
, (2.63b)

where the ωn follow from Eq. (2.61).

Next deriving an equivalent lumped element circuit, we take the input impedance Eq. (2.60). Assuming

the loss to be low α` � 1 we make a Taylor expansion of the input admittance around the fundamental

resonance frequency ω0 = πv` with the result

Yin ≈
1

Z0

α` + i tan(β`)

1 + iα` tan(β`)

≈
1

α`
+ (ω − ω0)

i

Z0

(
1 + α2`2

) `
v

≈
1

α`
+ i

π

ω0Z0

(ω − ω0) ,

(2.64)

where we have set 1 + α2`2 ≈ 1 and substituted
`
v =

π
ω0

. This expression is equivalent to the input

admittance of a parallel lumped element circuit resonator as described by Eq.(2.9) with

R =
Z0

α`
,

C =
π

2ω0Z0

,

L =
1

ω0
2C
=

2Z0

πω0

.

(2.65)

2.3 Capacitively coupled resonators
This section discusses how to couple to a resonator such that it can be excited from an external circuit.

Two kinds of capacitive coupling to a transmission line (feed-line) will be introduced: one-port coupling

and side coupling, both of which are shown in �gures 2.10 for the case of a parallel RLC resonator.

The role of the external Q-factor will be discussed together with the response functions describing the

scattering parameters for input signal re�ection and also transmission in the case of side-coupling.

2.3.1 One port coupled parallel RLC-circuit
Input impedance

The circuit of a parallel RLC-resonator capacitively coupled to a feed-line is drawn in Fig. 2.10a. The

input impedance of the resonator as seen from the feed-line through the coupling capacitor

Zin =
1

1

R +
1

iωL + iωC
+

1

iωCc

(2.66)

is di�cult to work out when including the resistance. Instead the lossless case with an in�nite resistance,

R →∞ is worked out after which loss is included by the complex frequency trick described in section 2.1.4.
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(a) (b)

Figure 2.10: RLC-circuits capacitively coupled to transmission line. (a) One port coupled parallel RLC-circuit.
(b) side-coupled parallel RLC-circuit. Figures courtesy of Daniel Bothner.

A bit of algebraic manipulation in this limit on the input impedance of the corresponding coupled lossless

resonator yields

Zin = i
ω2L (C +Cc) − 1

ωCc (1 − ω2LC)
, (2.67)

which vanishes at the resonant frequency ω0 =
1√

L(C+Cc)
, where a series type of RLC-circuit resonance

is found
9
, slightly shifted from the resonator’s uncoupled resonant frequency

10
. Rewriting the input

impedance in terms of the resonant frequency and making a Taylor expansion around that point gives

Zin =
i

(
ω2

ω0
2 − 1

)
ωCc(1 − ω2LC)

≈
2i

Ccω0
2 (1 − ω0

2LC)
(ω − ω0) =

2iL (C +Cc)
2

Cc
2

(ω − ω0) (2.68)

after which losses are added by substitution of the complex resonant frequency ω0 ← ω0

(
1 + i

2Q0

)
in

the (ω − ω0) term with the result

Zin ≈
L (C −Cc)

2

Cc
2

(
ω0

Q0

+ 2i (ω − ω0)

)
. (2.69)

9
Incidentally this shows that the coupling capacitor acts as an impedance inverter.

10
Actually, there are two resonances as in the lossless case the input impedance diverges for ω = 1√

LC
, the resonators uncoupled

resonance frequency. Separating the input impedance in its full form including losses by setting 0 < R < ∞ into its real and

imaginary part

Zin =

ωCc

R + i

( (
ωC − 1

ωL
) (

1

ωL − ω (C +Cc)
)
− 1

R2

)
ωCc

R2
+ ωCc

(
ωC − 1

ωL
)2

incidentally shows that the resonance condition Im {Zin } = 0 does depend on R and thus losses. However for high but �nite

Q-factor resonators, i.e. those with 0 � R < ∞, the resonance condition becomes approximately

0 ≈

(
ωC −

1

ωL

) (
1

ωL
− ω (C +Cc)

)
which shows that the from the lossless case derived resonance frequencies are reasonably accurate. From this we see that

Zin

(
ω =

1√
L (C +Cc)

)
≈

1

R
(
ωC − 1

ωL
)2

and that Zin

(
ω =

1
√
LC

)
≈ R ,

which shows that the di�erence between the two resonances is expressed by

Zin

(
ω =

1
√
LC

)
� Zin

(
ω =

1√
L (C +Cc)

)
.

This di�erence is important because in order to transfer energy from the feed-line to the resonator, the feed-line and resonator

should be impedance matched, i.e. setting Zin ≈ Z0, which e�ectively allows no more than one of the two resonators to be

accessible at the same time.
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The approximate input impedance for the coupled resonator is of the form Zin = Rs + 2iLs (ω − ω0) as

for a series RLC circuit (discussed in Sec. 2.1.1) with

Rs =
ω0L (C −Cc)

2

Q0Cc
2

, Ls =
L (C −Cc)

2

Cc
2

=
1

Ccω0
2 (1 − ω0

2LC)
and Cs =

1

ω0
2Ls

. (2.70)

Internal and external Q-factor

This analysis does not provide the necessary information for relating the Q-factor to the lumped elements

of the coupled parallel RLC circuit. In order to do this and to understand the loading e�ects of the

coupling capacitor together with the transmission line, we consider the external circuit impedance

connecting to the resonator as seen from the resonator.

Noting that a semi-in�nite transmission line at its interface can be considered a resistance to ground

equal to the line’s characteristic impedance Z0, we can write the external impedance as

Ze = Z0 +
1

iωCc

. (2.71)

This impedance can be written in terms of an equivalent parallel combination of a resistor RL and a

capacitor CL as follows

1

Ze

=
1

Z0 +
1

iωCc

=
iωCc

1 + iωCcZ0

=
ω2Cc

2Z0 + iωCc

1 + ω2Cc
2Z0

2
=

1

RL

+ iωCL (2.72)

with for the lumped elements in the equivalent parallel combination

RL =
1 + ω2Cc

2Z0
2

ω2Cc
2Z0

≈
1

ω2Cc
2Z0

, (2.73a)

CL =
Cc

1 + ω2Cc
2Z0

2
≈ Cc . (2.73b)

The approximations are valid for ω2Cc
2Z0

2 � 1 which is usually the case in practice where the coupling

capacitors are often chosen small.

Taking the external impedance together with the internal impedance shows that the coupled resonator

can be considered a loaded parallel RLC circuit with a modi�ed capacitance

Ct ≈ C +Cc (2.74a)

and e�ective resistance

Rt =
RRL

R + RL

≈
R

1 + ω2Cc
2Z0R

, (2.74b)

and unmodi�ed inductance L. Thus the resonance frequency of this circuit is the same as the approximate

shifted resonance condition found from the input impedance.

The Q-factor can then be found by applying the de�nitions from Sec. 2.1.3. The loaded Q-factor for

the loaded resonator is

QL = Rtω0Ct =
RRL

R + RL

ω0 (C +Cc) ≈
Rω0 (C +Cc)

1 + ω0
2Cc

2Z0R
. (2.75)
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Considering RL ≈
1

ω2Cc
2Z0

the external load and R the internal load we �nd for the unloaded and external

Q-factor
11

respectively

Q0 = ω0R (C +Cc) , (2.76a)

Qe ≈
ω0 (C +Cc)

ω0
2Cc

2Z0

=
ω0L (C +Cc)2

Cc
2Z0

. (2.76b)

We can easily check that these add up reciprocally to the loaded Q-factor. The latter form of the external

Q-factor will be useful for �nding a convenient expression for the re�ection parameter.

Scattering parameter

The re�ection parameter or equivalently the S11 scattering parameter can be determined using Eq. (2.38)

in Sec. 2.2.2 from transmission line theory:

Γ =
Zin − Z0

Zin + Z0

=

L(C−Cc)
2

Cc
2

(
ω0

Q0
+ 2i (ω − ω0)

)
− Z0

L(C−Cc)
2

Cc
2

(
ω0

Q0
+ 2i (ω − ω0)

)
+ Z0

=

ω0

Q0
−

Z0Cc
2

L(C−Cc)
2 + 2i (ω − ω0)

ω0

Q0
+

Z0Cc
2

L(C−Cc)
2 + 2i (ω − ω0)

=

ω0

Q0
−

ω0

Qe
+ 2i (ω − ω0)

ω0

Q0
+

ω0

Qe
+ 2i (ω − ω0)

.

(2.77)

Note that substituting in the external Q-factor results in a reasonably compact expression. There are a

few things to observe:

• at resonance, the re�ection parameter Γ → 0 when the di�erence Qe −Q0 → 0;

• far from resonance, the re�ection parameter Γ → 1, regardless of the Q-factors;

• the sign of above di�erence determines whether the real part of the re�ection parameter is positive

or negative at the resonance.

These observations can be derived straightforwardly from Eq. (2.77) and its modulus. They however

also point to another aspect that is a relation between the matching of the input impedance Zin to

the transmission line characteristic impedance Z0 and the ratio between the internal and the external

Q-factor.

11
Note that we assume the internal Q-factor of this parallel equivalent circuit to be identical to the internal Q-factor imposed by

the complex frequency trick on the input impedance of the resonator as seen from the feed-line. To show that this is true, we

refer to footnote 10 where the full input impedance is worked out in the approximation of a high but �nite Q-factor resonator.

Note that the imaginary part of the input impedance in this regime is approximately equal to the input impedance in the limit

of an in�nite Q-factor. Thus, considering only the shifted resonance with ω0 ≈
1√

L(C+Cc)
, the series equivalent inductance

Ls =
1

Ccω0
2(1−ω0

2LC)
of this resonator should be the same as the one in Eqs. (2.70). Further, we can relate the approximate input

impedance from footnote 10 at the resonance frequency to the series equivalent resistance
1

Rs
= R

(
ω0C − 1

ω0L

)2

. Substituting

this into the de�nition for the internal Q-factor for a series RLC resonator gives after some algebra

Q0 =
ω0Ls

Rs

=
R

(
1

ω0
2L
−C

)
ω0LCc

= ω0R (C +Cc)

which shows that indeed the internal Q-factor for the two representations are pretty much equivalent in the given approximations.
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Coupling coe�cient

De�ning the coupling coe�cient as

д =
Q0

Qe

=
κe

κi

(2.78)

we can distinguish three conditions, all of which can be veri�ed from the response function Eq. (2.77):

д < 1: The external decay rate is smaller than the internal decay rate (or Qe > Q0); The real part of the

re�ection parameter remains positive and the resonator is said to be under-coupled.

д = 1: The external decay rate is equal to the internal decay (Qe = Q0) and at resonance the incident

wave is totally absorbed by the resonator; This shows that the condition is equivalent to the

impedance matching condition Zin = Z0; In this case the resonator is said to be critically coupled.

д > 1: The external decay rate is greater than the internal decay rate (or Qe < Q0); The real part of

the re�ection parameter becomes negative in the region around the resonant frequency and the

resonator is said to be over-coupled.

2.3.2 Side-coupled to transmission line
The case of a side-coupled parallel RLC-circuit as drawn in Fig. 2.10b is from a circuit perspective similar

to the one port coupled resonator as described in the previous subsection. The di�erence is a transmission

line identical to the feed-line is also connected to the resonator interface. This allows incident waves to

not only be re�ected or absorbed at the interface, but also to for them to be transmitted over the new

line. The extra load this imposes will be seen to a�ect the input impedance as seen from the feed-line as

wel as the external circuit seen by the resonator.

Q-factors

The only di�erence in the external circuit as seen from the parallel RLC resonator’s perspective for the

case of side-coupling compared with one-port coupling is that the resistive external load is now a parallel

combination of two identical resistors to ground with impedance Z0. This leads to an e�ective resistance

of
Z0

2
in a circuit that is otherwise indistinguishable from the corresponding circuit for the one-port

coupled resonator. Thus if one substitutes

Z0 ←
Z0

2
(2.79)

into the relations derived from the circuit corresponding to the one-port coupled resonator derived, the

result should be the corresponding relations for the side-coupled resonator.

Carrying out this substitution, load resistance in the parallel equivalent for the external circuit is

found to be

RL ≈
2

ω0
2Cc

2Z0

. (2.80)

There is a slight in�uence on the parallel equivalent load capacitance

CL =
Cc

1 +
ω2Cc

2Z0
2

4

≈ Cc , (2.81)

which is however negligible. The extending transmission line has no further e�ect on the approximate

expressions for the resonant frequency and internal Q-factor. The external Q-factor (and thus also
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the loaded Q-factor) is modi�ed however. Using the corresponding equation for the one-port coupled

resonator and the substitution we directly write

Qe = ω0RL (C +Cc) ≈
2ω0L (C +Cc)

2

Cc
2Z0

. (2.82)

Input impedance

The input impedance as seen from the feed-line at the interface is a parallel combination of the resonator

input impedance for the case of single port coupling—which we already derived in Eq. (2.69)—and the

other transmission line which behaves as a resistance to ground equal to its characteristic impedance Z0.

Working this out gives the input impedance for the side-coupled resonator

1

Zin

=
Cc

2

L (C −Cc)
2

(
ω0

Q0
+ 2i (ω − ω0)

) + 1

Z0

,

Zin =
Z0L (C +Cc)

2

(
ω0

Q0
+ 2i (ω − ω0)

)
Z0Cc

2 + L (C +Cc)
2

(
ω0

Q0
+ 2i (ω − ω0)

)
= Z0

ω0

Q0
+ 2i (ω − ω0)

Z0Cc
2

L(C+Cc)
2 +

ω0

Q0
+ 2i (ω − ω0)

= Z0

ω0

Q0
+ 2i (ω − ω0)

2
ω0

Qe
+

ω0

Q0
+ 2i (ω − ω0)

.

(2.83)

The equation with the Q-factors substituted in is already brought to a form that is convenient for

obtaining the scattering parameters.

We can already see that for large ω −ω0 the ratio
Zin

Z0
→ 1. From this we can conclude that for highly

o�-resonant incident waves the feed-line and the net load impedance are matched such that for this case

virtually no re�ection occurs.

Scattering parameters for re�ection and transmission

With the input impedance, the re�ection parameter

Γ =

Z0

ω0

Q0
+2i(ω−ω0)

2
ω0

Qe
+
ω0

Q0
+2i(ω−ω0)

− Z0

Z0

ω0

Q0
+2i(ω−ω0)

2
ω0

Qe
+
ω0

Q0
+2i(ω−ω0)

+ Z0

=

ω0

Q0
+ 2i (ω − ω0) − 2

ω0

Qe
−

ω0

Q0
− 2i (ω − ω0)

ω0

Q0
+ 2i (ω − ω0) + 2

ω0

Qe
+

ω0

Q0
+ 2i (ω − ω0)

=
−
ω0

Qe

ω0

Q0
+

ω0

Qe
+ 2i (ω − ω0)

(2.84)

is determined from its de�ning equation from transmission line theory Eq. (2.38).

The transmission parameter is derived from the re�ection parameter by invoking Eq. (2.45), which in

Sec. 2.2.2 we have seen to be valid for this case of an interface incorporating an embedded circuit—the
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coupled resonator—between two transmission lines,

T = 1 + Γ =

ω0

Q0
+ 2i (ω − ω0)

ω0

Q0
+

ω0

Qe
+ 2i (ω − ω0)

. (2.85)

Note that where the re�ection coe�cient is almost zero for highly o�-resonant waves, the transmission

coe�cient is very close to unity. Thus when plotting the modules of the scattering parameters, the

re�ection parameter forms a peak while the transmission parameter forms a dip. Their respective

maximum and minimum occurs at the resonant frequency with the values determined by the internal

and external Q-factors:

|Γ (ω0)| =
Q0

Qe +Q0

=
κe

κe + κ0

, (2.86a)

|T (ω0)| =
Qe

Qe +Q0

=
κ0

κe + κ0

. (2.86b)

There are a couple of further observation to be made here that are interesting to put in contrast with

the response function for the one-port coupled resonator:

• A large internal Q-factor Q0 � Qe favors re�ection and reduces transmission;

• Vice versa, a large external Q-factor Qe � Q0 favors transmission and reduces re�ection;

• Whenever the internal and external Q-factors are equal, i.e.Qe = Q0 , then modulus of the re�ection

and the transmission parameter obtain their respective maximum and minimum, both with the

same value:

|Γ (ω0)|Qe=Q0
= |T (ω0)|Qe=Q0

=
1

2
. (2.87)

Above three points indicate that the coupling coe�cients д = Q0

Qe
ful�lls an analogue role for the case of

a side coupled resonator.
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Flux tuneable resonators

The theory of opto-mechanics is de�ned in terms at least two resonators where the position of one

resonator (the mechanical resonator) sets the resonance frequency of the other (the optical cavity). This

constitutes a parametric interaction since the resonance frequency is changed by changing one of the

resonator parameters. In case of an optical cavity these are the length between its mirrors, but modifying

the propagation velocity of light in the optical medium is also possible. For an electrical resonator, its

resonant frequency can be tuned by varying the inductance or capacitance parameters of its constituent

components. For our purpose we analyse the embedding of a SQUID as variable inductance in electrical

resonators, since in the analogue simulation circuit this essentially constitutes the electrical analogue of

the distance between the mirrors in an optical cavity.

The chapter is divided in two parts; �rst an introduction is given to superconductivity, quantum

mechanical phenomena such as �ux quantisation and the Josephson e�ect and how the last two can

be used to create a tuneable inductance in a device called a SQUID; then its embedding in electrical

resonators for creating �ux tuneable resonators is analysed.

3.1 Superconducting quantum interference device
Before introducing �ux tuneable resonators, we �rst consider what is a crucial element. This section

provides a short introduction to what a SQUID (Superconducting QUantum Interference Device) is. It

starts with a discussion of a Josephson junction (a tunnel barrier in a superconducting circuits). Then,

putting two junctions in parallel connected in a loop, thereby creating two pathways, the interference

that will result as a consequence is discussed. The section will conclude with a discussion of the lumped

element description of a SQUID. Some attention to the non-linearity in the inductance will also be given

as it will be relevant later on. For the parts of superconductivity and �ux quantisation inspiration is

drawn from Refs. [38, 39] while the discussion on Josephson junctions and the SQUID is mainly based

on the latter reference but considerably extended.

3.1.1 Superconductivity
While by no means meant as a formal introduction, some aspects of superconductivity are relevant in this

work. Superconductivity as described by BCS theory [40] in essence occurs because at low temperatures

in some substrates, the electrons, fermions with spin-½ following the Pauli exclusion principle, form pairs

which behave as bosonic particles with spin-1 or spin-0. The main point is that, in the quantum statistics

of identical particles, at low temperature, as described by the Bose-Einstein distribution, most bosons tend

to condense into the ground-state, the wave-function of which is spread over the whole superconductor,

30
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forming a super-�uid. This all follows from the symmetry postulate for identical and indistinguishable

particles that under particle permutation, the Hamiltonian is invariant, which for bosons means that the

many particle wave-function is even symmetric under every two-particle permutation
1
.

At low temperature below the critical temperature upon which the phase transition occurs that

marks the point where the so called Cooper-pairs start to form and condense into a super-�uid, the

amplitude of the ground-state component of the many particle Cooper-pair wave-functionψ becomes a

macroscopically large complex number. Because of that, the probability density of �nding a Cooper-pair

at a certain point

P(®r , t) = ψ ∗(®r , t)ψ (®r , t) (3.1)

can be interpreted as as a particle density. With this, it is intuitive to write the wave function as

ψ (r ) =
√
ρ(r )eiθ (r ) , (3.2)

where the particle density ρ can be considered a classical variable. The phase θ , which drops out upon

observation of the density, will be seen to play a role upon observation of particle current.

The local variation in particle density can be expressed through a continuity equation

∂P

∂t
= −∇ · ®J (3.3)

in terms of the probability current which for the case of a super-�uid may be interpreted as a particle

current density. For charged particles in a magnetic �eld the latter is equivalent to
2

®J =
1

2

(
ψ ∗
~
i
∇ − q ®A

m
ψ +ψ

− ~
i
∇ − q ®A

m
ψ ∗

)
. (3.4)

In this expression, ®A is the magnetic vector potential, q the charge of a Cooper-pair and m the pairs

e�ective mass. The meaning of the phase θ can then be made concrete by substituting the macroscopic

wave-function (3.2) into expression for the current (3.4) which gives

®J =
~

m

(
∇θ −

q

~
®A
)
ρ . (3.5)

Considering ®J as a current density ρv of a �uid, then the momentum of a particle can be expressed as

mv = ~∇θ − q ®A. This shows that the gradient of the phase corresponds to a particle’s observable kinetic

momentum in the absence of a magnetic vector potential.

3.1.2 Flux quantisation
The fact that in the superconducting state all Cooper-pairs condense into the same macroscopic wave-

function has profound consequences. One such consequence is �ux quantisation which emerges whenever

a superconductor has a hole, as is the case with a superconducting ring. Flux quantisation stems from

1
Why this is the right symmetry as for the bosons, and why pairs of electrons behave as bosons is beyond the scope of this

work, for that consult a textbook on quantum mechanics.
2
The expression for the current, as explained in e.g. Ref. [39] can be derived by di�erentiating Eq. (3.1), and substituting the

result into the Schrödinger equation for charged particles in an electromagnetic �eld,

i~
∂ψ
∂t
=

1

2m

(
~

i
∇ − q ®A

)2

ψ + qϕψ

with ϕ the electric potential, and then rewriting the result in the form of Eq. (3.3).
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the requirement that the wave-function (3.2) for a superconducting condensate spanning a ring must be

a single-valued function for quantum mechanics to be consistent.

Noting that according to the London theory of superconductivity [41] the current well inside a

superconductor (deeper than the London penetration depth) can be considered zero, the phase di�er-

ence between two points of the Cooper-pair wave-function is found by integrating the current for a

superconducting �uid (3.5) over a path ` connecting the two points

∆θ =
q

~

∫
`

®A · d®s , (3.6)

where the path is to be taken well within the boundaries of the superconductor. This gives a direct

relation between the relative phase of the wave-function and the magnetic �eld.

So far so good, however integration of Eq. (3.5) over a closed path C inside a superconductor must

satisfy further constraints such that the wave-function (3.2) is single-valued. For instance, if the path

encloses a hole
3
, the phase di�erence accumulated over one roundtrip should be equal to an integer

multiple n of 2π

q

~

∮
C

®A · d®s = 2πn , n ∈ Z . (3.7)

Recognising that as follows from stokes theorem

∮
C
®A · d®s = Φ is equal to the magnetic �ux Φ

enclosed by the closed path C, we have

Φ = n
2π~

q
= nϕ0 , n ∈ Z , (3.8)

that the �ux threading a hole in a superconductor is quantised in units of the �ux quantum

ϕ0 =
2π~

q
. (3.9)

3.1.3 Josephson e�ect
Now, we apply this macroscopic quantum mechanics to a concrete system that consists of two supercon-

ductors separated by a non-conducting barrier called a Josephson junction. The crucial point is that if

the barrier is made thin enough, electrons or Cooper-pairs can tunnel through. The system is depicted

schematically in Fig. 3.1.

The Josephson relations

Following the lectures of Feynman [39], written in the basis where the ground state for a particle on one

side isψ1 and on the other sideψ2, and considering that there is a tunnelling amplitude for a particle to

cross the barrier, the Schrödinger equation (with magnetic �eld left out) for this system is

i~
∂

∂t

(
ψ1

ψ2

)
=

(
U1 K
K U2

) (
ψ1

ψ2

)
, (3.10)

where the U describe the energies of the states corresponding to the two respective sides, and K denotes

the tunnelling amplitude as a characteristic of the junction.

Now, It is important to note that in the superconducting phase, the statesψ1 andψ2 are the respective

ground-states occupied by approximately all Cooper-pairs on each side of the barrier (if K where zero).

3
In case the path does not contain a hole, the integral in Eq. (3.7) should be equal to zero to avoid a singularity inside the

domain of de�nition—in essence the space spanned by the superconductor—for the wave-function (3.2).
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Figure 3.1: A Josephson junction: two superconductors connected by a thin non-conducting barrier. Figure
from Ref. [39].

Connecting the two superconductors to a battery with voltageV leads to an energy di�erenceU1−U2 = qV
between the two states separated by the barrier. Rede�ning the zero of energy to be halfway between

the two states and substituting in the potential di�erence gives

i~
∂

∂t

(
ψ1

ψ2

)
=

(
qV
2

K

K −
qV
2

) (
ψ1

ψ2

)
, (3.11)

the Schrödinger equation for a two level system with inter level coupling.

Because we are dealing with a superconducting system, we make the substitutions

ψ1 =
√
ρ1e

iθ1 ,

ψ2 =
√
ρ2e

iθ2 ,
(3.12)

where the respective θ and ρ denote respectively the phase and density of the Cooper-pairs on each side.

Equating the real and imaginary part, the result, with δ = θ2 − θ1, is a set of four equations

∂ρ1

∂t
= +

2

~
K
√
ρ1ρ2 sin(δ ) ,

∂ρ2

∂t
= −

2

~
K
√
ρ1ρ2 sin(δ ) ,

(3.13a)

∂θ1

∂t
= +

K

~

√
ρ2

ρ1

cos(δ ) −
qV

2~
,

∂θ2

∂t
= +

K

~

√
ρ1

ρ2

cos(δ ) +
qV

2~
.

(3.13b)

The �rst two say that the rate of change in the Cooper-pair densities is equal but opposite on each

side, but because the two superconductors are connected to a battery, an approximately in�nite supply of

in this case Cooper-pairs, the densities will remain constant. Therefore these equations actually describe

the current that traverses the barrier, which is seen to depend on the phase di�erence δ across the barrier

IJ =
2K

~
sin(δ ) = Ic sin(δ ) , (3.14)

where we have de�ned the critical current of the junction as Ic =
2Kρ0

~ with ρ0 the Cooper-pair density

taken equal on both sides.
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Subtracting the time evolution Eqs. (3.13b) for the phases on each side gives an equation for the phase

di�erence in relation to the voltage across the junction

∂δ

∂t
=
qVJ

~
=

2π

ϕ0

VJ (3.15)

or di�erently written

VJ =
~

q

∂δ

∂t
=
ϕ0

2π

∂δ

∂t
, (3.16)

where in the last step, the �ux quantum is de�ned as ϕ0 =
h
2e with the charge q = 2e of a Cooper-pair

substituted
4
.

Equations (3.16) and (3.14) are called the Josephson relations and together describe the dynamics of

the Josephson junction as �rst described by Josephson [42]. Integrating the last equation, it is seen that

at zero voltage, there can be a super-current across the junction between −Ic and Ic. It is also easy to see

that when applying a DC voltage, the current becomes oscillatory with an average of zero.

Josephson non-linear inductance

Following lecture notes of Martinis and Osborn [43], the dynamics of the junction can be mapped to

a lumped element circuit by di�erentiating the current relation Eq. (3.14) and substituting the voltage

relation Eq. (3.16) for
∂δ
∂t which gives

VJ =
ϕ0

2πIc cos(δ )

∂IJ

∂t
= LJ

∂IJ

∂t
. (3.17)

In the last step we have de�ned the Josephson inductance as

LJ =
ϕ0

2πIc cos(δ )
= ±

ϕ0

2πIc

√
1 −

(
IJ

Ic

)2

(3.18)

with the sign being negative only when |δ mod π | > π
2

. Since the phase di�erence δ depends on current

through Eq. (3.14), the inductance is non-linear. Note that this shows that the Josephson inductance can

be positive or negative depending on the phase di�erence.

4
Note that the Josephson relations can be used to derive a kind of generalised �ux that can be stored in a Josephson junction. If

we de�ne the generalised �ux for a circuit element x as

ϕx ≡
∫ t

−∞

Vx dt ,

then upon substitution of the voltage Josephson relation, we see that

ϕJ =
ϕ0

2π
(δ (t ) − δ (−∞)) , or similarly δ (t ) = 2π

ϕJ

ϕ0

+ δ (−∞) .

Putting this last result into the current Josephson relation gives the constitutive relation for the Josephson element

IJ = Ic sin

(
2π

ϕJ

ϕ0

+ δ (−∞)
)
,

which evidently can be considered a non-linear inductor. This will prove to be very useful later on. Also observe how the de�nition

of generalised �ux coincides with magnetic �ux when applied to a magnetic inductor with self-inductance L:

ϕL =
∫ t

−∞

L
dIL

dt
dt = L (IL (t ) + IL (−∞)) ,

up to an o�set. Note that the o�set in the magnetic and generalised �ux do not need to come from a loop current or phase di�erence

at t = −∞ if the systems in question are not isolated from the rest of the universe as then other processes may also contribute to

an o�set.
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To make the last equality explicit, we note that inversion of the current Josephson relations Eq. (3.14)

to �nd an expression for the phase di�erence in terms of current, gives two in�nite sets of solutions

δ =


arcsin

(
IJ

Ic

)
+ 2nπ , if |δ mod π | ≤ π

2

π − arcsin

(
IJ

Ic

)
+ 2nπ , if |δ mod π | > π

2

with n ∈ Z (3.19)

and where we have de�ned the principle branch for the multivalued arcsine function as having the

codomain − π
2
≤ arcsin(.) < π

2
, i.e. as returning a value in that range. Within each set, the solutions are

separated from each other by integer multiples of 2π. Thus putting this result in the argument of the

cosine function, which is 2π-periodic, merges al the solutions within a set together, leaving us with two

valid solutions

cos(δ ) = ± cos

(
arcsin

(
IJ

Ic

))
= ±

√
1 − sin

2

(
arcsin

(
IJ

Ic

))
= ±

√
1 −

(
IJ

Ic

)2

, (3.20)

with the sign being negative only when |δ mod π| > π
2

.

Josephson energy

The energy stored in a Josephson junction can be derived straightforwardly through the usual path in

circuit theory together with the Josephson relations

UJ =

∫ t

−∞

IJVJ dt

=
Icϕ0

2π

∫ t

−∞

sin(δ )
∂δ

∂t
dt

=
Icϕ0

2π

∫ δ (t )

δ (−∞)
sin(δ ) dt

=
Icϕ0

2π

(
cos(δ (−∞)) − cos(δ (t))

)
, (3.21)

Usually δ (−∞) is assumed such that the system is completely at rest in the beginning of time, meaning that

at t = −∞ the current and voltage are both zero, which corresponds to setting δ (−∞) = 0 (or δ (−∞) = π
which would let the system start with a negative inductance, but also in an unstable equilibrium, thus

not fully at rest). This still leaves a constant o�set in the energy, which however can be neglected—i.e. set

to zero without further assumptions on δ (−∞)—since this is a potential energy. As such the Josephson

energy is usually de�ned as

EJ(δ ) = −
Icϕ0

2π
cos(δ ) = ∓

Icϕ0

2π

√
1 −

(
IJ

Ic

)2

(3.22)

with the sign being positive only when |δ mod π | > π
2

.

Incidentally this shows—when considered from a thermodynamics perspective assuming a low

temperature environment—that a Josephson junction will usually prefer to be in the state with |δ mod

π | < π
2

which corresponds with a positive inductance, as this corresponds with an energy minimum.

The negative inductance state on the other hand corresponds with an energy maximum and is as such

unstable, and will if not constrained evolve into a positive inductance state. As such the negative

inductance state usually does not occur in practice allowing us to replace cos(δ ) with its absolute value,

thus selecting the positive branch of its representation in terms of current.
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Figure 3.2: Drawing of a SQUID, two Josephson junctions in parallel, with respective phase jumps δa and δb.
Figure from Ref. [39].

3.1.4 Two Josephson junctions in parallel
At this point we have enough information to introduce what is called a SQUID, in essence it consists

of two Josephson junctions connected in parallel as drawn in Fig. 3.2. Now there are two paths, an

upper and a lower, connecting the two superconducting leads, and this time (due to similarity with the

discussion in Sec. 3.1.2) it is important to include the magnetic �eld in the discussion.

Considering the superconducting circuit and following one of Feynman’s lectures [39], the wave-

function (3.2) must be single-valued across the whole circuit, which means that the phase di�erence

across the two paths from one side to the other, should be the same plus-minus an integer factor n of 2π.

This is the same argument as with �ux quantisation in a superconducting ring, the only di�erence being

that there is a phase jump δa and also δb across each tunnel junction.

Working out the phase di�erences θ across the upper and lower path, using Eq. (3.6), but including

the phase jumps, we have

∆θlower = δb +
2e

~

∫
lower

®A · d®s ,

∆θupper = δa +
2e

~

∫
upper

®A · d®s .
(3.23)

Then working out the constraint ∆θupper = ∆θlower + 2πn and subtracting the two equations from each

other gives

δb − δa =
2e

~

∮
Γ

®A · d®s + 2nπ =
2e

~
Φ + 2πn = 2π

(
Φ

ϕ0

+ n

)
(3.24)

withΦ the �ux threading the loop connecting the two junctions

SQUID with negligible loop inductance

De�ning δ0 ≡
δa+δb

2
, the average of the phase di�erences across the two junctions, we express the

individual junction phase di�erences as

δa = δ0 − π

(
Φ

ϕ0

+ n

)
and δb = δ0 + π

(
Φ

ϕ0

+ n

)
. (3.25)
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Then the total current across the circuit can, invoking Eq. (3.14) twice and then a trigonometric identity,

be expressed as

Itotal = Ic1
sin

(
δ0 + π

(
Φ

ϕ0

+ n

))
+ Ic1

sin

(
δ0 − π

(
Φ

ϕ0

+ n

))
= 2Ic1

cos

(
π
Φ

ϕ0

+ πn

)
sin(δ0) (3.26)

where we have taken the critical current—now denoted with a subscript 1 to emphasize its means as a

single junction property—of both junctions identical.

Now this equation is of the same form as the current Jophson relation Eq. (3.14) if we regard the

pre-factor of the sine as a critical current

IcΣ (Φ) = 2Ic1
cos

(
π
Φ

ϕ0

+ πn

)
. (3.27)

This suggests that a SQUID may e�ectively be considered as a single Josephson junction whose critical

current is modulated by the �ux threading the SQUID loop
5
.

In order to show that a SQUID can indeed be considered as such, a relation between the voltageV

over the SQUID and average phase δ0 of the same form as the voltage Josephson relation (3.16) must

hold. This is easy to show through Kirchho�’s loop law, but �rst note that we must take into account an

emf equal to
dΦ
dt in the loop due to Faraday’s law

6
. This leads to

V = Va +
1

2

dΦ

dt
= Vb −

1

2

dΦ

dt
(3.28)

where we take the loop inductance as being distributed equally over the two arms of the loop.

Substituting into Eq. (3.28) the voltage Josephson relation Eq. (3.16) for each junction, and express

the phase di�erences δa and δb in terms of the average phase di�erence δ0 and the magnetic �uxΦ as in

Eqs. (3.25), the �ux dependent terms are seen to drop out wich leaves us with

V =
2π

ϕ0

dδ0

dt
, (3.29)

thus showing that it is indeed the case that a SQUID can be considered e�ectively as a single Josephson

junction.

SQUID with signi�cant loop inductance

There is however one fact we stepped over in the description above: If the loop inductance L` is not

negligibly small (see Fig. 3.3), the currents circulating in the SQUID loop also contribute to the magnetic

�ux; Moreover, because a net current through the SQUID breaks the symmetry in the current through

the two branches of the SQUID loop, Eq. (3.28) is not exactly valid.

The correct version of this equation is

V = Va +
ÛΦe

2
+
L`
2

ÛIa = Vb −
ÛΦe

2
+
L`
2

ÛIb , (3.30)

5
Note that it is possible that the e�ective critical current is negative; the e�ect is a reversal of the currents but also a negative

inductance as demonstrated in Eq. (3.18). on the other hand, if a πshift occurs in both the average phase and phase di�erence of the

junctions, then the sign of the inductance is preserved and only the net magnetic �ux has made a jump to another solution of the

transcendental relation in Eq. (3.33).
6
As a side-note focussing on the latter equality in Eq. (3.28). Substituting in the voltage Josephson relation (3.16) for the two

junctions and rearranging a bit

dδb

dt
−

dδa

dt
=

2π

ϕ0

dΦ
dt

shows that Faraday’s law must be included in order to allow for a time varying �ux.
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L`
2

L`
2

a b

Φe

Ì

I V

Figure 3.3: SQUID in lumped element representation with Loop inductance incorporated. It is assumed
that the loop inductance L` is distributed uniformly over the loop. Also the orientation of the inductance
in the two arms is opposite such that they both contribute constructively to the flux Φ in loop. Junction
capacitances and sub-gap resistances are le� out of the consideration for now.

where an over-dot denotes a time derivative and the variableΦe is introduced as an externally applied

�ux. This shows that the we can write the magnetic �ux as

Φ = Φe −
L`
2
(Ib − Ia) = Φe − L`Ì (3.31)

where we have de�ned Ì ≡
Ib−Ia

2
as the current circulating in the loop. The latter can be worked out

using the Josephson relations, a trigonometric relation and Eqs. (3.25):

Ì =
Ic
2

sin

(
δ0 + π

Φ

ϕ0

+ πn

)
−
Ic
2

sin

(
δ0 − π

Φ

ϕ0

− πn

)
= Ic cos(δ0) sin

(
π
Φ

ϕ0

+ πn

)
. (3.32)

This in turn allows us to �nd a non-invertible transcendental equation for the total �ux threading the

loop

Φ = Φe − L`Ic cos(δ0) sin

(
π
Φ

ϕ0

+ πn

)
. (3.33)

Observe that the circulating loop current screens the magnetic loop �ux away from half-integer �ux

quanta towards an integer number of �ux quanta. Finally, we derive a modi�ed expression for the voltage

across the SQUID from Eq. (3.30)

V = Va +
1

2
ÛΦe +

1

2
L` ÛIa

= 1

2πϕ0
Ûδ0 −

1

2
ÛΦ + 1

2
ÛΦe +

1

2
L` ÛIa

= 1

2πϕ0
Ûδ0 +

1

4
L`

(
ÛIa + ÛIb

)
= 1

2πϕ0
Ûδ0 +

1

2
L`Ic

d

dt

(
cos

(
π Φ
ϕ0
+ nπ

)
sin(δ0)

) (3.34)

where we have taken the a-branch of the loop. First we substitute the voltage Josephson relation with the

phase di�erence written in terms of the average phase δ0 and the �uxΦ, and then Eq. (3.31), which causes

a lot of terms to drop out, and �nally allows us to substitute Eq. (3.26) to get a closed form expression in

terms of �ux and the average phase. Note that this shows that from a voltage perspective a SQUID with

a loop self-inductance can be regarded e�ectively as a single (tuneable) Josephson junction in series with

an inductor.
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L(I)≈ =

Figure 3.4: Equivalent circuit for a more realistic Josephson junction. We do leave out the less then infinite
electrical resistance of the substrate forming the tunnel barrier.

In summary, a SQUID with non-zero loop inductance is described by the three equations

I = 2Ic1
cos

(
π Φ
ϕ0
+ nπ

)
sin(δ0) ; (3.35a)

V = 1

2πϕ0
Ûδ0 +

1

2
L`Ic

d

dt

(
cos

(
π Φ
ϕ0
+ nπ

)
sin(δ0)

)
; (3.35b)

Φ = Φe − L`Ic cos(δ0) sin

(
π Φ
ϕ0
+ nπ

)
. (3.35c)

It is however unfortunate that the net magnetic �uxΦ is not a simple function of the applied magnetic

�uxΦe, but is the solution to a transcendental equation that also depends on the average phase di�erence

δ0. This not only makes it perhaps impossible to �nd closed form solutions for the set of equations by

analytical means, but also makes the net �ux a variable that cannot be controlled precisely in experiments
7
.

A practical way out is to make the loop inductance negligibly small such thatΦ ≈ Φe and the SQUID

can be considered a single e�ective Josephson junction with a tuneable critical current described as by

Eq. (3.27) and behaviour as described in Sec 3.1.3.

3.1.5 A more practical SQUID considered as a lumped element
So far we have discussed ideal Josephson junctions and SQUIDs consisting of ideal Josephson junctions.

In practice however, a Josephson junction has associated with it a capacitance as well as a less than

in�nite resistance called the “sub-gap resistance”. The latter opens a dissipation channel as it allows

normal conduction of unpaired electrons through the barrier whenever a voltage across it appears. These

two practical additions as well as e�ects of thermal (and quantum?) noise are described in the RCSJ-model

of a Josephson junction; see Ref. [44] for a more in depth discussion regarding its application in SQUIDs.

For the scope of this work, we will ignore most of these practical additions, but we will consider the

e�ect of junction capacitances in this section. Losses due to the sub-gap resistance can be lumped into

an overall Q-factor for the resonator in which the SQUID is incorporated.

Then a practical junction should be considered a parallel combination of an ideal Josephson junction

and a capacitor CJ as depicted in Fig. 3.4. This introduces a so called plasma mode with (depending on

the connecting circuit) a resonance frequency

ωJ =
1√
LJCJ

(3.36)

where the e�ective inductance is given by Eq. (3.18) at zero current or zero phase di�erence. Because we

are dealing with a non-linear inductance, above frequency is strictly speaking only valid for oscillations

who’s current amplitude satis�es

1 −

(
IJ

Ic

)2

≈ 1 . (3.37)

7
Actually, Eq. (3.33) has the form of a constraint, e�ectively reducing the amount of degrees of freedom in the SQUID by one.

Moreover, while we cannot solve this equation forΦ , it can be used to express cos(δ0) as a function of �ux. Something to try and

work out later. . .
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CIc IcΦ

Figure 3.5: The electrical circuit for an ideal lumped element SQUID-cavity. In essence it is an LC-resonator
with the inductor replaced by a SQUID. Because the SQUID forms a non-linear inductance, the resonator
becomes anharmonic.

The plasma frequency decreases for higher currents as those e�ectively increase the Josephson inductance.

The presence of plasma modes in�uences the other modes in the circuit incorporating Josephson

junctions. The e�ect, however, is in almost all cases negligible, because in practice the junction capacit-

ances can to good approximation be considered zero. This causes the plasma mode frequencies to be

much higher than any of the other mode frequencies occurring in the circuit. The plasma modes are

thus highly o� resonance and therefore have little e�ect on the other dynamics occurring in the circuit.

Another aspect that needs further consideration is that the Josephson elements may be driven into a

non-linear regime. For instance, when increasing the current amplitude, at some point, the Josephson

inductance can no longer be considered constant. From that point on, one must include the non-linearity

into the circuit description. This, however, complicates circuit theory as the phasor network description

breaks down in the presence of non-linearities.

3.2 Tuneable resonators
Here we introduce two kinds of �ux tuneable resonators:

1. a lumped element implementation which is essentially a SQUID shunted with a large capacitance;

2. a transmission line resonator that is terminated at one end with a SQUID as an analogue to a

moveable mirror.

For each we start with a time domain analysis in order to investigate non-linear circuits, and then move

on to an e�ective lumped element description.

3.2.1 Flux tuneable lumped element resonator
As the simplest example of a �ux tuneable resonator, we disregard dissipation and start from a simple

LC-resonator and replace the inductor with a SQUID. This way we have essentially a SQUID that is

shunted with a large capacitance, as drawn in Fig. 3.5. The self-inductance of the SQUID loop we neglect

for now. For completeness we begin our discussion with the time domain equations of motion as derived

from Kirchho�’s laws. Lumping together the junction capacitances and the large shunt capacitance, and

expressing the voltage and current in terms of the average phase and loop �ux through the e�ective

Josephson relations for a SQUID, Eqs. (3.26) and (3.29), we obtain

C
ϕ0

2π

d
2δ0

dt2
+ 2Ic cos

(
π
Φ

ϕ0

)
sin (δ0) = 0 , (3.38)

a non-linear second order di�erential equation. Dividing by C
ϕ0

2π and making a third order taylor

expansion: sin(δ0) ≈ δ0 −
δ0

3

6
, gives the equation for a Du�ng oscillator

d
2δ0

dt2
+ ω0

2(Φ)δ0 − K(Φ)δ0
3 = 0 (3.39)
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Figure 3.6: Resonance frequency of an ideal lumped element SQUID resonator as a function of flux tuning
in the small amplitude limit. The critical current of the Josephson junctions is taken as 0.75 µA; the capacitor
is set to 9.21 pF.

where

ω0(Φ) =

√
4πIc
Cϕ0

cos

(
π
Φ

ϕ0

)
(3.40)

is the resonant frequency in the small amplitude limit where the cubic term vanishes; note that we would

have obtained the same resonant frequency had we substituted the linear approximation of the Josephson

inductance for the SQUID. A plot of the small amplitude resonance frequency is given in Fig. 3.6.

The strength of the Du�ng non-linearity is given by

K(Φ) =
2πIc
3Cϕ0

cos

(
π
Φ

ϕ0

)
. (3.41)

Harmonic approximation

In any case, Eq. (3.39) shows that when the amplitude of the average phase δ0 is not too large depending

on K(Φ), we can essentially assume |ω0
2δ0 | � |Kδ0

3 | and neglect the Du�ng term. This e�ectively

renders the system a harmonic oscillator. This is important because it allows us to express it as a linear

lumped element LC-resonator with capacitanceC and for the inductance the expression for the linearised

SQUID inductance L =
ϕ0

4πIc cos

(
π Φ
ϕ0

) .

E�ect of the Du�ng non-linearity

Here we discuss qualitatively some of the e�ects the cubic non-linearity may have. The arguments

presented are by no means exact, but are given merely to provide an intuitive description of two important

characteristics of driven weakly damped Du�ng oscillators. Thus the results should be regarded as

nothing more than a very crude approximation. There is much more to be said about Du�ng oscillators

(including e.g. chaotic dynamics) but for the scope of this work we leave it at an amplitude dependent

resonance frequency and bifurcation of the resonance curve for the driven weakly damped version. For

a more in depth discussion see Ref. [45] or the original publication by Du�ng Ref. [46].

Let us �rst rewrite Eq. (3.39) as

d
2δ0

dt2
+

(
ω0

2(Φ) − K(Φ)δ0
2
)
δ0 = 0 . (3.42)

Now, if we replace, in the term enclosed by parenthesis, the average phase squared with its average:

δ0
2 → δ0

2
, we see that we there is an amplitude dependent shift in resonance frequency. Since this is a



42 Chapter 3. Flux tuneable resonators

hand-waving argument, we will make it a bit more concrete by substituting a harmonic trial solution

A cos(ωt) in the equation of motion even though the the system is anharmonic(
ω0

2 − ω2
)
A cos(ωt) − KA3

cos
3(ωt) = 0 . (3.43)

Upon substitution of a trigonometric power reduction formula: cos
3(ωt) = 1

4
(3 cos(ωt) + cos(3ωt)), we

obtain (
ω0

2 −
3

4
KA2 − ω2

)
cos(ωt) −

1

4
KA2

cos(3ωt) = 0 (3.44)

where we see that the non-linearity introduces a third harmonic in the equation (and should introduce

more harmonics as shown by recursively substituting the higher order terms into the equation). For

long time scales we may disregard the higher harmonic(s) by which we consider the motion e�ectively

harmonic. Then we �nd an approximate expression for the amplitude dependent resonance frequency

ω ′
0
≈

√
ω0

2 −
3

4
KA2 ≈ ω0 −

3

8
KA2 . (3.45)

This is still hand-waving since the e�ects of damping and driving are not taken into account, but the

result is close enough for our discussion.

When we add harmonic driving F cos(ωt) and weak linear damping γ dδ0

dt to the equation

d
2δ0

dt2
+ γ

dδ0

dt
+ ω0

2δ0 − K(Φ)δ0
3 = F cos(ωt) , (3.46)

another phenomenon may be observable for su�ciently strong driving: a bifurcation of the resonance

curve. This can be understood as follows. The oscillatory amplitude depends on a balance between

driving and damping, while the e�ectiveness of the driving depends on how much the driving frequency

falls within the resonance line-width around the resonance frequency. Since the latter depends on the

actual amplitude of oscillation, one can imagine that for some oscillatory amplitudes, the frequency is

shifted by more than a line-width. This indicates a bifurcation where there are two stable solutions: one

where the in this case highly excited resonator is driven on its strongly shifted resonance; and one where

the resonator is driven at the same frequency but is only weakly excited causing the drive to miss the

now negligibly shifted resonance.

The average of the non-linear SQUID inductance we derive from the approximate resonance frequency

Le� =
1

ω ′
0

2C
≈

1(
ω0

2 − 3

4
KA2

)
C
=

ϕ0

4πIc cos

(
π Φ
ϕ0

) (
1 − 1

8
A2

) . (3.47)

Note that this may be di�erent from the non-linear SQUID inductance averaged assuming harmonic

motion. If we are to write the input impedance—a formalism de�ned in the framework of linear electrical
networks—for this non-linear system, it is the former e�ective inductance we should use; the amplitude

A must however be known beforehand.

Input impedance

The input impedance in the harmonic approximation is easily written in terms of the e�ective SQUID

inductance and the shunt capacitance as if it were a parallel LC-resonator

Zin =
iωL

1 − ω2LC
=

iωϕ0

4πIc cos

(
π Φ
ϕ0

)
− ω2ϕ0C

. (3.48)
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A crude generalisation to the weakly non-linear version is given by instead substituting Eq. (3.47) for

the e�ective SQUID inductance

Zin =
iωϕ0

4πIc cos

(
π Φ
ϕ0

) (
1 − 1

8
A2

)
− ω2ϕ0C

. (3.49)

For the electrical characteristics one may observe when coupling this system to a feed-line, see Sec. 2.3.

3.2.2 Flux tuneable transmission line resonator
This subsection introduces a SQUID loaded transmission line resonator, which consists of a transmission

line terminated with a SQUID at one end and with an open circuit at the other end. Changing the

SQUID inductance modi�es the boundary conditions for the current and voltage distribution over the

transmission line, and therefore in�uences the standing wave resonances. As such, this results in a

tuneable resonator whose resonant frequency depends on the bias �ux through the SQUID loop. This

setup is discussed and analysed in Refs. [47, 48]; especially the former reference contains a thorough

analysis that also discusses the e�ects of the non-linear SQUID inductance. On a side note, hysteresis

e�ects arising when the SQUID loop-inductance is signi�cant are analysed on a phenomenological level

in Ref. [49]. In order to understand the dynamics of the system, we �rst discuss a transmission line

loaded with an inductor in a time domain analysis. Then we consider the e�ect of making the inductor

non-linear by replacing it with the �ux tuneable inductance of a SQUID, before deriving an approximate

lumped element description.

Transmission line loaded with inductor

We start with a discussion of the dynamics of a transmission line open ended on one side and terminated

with an inductor on the other side, as drawn in Fig. 3.7. Since a transmission line is a one dimensional

medium that supports linear wave propagation, the current or voltage dynamics in its bulk satisfy a wave

equation; where in Sec. 2.2.1 we discussed the frequency domain characteristics we will here instead

start in the time domain.

Z0,ν LL

`

Figure 3.7: Transmission line loaded with an inductor

Time domain characteristics The bulk equation of motion for the current leaving out dissipation is

given as

∂2V

∂t2
− ν2
∂2V

∂x2
= 0 ; (3.50)

the current distribution I(x , t) satis�es the same equation. Boundary conditions are derived from the

principle of current conservation. At the open end, charge cannot jump into the vacuum, and therefore

I(0) = 0 and similarly
∂V(0)

∂x
= 0 (3.51)

as can easily be seen from the telegrapher equations (2.17). The other boundary condition is less trivial

to work out as, at the other end where the inductor is connected, it relates the current to the voltage
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through a time derivative

V(`) = L
∂I(`)

∂t
; (3.52)

assuming charge conservation at the interface, we can by the telegrapher relation
∂V
∂z = −L

′ ∂I
∂t transform

it to a Robin type boundary condition

V(`) = −
L

L′
∂V(`)

∂x
. (3.53)

Harmonic resonances Since the electrical network is linear and the wave equation supports plane

wave propagation we try a harmonic solution of the form

V = A sin(ωt) cos(kx) (3.54)

that automatically satis�es the insulating boundary condition at x = 0. Given a solution of this form, the

dispersion relation is obtained from the bulk equation of motion

ω = kν . (3.55)

Substitution the trial solution into the other boundary condition gives

cos

(ω
ν
`
)
=
ω

ν

L

L′
sin

(ω
ν
`
)

or cot

(ω
ν
`
)
=
ω

ν

L

L′
=
ωL

Z0

. (3.56)

Solving this transcendental boundary condition determines the harmonic resonance frequencies and

corresponding normal modes.

Non-linear correction

If we replace the linear load inductor with a SQUID with negligible loop inductance and junction

capacitances, we obtain the circuit drawn in Fig. 3.8. Because the load inductance has now become

non-linear, the replacement modi�es the boundary condition at the interface between the load and the

transmission line. While in principle we can substitute into the boundary condition the the non-linear

SQUID inductance, it would not bring the boundary conditions to a useful form. The reason is that the

inductance is a non-linear function of current and the latter is not easily expressed in terms of voltage

without including a time derivative; That complicates the boundary condition.

Z0,ν Φ

`

Figure 3.8: A SQUID loaded transmission line of specific length.

Transformation to node �ux variables The way out is to integrate the equation of motion and

boundary conditions over time and transform the equations to a new variables de�ned as

ϕ(x , t) ≡

∫ t

−∞

V(x , t) dt . (3.57)

Such variables are called node �uxes; more about those will be discussed later, but see e.g. the book by

Peikari [33] for a thorough and general treatment of circuit theory in this representation. Note that in

this representation the current and voltage along the transmission line are easily expressed in terms

of respectively a spatial- and time derivative of the node variables (as can be checked easily with the

telegrapher equations).
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Anharmonic boundary condition In terms of node �ux variables, the equations of motion and

boundary conditions read

∂2ϕ

∂t2
− ν2
∂2ϕ

∂x2
= 0 (3.58a)

∂ϕ(0)

∂x
= 0 (3.58b)

ϕ(`) =
ϕ0

2π
δ0 (3.58c)

−1

L′
∂ϕ(`)

∂x
= 2Ic cos

(
π
Φ

ϕ0

)
sin (δ0) (3.58d)

The last two equations form the equivalent of the boundary condition at the interface between the

transmission line and the SQUID. The �rst of the two follows from equality of voltage at both sides of

the interface and the voltage Josephson relation; the second follows from charge conservation and the

current Josephson relation. Combining the last two equations into a single boundary condition gives

−1

L′
∂ϕ(`)

∂x
= 2Ic cos

(
π
Φ

ϕ0

)
sin

(
2π
ϕ(`)

ϕ0

)
. (3.59)

Since the boundary condition at the open end has remained invariant in the transformation, we try

the same harmonic trial solution, even though the other boundary condition is now non-linear. First

making a Taylor expansion to third order in ϕ(`) of Eq. 3.59

−ϕ0

4πIc cos

(
π Φ
ϕ0

) 1

L′
∂ϕ(`)

∂x
= ϕ(`) −

2

3

(
π

ϕ0

)2

ϕ3(`) . (3.60)

Then upon substution of ϕ = A cos(ωt) cos(ων x) we obtain

ϕ0

4πIc cos

(
π Φ
ϕ0

) ω

L′ν
cos(ωt) sin

(ω
ν
`
)
= cos(ωt) cos

(ω
ν
`
)
−

2

3

(
π

ϕ0

)2

A2
cos

3(ωt) cos
3

(ω
ν
`
)
. (3.61)

Rewriting using the trigonometric power reduction formula cos
3(ωt) = 1

4
(3 cos(ωt) + cos(3ωt)) we see

that a third harmonic is generated by the non-linear boundary condition
8
. Since the e�ect of the third

harmonic should average out on long time scales if the dynamics remain approximately harmonic at the

original resonance, we may (as we did with the lumped element variant) disregard the contributions to

the boundary condition oscillating at three times the resonance frequency. This yields

ϕ0

4πIc cos

(
π Φ
ϕ0

) ω

L′ν
sin

(ω
ν
`
)
= cos

(ω
ν
`
)
−

1

2
A2

(
π

ϕ0

)2

cos
3

(ω
ν
`
)

(3.62)

Dividing by cos
(ω
ν `

)
or sin

(ω
ν `

)
gives the amplitude dependent resonance condition in more practical

form

ϕ0

4πIc cos

(
π Φ
ϕ0

) ω

L′ν
tan

(ω
ν
`
)
= 1 −

1

2
A2

(
π

ϕ0

)2

cos
2

(ω
ν
`
)

(3.63a)

8
The third harmonic in the boundary condition may excite higher harmonics in the transmission line and thereby may e�ectively

create a coupling between neighbouring resonant modes that are otherwise independent.
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or

ϕ0

4πIc cos

(
π Φ
ϕ0

) ω

L′ν
= cot

(ω
ν
`
)
−

1

2
A2

(
π

ϕ0

)2
cos

3
(ω
ν `

)
sin

(ω
ν `

) (3.63b)

which has the same form as the expression derived in Ref. [47] (though the constants may be di�erent, I

have not checked precisely; in that paper they have a slightly di�erent approach also incorporating the

SQUID’s plasma frequency).

In contrast to the lumped element resonator, here it is not so easy to obtain a closed form expression

for the resonance frequency. One thus has to resort to numerical methods for solving the transcendental

boundary condition.

E�ective load inductance An e�ective load inductance can be derived by comparing Eq. 3.62 with

the same equation for the harmonic case Eq. 3.56 and lumping the non-linear correction together with

the SQUID inductance inductance

Le� =
ϕ0

4πIc cos

(
π Φ
ϕ0

) + (
π

ϕ0

)2
A2L′ν

2ω

cos
3
(ω
ν `

)
sin

(ω
ν `

) . (3.64)

This however requires one to know the resonance frequency beforehand and corresponds to adjusting

the a linear inductance in the harmonic model until the resonance frequency corresponds to a main

resonance of the anharmonic resonator.

If we are to model the primary anharmonic resonance as a linear lumped element network, this is the

e�ective inductance we should employ; thereby not forgetting the e�ective inductance and resonance

frequency both depend on the amplitude of oscillations. Equation (3.64) may further prove useful for

determining the relative strength of the non-linearity.

Input impedance

The next thing to do is �gure out the input impedance of the transmission line loaded with an inductor,

as drawn in Fig. 3.7. The inductor loads the line with an impedance ZL = iωLL We use Eq. (2.41) for the

input impedance of a loaded transmission line from Sec. 2.2.2. With that and leaving out losses we obtain

Zin = Z0

iωLL + iZ0 tan(β`)

Z0 + i2ωLL tan(β`)

= iZ0

ωLL

Z0
+ tan

(ω`
ν

)
1 −

ωLL

Z0
tan

(ω`
ν

) . (3.65)

The input impedance can be simpli�ed further by noting the following relations,

• that for any branch of the arctangent function

ωLL

Z0

= tan

(
arctan

(ωLL

Z0

))
;

• and (see e.g. the handbook by Abromowitz and Stegun [50]) the tangent relation

tan(z1 + z2) =
tan z1 + tan z2

1 − tan z1 tan z2

.

These allow us to rewrite the input impedance as

Zin = iZ0 tan

(
arctan

(ωLL

Z0

)
+
ω`

ν

)
. (3.66)
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Figure 3.9: Graphical solutions of the resonance conditions for an inductor loaded transmission line resonator.
The resonance frequencies are at the intersections of the two plo�ed functions in each graph. The length
of the transmission line 5 mm, its characteristic impedance 50 Ω, the phase velocity 100 km/s and the load
inductance 35 nH.

Resonance conditions As we know from circuit theory (see Sec. 2.1 or 2.2.4), series type of resonances

are found at the zeros of input impedance in its imaginary part while parallel kinds of resonances occur

at the poles thereof. Then, from Eq. (3.65) we see that as expected for a transmission line resonator,

two in�nite sets of resonances exists, one containing all the series kind of resonances, the other all the

parallel kind resonances. A bit of algebra gives us explicit expressions for the resonance conditions

tan

(ω`
ν

)
= −

ωLL

Z0

for Zin = 0 , (3.67a)

cot

(ω`
ν

)
=
ωLL

Z0

for Yin = 0 . (3.67b)

In contrast to the resonance conditions for the quarter- and half-wave resonators, these are tran-

scendental equations and can as such not be solved exactly. They can however be solved numerically,

or graphically. The latter method is demonstrated in the graphs in Fig. 3.9. Note that the resonance

frequency with increasing mode-number n approaches (n + 1

2
)π for the series resonances and nπ for the

parallel resonances, while the �rst few moded, depending on the load inductance, this can be the other

way around.

Using the fact that cot(x) = tan(−x + π
2
) we can write the resonance conditions in more explicit form

ω`

ν
+ arctan

(ωLL

Z0

)
= (1 + n) π for Zin = 0 (3.68a)

ω`

ν
+ arctan

(ωLL

Z0

)
=

(
1

2
+ n

)
π for Yin = 0 (3.68b)

where n ∈ {0, 1, . . .} and we use the principle branch of the arctangent function − π
2
< arctan(.) < π

2
.

Note that we have restricted the range of allowed integers n to avoid negative frequency solutions.

Because the arctangent function is a one-to-one map, these resonance conditions can easily be solved

by any numerical root �nding algorithm
9
. In �gure 3.10 a numerical approximation for the resonant

frequencies for the �rst few modes are plotted as a function of the load inductance.

We focus on the parallel kind of resonance where n = 0 and Yin = 0. This is the lowest frequency

mode present in this system. This resonant frequency ω0 then is de�ned as the solution of

arctan

(ω0LL

Z0

)
+
ω0`

v
=

1

2
π . (3.69)

9
As long as the argument for the arctangent is not too large, since that would cause the function’s derivative to vanish.
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Figure 3.10: Mode frequencies for an inductor loaded transmission line resonator. The symmetric modes
are drawn with dashed lines. Note how for higher mode numbers the frequency modulation is stronger
in the region where the Load inductance approaches zero Henry. The transmission line has the following
characteristics: ν = 100 km/s, ` = 5 mm and Z0 = 50 Ω.

We note that in the limit of LL = 0, the resonance frequency (3.69) becomes ω0 →
π
2

v
` , that of a

quarter-wave resonator, which is to be expected as in this case the transmission line is e�ectively loaded

with a short. In the other limit of a very large Load inductance, arctan

(
ω0LL

Z0

)
→ π

2
such that resonance

frequency ω0 → πv` , equivalent to that of a half-wave resonator, this can also be explained intuitively

by noting that a very large inductance can e�ectively be considered an open circuit.

Equivalent circuit Carrying out a �rst order Taylor expansion for the reciprocal of the input imped-

ance written in compact form in Eq. (3.66) around the resonance frequency de�ned in Eq. (3.69) gives an

expression for the input admittance that is valid for frequencies close to the resonance frequency

Yin ≈ Yin

���
ω0

+ (ω − ω0)
dYin

dω

���
ω0

=
−i

Z0

`
ν +

LL

Z0

1

1+
(
ω0LL

Z0

) 2

− sin
2

(
arctan

(ω0LL

Z0

)
+

ω0`
ν

) (ω − ω0)

=
i

Z0

(
`

ν
+

1

Z0

LL
+ ω0

2 LL

Z0

)
(ω − ω0)

(3.70)

where in the last step the sine squared is seen to be equal to unity upon substitution of the resonance

condition Eq. (3.69).

The result can be mapped upon a parallel RLC-circuit (see Sec. 2.1.2). A comparison with Eq. (2.9),

the input admittance of a parallel RLC-resonator in a �rst order Taylor expansion, gives

C =
1

2Z0

(
`

ν
+

1

Z0

LL
+ ω0

2 LL

Z0

)
, (3.71a)

L =
1

ω0
2C
, (3.71b)
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and through the addition of a Q-factor (i.e. dissipation) by substitution of a complex resonance frequency

ω0 ← ω0(1 +
i

2Q0
) as described in Sec. 2.1.4

R =
Q0

ω0C
. (3.71c)

SQUID loaded transmission line resonator

Now, building upon the results of the previous section, we replace the load inductor used in the previous

section with the e�ective inductance of a SQUID, which due to the SQUID’s �ux tuneability, makes the

resonant frequency tuneable simply by changing the �ux threading the SQUID loop.

For the results in this section, we consider the SQUID as a single Josephson junction whose critical

current is a function of �ux, for this we assume the Loop inductance to be negligibly small. We further

assume that the Junction capacitances are negligibly small, thereby neglecting the internal modes in

the junctions as explained in Sec. 3.1.5. We further assume that the current going through the SQUID is

much smaller than its critical current. These assumptions taken together cause SQUID to be considered

a (�ux tuneable) linear inductance. Then Eq. (3.18) for the Josephson inductance together with Eq. (3.27)

for the critical current give

LΣ(Φ) ≈
ϕ0

4πIc1
cos

(
π Φ
ϕ0

)√
1 −

(
I

2Ic1
cos

(
π Φ
ϕ0

) )2

≈
ϕ0

4πIc1
cos

(
π Φ
ϕ0

) . (3.72)

Because the only di�erence between a SQUID loaded transmission line and the previously discussed

inductor loaded transmission line, is that the load inductance now is a function of �ux as expressed in

Eq. (3.72), we can reuse the results derived in the previous section by substitution of the SQUID inductance.

Considering only the lowest frequency mode, this results within a �rst order Taylor approximation in an

equivalent parallel RLC-circuit with input admittance

Yin ≈
1

R(Φ)
+ i2C(Φ)

(
ω − ω0(Φ)

)
(3.73)

and circuit elements as given by
10

C(Φ) =
1

2Z0

©­­­­«
`

ν
+

1

4πIc1
Z0 cos

(
π Φ
ϕ0

)
ϕ0

+
ϕ0ω0

2(Φ)

4πIc1
Z0 cos

(
π Φ
ϕ0

)
ª®®®®¬
, (3.74a)

L(Φ) =
1

ω0
2(Φ)C(Φ)

, (3.74b)

R(Φ) =
Q0(Φ)

ω0(Φ)C(Φ)
. (3.74c)

Translating Eq. (3.69), The resonant frequency ω0(Φ) for the lowest frequency mode is the solution of

arctan

(
ω0ϕ0

4πIc1
Z0 cos

(
π Φ
ϕ0

) ) + ω0`

ν
=

π

2
. (3.75)

10
Note that we assume the Q-factor to depend on �ux. Such dependence may be possible because the resonance frequency

may be a function of losses inside the SQUID as can be seen in Eq. (3.65) by adding a real component to the load impedance, even

though this is di�cult to work out due to equations becoming very cumbersome when doing this.
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Figure 3.11: Resonant frequency of a SQUID transmission line resonator as a function of flux threading the
SQUID loop. The transmission line length is 5 mm, its characteristic impedance 50 Ω and its phase velocity
100 km/s. The critical currents of both Josephson junctions are taken equal and set to 0,75 µA. Higher modes
have less fla�ened modulation curves as for these modes the frequency sensitivity is higher in the lower load
inductance region as is demonstrated in Fig. 3.10.

The resonance frequency numerically solved as a function of �ux is plotted in Fig. 3.11. These results

show that this system constitutes a resonator whose frequency is tuned as a function of magnetic �ux

through the SQUID loop.

Note that by this procedure we have essentially disregarded all anharmonic e�ects in the resonator.

In addition to that, our time domain discussion of this system did suggest that an interaction is possible

between the di�erent resonances mediated by the non-linearity in the boundary conditions. Hower,

in case one is only interested in the “harmonic” resonances in the small amplitude regime, this seems

reasonable.



Chapter 4

Going from a circuit Lagrangian to a
quantised Hamiltonian

In classical mechanics any system is usually described by its equations of motions; for mechanical

systems Newton’s second law together with the laws describing the forces acting on or between the

system’s elements/parts; and for electrical circuits Kirchho�’s laws together with constitutive relations

between the voltages and currents across the networks constituent lumped elements (as branches). There

are however other but equivalent formulations of classical mechanics such as the Lagrangian and the

Hamiltonian formalism. Both use a mathematical object de�ned in terms of the system’s kinetic and

potential energy as the starting point together with Hamilton’s principle for deriving/generating the

equations of motion. Provided the energy related expressions are in correspondence with physical laws

and written consistently in terms of generalised coordinates plus generalised velocities or conjugate

momenta in case of the Hamiltonian formalism, these alternative formalisms present a di�erent path

for obtaining the equations of motion besides carefully analysing Newton’s second law for the system

together with the forces mediating interactions between its elements. Furthermore, most formalisms of

quantum mechanics build on top of the Hamiltonian formalism of classical mechanics.

In this chapter we will rephrase the circuit theory we have employed so far into an equivalent

Lagrangian formulation. In doing so we will also transform our circuit description from a representation

in terms of voltages and currents to one in terms of accumulated charges and generalised �uxes in

anticipation of an intuitive mapping to canonical position and momentum like coordinates in the

Hamiltonian formalism as well as quantum mechanics. Using generalised �ux as coordinate further will

allow us to incorporate Josephson tunnel junctions into the circuit description on the same level as other

circuit elements; more on that later.

Considerable attention will be given to mutual inductances and biassing �elds and their mapping to

the voltages and currents in the circuit. This is needed in the next chapter to explain the interaction

between two disjoint circuits mediated by a mutual inductance between an inductor embedded in one

circuit and the loop of a SQUID embedded in the other. In essence this chapter presents the �nal parts

of the theoretical background required for providing a quantum circuit description of a analogue opto-

mechanical circuit. In doing so we follow the path for �nding a quantum mechanical description of

electrical circuits as explained by Devoret [51].

51
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4.1 Lagrangian formulation of circuit theory
In this section we discuss in general a formulation of circuit theory in terms of �ux and charge variables

rather than currents and voltages, the constitutive relations for a few circuit elements in terms of the

new variables, and how to �nd the equations of motion. We particularly discuss how to systematically

deal with mutual inductances. The section concludes with a Lagrangian description of the same circuit

theory together with limitations arising from the underlying circuit theory as well as those arising from

Lagrangian mechanics.

4.1.1 Generalised branch �ux and branch charge
An electrical network can be described as a network of branches each containing a dipole element

connected to nodes. Each branch b is characterised by the voltage Vb across the dipole element it

contains and the current Ib �owing through it.

For a Hamiltonian description of an electromagnetic circuit, branch voltages or current are not

convenient as generalised coordinates as they are analogues to forces and velocities in a mechanical

system and as such do not map well to position and momentum like coordinate pairs. For that, the charge

qb =

∫ t

−∞

Ib dt (4.1a)

accumulated on a capacitive element, or generalised �ux, a generalisation of magnetic �ux stored in an

inductive element

ϕb =

∫ t

−∞

Vb dt (4.1b)

can be chosen as coordinate. It will be seen that in the Hamiltonian description, the generalised branch

�uxes and charges are canonically conjugate position and momentum (or vice versa). In these de�nitions

we assume that at t = −∞ the system is completely at rest with all currents and voltages equal to zero;

any static biassing �elds are assumed to be switched on adiabatically between t = −∞ and t = 0.

Note that in the circuits we will be considering branch charge corresponds intuitively with electrical

charge accumulated on capacitor plates, but as is the case with a Josephson junction it is not necessarily

true that generalised �ux corresponds with magnetic �ux generated by current through the element;

the latter is only true for an inductor coil. This will be made clear in the following section where we

introduce the constitutive relations for inductors and capacitors, as well as Josephson elements (for which

generalised �ux will prove to be a convenient coordinate in dealing with the non-linearity inherent to

elements of this kind).

4.1.2 Constitutive relations en stored energy
This section brie�y rephrases in terms of �ux and charge variables the general constitutive relations as

well as expressions corresponding to stored energy for capacitive and inductive elements.

Inductive and capacitive elements

The circuit components are further characterised by constitutive relations that link the branch voltages

to branch currents. We distinguish
1
between capacitive elements, for which the relation is of the form

Vb = f (qb) (4.2)

1
As a Lagrangian or Hamiltonian description in itself does not incorporate dissipation, we only consider inductive and capacitive

components.
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and inductive elements for which the relation is of the form

Ib = д(ϕb − ϕo�set) . (4.3)

In the latter relation however, mutual inductance is neglected—when this is taken into account, this

relation should also be a function of the branch �uxes in the other components that interact through

mutual inductances—we consider both cases in the following subsections. A static external �ux through

an inductor switched on adiabatically has the e�ect of introducing an o�set �ux ϕo�set in the constitutive

relations.

Energy stored in capacitive and inductive elements

With the usual sign convention for the branch currents and voltages employed in circuit theory the

energy absorbed by a circuit element is de�ned as the time integral of the branch voltage times current

Eb =

∫ t

−∞

VbIb dt . (4.4)

Note that branch voltage can be written as the time derivative of generalised branch �ux:

Vb =
dϕb

dt
; (4.5a)

and that similarly the branch current can be expressed as the time derivative of branch charge:

Ib =
dqb

dt
. (4.5b)

This means that we can express the energy accumulated on a branch in terms of generalised branch �ux

Eb =

∫ t

−∞

Ib Ûϕb dt =

∫ ϕb(t )

ϕb(−∞)

д(ϕb) dϕb (4.6a)

for an inductive element or in terms of branch charge for a capacitive element

Eb =

∫ t

−∞

Vb Ûqb dt =

∫ qb(t )

qb(−∞)

f (qb) dqb (4.6b)

where an over-dot denotes a time derivative.

The general case for two inductive elements sharing a mutual inductance

Let’s consider the case of two inductor labeled 1 and 2 sharing a mutual inductance. In this case, the

constitutive relations are

I1 = д1(ϕ1,ϕ2) (4.7a)

I2 = д2(ϕ1,ϕ2) (4.7b)

and the energy contained in both elements

E1 + E2 =

∫ t

−∞

д1(ϕ1,ϕ2) Ûϕ1 + д2(ϕ1,ϕ2) Ûϕ2 dt =

∫ t

−∞

d

dt
GM(ϕ1,ϕ2) dt = GM(ϕ1,ϕ2)

���t
−∞

(4.8)

which requires that a function GM exists such the following two equations

д1(ϕ1,ϕ2) =
∂GM

∂ϕ1

and д2(ϕ1,ϕ2) =
∂GM

∂ϕ2

(4.9)

are true.
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4.1.3 Degrees of freedom - constraints
As we know already, the voltages and currents across the branches of a network do not constitute an

independent set of degrees of freedom because they are constrained as a function of the network topology

by Kirchho�’s laws introduced in Sec. 2.1. Rephrasing these in terms of generalised branch �uxes and

charges by an integration over time gives
2 ∑

all b around loop `

ϕb = ϕ̃` (4.10)∑
all b arriving at node n

qb = q̃n (4.11)

where the magnetic �ux ϕ̃` threading loop ` or the charge q̃n accumulated on node n are usually taken

constant and ful�l the role of external biassing �elds. Any of the two Kirchho� laws can be used to

generate an independent set of equations describing the circuit dynamics.

For more complicated circuits it can be challenging to �nd a convenient set of independent degrees

of freedom. A systematic procedure for constructing such a set is the method of nodes which is the most

popular; this method is the one employed in the lecture notes by Devoret [51]. The other method, the

method of loops, is de�ned in terms of loop charges and provides a circuit description that is dual to

the one obtained by the method of nodes. A thorough explanation of both can be found in the book

by Peikari [33]. The former method in essence works by choosing one node in the network as ground

and from that node constructing a spanning tree connecting every other node to the ground node by

exactly one path; then for each node a node �ux is de�ned as the sum of all branch �uxes along the path

connecting the node to ground in the spanning tree.

For the circuits we will be considering such a procedure is not needed as the number of degrees of

freedom in the circuits we will be considering is small.

4.1.4 Equations of motion and Lagrangian for an electrical circuit
Taking the following together,

• that the voltage and current in a branch are related by the time derivative of respectively the

branch �ux and charge, see Eqs. (4.5);

• that each branch has a constitutive relation linking the voltage to charge or the current to �ux; and

• Kirchho�’s two laws as constraints respectively coupling the branch charge or the branch �ux

degrees of freedom as a function of network topology,

we are presented with an an over-complete set of equations describing the dynamics of the circuit. This

allow us to distil a smaller sets of independent equations describing the circuit’s dynamics. The di�erence

between the sets being in the choice of variables—�ux or charge—and in the speci�c form in which one

or more of Kirchho�’s laws are applied. The only caveat is that one needs to be able to invert one or

2
It is perhaps surprising, but Eq. (4.10) is consistent with our treatment of a SQUID and �ux quantisation. This can be seen

most easily by considering the �ux quantisation condition for a SQUID

Φ + δb − δa = 2πn , n ∈ Z .

Expressing the phase jumps in terms of generalised �ux using Eq. (4.36) one basically obtains Kirchho�’s law, setting n = 0 as is

possible due to the periodicity of the Josephson relations. From a circuit perspective, the �ux can be incorporated as the magnetic

�ux in an inductor. This does however show that, for Kirchho�’s loop law to remain consistent with �ux quantisation, inductive

elements must couple to the phase of the superconducting wave-function (either indirectly through the magnetic �eld or directly

as is the case with tunnel junctions).
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more of the constitutive relations when both an inductive and capacitive branch are involved in the same

equation—this then gives rise to a di�erential equation and thus dynamics, while otherwise it is only an

algebraic relation. This gives us a bit of freedom in constructing the circuit Lagrangian or equations of

motion as it allows us to express any degree of freedom in terms of charge or in terms of generalised

�ux. The latter option will be the most natural coordinate for incorporating Josephson elements.

I1 = д1(ϕ1,ϕ2)

V1 = f1(q1)

I2 = д2(ϕ1,ϕ2)

V2 = f2(q2)

Figure 4.1: Example lumped element network consisting of two LC-resonators interacting through a mutual
inductance. Note that we keep the constitutive relations completely general.

As a general example for the circuits of interest, we derive the equations of motion for the circuit in

Fig. 4.1 that incorporates a mutual inductance between two LC-resonators. We intentionally keep the

constitutive relations extremely general. An easy path for obtaining the equations of motion for these

kinds of topologically simple networks, where each (sub)network contains no more than one inductive

branche and no more than one capacitive branch, is to equate the current Ûqb coming from a capacitive

branch to the current −дb going into the connecting inductive branch (or vice versa). For the circuit in

Fig. 4.1 this yields

dq1

dt
=

d

dt
f −1

1
(V1) =

d

dt
f −1

1
( Ûϕ1) = −д1(ϕ1,ϕ2) (4.12a)

d

dt
f −1

2
( Ûϕ2) = −д2(ϕ1,ϕ2) (4.12b)

where the superscript
−1

on top of a function fx denotes the inverse of that function. Note that we could

have equally written the equation in terms of branch charges rather than �uxes, though this would

have required us to invert the inductive constitutive relations instead; also we could have obtained

the equations of motion by equating branch voltages rather than currents (in essence using the other

Kirchho� law); all of these give however equivalent results, only in charge rather than �ux variables.

However, when only the inductances are non-linear and all capacitances are linear the representation in

terms of �ux variables is the most convenient.

One can verify that these are Euler-Lagrange equations

d

dt

∂L

∂ Ûϕb
=
∂L

∂ϕb
, b ∈ {1, 2} (4.13)

that can be derived from the Lagrangian
3
where the inductive constitutive relations satisfy the require-

ments speci�ed in Sec. 4.1.2

L =

∫ q1(t )

q1(−∞)

Ûϕ1 df −1

1
( Ûϕ1) +

∫ q2(t )

q2(−∞)

Ûϕ2 df −1

2
( Ûϕ2) −

∫ t

−∞

д1(ϕ1,ϕ2) Ûϕ1 + д2(ϕ1,ϕ2) Ûϕ2 dt (4.14)

3
A general explanation for Lagrangian (as well as Hamiltonian) mechanics can e.g. be found in the book by Goldstein [52] on

classical mechanics. Explaining how the Euler-Lagrange equations are equivalent to Newton’s laws or follow from Hamilton’s

principle of least action, that is the vanishing of the �rst order derivative in the variation of the integral over the Lagrangian

(considered as a functional) from an initial to a �nal state, is beyond the scope of this report.
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which as we will show corresponds to the di�erence between the capacitive energy and inductive energy

in the circuit

L = Ekin − Epot (4.15)

ful�lling respectively the role of kinetic energy and potential energy if this were a mechanical system.

The last two terms can be related to Eq. (4.6a) and is thus the inductive energy stored in the combination

of two inductive elements

Epot =

∫ t

−∞

д1(ϕ1,ϕ2) Ûϕ1 + д2(ϕ1,ϕ2) Ûϕ2 dt = GM(ϕ1,ϕ2) . (4.16)

The other part of the Lagrangian is slightly more di�cult to relate to capacitive energy; however a bit of

rewriting of Eq. (4.6b)

Ec =

∫ qb(t )

qb(−∞)

fb(q) dq =

∫
fb

(
f −1

b
(Vb)

)
df −1

b
(Vb) =

∫ qb(t )

qb(−∞)

Ûϕb df −1

b
( Ûϕb) (4.17)

shows that this is indeed the case, such that the kinetic energy of the Lagrangian

Ekin =

∫ q1(t )

q1(−∞)

Ûϕ1 df −1

1
( Ûϕ1) +

∫ q2(t )

q2(−∞)

Ûϕ2 df −1

2
( Ûϕ2) (4.18)

is the capacitive energy in the circuit; note that this implicitly relies on Kirchho�’s voltage law. Had we

chosen charge as coordinate, the roles for the capacitive and inductive energies would have been the

other way around.

References [53, 51] further explain how to construct the Lagrangian and Hamiltonian for electrical

circuits. The former introduces the main idea in terms of charge variables and the former generalises

that idea by doing the same in terms of �ux variables. We have mainly followed the latter approach.

4.1.5 Limitations in circuit theory and Lagrangian mechanics
There are two aspects with above’s procedure that need emphasis. Observe that in order to obtain the

equations of motion in di�erential form, we needed to invert the constitutive relation for either the

capacitive or the inductive branch connecting to the same node; this constitutes a limitation in circuit

theory.

There is also a limitation in Lagrangian mechanics. For the Lagrangian to generate equations of

motion that are of the form one would obtain from Kirchho�’s laws in circuit theory, the analogue

kinetic energy part must be a quadratic form when written in terms of the time-derivatives of the �ux or

charge degrees of freedom in the circuit. The latter is generally the case for mechanical systems, but in

circuit theory this is not necessarily true when one or more components are non-linear.

Thus in summary there are two requirements:

• from Lagrangian mechanics that the kinetic energy is a quadratic form of the generalised velocities;

• from circuit theory that at least one of constitutive relations between the two is invertible.

Generally if in the capacitive branch and inductive branch connecting to the same node only one is

non-linear, one can make a choice to describe that node’s dynamics in either charge or �ux variables such

that the non-linearity will be part of the potential energy keeping the kinetic energy a quadratic from. If

however both the capacitive and inductive branches are non-linear, than it seems not generally possible

to �nd a Lagrangian that would generate Kirchho�’s laws through the Euler-Lagrange equations. A

good description on di�erent approaches exploiting the duality in circuit theory and the limitations is

given in Ref. [54].
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An extra limitation that we will encounter is that constraints imposed on the system by circuit

nodes connecting only capacitive or only inductive elements can impose non-invertible coordinate

transformation on the equations of motion and the Lagrangian. For the latter it is however always

assumed that any transformation to generalised coordinates is invertible [52], see Sec. 5.2.8 for a more

thorough discussion.

4.2 Various linear and non-linear circuit elements
In this section we describe various linear and non-linear circuit elements that will be necessary for

constructing the Lagrangian for the circuit opto-mechanics analogue that is the topic of this thesis. We

start with linear capacitors and inductors and then move to the non-linear inductance in Josephson

tunnel junctions and SQUIDs.

4.2.1 A linear capacitor
Setting the in�uence of any external electric �eld zero, the charge on a capacitor is to good approximation

linearly related to the voltage across it

Vb = f (qb) =
qb

Cb

(4.19)

where Cb is the capacitance of the branch.

Capacitive energy

Using Eqs. (4.19) and (4.6b) the energy stored in a linear capacitor is found to be

EC =

∫ t

−∞

qC

C
ÛqC dt =

∫ qC(t )

qC(−∞)

qC

C
dqC =

qC
2

2C
(4.20)

where we have set the charge at t = −∞ to zero, as is consistent with a system starting completely at

rest.

Because we will be choosing generalised �ux as coordinate for the Lagrangian, we �rst express

energy in terms of voltage using the constitutive relation (4.19) and then substitute Eq. (4.5a)

EC =
1

2
CVC

2 =
1

2
C ÛϕC

2
(4.21)

where ϕC is the branch �ux in an inductive element connected parallel to the capacitor.

4.2.2 A linear inductor
A relation between the generalised �ux and magnetic �ux in an inductor coil is easily derived from

Lenz’s law, which relates the voltage across an inductor to the time-derivative of the magnetic �ux φ in

the inductor

Vb = L
dIb

dt
+

dφb

dt
(4.22)

where we have separated contributions to the �ux from the current Ib and external �elds φb. Substitution

into Eq. (4.1b), the de�nition of generalised �ux, and integration over time from −∞ to the present time t
gives

ϕb =

∫ t

−∞

L
dIb

dt
+

dφb

dt
dt = LIb + φb . (4.23)
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where in accordance with a system completely at rest, we have assumed all �uxes and currents zero at

t = −∞. We see that the generalised �ux in an inductor coil is linearly proportional the magnetic �ux it

contains, the net sum of the contributions from the current through the inductor and external �elds. If

the latter is to ful�l the role of a static biassing �eld, it wil have to be switched on adiabatically between

t = −∞ and t = 0 to avoid inducing any excitations in the electrical network that embeds the inductor.

Inversion of above relation gives the constitutive relation for a linear inductor

Ib =
ϕb − φb

L
(4.24)

in the presence of a static external magnetic �eld.

Energy stored in a linear inductor

Similarly we �nd the energy in an inductor using the consitutive relation (4.24) and Eq. (4.6a)

EL =

∫ t

−∞

IbVb dt = Eo�set +

∫ t

0

ϕb − φb

L
Ûϕb dt = Eo�set +

(ϕb − φb)
2

2L
. (4.25)

The adiabatic switching on of the bias �ux introduces a constant energy o�set that is di�cult to evaluate

but otherwise uninteresting since it does not contribute to any dynamics.

4.2.3 Dealing with a linear mutual inductance

As a small intermezzo, before moving on to the next section, we brie�y introduce how to deal with a

linear mutual inductance. A linear mutual inductance M between two inductors is de�ned such that

the contribution of magnetic �ux in one inductor L1 due to the current I2 in the other is given by

MI2. Because a magnetic mutual inductance is reciprocal, the same relation holds when swapping the

inductors. In practice, the mutual inductance can be expressed in terms of the self-inductances of the

two involved coils

M = k
√
L1L2 , (4.26)

where k ∈ [0, 1] is the coupling coe�cient.

Linear inductors with mutual inductance and static external �ux

We consider the case where two inductors L1 and L2 are interacting through a mutual inductance and

are under the in�uence of external static �uxes φ1 and φ2 respectively. In this case there are three

contributions to the magnetic �ux inside the inductors:

• a contributions from each inductor’s self inductance;

• a contribution from an externally applied static �ux; and

• a contribution emerging from the �ux in another inductor through the mutual inductance.

The circuit relations for the two inductors under in�uence of a mutual inductance are

V1 = L1

dI1

dt
±M

dI2

dt
+

dφ1

dt
(4.27a)

V2 = L2

dI2

dt
±M

dI1

dt
+

dφ2

dt
(4.27b)



4.2. Various linear and non-linear circuit elements 59

where the sign of the mutual inductance terms depends on whether the inductors are aiding- or working

against each other (it depends on the sign convention for the currents and the orientation of the inductors

with respect to each other). Substituting these into the de�nition of generalised �ux (4.1b), we obtain

ϕ1 =

∫ t

−∞

L1

dI1

dt
±M

dI2

dt
+

dφ1

dt
dt = L1I1 ±MI2 + φ1 (4.28a)

ϕ2 =

∫ t

−∞

L2

dI2

dt
±M

dI1

dt
+

dφ2

dt
dt = L2I2 ±MI1 + φ2 (4.28b)

where we have set the currents at t = −∞ to zero and also assume the static external �uxes φ1 and φ2

to be switched on adiabatically from t = −∞ to t = 0. Above set of equations is more conveniently

expressed in matrix notation (
ϕ1 − φ1

ϕ2 − φ2

)
=

(
L1 ±M
±M L2

) (
I1
I2

)
. (4.29)

Solving this set of equations for I1 and I2 is a matter of inverting the inductance matrix. This yields the

constitutive relations for the inductors mutually interacting with each other.(
I1
I2

)
=

1

L1L2 −M2

(
L2 ∓M
∓M L1

) (
ϕ1 − φ1

ϕ2 − φ2

)
. (4.30)

It is also possible to incorporate the external bias �uxes into the circuit description by means of

constraints imposed by Kirchho�’s voltage law in the spirit of Eq. (4.10). For now, since we have not

de�ned any connecting network in this example, we keep the external �ux explicitly in inductors, but do

note that this approach allows one to move the description of external �ux to the constitutive relations

of e.g. Josephson junctions if it occurs in series with the linear inductors in the network topology. This

is usefull because in contrast to linear inductors, a static �ux o�set does in�uence the dynamics in a

non-linear inductor.

Energy stored in a pair of mutually coupled inductors

The energy stored in a pair of inductors coupled through a mutual inductance can be expressed as the

sum of the energies in the respective branches

EL1L2
=

∫ t

−∞

I1V1 + I2V2 dt (4.31)

where the number subscripts denote to which branch the corresponding variable belongs. Using the

constitutive relations (4.30) and Eq. (4.5a) gives the integral

EL1L2
=

∫ t

−∞

1

L1L2 −M2

(
Ûϕ1

Ûϕ2

)T (
L2 ∓M
∓M L1

) (
ϕ1 − φ1

ϕ2 − φ2

)
dt (4.32)

which when evaluated
4
gives

EL1L2
=

1

2

1

L1L2 −M2

(
ϕ1 − φ1

ϕ2 − φ2

)T (
L2 ∓M
∓M L1

) (
ϕ1 − φ1

ϕ2 − φ2

)
+ Eo�set (4.34)

up to an irrelevant energy o�set due to the adiabatic switching on of the bias �uxes between t = −∞
and t = 0.

4
It is interesting to compare this with the expression for the same energy in terms of currents

EM =
1

2
L1I1

2 +
1

2
L2I2

2 ±MI1I2 . (4.33)

this relation can be derived from the expression for work in electrical circuits and Kirchho�’s laws together with the de�nition of

the mutual inductance.
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4.2.4 The Josephson non-linear inductor
For a Josephson tunnel junction, the generalised branch �ux is not a magnetic �ux, but is rather related

to the phase di�erence δ across the junction of the wave-function for the superconducting condensate.

This is made clear by substitution of the Josephson relation for the Josephson voltage Eq. (3.16) into the

de�nition for generalised �ux Eq. (4.1b)

ϕJ =

∫ t

−∞

ϕ0

2π

dδ

dt
dt =

ϕ0

2π
δ . (4.35)

Thus the phase di�erence can be conveniently expressed in terms of generalised �ux

δ = 2π
ϕJ

ϕ0

. (4.36)

Substituting this result into the expression for the Josephson current Eq. (3.14) we obtain the con-

stitutive relation for a Josephson junction

IJ = Ic sin

(
2π

ϕJ

ϕ0

)
, (4.37)

which shows that in the picture of generalised �ux, a Josephson junction is a non-linear inductor, as the

current traversing it can be expressed entirely as a non-linear function of generalised �ux.

Energy stored in a Josephson tunnel element

The energy in a single tunnel junction is easily found through its constitutive relation (4.37)

EJ =

∫ t

−∞

IJ sin

(
2π

ϕJ

ϕ0

)
ÛϕJ dt =

ϕ0IJ

2π

(
1 − cos

(
2π

ϕJ

ϕ0

))
(4.38)

where again we set ϕJ(−∞) = 0 corresponding to current being completely at rest initially.

4.3 Quantum electromagnetic circuit theory
Following the procedure for quantising electromagnetic circuits by Devoret [51], we review a method

for constructing the circuit Lagrangian, transform it to a Hamiltonian, and then quantise the system by

promoting the generalised position and momentum coordinates to quantum operators while imposing

the canonical commutation relations.

4.3.1 Transforming to the Hamiltonian formalism
While in the framework of classical mechanics the Lagrangian and Hamiltonian formalism can be

considered equivalent, quantum mechanics usually is based on a Hamiltonian description of reality. The

Hamiltonian formalism has an advantage in that it allows us to describe the classical physics and the

quantum physics of the system in a more compatible language. We will make use of this by describing

the amplitude of the optical resonator in terms of a complex scalar �eld that corresponds with the

expectation value of the quantum annihilation operator from the second quantisation formalism in

quantum mechanics. More on that later.

In any case, formally a system’s Hamiltonian is de�ned as the Legendre transform of the Lagrangian

H =
∑
x

qxϕx − L (4.39)
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in which the generalised velocities are transformed to the conjugate momenta de�ned as

qx =
∂L

∂ Ûϕx
. (4.40)

Note that whereas the Lagrangian is a function of the generalised coordinates and velocities, the

Hamiltonian is a function of the generalised coordinates and their conjugate momenta.

The equations of motion then are given by Hamilton’s equations

dqx
dt
= −
∂H

∂ϕx
(4.41)

dϕx
dt
=
∂H

∂qx
(4.42)

which generate a set of equations equivalent to the Euler-Lagrange equations.

4.3.2 Describing the Hamiltonian in terms of a complex scalar �eld

Following a book on advanced quantum mechanics [38], in the classical Hamiltonian formalism we bring

the system to a form that closely resembles the second quantisation formalism of quantum mechanics.

For that we �rst rewrite the Hamiltonian in a form that corresponds to that of a set of harmonic oscillators

of mass one

H =
∑
x

1

2

(
Px

2 + ωx
2Qx

2
)
+Hother . (4.43)

We call the Px and Qx the system’s generalised positions and momenta respectively. Note that for this

to be true, the termHother, which describes the interactions and deviations from harmonic behaviour,

should be a small. The next step is to express the Hamiltonian in terms of a kind of complex scalar

coordinates dx de�ned as

dx =
ωxQx + iPx
√

2ωx
. (4.44)

Expressing the generalised position and momentum in terms of the complex scalar coordinates

Qx =
1
√

2ωx
(dx + dx

∗) (4.45a)

Px = −i

√
ωx

2
(dx − dx

∗) , (4.45b)

and substituting the result into the Hamiltonian we obtain

H =
∑
x

ωxdx
∗dx +Hother . (4.46)

This result is already very close to the quantum mechanical description, but misses the commutation

relations.

Note that the dx correspond with the normal coordinates of the harmonic oscillators in the absence
of coupling. These are, however, not the normal coordinates corresponding with the normal modes in

the system of coupled resonators that may hybridise in any non-trivial way.
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4.3.3 Going from a classical to a quantum mechanical circuit description
The next step is to treat the system as a set of harmonic oscillators, promote the position and momentum

variables to quantum operators and impose the right commutation relations, which according to Dirac [55]

are related to the Poisson brackets from classical mechanics.

For the conjugate momentum and generalised coordinate pairs in the Hamiltonian, the commutation

relations are

[Qx , Px ] = i~ . (4.47)

Further, since the system is a set of harmonic oscillators, the Hamiltonian can be written in terms of

boson creation and annihilation operators by the substitution

Qx =

√
~

2ωx

(
ax + ax

†
)

(4.48)

Px = −i

√
~ωx

2

(
ax − ax

†
)

(4.49)

where the creation ax and annihilation ax
†

operators are de�ned as

ax =
ωxQx + iPx
√

2~ωx
(4.50)

and satisfy the commutation relations

[ax ,ax
†] = 1 . (4.51)

Afterwards, the Hamiltonian can be brought to a from similar to

H =
∑
x

~ωx

(
ax
†ax +

1

2

)
+Hother (4.52)

where Hother describes any interaction between the oscillators, deviations from harmonic behaviour, or

coupling to other systems such as a thermal environment or a forcing one one or more of the oscillators.



Chapter 5

Deriving the opto-mechanical
coupling from the circuit Lagrangian

Opto-mechanics is a �eld that is traditionally focused on the interaction between an optical resonator

and a mechanical resonator. An optical resonator can be seen as two mirrors trapping a standing

electromagnetic wave. Typically the mechanical resonator constitutes a vibrating end mirror of the

optical cavity. The mechanical oscillator, in its oscillating back and forth movement, changes the length

of the optical cavity and thereby changes its resonance frequency. This scheme is schematically explained

in �gure 5.1a.

Mechanics Cavity

(a) Traditional opto-mechanics setup.

Mechanics Cavity

C1 L1 C2

La Lbϕe

Ic Ic

CJ

CJ

(b) Lumped element analogue.

Figure 5.1: Side to side drawing of (a) a cavity opto-mechanics setup and (b) a lumped element analogue
of that system with the interaction being mediated by a SQUID as variable inductance. The LC-resonator
on the le� whose components are labelled 1 is the analogue of the mechanical resonator, while the SQUID
resonator on the right with embedded SQUID corresponds to a microwave cavity. The capacitances always
present in the tunnel junctions are represented asCa andCb in parallel to their respective Josephson junctions
incorporated as x’s in the circuit. The Inductance of the SQUID loop is represented as La and Lb in the two
branches, each equal to half the total self inductance L` of the loop. Biassing of the SQUID by an external
flux is incorporated as a constant external flux ϕe threading the loop, which will be taken into account as
residing half in each of the two inductors part of the loop, but with opposite orientation.

In a more general sense, opto-mechanics is a �eld that focusses on a parametric coupling between

two resonators, in which a quadrature of one oscillator sets the frequency of the other resonator. The

latter can also be realised in an analogue system consisting of two electrical resonators where the

strength of the inductor (i.e. an embedded SQUID) in one is a function of the of the magnetic �ux in the

other as drawn in Fig. 5.1b. In essence, the circuit consists of two electrical resonators, an LC-resonator

63
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and a similar resonator where the inductor is replaced by a SQUID ful�lling the role of �ux tuneable

inductor. An interaction is established by a mutual inductance M between the SQUID loop and inductor

L1. The magnetic �ux in inductor L1 then modi�es the e�ective inductance of the SQUID as seen from

capacitorC2 and thereby tunes the resonance frequency of the SQUID-resonator. This should establish an

opto-mechanical kind of interaction between the electrical resonators, where the �ux in the LC-resonator

is the analogue for the position of the mechanical oscillator. The SQUID-resonator then is the analogue

of the optical cavity.

This idea has �rst been proposed in Ref. [30] for a setup with transmission line resonators as

discussed in the sections 2.2.4 and 3.2.2. In this chapter we analyse a lumped element varient of the circuit

analogue of an opto-mechanical system as depicted in Figs. 5.1. We �rst derive the classical equations of

motion from Kirchho�’s laws and then construct the circuit Lagrangian. It is demonstrated how current

traversing the SQUID can generate a �ux in the SQUID loop, exerting a radiation pressure force on the

LC-resonator through the mutual inductance. In order to quantise the system, we Legendre transform the

Lagrangian to a Hamiltonian and then apply the canonical quantisation postulate. We will also discuss

the implications the intrinsic non-linearity of the SQUID may have. A goal is to map the expressions in

terms of circuit parameters to the corresponding parameters in cavity opto-mechanics.

5.1 Lumped element SQUID opto-mechanics curcuit
The full circuit for the lumped element SQUID opto-mechanics setup is drawn in Fig. 5.1b. The circuit

consists of three parts:

1. An LC-resonator, whose element are labelled with 1 in the circuit diagram, which ful�ls the role

analogue to the mechanical resonator in opto-mechanics.

2. A SQUID-resonator, ful�lling the role of the optical cavity in opto-mechanics. The frequency

tuneability by the “mechanical” resonator will be mediated by the SQUID and a mutual inductance.

3. The SQUID embedded ful�ls the double role as inductance in the “optical” cavity, and together

with the mutual inductance as mediator for the interaction between the two resonators. It is

formed by the loop containing two Josephson junctions a and b whose respective capacitances are

represented in the circuit diagram by a parallel combination with the capacitances Ca and Cb.

The self inductance L` of the SQUID loop is equally divided over the two branches of the loop and

incorporated in the circuit as

La = Lb =
L`
2
. (5.1)

Each of the loop arm inductances La and Lb has an equal but opposite mutual inductance with inductor

L1

Ma = −Mb =
M

2
(5.2)

that is half the net mutual inductance M between the inductor and the SQUID loop inductance.

5.2 Classical equations of motion
Because Josephson junctions are usually made with very high plasma frequency due to the Junction

capacitances being very small, we can work in the limit whereCa = Cb ≈ 0 since their dynamics occur at

much smaller time scales than the other parts of the circuit. This corresponds to neglecting the SQUID

plasma modes. Below we derive the classical equations of motion from the constitutive relations and the

constraints imposed by the network topology.
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5.2.1 Inductance matrix
Let us �rst give the expressions for the magnetic �uxes in the linear inductors as a function of branch

currents in the absence of an externally applied �elds

©­«
ϕL1

ϕLa

ϕLb

ª®¬ = ©­«
L1

M
2
−M

2
M
2

L`

2
0

−M
2

0
L`

2

ª®¬ ©­«
I1
Ia
Ib

ª®¬ (5.3)

expressed as a matrix equation where ϕe is an external bias �ux. Since the two branches of the SQUID

are connected in a loop, we can de�ne

Ì ≡
Ia − Ib

2
and IΣ ≡ Ia + Ib , (5.4)

respectively a loop current and a net current traversing the loop. Transforming to these new variables

and de�ning analogously

ϕ` ≡ ϕLa
− ϕLb

and ϕLΣ
≡
ϕLa
+ ϕLb

2
, (5.5)

respectively the loop �ux and orthogonal average magnetic loop arm �ux, we rewrite Eq. (5.3) as

©­«
ϕL1

ϕ`
ϕLΣ

ª®¬ = ©­«
L1 M 0

M L` 0

0 0
L`

4

ª®¬ ©­«
I1
Ì

IΣ

ª®¬ . (5.6)

In this form the inductance matrix is easily inverted giving us the branch currents as a function of the

�ux variables ©­«
I1
Ì

IΣ

ª®¬ = 1

L1L` −M2

©­­«
L` −M 0

−M L1 0

0 0
4(L1L`−M2)

L`

ª®®¬
©­«
ϕL1

ϕ`
ϕLΣ

ª®¬ . (5.7)

5.2.2 SQUID inductances and constraints
Referring to Sec. 3.1.4, the current IΣ traversing over the SQUID as well as the circulating loop current

Ì both are a function of the

averaged sum ϕJΣ
=
ϕa + ϕb

2
and di�erence ∆ϕJ = ϕa − ϕb (5.8)

of the generalised �uxes in the individual junctions (note that the average generalised �ux is directly

related to the average phase as ϕJΣ
=

ϕ0

2πδ0). The latter is related to the loop �ux and any externally

applied �ux by Krichho�’s voltage law

ϕa + ϕLa
− ϕb − ϕLb

= ϕe or equivalently ∆ϕJ = ϕe − ϕ` . (5.9)

Substitution of this constraint into the constitutive relations for the SQUID yields

IΣ = 2Ic cos

(
π

ϕ0

(ϕ` − ϕe)

)
sin

(
2π

ϕ0

ϕJΣ

)
, (5.10a)

Ì = −Ic cos

(
2π

ϕ0

ϕJΣ

)
sin

(
π

ϕ0

(ϕ` − ϕe)

)
. (5.10b)
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5.2.3 Capacitive relations
Referring to Sec. 4.2.1, the current to the linear capacitors can be expressed in terms of the time derivative

of the net generalised �uxes across the in parallel connected capacitive branches

I1 = −C1
Üϕ1 and IΣ = −C2

Üϕ2 , (5.11)

where as derived from Kirchho�’s voltage law ϕ1 = ϕL1
and ϕ2 = ϕJΣ

+ ϕLΣ
are the net generalised �uxes

over the in parallel connected inductive branches.

5.2.4 Two extra constraints in the limit of zero junction capacitances
Before we construct the equations of motion, there is one observation that we must discuss. We have

two expressions for the current IΣ and for the current Ì . This is a consequence of setting the junction

capacitances to zero.

Had we not set the junction capacitances to zero, then the circuit would contain two extra degrees of

freedom, thus two extra equations of motion. These correspond with the plasma modes in the SQUID.

Usually they are of very high frequency and have therefore on the much longer timescales at which the

evolution of the other modes occur negligible e�ects. Setting the junction capacitances to zero however

does transform the equations of motion for the plasma modes to constraints we have encountered twice

in the form of two distinct expressions for the same variable.

The two constraints, for both the SQUID currents equating the two expressions, are

Ì =
−Mϕ1 + L1ϕ`
L1L` −M2

= −Ic cos

(
2π

ϕ0

ϕJΣ

)
sin

(
π

ϕ0

(ϕ` − ϕe)

)
, (5.12a)

IΣ =
4

L`

(
ϕ2 − ϕJΣ

)
= 2Ic cos

(
π

ϕ0

(ϕ` − ϕe)

)
sin

(
2π

ϕ0

ϕJΣ

)
. (5.12b)

These are transcendental expressions that cannot properly be solved analytically. On the other hand,

numerical approximations to their solutions can be found, and this will be useful to �nd the equilibrium

positions of the system. Moreover, if the solutions of the system correspond with small oscillations, then

we can make a Taylor expansion around the equilibrium positions and then considerably simplify the

equations of motion.

5.2.5 Exact equations of motion in the limit of zero junction capacitances
With the circuit elements constitutive relations and the constraints from Kirchho�’ laws and those

imposed by the SQUID with zero junction capacitances, we have a closed set of equations. The equations

of motion are obtained by equating for each capacitor the current coming from the connecting inductive

branches to the current going into the capacitor; this yields two equations of motion

C1
Üϕ1 +

L`ϕ1 −Mϕ`
L1L` −M2

= 0 , (5.13a)

C2
Üϕ2 +

4

L`

(
ϕ2 − ϕJΣ

)
= 0 . (5.13b)

Then the constraints should be embedded. In order to do that we must �rst solve the constraints in

Eqs. (5.12) in closed form for two di�erent variables

ϕ1 =
Ic
M

(
L1L` −M

2
)

cos

(
2π

ϕ0

ϕJΣ

)
sin

(
π

ϕ0

(ϕ` − ϕe)

)
+
L1

M
ϕ` , (5.14a)

ϕ2 = ϕJΣ
+ Ic

L`
2

cos

(
π

ϕ0

(ϕ` − ϕe)

)
sin

(
2π

ϕ0

ϕJΣ

)
. (5.14b)
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Note that there are only two variables for which we can bring the constraints to closed form. It constitutes

a non-invertible map from the squid phase coordinates to the integrated voltages the capacitors see.

Combing the equations of motion with the constraints gives

C1

d
2

dt2

(
L1

M
ϕ` +

L1L` −M
2

M
Ic cos

(
2π

ϕ0

ϕJΣ

)
sin

(
π

ϕ0

(ϕ` − ϕe)

))
+

1

M
ϕ` +

L`
M

Ic cos

(
2π

ϕ0

ϕJΣ

)
sin

(
π

ϕ0

(ϕ` − ϕe)

)
= 0

(5.15a)

C2

d
2

dt2

(
ϕJΣ
+ Ic

L`
2

cos

(
π

ϕ0

(ϕ` − ϕe)

)
sin

(
2π

ϕ0

ϕJΣ

))
+ 2Ic cos

(
π

ϕ0

(ϕ` − ϕe)

)
sin

(
2π

ϕ0

ϕJΣ

)
= 0 (5.15b)

which in the limit of zero junction capacitances are the exact equations of motion for this system. Observe

how, if one works out the derivatives, the coordinate transformation has in a way made the capacitors

non-linear. Note also that by employing a non-invertible transformation to new coordinates, there may

be side e�ects of a more mathematical nature. I have no idea how to generally solve these equations of

motion, but let’s see what we can derive from them
1
.

5.2.6 Equilibrium positions
The second of the constraints, Eq. (5.12b), corresponds with the current IΣ traversing the SQUID. Since

the current is collected by a capacitor and it would be unphysical to build up in�nite charge on the

capacitor plates, we can safely assume that in static equilibrium the current is zero. Then because the IΣ
is odd symmetric with respect to the generalised �ux ϕJΣ

, we deduce that in static equilibrium

ϕJΣ
= 0 , (5.16)

if there is no symmetry breaking synchronisation between ϕ` and ϕJΣ
.

The �rst constraint, the one related to the loop current is in general non-zero at equilibrium. However,

the constraint solved for the inductor �ux Eq. (5.14a) can be substituted into the equation for the current

in inductor L1, the �rst of Eqs. (5.7), which yields

I1 =
L`ϕ1 −Mϕ`
L1L` −M2

=
IcL`
M

cos

(
2π

ϕ0

ϕJΣ

)
sin

(
π

ϕ0

(ϕ` − ϕe)

)
+

1

M
ϕ` (5.17)

Requiring the current I1 to be zero, as should be the case at static equilibrium together with the already

discussed equilibrium position in ϕJΣ
, gives an expression for the equilibrium position in the loop �ux

IcL`cos

(
2π

ϕ0

ϕJΣ

)
sin

(
π

ϕ0

(
ϕ` − ϕe

))
+ ϕ` = 0 . (5.18)

An overline indicates the average of its argument. The odd symmetry in this constraint is broken by

the addition of an extra bias �ux ϕe under the sine function. Therefore in general ϕ` 0 0. Also, because

the expression contains the sum of a linear and a trigonometric term that are both a function of ϕ1, this

transcendental equation must be solved self consistently. As a side note, this relation, if we leave out the

averaging, is actually the same relation we would have obtained had we neglected the mutual inductance

and added the contributions to the loop �ux from an external magnetic �eld and the loop current; this is

to be expected as a mutual inductance is just a channel for externally applying a �ux into the SQUID

loop.

When ϕJΣ
is not identically zero for all time but some function that is oscillating around zero, then

the cosine shifts away from unity as a function of its amplitude. This can be interpreted as a kind of

radiation pressure force shifting the displacing the equilibrium point of the loop �ux.

1
It is also very di�cult, perhaps impossible, to �nd a Lagrangian that would generate these equations of motion.
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Figure 5.2: Equilibrium position for the loop flux as a function of external flux applied to the SQUID loop at
zero radiation pressure, or equivalently solutions to the self consistency relation Eq. (5.18) for di�erent loop
inductances or critical currents, under zero radiation pressure, i.e. with ϕJΣ

= 0 for all time. Note that there
is an asymmetry causing the loop flux to be periodic with two flux quanta instead of one with respect to
the externally applied flux. However, the boundary conditions for the superconducting condensate in the
SQUID are periodic with one flux quantum. This means that, taking the previous two statements together,
the solution for the loop flux is bi-stable. Radiation pressure, may decrease the e�ect. Generally speaking
however, the e�ect only becomes significant for large loop inductances and critical currents.

Further, as can be seen in a plot, Fig. 5.2, of a numerical solution to Eq. (5.18) for the equilibrium

loop �ux under zero radiation pressure as a function of external �ux, there seems to be a doubling in

the oscillation period of ϕ` as a function of ϕe from one �ux quantum to two �ux quanta. This would

make the solution for ϕ` depend on whether the externally applied loop �ux ϕe is near an even or an

odd integer �ux quanta. This seems strange, since usually there should be no speci�c preference for

any speci�c number of �ux quanta (i.e. some kind of guage invariance). In fact there can be no such

preference since, as we have derived in Sec. 3.1.4, the boundary conditions on the wave-function for

the superconducting condensate in a SQUID are invariant to any integer shift in the amount of loop

�ux-quanta. This means that the system is bi-stable in loop �ux; this is similar to what is the case in a

�ux qubit [56].

There are a couple of other consequences to mention about the external �ux induced symmetry

breaking. One consequence is that, whenever the slope of the linear term is less steep than that of the

trigonometric term with respect to ϕ` ,

IcL`
π

ϕ0

> 1 , (5.19)

there may exist even more solutions for the loop �ux equilibrium point depending on �ux biassing.

Figure 5.3 graphically demonstrates above’s statement.

5.2.7 A �rst attempt at an approximate solution
Given that we are interested in oscillatory harmonic like solutions, we note that for such solutions of

small amplitudes a Taylor expansion to second order usually gives a reasonably good approximation of

the dynamics. What makes the equations of motion complicated is the non-linear nature of the Josephson

junctions; not only that, but also the non-linear constraint we need to impose on the system due to the

inductances with and in the SQUID loop.
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Figure 5.3: Graphical solution for the equilibrium loop flux. Note that when the amplitude of the trigono-
metric term exceeds unity, more than one solutions may be possible depending on the external flux. For the
figure, the flux tuning was set to a quarter flux quantum.

A Taylor expansion up to leading terms of the trigonometric terms brings the constraint to the form

α1ϕ1 + α`ϕ` + αΣϕJΣ

2 − α0 = 0 , (5.20a)

β2ϕ2 − βΣϕJΣ
− β`ϕ` + β0 = 0 . (5.20b)

While this set of equations can be solved for both the pairs ϕ1, ϕ2 and ϕ` , ϕJΣ
, there are two solutions for

the last pair which correspond with the same ϕ1 and ϕ2. This is caused by the squared term
2
in the �rst

equation. Thus the constraints constitute a two-to-one map of the coordinates ϕ` , ϕJΣ
to ϕ1, ϕ2.

Because the two solutions for ϕ` with ϕJΣ
correspond to physically di�erent conditions, this makes

one wonder whether it is valid to incorporate such a coordinate transformation in the equations of

motion. After some though, I believe this is no problem for the reason that a speci�c solution to the

equations of motion depends on the initial conditions of the system, which actually constitute a choice

along which of the two possible paths the system starts
3
. Thus working in the coordinates ϕ` and ϕJΣ

,

we postpone the choice, while if we choose to work in the coordinates ϕ1 and ϕ2 we make the choice

explicit.

5.2.8 A complication in Lagrangian mechanics
Since our goal is to �nd a quantised Hamiltonian description of this system, through a path called

canonical quantisation, we need to derive a Lagrangian that would generate the same equations of

motion as we have derived, be it in its exact form or a Taylor expanded version. It is here that a

complication arises.

A Lagrangian is essentially de�ned for mechanical systems as the total kinetic energy minus the

potential energy in the system

L = Ekin − Epot . (5.21)

The equations of motion are then generated from the Lagrangian by the Euler-Lagrange equations

d

dt

∂L

∂ Ûxn
−
∂L

∂xn
= 0 for any coordinate n in the system . (5.22)

Here an over-dot denotes a time derivative. The Euler-Lagrange equations can be derived from Newton’s

laws or by a variational method (Hamilton’s principle), however an explanation is beyond the scope of

2
We cannot neglect this term since it is of the same order as the radiation pressure force which as we shall see is quadratic in

the same variable.
3
There may be a problem if there are conditions at which the coordinates and velocities are the same for both possible evolution

trajectories.



70 Chapter 5. Deriving the opto-mechanical coupling from the circuit Lagrangian

this work; for further reading on that topic consult a book such as Ref. [52]. An important property of

the Lagrangian is that under a transformation to new coordinates, the Euler-Lagrange equations remain

invariant. The latter is not the case if the transformation to new coordinates is not one-to-one. The

book by Goldstein on classical mechanics mentions that it is always assumed that the transformation is

invertible [52].

Given that we are dealing with a two-to-one coordinate transformation, the complication mentioned

above applies to our system. A way around could be to instead of merging two branches to one, as

occurs when transforming to ϕ` and ϕJΣ
, speci�cally choose one branch of the two possible paths for

the transformation to the variables ϕ1 and ϕ2. One could say that in that case, the transformation is

invertible, but I cannot say for sure until I have successfully applied this to our system. In any case, if

this works, then the equations of motion and the Lagrangian would be quite a complicated function of

its coordinates, since solving Eqs. (5.20) for ϕ` and ϕJΣ
is algebraically complicated.

For now, we will try to �nd a regime in which the non-linear coordinate transformation is avoided.

5.2.9 Small loop inductance approximation

The complications we have encountered are due to non-invertible constraints in the form of self-

consistency relations that emerge due to the non-linear Josephson inductances being a function of the

�ux in the linear inductances in the SQUID loop. In Eqs. (5.14), it is clear that the self-consistency relations

vanish when the the self and mutual inductances in the SQUID loop are set to zero. With that we arrive

at the goal this section discusses, which is to �nd an approximation regime where we can accurately

describe the system yet avoid the complications arising from the mentioned loop inductances.

Starting with the constraint in Eq. (5.14b), we see that

ϕ2 ≈ ϕJΣ
for IcL` � ϕJΣ

, (5.23)

that, if the average junction �ux is much larger than the average magnetic �ux in the arms of the loop,

we can regard the net �ux in the SQUID cavity as equivalent to the average generalised �ux across the

tunnel junctions. This removes the bifurcation in the solution of the constraints for ϕJΣ
. Note that in

order for the loop inductance to be small while maintaining a signi�cant mutual inductance, the latter

being de�ned as M ≡ k
√
L1L` with 0 ≤ k ≤ 1, one requires the inductance L1 to be large.

For the other constraint in Eq. (5.14a), we similarly see that

ϕ1 ≈
L1

M
for IcM �

L1

M
ϕ` . (5.24)

where we have essentially applied the same approximation but for the mutual inductance.

There is a problem however, which we encounter upon substitution of these simpli�ed constraints

into the unconstrained equations of motion Eqs. (5.13). We not only decouple the LC-resonator from the

SQUID—thereby removing all inter resonator interactions—but we also bring the SQUID-cavity equation

of motion into unde�ned territory by essentially dividing zero by zero. The here proposed simpli�cations

are therefore too strong and a more re�ned approximation is needed.

5.2.10 First order recursive approximation

The constraints presented in Eqs. (5.14) are what is called self-consistency relations; a relation of that

kind equates a variable to a function of the same variable. The solution is the position in the variable

for which the values of both are consistent to the relation between them. The main point to be made

is that the constraints we are dealing with can be solved implicitly for the variables in question as a
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transcendental function of themselves. The constraints in Eqs. (5.14) therefore have a recursive structure

as exempli�ed below for both of them

ϕ` =
M

L1

ϕ1 −
Ic
L1

(
L1L` −M

2
)

cos

(
2π

ϕ0

ϕJΣ

)
sin

(
π

ϕ0

(ϕ` − ϕe)

)
=

M

L1

ϕ1 −
Ic
L1

(
L1L` −M

2
)

cos

(
2π

ϕ0

ϕJΣ

)
× sin

(
π

ϕ0

(
M

L1

ϕ1 −
Ic
L1

(
L1L` −M

2
)

cos

(
2π

ϕ0

ϕJΣ

)
sin

(
π

ϕ0

(ϕ` − ϕe)

)
− ϕe

) )
,

(5.25a)

ϕJΣ
= ϕ2 −

IcL`
2

cos

(
π

ϕ0

(ϕ` − ϕe)

)
sin

(
2π

ϕ0

ϕJΣ

)
= ϕ2 −

IcL`
2

cos

(
π

ϕ0

(ϕ` − ϕe)

)
sin

(
2π

ϕ0

(
ϕ2 −

IcL`
2

cos

(
π

ϕ0

(ϕ` − ϕe)

)
sin

(
2π

ϕ0

ϕJΣ

))) (5.25b)

where we have essentially substituted the solution into itself for both relations. Because the two relation

are actually inter-depend on each solutions, the recursion should actually be done in two dimension, one

for each self-consistent variable. With that the constraints after a single recursion are written as

ϕ` =
M

L1

ϕ1 −
Ic
L1

(
L1L` −M

2
)

cos

(
2π

ϕ0

(
ϕ2 −

IcL`
2

cos

(
π

ϕ0

(ϕ` − ϕe)

)
sin

(
2π

ϕ0

ϕJΣ

)))
× sin

(
π

ϕ0

(
M

L1

ϕ1 −
Ic
L1

(
L1L` −M

2
)

cos

(
2π

ϕ0

ϕJΣ

)
sin

(
π

ϕ0

(ϕ` − ϕe)

)
− ϕe

) )
,

(5.26a)

ϕJΣ
= ϕ2 −

IcL`
2

cos

(
π

ϕ0

(
M

L1

ϕ1 −
Ic
L1

(
L1L` −M

2
)

cos

(
2π

ϕ0

ϕJΣ

)
sin

(
π

ϕ0

(ϕ` − ϕe)

)
− ϕe

))
× sin

(
2π

ϕ0

(
ϕ2 −

IcL`
2

cos

(
π

ϕ0

(ϕ` − ϕe)

)
sin

(
2π

ϕ0

ϕJΣ

)))
.

(5.26b)

In principle one can recur like this inde�nitely, but for the sake of simplicity we keep the number of

iterations at one. The main point is that this provides a path for a more re�ned approximation by

truncating the recursive structure. That is achieved by setting both the variables ϕ` and ϕJΣ
according to

a guess for which we choose zero
4

ϕJΣ
≈ ϕ2 −

IcL`
2

cos

(
π

ϕ0

(
M

L1

ϕ1 − ϕe

))
sin

(
2π

ϕ0

ϕ2

)
(5.27a)

ϕ` ≈
M

L1

ϕ1 −
Ic
L1

(
L1L` −M

2
)

cos

(
2π

ϕ0

ϕ2

)
sin

(
π

ϕ0

(
M

L1

ϕ1 − ϕe

) )
. (5.27b)

This way we avoid the linearisation and uncoupling of the LC-resonator to the SQUID and restore

the SQUID-cavity equation of motion. Note that while the error in the loop �ux ϕ` introduced by the

truncation may be absorbed into an e�ect external �ux tuning ϕe, this cannot be done for the generalised

SQUID �ux ϕJΣ
since its dynamics are odd symmetric around zero; we therefore need the loop inductance

L` to be small compared to the SQUID inductance.

One may wonder how accurate this �rst order recursive approximation is. It is probably a quiet crude

description of the actual solution which can be seen as being the result of an in�nite recursive chain, so

4
The equilibrium position for the loop �ux ϕ` would arguably be a better choice for the loop �ux variable. The e�ect to �rst

order, however, is a relatively uninteresting shift in the �ux biassing; that is if we are not crossing a critical point from which the

recursive approximation would start converging to a di�erent solution when there is more than one possible, see section 5.2.6.
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Figure 5.4: Average magnetic flux in inductor L1 as a function of bias flux ϕe in the SQUID loop and zero
radiation pressure, or equivalently solutions to the self consistency relation Eq. (5.29a) for di�erent mutual
inductances. The critical current for the Josephson junctions is Ic = 0.75 µA and the inductor self inductance
L1 = 2.6 nH. Note that there is an asymmetry causing the inductor flux to be periodic with two flux quanta
instead of one with respect to the externally applied flux ϕe. The the strength o� the asymmetry is also
influenced by the critical current Ic. Radiation pressure, referring may decrease the e�ect. Generally speaking
however, the e�ect only becomes significant for large mutual inductances. Given a small loop inductance
L` = 10

−15, a more realistic value is M ∝
√
L1L` ∝ 10

−12.

de�nitely the approximation is di�erent. On the other hand, since �guratively speaking all elements in

the recursive chain are identical, and the approximation embeds one such element, its characteristics

should be similar, but probably of a strength slightly stronger or weaker than in the real solution.

5.2.11 Approximate equations of motion

Combining the simpli�ed constraints in Eqs. (5.27) together with the unconstrained equations of motion

presented in Eqs. (5.13), gives the approximate equations of motion

C1

d
2ϕ1

dt2
+

1

L1

ϕ1 +
M

L1

Ic cos

(
2π

ϕ0

ϕ2

)
sin

(
π

ϕ0

(
M

L1

ϕ1 − ϕe

))
= 0 (5.28a)

C2

d
2ϕ2

dt2
+ 2Ic cos

(
π

ϕ0

(
M

L1

ϕ1 − ϕe

))
sin

(
2π

ϕ0

ϕ2

)
= 0 . (5.28b)

Note that in the approximation we now use �ux variables corresponding to what the capacitors see.

5.2.12 Equilibrium position inductor �ux

Since the time derivatives in the equations of motion should be zero on average, we have from the

approximate equations of motion Eqs. (5.28) two expression for the average currents in the two resonators
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as a function of the cavity coordinates rather than the SQUID coordinates

I1 =
ϕ1

L1

+
MIc
L1

cos

(
2πϕ2

ϕ0

)
sin

(
π

ϕ0

(
M

L1

ϕ1 − ϕe

))
= 0 (5.29a)

I2 = 2Iccos

(
π

ϕ0

(
M

L1

ϕ1 − ϕe

))
sin

(
2πϕ2

ϕ0

)
= 0 (5.29b)

which are both zero since it would be rather unphysical to build up in�nite charge on the capacitors.

Here we have made use of the odd symmetry in the sine function around zero, and have taken the liberty

of approximating the sine function in the �rst equation with an o�set term as being locally linear. We

see that

ϕ2 = 0 from symmetry, but also that ϕ1 , 0 (5.30)

due to the odd symmetry around the equilibrium point being broken in Eq. (5.29a) caused by the external

tuning �ux ϕe under the sine function. These are very similar to the one we derived earlier for the SQUID

variables ϕ` and ϕJΣ
. See Fig. 5.4 for a plot of the average inductor �ux as a function of �ux biassing

under zero radiation pressure.

Observe that modulation of the critical current by oscillations in ϕ2 cause an on average non-zero

shift in the displacement of ϕ1. Further, the equilibrium positions in ϕ1 and ϕ2 determine the point around

which ideally a Taylor expansion should be taken, which we will later do to simplify the description of

the system we are discussing.

5.3 Circuit Lagrangian
The next task is to �nd a Lagrangian that generates the same equations of motion as we have derived

in the preceding section. In doing so we �nd expressions for what can be considered the analogue for

kinetic and potential energy in classical mechanics. Since it is for reasons already discussed di�cult to

�nd a Lagrangian for the exact equations of motion, we in this section derive a Lagrangian corresponding

with the approximate equations of motion.

5.3.1 Approximate Lagrangian
Because the time derivatives in the approximate equations of motion (5.28) operate on linear functions,

it is easy to verify that they are Euler-Lagrange equations that are generated from the Lagrangian

L =
1

2
C1
Ûϕ1

2
+

1

2
C2
Ûϕ2

2
−

1

2

1

L1

ϕ1
2 +

Icϕ0

π
cos

(
π

ϕ0

(
M

L1

ϕ1 − ϕe

))
cos

(
2π

ϕ0

ϕ2

)
, (5.31)

where we denote a time derivative with a dot above the respective variable as a short hand notation.

Here we recognise as the analogue kinetic energy the energy stored in the capacitors

Ek =
1

2

(
C1
Ûϕ1

2
+C2

Ûϕ2

2
)

(5.32a)

and as the analogue potential energy the sum of the Josephson energy in the SQUID (neglecting energy

in the loop self inductance) and inductive energy in the inductor

Ep =
1

2L1

ϕ1
2 −

Icϕ0

π
cos

(
π

ϕ0

(
M

L1

ϕ1 − ϕe

))
cos

(
2π

ϕ0

ϕ2

)
. (5.32b)
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A notable absence from the energy expressions is the is the inductive energy stored in the SQUID

loop. Evidently, we have in our approximations left out contributions from the loop inductance to the

dynamics. The loop inductance must therefore be small compared to the SQUID inductance for the

approximation to be valid.

5.4 Quantum mechanical description

This section describes the route we take for deriving a quantum mechanical description for the SQUID

opto-mechanics system. First we derive the momenta conjugate to the coordinates used in the Lagrangian.

These are needed for the quantum mechanical commutation relations one needs to impose on the system

in order to satisfy Heisenberg’s uncertainty principle. After the Hamiltonian is derived as a Legendre

transform of the Lagrangian, the system is quantised by promoting the canonically conjugate positions

and momenta to quantum operators and imposing the canonical commutation relations.

5.4.1 Legendre transform the Lagrangian to a Hamiltonian

Before transforming the circuit Lagrangian into a Hamiltonian, we �rst �nd expressions for the conjugate

momenta for each of the generalised coordinates. From its de�nition as a derivative of the Lagrangian

over the respective generalised velocity we obtain

q1 =
∂L

∂ Ûϕ1

= C1
Ûϕ1 , (5.33a)

q2 =
∂L

∂ Ûϕ2

= C2
Ûϕ2 . (5.33b)

The conjugate momenta are seen to correspond respectively with the electrical charges stored on the

capacitors.

Since above two relations are easily inverted, we can express the generalised velocities in terms of

the conjugate momenta. Therefore, a Hamiltonian, de�ned as a Legendre transform of the Lagrangian

from the generalised velocities Ûϕ1 and Ûϕ2 to the conjugate momenta q1 and q2, is obtained as

H =
q1

2

2C1

+
q2

2

2C2

+
ϕ1

2

2L1

−
Icϕ0

π
cos

(
π

ϕ0

(
M

L1

ϕ1 − ϕe

))
cos

(
2π

ϕ0

ϕ2

)
, (5.34)

the sum of the inductive and capacitive energy stored in the system.

5.4.2 Simplifying the Hamiltonian

Before discussing the quantum mechanical aspects of this Hamiltonian, we �rst make the harmonic

nature of the resonant modes as a �rst order approximation explicit. Under the assumption that the

amplitude of oscillation in both resonators is small, the trigonometric expressions for the Josephson

energy are Taylor expanded around the averages of ϕ1 and ϕ2, the �rst of which is non-zero as derived

in Sec. 5.2.12 while the latter is zero.

The non-zero average inductor �ux would create a static o�set term in the Taylor expansion. However,

if one transforms to coordinates centred around the static o�set, the term drops out and is instead absorbed

into ϕe as an e�ective �ux tuning of the SQUID. In this understanding we carry out the expansion around

zero in both the variables, noting that a slight shift in �ux tuning is to be expected. Expanding under the
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given assumptions the Hamiltonian to fourth order around zero yields

H =
q1

2

2C1

+
q2

2

2C2

+
1

2

(
1

L1

+
πIc
ϕ0

(
M

L1

)2

cos

(
πϕe

ϕ0

))
ϕ1

2

+
2πIc
ϕ0

cos

(
πϕe

ϕ0

)
ϕ2

2 −
2Ic
3

(
π

ϕ0

)3

cos

(
πϕe

ϕ0

)
ϕ2

4

+
2IcM

L1

(
π

ϕ0

)2

sin

(
πϕe

ϕ0

)
ϕ1ϕ2

2 − Ic

(
π

ϕ0

)3 (
M

L1

)2

cos

(
πϕe

ϕ0

)
ϕ1

2ϕ2
2

(5.35)

where we have left out constant contributions and contributions of order higher than two in the inductor

�ux ϕ1, but we keep the Du�ng non-linearity in the SQUID-cavity in the Hamiltonian. We further

disregard a linear term in ϕ1 which corresponds with a static displacement in the inductor �ux and thus

only in�uences the SQUID �ux tuning.

Had we carried out the Taylor expansion further, higher order non-linear terms and especially more

interaction terms would have emerged. They will al be of the form

knm
(
ϕ1

)
ϕ1

nϕ2
m

with n ∈ {0, 1, 2 . . .} and m ∈ {0, 2, 4 . . .} . (5.36)

A further thing of note being made explicit in the simpli�ed Hamiltonian is that there is a renormalisation

of the LC-resonator inductance L1. This can be interpreted as the SQUID forming a parallel inductance

L1Σ
=

ϕ0L1
2

πIcM2 cos

(
π
ϕ0
ϕe

) (5.37)

as a consequence of the mutual inductance with the SQUID loop. The e�ect is the result of a second

order term in ϕ1 in the Taylor expansion. Because in the here discussed Hamiltonian description the

e�ect is static, we will leave it out from now on.

5.4.3 Canonical quantisation
We then promote the generalised coordinates and momenta to quantum operators and impose canonical

commutation relation between the conjugate position and momentum pairs
5

[ϕ1,q1] = i~ and [ϕ2,q2] = i~ . (5.38)

Transforming the Hamiltonian to new observables de�ned as

Q1 =
√
C1ϕ1 , P1 =

q1
√
C1

(5.39a)

and

Q2 =
√
C2ϕ2 , P2 =

q2
√
C2

(5.39b)

5
Generally speaking, the commutation relations are related to the classical Poisson brackets

{A, B } = 1→
1

i~
[A, B] = 1

as shown by Dirac [55].
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brings, preserving the commutation relations, the Hamiltonian to a form that corresponds with two

mechanical harmonic oscillators of mass one (the form described in Sec. 4.3.2) plus a non-linear correction

and an interaction term

H =
1

2

(
P1

2 + ω1
2Q1

2
)
+

1

2

(
P2

2 + ω2
2Q2

2
)
+HDu�ng +Hinteraction (5.40)

with

ω1 =
1

√
L1C1

(5.41a)

ω2 =

√
1

C2

4πIc
ϕ0

cos

(
π

ϕ0

ϕe

)
(5.41b)

the resonance frequencies for the two resonators in the absence of interactions and anharmonicity.

The next step is to express the Hamiltonian in terms of boson creation and annihilation operators

a =
ω2Q2 + iP2
√

2~ω2

and b =
ω1Q1 + iP1
√

2~ω1

(5.42)

which, as can be derived from the commutators for the �ux and charge variables, satisfy the commutation

relations

[a,a†] = 1 and [b,b†] = 1 . (5.43)

Note that conforming to literature on opto-mechanics we use the b operators for the LC-resonator as the

mechanical analogue and the a operators for the SQUID-resonator as the analogue optical cavity. With

these de�nitions we may express the �ux and charge observables as

ϕx = ϕzpfx

(
ax + ax

†
)
, qx = −iqzpfx

(
ax − ax

†
)

with x ∈ {1, 2} (5.44)

and as the �ux zero point �uctuations

ϕzpfx
=

√
~

2Cxωx
and qzpfx

=

√
~Cxωx

2
. (5.45)

This results in the following Hamiltonian

H = ~ω1

(
b†b +

1

2

)
+ ~ω2

(
a†a +

1

2

)
− ~

χ

6

(
a + a†

)4

+ ~
д0

2

(
a + a†

)2 (
b + b†

)
− ~

д1

4

(
a + a†

)2 (
b + b†

)2

.

(5.46)

What will be the strength of the Kerr non-linearity is de�ned as

χ =
~

C2
2ω2

2
Ic

(
π

ϕ0

)3

cos

(
π

ϕ0

ϕe

)
=
~

4C2

(
π

ϕ0

)2

. (5.47)

The optomechanical single-photon coupling constant is de�ned as

д0 =
4Ic
C2ω2

√
~

2C1ω1

(
π

ϕ0

)2
M

L1

sin

(
π

ϕ0

ϕe

)
. (5.48)
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One can easily check that the single photon opto-mechanical coupling rate is in fact equivalent to

д0 = −ϕzpf
1

dω2

dϕ1

, (5.49)

in correspondence with the traditional explanation of the opto-mechanical Hamiltonian. Finally, what

later may be regarded the strength of the quadratic opto-mechanical or cross-Kerr interaction is de�ned

as

д1 =
~Ic

C1C2ω1ω2

(
π

ϕ0

)3 (
M

L1

)2

cos

(
πϕe

ϕ0

)
. (5.50)

5.4.4 A further approximation
The term relating to the Du�ng non-linearity can be simpli�ed by expanding the quartic term, and

throwing away terms that do not conserve the number of excitations or energy since we are considering

a closed system
6
. Leaving out constant contributions to the Hamiltonian, we approximate(

a + a†
)4

≈ 6

(
a†a

)2

+ 6a†a . (5.51)

This result is in agreement with what one would obtain had one treated a harmonic oscillator with

perturbation theory using the Du�ng non-linearity as perturbation [57].

Similarly we expand the cubic interaction term ~
д0

2

(
a + a†

)2 (
b + b†

)
and simplify by similarly throw-

ing away all terms that do not preserve energy(
a + a†

)2

= a2 + 2a†a + 1 + a†
2
≈ 2a†a + 1 . (5.52)

Since this is done within a product, the constant appearing in above’s equation carries physical meaning:

It corresponds with a shift in the LC- or analogue mechanical resonator, which, since it is a byproduct of

the non-commutative nature of quantum observables, we may interpret as being caused by the zero-point

�uctuations in the SQUID-resonator, the analogue optical cavity. When taking into account a reference

amplitude, however, the zero-point �uctuation induced displacement cancels out because it is also part

of the reference amplitude.

Doing the same with the quartic interaction term ~
д1

4

(
a + a†

)2 (
b + b†

)2
gives(

a + a†
)2 (

b + b†
)2

≈

(
2a†a + 1

) (
2b†b + 1

)
= 4a†ab†b + 2a†a + 2b†b + 1 . (5.53)

where again we will neglect the static shifts of the two resonator resonance frequencies and the constant

term.

With these approximations and dropping constant terms we may write the Hamiltonian as

H = ~ω1b
†b + ~ω2a

†a − ~χ
(
a†a

)2

+ ~д0a
†a

(
b + b†

)
− ~д1a

†ab†b . (5.54)

Besides the presence of both an opto-mechanical and a cross-Kerr interaction, an addition is a photon

dependent shift of the cavity due to the Kerr non-linearity.

This is the main result of this work. We have derived the leading interactions occurring between the

two resonators in the proposed circuit and we have shown that it includes interactions equivalent to

those that are the focus of the cavity opto-mechanics �eld.

6
Had we added a drive and transformed the Hamiltonian to a frame rotating with the drive frequency, this would be called

the rotating wave approximation. A hand-waving explanation is that in such a rotating frame the neglected terms are rapidly

oscillating with respect to the dynamics occurring in the frame of interest and would therefore average out—in addition to being

o�-resonance with any other part of the system, thus driving no transitions.
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Figure 5.5: Strengths for (a) the single photon opto-mechanical coupling and (b) the cross Kerr interaction,
both as a function of loop flux. Screening e�ects due to the mutual inductance and self-inductance are
neglected. The parameters for this system are as follows: C1 = 1.88 nF, C2 = 9.21 pF, L1 = 2.6 nH, Ic = 0.75

µA, and M = 1 pH assuming a loop inductance of L` = 10
−3 pH; the parameters are however unoptimised.

5.4.5 Characterisation
The opto-mechanical single photon coupling strength is plotted in Fig. 5.5a as a function of loop �ux.

With the parameters given in that �gure, the strength of the Kerr non-linearity is
χ

2π = 1.05 MHz, much

stronger than the opto-mechanical coupling as in the plot. The cross-Kerr interaction is insigni�cant

compared to all the other terms in the Hamiltonian. The question is whether we can increase д0 while

decreasing χ by optimising the parameters.

The self-Kerr non-linearity as expressed by Eq. (5.47) is made smaller by increasing the SQUID-cavity

capacitanceC2. In order to keep the resonance frequency ω2 constant, one must then increase the critical

current Ic. The latter has however, as discussed in Sec. 5.2.6, may introduce a bi-stability in the SQUID

loop �ux.

Referring to Eq. (5.48) and Eqs. (5.41), the single photon opto-mechanical coupling strength is increased

by increasing both the resonance frequencies ω1 and ω2, as well as increasing the mutual inductance

M . The latter, however, requires one to increase the SQUID loop inductance, which would complicate

the SQUID dynamics; or increase the inductor inductance L1, which reduces the resonance frequency

ω1. On the other hand decreasing the capacitance C1 has no such limitations. The increase in resonance

frequency ω2 is limited by the self-Kerr non-linearity χ and one’s ability to fabricate large critical current

Josephson junctions.



Chapter 6

Conclusion and Outlook

The main result presented in this work is an investigation of an approach to analogue simulation of an

opto-mechanical system with a superconducting lumped element circuit.

In contrast to microwave implementations of opto-mechanical systems, where in an LC-resonator

one of the capacitor plates constitutes a mechanical drum and hence the capacitance is a function of

mechanical position, the implementation considered here employs the variable inductance of a SQUID in

the harmonic limit. Since the inductance of a SQUID is a function of �ux threading its loop, the analogue

of the mechanical position is the �ux of an additional LC-resonator whose magnetic �ux threads the

SQUID loop. The idea is that this makes the frequency of the resonator embedding the SQUID a function

of the �ux in the other resonator, similar to how in cavity opto-mechanics the relative position of the

mirrors in an optical resonator sets the cavity resonance frequency.

6.1 SQUID opto-mechanics with loop inductances
An analysis has been conducted on the interaction between an inductor and a SQUID through a mutual

inductance with the inductor and SQUID loop. The results are relations between the currents and

voltages across the inductor and the SQUID including its constitutive parts, which are the inductances

and junctions in both arms of its loop. Since we are considering any capacitance in the junctions as

negligible, we can in principle eliminate two of the four degrees of freedom and express the net voltage

across the SQUID and the inductor in terms of the loop �ux and the average of the gauge invariant phases

across the two tunnel junctions. From the two net voltage relations two expressions for the generalised

�uxes across the SQUID and inductor in terms of the phase and loop �ux are easily derived—these in

essence constitute the constraints by which the number of degrees of freedom in the system is reduced.

Arranging the inductor in parallel with a capacitor and doing the same with the SQUID gives us

the setup for the lumped element analogue opto-mechanics simulation. The equations of motion are

obtained by equating the current from each capacitor to the current through the corresponding in parallel

connected inductive element (Kirchho�’s current law). These equations of motion are expressed in terms

of the �ux through the SQUID loop and the average phase across the SQUID.

6.1.1 Complications in Lagrangian mechanics
There is a problem however that arises when we try to �nd a Lagrangian that would generate the same

equations of motion: The relations between the resonator generalised �uxes (the constraints) and the

loop �ux with the average junction phase do not constitute an invertible one-to-one map, but rather a

non-linear many-to-one map. This seems to give problems in Lagrangian mechanics because in general

79



80 Chapter 6. Conclusion and Outlook

the equations of motion are not invariant for the the speci�c branch in the transformation along which

the system dynamics are evolving. Since a Lagrangian does not encode such information, a Lagrangian

circuit description for these kinds of systems may therefore not exist.

It is known that canonical circuit quantisation schemes only work when each pair of conjugate

capacitive and inductive branches has only zero or one of the two containing non-linearities. In a sense,

the non-invertible transformation to the generalised coordinates has made the linear capacitors in the

circuit e�ectively non-linear. Note however that in our case, this is not a limitation in circuit theory

having to do the with the invertibility of either the capacitive or the inductive branch connecting to a

circuit node, it is rather a limitation in Lagrangian mechanics.

6.1.2 A way out?

A way around this complication might be to Taylor expand the constraints around a point at one of

the possible solutions and truncating before multiple solutions become possible, thus constructing a

locally valid one-to-one map for the constraint. This approach is problematic as even quadratic terms

may introduce multiple solutions which then prohibits the inclusion of any cubic (as required for

opto-mechanics) or higher order interaction terms.

Another approach is to include the junction capacitances
1
, thereby eliminating the constraints but

increasing the degrees of freedom to four. This approach has not been attempted (however do see the

appendix for a start) but should in principle allow us to �nd an exact Lagrangian description since it does

not involve any non-linear transformation and the underlying circuit contains only linear capacitors.

Moreover, if successful, we may be able to eliminate two degrees of freedom from the system by taking the

limit to zero junction capacitances on the level of the Lagrangian or Hamiltonian, but after transforming

it to a normal mode basis where the two plasma modes (in the basis of the loop �ux and average junction

phase such that their linear interaction with each other decouples) hybridise pairwise with the two

cavity modes due to a linear interaction mediated by the loop self and mutual inductances; thus avoiding

the non-linear constraint by letting the two now hybridised plasma mode frequencies approach in�nity

e�ectively rendering the corresponding degrees of freedom inaccessible.

6.1.3 Speculations on consequences and possible applications

The above mentioned complications are a consequence of putting tunnel junctions in series with linear

inductances. The precise dynamics that emerge from such setups are non-linear and may admit more

than one stable solution. The former is intrinsic to Josephson junctions, but the latter follows speci�cally

from the interplay between the linear inductances and the junctions. An interesting application of the

bi-stability in loop �ux we encountered is in the �ux qubit whose state is encoded in the occupation of

two stable loop �ux states. What makes this interesting is that the phases of the resonant modes coupled

to the SQUID depend on the branch taken in the bifurcation of the SQUID state—one could consider this

a kind of symmetry breaking; the same should apply to the interaction between the resonant modes.

For example consider �ux-biassing the SQUID loop to halve a �ux quantum in the opto-mechanics

simulation setup; then, due to even symmetry and the existence of two solutions for the net loop �ux

(akin to a �ux qubit), the opto-mechanical interaction for both solutions di�er in sign but are otherwise

identical. Now doing opto-mechanical driving of the LC-resonator through OMIT there are two possible

coherent states into which the system can be driven, di�ering only by a π phase shift. Something to look

into for future experiments would be to use techniques developed for the �ux-qubit to bring the SQUID

1
Incidentally there is a note in the lecture notes by Devoret [51] that mentions that there should be no node connected to only

inductances (and that the sub-network of capacitances must be connex) in order for the conjugate momenta to be de�ned. This

would not have been relevant had the elimination of the corresponding degrees of freedom through non-linear constraints not

given us problems in the Lagrangian mechanics.
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in a superposition without altering the dynamics of interaction between the resonant modes. This could

e.g. be used to drive the LC-resonator into a cat state starting from a superposition of the SQUID
2
.

Whether this may be possible might depend on the degree of anharmonicity in the resonant modes

since the theory of opto-mechanics is formulated assuming harmonic resonances.

6.2 SQUID opto-mechanics in �rst order recursive approxima-
tion with small loop inductances

For this thesis, another path has been followed as, also with a Taylor expansion of the trigonometric

terms, the equations of motion are not easy to analyse due to mixed time derivatives, making it di�cult

to �nd the normal coordinates. Instead we tried to �nd a solution in the limit where the SQUID loop

inductances can be considered small such that self-reference disappears from the constraints. This

approach did not work because it removes the SQUID mediated interaction between the resonators and

brings the SQUID cavity equation of motion into unde�ned territory.

The way out as employed here is to substitute the self-consistency relations into themselves and then

make the small loop inductances approximation. This way we truncate the in�nitely recursive structure

in the self-consistency relations. We will have to accept a deviation in the predicted interaction strengths,

but the main characteristics should remain intact because a single instance of the self-consistency

relations (which essentially contains all the information) is embedded in the approximation; only the

cumulative e�ects in the in�nite structure are left out.

In this approximation, we have inverted self-consistency relations opening the way to express the

equations of motion in terms of cavity variables rather then SQUID variables while maintaining the

interaction between them but also non-linearities, not only in the interaction but also in the resonant

modes. The latter is inherent in circuits incorporating tunnel junctions and can be made weaker by

increasing the capacitance of the SQUID cavity
3

(and increasing the critical to compensate for the change

in the cavity resonance frequency). Increasing the critical current however has the same strengthening

e�ect on the bi-stability in loop �ux as the loop inductance. The opto-mechanical interaction can be

made stronger by increasing the frequency of both the resonators as well as the mutual inductance;

for the latter one must however take care to keep the loop inductance small compared to the SQUID

inductance.

For the approximate equations of motion a classical Lagrangian and Hamiltonian are easily derived

without the need for a Taylor expansion of the trigonometric terms. Doing the latter to second order

in LC-resonator �ux and to fourth order in the SQUID-cavity �ux gives quadratic terms for the �ux in

both resonators corresponding to a harmonic oscillator, a quartic du�ng or self-Kerr non-linearity in

the SQUID-cavity, a cubic radiation pressure interaction term linear in LC-resonator �ux but quadratic

in the SQUID-cavity �ux, and a quartic interaction term quadratic in both the resonator �uxes which

corresponds with a quadratic opto-mechanical or a cross-Kerr interaction. The latter is however much

weaker than all the other terms in the Hamiltonian.

Following the canonical quantisation procedure and introducing creation and annihilation operators

we obtain a Hamiltonian that can easily be transformed to the standard opto-mechanics Hamiltonian

by leaving out terms that do not conserve energy. E�ects of losses and external driving can be added

through input-output theory (see e.g. an appendix in Ref. [12] or a chapter in Ref. [4] for an introduction),

2
Speculating a bit further, a similar bifurcation also exists in the generalised �ux across the SQUID and one could imagine

adding current biassing the SQUID-cavity. Generally speaking the opto-mechanics simulation setup in analogy may be considered

twice the combination of resonant modes with a spin (the Hilbert space is the direct product of the resonant modes with the spin

states) interacting opto-mechanically. From a theoretical point of view the system has quite a bit of symmetry and it is only �ux

biassing (or current biassing) that allows the asymmetric opto-mechanical interaction to emerge.
3
Or by employing an array of SQUIDS which allows one to keep the inductance constant while lowering the non-linearity.
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and from this the semi-classical and quantum equations of motion are usually obtained, but that is not

anything new with respect to the Hamiltonian of an opto-mechanical system.

6.3 Final remarks
The essence of this work is a rigorous derivation of the Hamiltonian of a circuit consisting of two

resonators interacting through a mutual inductance with a SQUID embedded in one of the resonators.

We have shown that under

• a loop inductance that is small compared to the SQUID inductance, and

• a recursive approximation, truncated after one iteration, for the self-consistency relations imposed

on the circuit as constraint by the SQUID,

such a device is described by an opto-mechanical kind of Hamiltonian.

Therefore the circuit is shown to be indeed an analogue simulation of said systems. In contrast

to earlier work, we have fully incorporated the mutual inductance in the model and have from that

explicitly derived the interaction. We are thus able to fully explain the physics behind the interaction

whereas in earlier work it has been derived on a more phenomenological level emerging as a seeming

action at a distance from the dependence of the resonance frequency in one resonator on the �ux from

the other resonator.

The results can be used for optimising the circuit parameters for the analogue simulation in order to

try increasing the coupling strength and to try reaching the single photon strong coupling regime. Note,

however, that the e�ects of loop inductances are incorporated in simpli�ed form and likely result in a

di�erent coupling strength in practice; a numerical approximation for the self-consistency relations may

allow for a more accurate prediction of the opto-mechanical interaction strengths.
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Appendix - full Hamiltonian for the
SQUID opto-mechanics circuit

In this appendix we derive the circuit Hamiltonian for the full circuit including plasma modes for the

SQUID opto-mechanics circuit. To get a better overview of the degrees of freedom we have rearranged

the network as drawn in Fig. 1. Because this circuit is topologically a bit more complicated we will apply

the method of nodes for �nding the degrees of freedom, as explained in Ref. [51].

Figure 1: The opto-mechanics simulation circuit rearranged to emphasize the di�erent node flux degrees of
freedom. The nodes are labelled 1, 2, a and b and marked as such in drawing. The SQUID loop self inductance
is divided with even symmetry over the arms, while the external flux tuning and mutual inductance are
divided with odd symmetry over the loop arms.

Method of nodes

The circuit has six nodes, but since there are two disjoint circuits, we have chosen two nodes as

corresponding with ground. At the remaining nodes we de�ne so-called node �uxes as

Φn =

∫ t

−∞

Vn dt (1)

the time integral of the net voltage at the node relative to ground. A node �ux corresponds to the net

sum of branch �uxes in any path connecting the node to ground. Note that branch �uxes correspond

with the di�erence between the node �uxes in the connecting nodes. This way the circuit constitutive

relations are easily expressed in terms of node �uxes.

The next step is to de�ne a spanning tree connecting each node to ground by a path that does not

form any loops. For our purpose it is most convenient to choose the tree such that it contains only

inductive branches. Note that all branches not in the spanning tree, the capacitive branches with our

choice of spanning tree, are closure branches which when combined with the spanning tree form loops.
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The equations of motion, four for our circuit, are then obtained by equating the currents arriving at a

node from the inductive branches to the current leaving into the capacitive branches. For this to work in

terms of �ux variables, the constitutive relations need to be known, and one needs to be able to invert

the capacitive ones.

Inductive constitutive relations

The constitutive relations for the Josephson junctions are known

Ia = Ic sin

(
2π
ϕa

ϕ0

)
(2)

Ib = Ic sin

(
2π
ϕb

ϕ0

)
(3)

but the relations for the linear inductors are more complicated due to the mutual inductances. To �nd

the constitutive relations for the inductors we need to invert the following set of equations

©­«
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ϕLa
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which we have expressed in branch �uxes for now, the conversion to node �uxes we will do when

deriving the equations of motion. Inverting the inductance matrix we obtain the constitutive relations

for the inductors ©­«
IL1

ILa

ILb

ª®¬ = 1

L1L` −M2

©­­«
L` −M M

−M 2L1L`−M2
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M −M2
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©­«
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ϕLa
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ª®¬ . (5)

Constraints

Before we can write the equations of motion, however, we should consider the constraints imposed by

Kirchho�’s voltage law, which states that in a loop, all branch �uxes plus any external magnetic �ux

threading the loop should add up to zero. This must be taken into account when writing the constitutive

relations in terms of node �uxes. The constraints are

ϕL1
= ϕC1

= Φ1 (6a)

ϕLa
= ϕC2

− ϕa +
ϕe

2
= Φ2 −Φa +

ϕe

2
(6b)

ϕLb
= ϕC2

− ϕb −
ϕe

2
= Φ2 −Φb −

ϕe

2
(6c)

where we have also written the linear inductive branches in terms of the node �uxes.

Equations of motion

The equations of motion are obtained by

C1
ÜϕL1
+ IL1

= 0 (7a)

C2
Üϕ2 + ILa

+ ILb
= 0 (7b)

CJ
Üϕa + Ia − ILa

= 0 (7c)

CJ
Üϕb + Ib − ILb

= 0 (7d)
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for each node equating the currents arriving at the node from the inductive branches (i.e. the spanning

tree) to the current going into the capacitive branch from the node. This gives together with the

constraints

C1
ÜΦ1 +

L`Φ1 +MΦa −MΦb −Mϕe

L1L` −M2
= 0 (8a)
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4

L`
Φ2 = 0 (8b)
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Φa

ϕ0

)
−

2

L`
Φ2 +

MΦ1 −
M2

L`
Φb +

1

L`

(
2L1L` −M

2
)
Φa − L1ϕe

L1L` −M2
= 0 (8c)

CJ
ÜΦb + Ic sin

(
2π
Φb

ϕ0

)
−

2

L`
Φ2 +

−MΦ1 −
M2

L`
Φa +

1

L`

(
2L1L` −M

2
)
Φb + L1ϕe

L1L` −M2
= 0 . (8d)

These equations of motion become much compacter if we transform the representation from the

junction coordinates to the average junction �ux and loop �ux relative to the external �ux bias

ϕ` = ϕLa
− ϕLb

= Φb −Φa + ϕe (9a)

ϕΣ =
Φb +Φa

2
(9b)

as coordinates, which yields

C1
ÜΦ1 +

L`Φ1 −Mϕ`
L1L` −M2

= 0 (10a)

C2
ÜΦ2 −

4

L`
ϕΣ +

4

L`
Φ2 = 0 (10b)

2CJ
ÜϕΣ + 2Ic cos

(
π
ϕ` − ϕe

ϕ0

)
sin

(
2π
ϕΣ
ϕ0

)
−

4

L`
Φ2 +

4

L`
ϕΣ = 0 (10c)

CJ

2

Üϕ` + Ic cos

(
2π
ϕΣ
ϕ0

)
sin

(
π
ϕ` − ϕe

ϕ0

)
+
−MΦ1 + L1ϕ`
L1L` −M2

= 0 . (10d)

Observe that in this basis the linear interaction between the plasma modes decouples. Also note that if

we take the limit CJ → 0 we will obtain the same transcendental constraints we encountered earlier in

this work.

Circuit Lagrangian and Hamiltonian

Instead, however, we try to �nd a Lagrangian that generates above equations of motion, which, after a

bit of work, is found as

L =
C1

2

ÛΦ1

2
+
C2

2

ÛΦ2

2
+CJ

ÛϕΣ
2
+
CJ

4

Ûϕ`
2

−
1

2

L`
L1L` −M2

Φ1
2 −

1

2

L1

L1L` −M2
ϕ`

2 −
2

L`
Φ2

2 −
2

L`
ϕΣ

2

+
Icϕ0

π
cos

(
π
ϕ` − ϕe

ϕ0

)
cos

(
2π
ϕΣ
ϕ0

)
+

M

L1L` −M2
Φ1ϕ` +

4

L`
Φ2ϕΣ .

(11)
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If we convert the result to a Hamiltonian and Taylor expand the trigonometric term up to second order

and leading interaction terms, we obtain

H =
q1

2

2C1

+
q2

2

2C2

+
qΣ

2

4CJ

+
q`

2

C J
+

1

2

L`
L1L` −M2

Φ1
2 +

2

L`
Φ2

2

+
1

2

(
L1

L1L` −M2
+ Ic

π

ϕ0

cos

(
π
ϕe

ϕ0

))
ϕ`

2 +
1

2

(
4

L`
+ 4Ic

π

ϕ0

cos

(
π
ϕe

ϕ0

))
ϕΣ

2

+ 2Ic

(
π

ϕ0

)2

sin

(
π
ϕe

ϕ0

)
ϕ`ϕΣ

2 −
M

L1L` −M2
Φ1ϕ` −

4

L`
Φ2ϕΣ

(12)

where we drop a meaningless constant contributions and a static displacements of the loop �ux; the �rst

does not contribute to the dynamics while the latter only induces a shift in the e�ective �ux biassing.

The conjugate momenta correspond with charge on the respective capacitors, and for the plasma modes

respectively with the total charge and the charge di�erence in both junctions.

This Hamiltonian consists of four Harmonic oscillators labelled 1 and 2 for the two circuit modes,

and ` and Σ for the two plasma modes. The uncoupled resonance frequencies are seen to be

ω1 =

√
L`

C1 (L1L` −M2)
(13a)

ω2 =

√
4

C2L`
(13b)

ω` =

√
2

CJ

(
L1

L1L` −M2
+ Ic

π

ϕ0

cos

(
π
ϕe

ϕ0

))
(13c)

ωΣ =

√
1

2CJ

(
4

L`
+ 4Ic

π

ϕ0

cos

(
π
ϕe

ϕ0

))
(13d)

but do note that apart from the opto-mechanical interaction there is a linear interaction mediated by the

SQUID loop inductances between the resonators 1 and `, and between 2 and Σ. The linear interaction

causes the oscillator pairs to hybridise, upon which four new modes with di�erent resonance frequencies

emerge.

Quantisation

The next step is to quantise this system in terms of boson creation and annihilation operators. For that

we substitute

ϕx =

√
~

2Cxωx

(
ax + a

†
x

)
and qx = −i

√
~Cxωx

2

(
ax − a

†
x

)
(14)

with [
ax ,a

†
x
]
= 1 and x ∈ {1, 2, `, Σ} (15)
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and where we take CΣ = 2CJ and C` =
CJ

2
. The result, leaving out constant contributions, is

H =~ω1a
†
1
a1 + ~ω2a

†
2
a2 + ~ω`a

†

`
a` + ~ωΣa

†

ΣaΣ

+
~

2

Ic
CJωΣ

√
~

CJω`

(
π

ϕ0

)2

sin

(
π
ϕe

ϕ0

) (
a` + a

†

`

) (
aΣ + a

†

Σ

)2

−
~

2

√
2

CJC1ω`ω1

M

L1L` −M2

(
a1 + a

†
1

) (
a` + a

†

`

)
−
~

2

√
1

2CJC2ωΣω2

4

L`

(
a2 + a

†
2

) (
aΣ + a

†

Σ

)
.

(16)

Discussion

The results presented in this appendix in their current form are merely useful for qualitatively discussing

the dynamics of the circuit. In the given basis, there are two pairs of linearly interacted modes, each pair

coupling a plasma mode and a circuit mode of highly di�erent frequency, while a radiation pressure kind

of interaction exists between the two plasma modes. The problem is that the descriptions are presented

in the wrong basis. For the case of very small loop inductance and very small junction capacitances,

this becomes especially evident, not only in the diverging uncoupled resonance frequencies, but also in

divergences in the linear interaction terms.

While it is to be expected that plasma modes become unbounded in the limit of zero junction

capacitance, this can not be the case for the remaining two circuit modes. It is therefore important to

�nd the normal modes for the circuit. The latter can be done in the absence of the radiation pressure

interaction since it is much weaker than the linear interactions. A transformation to a basis spanned by

these modes, corresponds to a block diagonalisation of the Hamiltonian around the radiation pressure

interaction. The latter then should become a four mode opto-mechanical interaction, though two would

likely be of inaccessibly high frequency.

In a classical picture, �nding the normal modes in a system of linearly coupled harmonic oscillators

is a solved problem, though a bit tedious. I therefore leave it as an exercise for the reader. In quantum

mechanics, there should similarly exist a unitary transformation that decouples linear interactions

between harmonic oscillators.
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