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1. Introduction 3

Abstract

Resting-state fMRI (rs-fMRI) has become an important imaging modality and is commonly used to
study intrinsic brain networks. These networks can be obtained by decomposing rs-fMRI data into
components, using independent component analysis (ICA). Recently, these ICA components have
been used as inputs for neural networks to learn complex relations between the intrinsic networks of
the brain and mental disorders or demographic variables. Instead of training a non-linear classifier on
these linearly decomposed components, this work asks whether unsupervised representation learning
can lead to linearly separable representations for multiple downstream tasks.

We propose to apply non-linear representation learning to voxelwise rs-fMRI data. Learning the non-
linear representations is done using two versions of a variational autoencoder (VAE). The first version
is a vanilla VAE with 3D residual blocks in both its encoder and decoder. The second version is based
on the identifiable VAE and uses a time-dependent prior. The models train to reconstruct the original
input data from latent variables it infers. Three predictive models then evaluate the predictive power
of the latent variables on an age regression, a sex classification, and a schizophrenia classification
task. Each of the predictive models performs predictions for each of the three tasks. The predictive
models are a support vector machine (SVM), a k-nearest neighbor (k-NN) model, and a long short-term
memory (LSTM) neural network.

We show that our method performs exceptionally well on the age regression and sex classification
tasks without any supervision. These results imply that VAEs can model predictive variations in their
latent spaces for demographic variables. The models, however, do not do well on the schizophre-
nia classification task, even when the models are pretrained. Despite the lower performance on the
schizophrenia classification task, the overall results are encouraging and pave the way for future work
on voxelwise representation learning.

Keywords: variational autoencoder, resting-state fMRI, schizophrenia, deep learning, neural networks,
representation learning.

over time. There has been tremendous progress
in the understanding of mental disorders through
linear representation learning techniques, such
as independent component analysis (ICA) [15,
59]. These techniques have opened up the ability
to study large-scale functional connectivity differ-
ences in complex mental disorders such as autism
spectrum disorder (ASD) and schizophrenia, ei-
ther statically or dynamically [12, 36, 61]. The
success of linear representation learning and the
increased use of deep learning methods in the

1. Introduction

1.1. Significance

Itis important to understand the functionality of the
brain, not only as a philosophical pursuit, but more
so to be able to understand and effectively treat
mental disorders. The brain is inherently a func-
tional dynamic system governed by the interac-
tions between and the firing of neurons. Complex
diseases like schizophrenia are considered neu-
rodevelopmental disorders that can develop tran-

siently [9, 35] and are related to a wide range
of factors, such as genetic susceptibility, demo-
graphic variables such as paternal age [57], the
external environment, and even effects down to
molecular changes [9]. This is why it is of the ut-
most importance to both understand the develop-
ment of these changes but also what changes in
the brain are linked to mental disorders or the risk
of obtaining mental disorders in the future. Es-
pecially since mental disorders have one of the
highest mortality rates among the most substan-
tial deaths worldwide [87].

Mental disorders are studied through multiple
neuroimaging techniques, but resting-state func-
tional MRI (rs-fMRI) has become increasingly im-
portant because it allows researchers to image
the functional dynamics of a subject’s resting brain

field of neuroimaging [53], paves the way towards
analyzing these functional differences using deep
learning techniques. Findings obtained with deep
learning analyses can be complemented with pre-
vious research and linear representation learning
to move towards individualized predictions [80],
a better understanding of mental disorders, and
more effective individualized treatment.

1.2. Context

Deep learning methods in fields other than rs-fMRI
analysis are often applied to minimally processed
data. An important side note here is that these
non-fMRI datasets are often also one or two mag-
nitudes larger than many rs-fMRI datasets. In the
case of rs-fMRI analysis, however, most meth-
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ods use supervised classification methods. These
methods are generally used because neural net-
works gained attention for their outstanding classi-
fication performance, most famously on ImageNet
[48, 76]. The non-linearities that neural networks
can model are thus interesting when it comes
to mental disorder classifications too. Especially
because deep learning models such as convo-
lutional neural networks [20, 51] can more effi-
ciently work with large input dimensionalities com-
pared to more classical machine learning meth-
ods, for example. A 3-dimensional adaptation
of supervised convolutional neural networks has
been shown to obtain robust discriminative neu-
roimaging biomarkers [1].

Methods like independent component analysis
(ICA) and principal component analysis (PCA) as-
sume that the data is generated through some
unseen factors. These factors are often referred
to as intrinsic networks for ICA because they are
spatially independent and interpretable as sep-
arate localized functional networks in the brain.
The idea of finding the generative factors in rs-
fMRI data has been extended to early unsuper-
vised deep learning models like restricted Boltz-
mann machines (RBMs) [29]. Other unsupervised
methods have since been popularized for non-
rs-fMRI data, especially variational autoencoders
(VAEs) [42] have gained attention due to their in-
terpretable latent space and ability to variationally
learn generative factors that fit a certain prior. Pre-
vious work evaluates representation learning with
VAEs on rs-fMRI data that has first undergone di-
mensionality reduction [39, 58, 88, 89]. These di-
mensionality reductions may incur overly specific
inductive biases and as a result limit the expres-
sivity of deep learning methods, especially since
neural networks, are considered universal function
approximators [31].

1.3. Problem statement

This work, therefore, looks at whether unsuper-
vised deep learning methods can learn informative
representations from minimally processed voxel-
wise rs-fMRI data that has not undergone dimen-
sionality reduction(s). Similar to previous work [1]
and unpublished work [2], this work evaluates rep-
resentations on downstream age regression and
sex prediction tasks. The downstream tasks in
this work are however evaluated with represen-
tations obtained through unsupervised learning.
Due to its success as an unsupervised represen-
tation learning technique, this work uses a vari-
ational autoencoder (VAE) [42], which learns to
maximize the lower bound on the marginal likeli-
hood of the training data.

One of the main reasons that this work consid-
ers the age regression and sex prediction task as
the main downstream tasks, is the availability of
a large rs-fMRI dataset that records both demo-
graphic factors. In this work, we find that large
datasets are necessary for representation learn-
ing from minimally processed rs-fMRI data. The
introduced method is also evaluated on three com-
bined schizophrenia datasets with and without first
pre-training the model on the larger age regression
and sex prediction dataset [16, 56]. To evaluate
the effect of the dimensionality of the representa-
tions on downstream task performance, the age
and sex prediction tasks are performed with rep-
resentations of varying sizes. These results are
compared to a linear baseline that performs princi-
pal component analysis (PCA) with a varying num-
ber of components.

2. Resting-state fMRI

2.1. Physiology

Studying the functionality of the brain has long
been an area of interest with many research fields
emerging from its search for answers. Measuring
what parts of the brain are activated when perform-
ing a certain task is one of the main ways in which
the brain’s functionality is studied. Brain activity is
generally defined as the combined firing of multiple
spatially coherent neurons. To find out which brain
areas are active, metrics have been devised to
measure the activity of neurons or groups of neu-
rons. One common way of measuring brain activ-
ity in the 1980s was to measure the regional blood
flow near the neurons in the cortex of the brain;
the regional cerebral blood flow (rCBF). This was
mostly done using positron emission tomography
(PET) imaging which, as a drawback, has a low
spatial resolution. In 1990, Ogawa, who worked
at Bell Labs at the time, was the first person to
show that magnetic resonance imaging (MRI) can
be used to measure the rCBF with a much better
spatial resolution than PET scanners [64]. They
named it contrast, dependent on blood oxygena-
tion, the finding evolved into what is now known
as functional magnetic resonance imaging (fMRI)
and has become one of the most popular imaging
modalities to study brain activity.

2.2. Blood oxygenation level-

dependent imaging
Magnetic resonance imaging (MRI) uses the mag-
netic properties of molecules to image anatomy.
The contrast between oxygenated and deoxy-
genated blood is caused by hemoglobin. Deoxy-
genated hemoglobin (dHb), which is hemoglobin
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that has not bound any oxygen molecules, causes
disturbances in the applied magnetic field in
the MRI scanner [54]. These small magnetic
fields are referred to as paramagnetism. Oxy-
genated hemoglobin (oHb) is not paramagnetic.
Hemoglobin is found in red blood cells and the
relative concentrations of dHb and oHb can be
measured due to the field inhomogeneities that
are caused by dHb’s paramagnetic property [54].
Simply put, Ogawa et al. [64] have shown that
the relative amount of oxygen delivery relative to
the oxygen consumption can be imaged. Oxygen
consumption leads to deoxygenated hemoglobin
and oxygen delivery leads to larger concentrations
of oxygenated hemoglobin. This imbalance is a
proxy for neural activity, the blood oxygenation
level-dependent (BOLD) signal can therefore be
used as an approximate measure of brain activity.
It is important to note that an increase in brain ac-
tivation causes an increase in BOLD signal. The
BOLD signal is the most common method used
in fMRI imaging. A simplified representation of
BOLD imaging is shown in Figure 1.

2.3. BOLD in rs-fMRI

The brain remains functional during rest and be-
cause the BOLD signal images the underlying
physiological process, fMRI time series imaged in
its resting state can lead to a better understanding
of the functional connectivity of the brain. The rela-
tionship between transient blood flow and electro-
cortical activity [22] and the functional relationship
between different brain regions [19] were already
being explored before its application in fMRI. Elec-
trocortical activity is invasive to record, however,
because it requires electrodes to be placed on the
brain, inside of the skull. It also only images small
parts of the brain at once.

The transient blood flow patterns imaged with
fMRI can be used to find functional connectivity be-
tween brain regions at rest [7]. Recording brains
at rest with fMRI is called resting-state fMRI (rs-
fMRI) and has become a growing and important
research field. Resting-state fMRI can be used to
find temporally correlated activations in separate
brain regions.

The signal obtained with rs-fMRI is often as-
sumed to be decomposable into a smaller number
of generative factors. The behavior of the brain as
a distributed network of these generative factors
can help further our understanding of the organi-
zation and connectivity of the brain. This can in
turn lead to a better understanding of brain disor-
ders [18].

2.4. Schizophrenia

Schizophrenia is a mental disorder that is re-
lated to both structural and functional changes in
the brain. It causes a disintegration between a
person’s thoughts and emotions. Patients with
schizophrenia can start hallucinating, stop being
able to express emotions effectively, and have dif-
ficulties with attention, concentration, and mem-
ory [63]. Finding representations that can accu-
rately classify schizophrenia will lead to a better
understanding of this incredibly complex disease,
and may also lead to a more objective diagnostic
tool that could aid a psychiatrist with their diagno-
sis. Underlying non-linear dynamics likely give rise
to complex diseases like schizophrenia. Analyz-
ing schizophrenia using non-linear representation
learning is therefore important complementary in-
formation to the existing linear methods with which
the disorder is often studied.

3. Related work

Rs-fMRI data is extremely high dimensional com-
pared to common deep learning datasets. An rs-
fMRI time series consists of several timesteps,
where each timestep is a volume. This can lead
to over a million voxels per subject, whereas most
deep learning datasets are roughly 32 — by — 32
or 64 — by — 64 pixels. The most common dimen-
sionality reduction technique that is used to study
rs-fMRI data is ICA. It decomposes the 4D rs-fMRI
data using a linear matrix decomposition into inde-
pendent spatial components, where each compo-
nent has a corresponding time series. These inde-
pendent components can be mixed back into 4D
data using the matrix that is learned [5, 36]. Other
techniques may rely on regions of interest (ROIs)
obtained using an atlas, or by preprocessing the
data using software such as FreeSurfer [17].

Some interesting prior work has used varia-
tional autoencoders to analyze rs-fMRI data be-
fore. These works have focused on modeling
functional brain networks and ADHD identification
[72], representation learning [39], automatically
clustering connectivity patterns [89], schizophre-
nia, bipolar disorder and autism spectrum disorder
classification [58], and spatio-temporal trajectory
identification [88]. It is important to note however
that each of these methods performs spatial and
sometimes temporal dimensionality reduction be-
fore they use the data as input for their VAE. In
this work, we want to look at the applicability of
VAEs for representation learning applied to voxel-
wise data.
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Figure 1: A simplified representation of signal that fMRI scanners pick up on, known as BOLD signal.

3.1. Age/sex prediction

Age and sex prediction is not of direct use to med-
ical specialists in the way that biomarkers for men-
tal disorders may be. Being able to predict age and
sex from rs-fMRI data is valuable, however, be-
cause it furthers our knowledge about the aging of
the brain and functional differences in the brain re-
lated to the spectrum of biological sex. Knowledge
about functional changes in the general population
due to aging may be valuable in our understand-
ing of age-related diseases such as Alzheimer’s
disease. Measures like the gap between the pre-
dicted age of the brain and a person’s biological
age may be valuable biomarkers for various disor-
ders.

Prior work on age and sex prediction with rs-
fMRI data does so by looking at functional differ-
ences [86] or by reducing the dimensionality of the
data using an atlas and treating each ROI as a
node in a graph [21]. Another paper uses rs-fMRI
data as a modality together with sMRI and diffu-
sion MRI (dMRI) data to predict age [62]. Each
of these methods performs spatial dimensional-
ity reduction. Other relevant recent work includes
the use of lightweight neural networks to perform
age and sex prediction based on sMRI data [69].
An important difference between this work and
the works mentioned above is that targets are not
available to the model during training. This likely
leads to lower performance compared to super-
vised methods, because the VAE is not specifi-
cally optimized for age regression nor sex predic-
tion. Although achieving comparable performance
to supervised methods, would indicate that unsu-
pervised representation learning can lead to lin-
early separable representations. This work aims
to evaluate the meaningfulness of representations
that are learned in an unsupervised manner using

VAEs.

3.2. Schizophrenia prediction

The early identification or general understanding
of mental disorders is an important topic of re-
search in the neuroimaging research community.
One highly complex mental disorder that shows
functional group differences [12, 36] is schizophre-
nia. Another paper that uses a VAE looks at semi-
supervised schizophrenia classification [58] using
ROls. Other work uses the functional networks ex-
tracted from rs-fMRI data to predict schizophrenia
diagnoses with 3-dimensional convolutional neu-
ral networks [73]. Both of these works require the
targets to be seen during training. Other work that
focuses on unsupervised representation learning
for schizophrenia uses locally linear embeddings
with rs-fMRI ROls as input [78]. rs-fMRI data is
also used in a multimodal study, where translation
between functional and structural MRI data pro-
duces an alignment score that is correlated with
schizophrenia [71].

4. Variational Autoencoders

VAEs have become an important model architec-
ture for unsupervised [43] and semi-supervised
learning [44]. Variational methods are a way of
describing an unknown probability density function
that is hard to sample from and/or approximate,
byways of parametrizing a simpler probability dis-
tribution, such as a Gaussian, in such a way that
it can approximate the unknown distribution [55].
Since VAEs are generative models, the goal is es-
sentially to find the underlying latent factors that
generate the data. This ties back to the assump-
tion in methods like ICA and PCA, that the dimen-
sionality of the latent factors is smaller than the
original dimensionality of the data.
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Figure 2: A visual representation of the variational autoencoder (VAE) that is used in this work. Each volume x(ED for subjects
indexed by i and timepoints for each subject t are reconstructed £ using a sample z(:® drawn from a multivariate diagonal
Gaussian with mean p(9 and variance o(t9). The mean and variance are parameterized using a neural network.

The problem can formally be set as having an
T timepoints and N subjects. Each x* is gen-
erated from an unknown conditional distribution
po (x@0 2D where z(0) is assumed to be a ran-
dom unseen continuous-valued variable sampled
from a prior distribution pg(2) [42]. Both the prior
distribution and the conditional distribution are un-
known and the integral over the marginal proba-
bility of x: pg(x) = [ pe(2)pe(x|2)dz is therefore
intractable. Bayesian variational methods can be
used to tackle this problem however and VAEs
have become a common non-linear method in do-
ing so [42].

VAEs approximate the intractable posterior dis-
tribution pg(z¥|x**) using a recognition model
e (z"F|x"*) [42], which can be thought of as an
encoder from a coding theory perspective. The
conditional distribution pg(x%t|z"*) can then be
thought of as a decoder. This allows us to opti-
mize the evidence lower bound (ELBO), which is
a lower bound on the marginal likelihood of data
point x (0:

log pg (x(0) = L(8, ¢; xD)
= Eq, 2600 [~ 10g 4 (2912 49)
+log pg (x (0, z(40)]
= —Dy (4 (20D |x D) || pa (D))

+ Eqy, i) [log pg (x49120]

(1)

The proof is explained in detail in Kingma and
Welling [42]. The objective function, with which
the VAE is trained, is the average over all the data
points. Both the encoder g4 (z“?|x**")) and de-
coder pyx (0|20 are parametrized as neural net-
works. The loss can then be split into two parts,
the first part minimizes the KL-divergence between
an apriori selected prior and the distribution that is
parametrized by the encoder. Although there is no
clear consensus, rs-fMRI data is often seen or as-
sumed to be normally distributed [50]. The prior
(pg(2)) we thus assume is a diagonal multivariate
normal distribution, where each of the dimensions
of the normal distribution do not explicitly depend
on each other. The second part of Equation 1 max-
imizes the log-likelihood of a data point x(0) given
an estimated latent variable z(*®). Although each
rs-fMRI time point is assumed to be an i.i.d. sam-
ple when training the VAE, the temporal relation
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between the latent variables for a single subject
(z@9, .., zD) is considered during each predic-
tion task. A visual representation of the VAE is
shown in Figure 2.

5. Contributions

This work attempts to learn meaningful represen-
tations by applying a variational autoencoder to
voxelwise rs-fMRI data. Deep learning has started
to become prevalent in the neuroimaging commu-
nity and can capture robust representations [1].
Voxelwise representation learning has especially
become common for structural MRI scans, which
is likely because sMRI is more readily interpretable
and less noisy in comparison to rs-fMRI. Most
deep learning methods that are applied to rs-fMRI
data use dimensionality reductions like ROls or
ICA components. In theory, however, because
neural networks are universal function approxima-
tors [31], they should be possible to learn non-
linear generative factors that explain the distribu-
tion of the data even more accurately. These gen-
erative factors can lead to new insights into how
our brain works functionally. This work uses vari-
ational autoencoders as a non-linear feature ex-
traction method and evaluates its representations
on several different classification tasks with mul-
tiple types of classifiers. Given that rs-fMRI data
is noisy and that there is relatively little data avail-
able compared to other deep learning domains, it
makes sense to pursue an unsupervised method
[16] that is easily extendable and can lead the way
towards non-linear discoveries. Previous work on
transfer learning in rs-fMRI shows promising re-
sults [56]. Given that datasets may be small for
rs-fMRI studies, this work also looks at the effect
of pretraining for voxelwise representation learn-
ing using a VAE.

6. Data

This work uses multiple datasets, one dataset to
do age regression and sex prediction with and an-
other combination of multiple datasets to perform
a schizophrenia classification task on.

6.1. Age and sex dataset

The rs-fMRI that is used for age and sex predic-
tion are subjects without any diagnoses or self-
reported illnesses (n = 12,314). These subjects
were selected from the 22,392 subjects that were
available in the UK Biobank repository on April 7th,
2019 [60]. The subjects have a mean age of 62.58
with a standard deviation of 7.41, 49.6% are fe-
male. The youngest subject is 45 years old and
the oldest is 80. The scanning parameters are ex-

plained in greater depth in Miller et al. [60], how-
ever, an important parameter in this work is the
repetition time (TR = 0.735 seconds). With an ac-
quisition time of 6 minutes, the UK Biobank data
acquires a total of 490 time points. The data is min-
imally preprocessed with the Melodic pipeline [60]
and registered to the MNI EPI template with the
help of FMRIB’s Linear Image Registration Tool
(FLIRT). The registration is followed by normaliza-
tion in SPM12, after which it is smoothed with a
6mm wide FWHM Gaussian kernel. This results
in rs-fIMRI volumes with a size of 53 x 63 x 52 vox-
els, and 490 timepoints per subject. The size of
the volumes and the number of timepoints lead
to large memory requirements during training and
rs-fMRI data can be noisy. To tackle both prob-
lems simultaneously, we use a piecewise aggre-
gate approximation (PAA) to reduce the noise and
memory consumption, while still keeping the trend
of the time series. PAA takes the average over
points in consecutive windows with a certain win-
dow size. For the UK Biobank dataset, the window
size is set to 15, which is equivalent to taking the
average over a period of about 11 seconds. This
reduces the number of time points to 33. A visual
representation of PAA is shown in Figure 3.

Figure 3: An example of piecewise aggregate approximation
(PAA), where the blue points are the original 'noisy’ points and
the red points are the new points after PAA. PAA is able to keep
the same general trajectory, with less noise. It creates multiple
windows with a certain window size and averages the points
inside those windows.

6.2. Schizophrenia datasets

The datasets that are used to evaluate the
potential of the VAE representations to distin-
guish between healthy controls and patients with
schizophrenia are FBIRN [37], B-SNIP [81], and
COBRE [3]. Each dataset was processed using
NeuroMark preprocessing pipeline [15] to obtain
rs-fMRI volumes with a size of 53 x 63 x 52 vox-
els. The number of timesteps for each dataset
differs, but the repetition time is the same (TR =
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2.0 seconds). To make sure each subject has the
same number of time points, we use the lowest
number of timesteps available in a dataset, which
is 100 timesteps in B-SNIP. For scans with more
timesteps, we only use the first 100 timesteps. To
stay in line with the temporal preprocessing that is
done for the UK Biobank dataset, we apply PAA to
these datasets as well, but to account for the differ-
ent repetition times, the window size that is used
is 5. This corresponds to a period of 10 seconds.

7. Methodology

This work proposes to use a variational autoen-
coder to learn representations from voxelwise rs-
fMRI time series. The model is trained on mul-
tiple datasets to evaluate its potential on noisy
and complex neuroimaging data. Learning rep-
resentations with non-linear methods from voxels
directly should theoretically lead to better results
compared to linear methods like PCA, although in
practice it is hard to train large deep learning mod-
els on small datasets effectively. This is especially
true for rs-fMRI data, which is also highly noisy,
due to physiological noise and artifacts introduced
by head movements.

The question this work tries to answer is whether
the generative factors that the VAE finds, con-
tain information about demographic variables and
schizophrenia. Given that unsupervised learn-
ing is less likely to lead to overfitting on smaller
datasets [16] and that VAEs have become an im-
portant method for representation learning [83],
the unsupervised representations it extracts from
voxelwise rs-fMRI time series may be valuable to
further neuroimaging research. Another important
consideration in this work is that VAEs are inher-
ently more insightful because group differences
can be decoded back into brain space. This allows
for a model that does not immediately require ex-
plainability methods to get an insight into regions
that may differ between groups. This reduces bias
because explainability methods may have to be
tuned and the decoder more accurately reflects
the representations that are learned.

The performance of the representations ex-
tracted from the rs-fMRI time series by the VAE will
be compared to a baseline linear method on the
downstream tasks. There is no readily available
baseline, however, because there is not much pre-
vious work that looks at voxelwise rs-fMRI repre-
sentation learning, although unpublished work fo-
cuses on supervised sex classification and age re-
gression on the same dataset used in this work [2].
Supervised methods, however, likely outperform
unsupervised methods because they are trained

specifically for the downstream tasks. Supervised
methods are therefore not a comparable baseline,
although comparing performance can be insight-
ful. One of the most commonly used unsuper-
vised methods to find the generative factors that
underly rs-fMRI data is ICA. An important differ-
ence between ICA and a VAE is that when ICA
is applied to rs-fMRI data, the independence con-
straint is enforced on the voxels in the brain space.
This is not a constraint that can easily or logically
be extended to VAEs. Further, ICA is generally
run multiple times and spatial components may
be manually selected, this also does not transfer
well. Generative VAE factors look nothing like the
spatially localized ICA components that are gen-
erally used in fMRI analyses, especially because
the generative factors model variance throughout
the brain and are not localized to specific areas.
This opens up the opportunity to take a different
direction and look at generative factors that may
not be as visually insightful as spatial ICA compo-
nents and can potentially provide complementary
information about the same dataset. Furthermore,
running ICA analyses on large datasets like UK
Biobank, such as NeuroMark [15], with multiple
numbers of components to compare the method
with the VAE experiments, is too computationally
expensive for this project.

Another method that linearly decomposes data
into several pre-specified components is principal
component analysis (PCA). It turns out that a VAE
is in some sense comparable to PCA in terms of
what components it tends to learn [11, 75]. Given
that PCA and VAE are comparable and that there
are online versions of PCA [4] that do not have
large memory requirements, the baseline for this
work is linear IncrementalPCA [4, 68].

Since one dataset is significantly smaller and
is prone to overfitting, this work also evaluates
whether a model that is pre-trained on a large
dataset like UK Biobank (n=12,314) can be fine-
tuned on the joint schizophrenia datasets (n=901),
to improve representations for schizophrenia clas-
sification.

7.1. Model architecture

The architecture of the model is based on a
ResNet [26]. Each residual block in the encoder
and decoder has a skip connection, the residual
block used in the encoder and decoder are shown
in Figure 4. These skip connections allow the net-
work to learn longer dependencies and have been
used in VAEs before [45] to improve their varia-
tional inference. The specific skip connection in
this work does not have a stochastic and deter-
ministic path, because it does not use hierarchical
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latent variables. The reason it does not use hi-
erarchically conditioned latent variables is that we
assume a single hierarchy of generative factors.
The skip connections in this work thus only have
a deterministic path. The activations that are used
in the network are exponential linear units (ELUs)
[10]. Instead of batch normalization, the network
uses weight normalization [77]. Both the activa-
tion function and the weight normalization are con-
sidered best practices when training VAEs [77].
Batch normalization may lead to drift during infer-
ence in a VAE which can cause unstable results.

Residual block

input

3x3x3 conv

ELU

3x3x3 conv

ELU

Figure 4: The residual block used in the encoder and the de-
coder. For the encoder, the '3x3x3 conv’ is a convolutional
layer with a kernel size of 3, a stride of 2, and padding of 1.
This is the same for the decoder, except it uses a transposed
convolutional layer and the stride is set to 1. The decoder uses
trilinear upsampling layers to increase the spatial size of the
activations.

The encoder consists of five residual blocks,
with 16, 32, 64, 128, and 256 output channels for
each block, respectively. These blocks all down-
scale their original inputs by two until the last resid-
ual block produces an output feature map of 256
x 2 x 2 x 2, which is flattened to 2048 features.
These features are mapped in two separate linear
layers to the mean and the square root of the nat-
ural logarithm of the variance for the multivariate
Gaussian. The layer computes the square root of
the natural logarithm of the variance instead of the
standard deviation to increase the stability of train-
ing the network and to make sure variations due
to gradient updates have a smaller effect on stan-

dard deviations near zero. This allows the network
to model the standard deviations near zero more
accurately. The first layer in the decoder is a linear
layer that maps latent variable z to 2048 features,
which are then reshaped to a 256 x 2 x 2 x 2 feature
map. We use trilinear interpolations on the feature
maps with a scale of two to double the size. The
rest of the decoder consists of five residual blocks,
where each residual block is preceded by a trilin-
ear interpolation layer. The final residual block is
followed by a 1x1x1 transpose convolutional layer,
with a stride of 1, this layer is not followed by any
activation function. In earlier iterations of this work
we tried to use a sigmoid activation on the last
layer, this leads to non-convergence, because the
combination of the mean squared error (MSE) as a
loss function and a sigmoid leads to a non-convex
objective function. Each of the layers is initialized
according to He et al. [26], this initialization is also
used in the original ELU paper [10].

7.2. Unsupervised training

The likelihood function that we use for the output
of the decoder is a normal distribution. Directly op-
timizing normal distributions at each voxel turned
out to be highly unstable. Maximizing a normally
distributed likelihood is equivalent to minimizing
the MSE between the reconstruction and the orig-
inal sample, under the assumption that the stan-
dard deviation of all the voxels is the same. Re-
placing the normal distributions by a single point
and minimizing the MSE norm turned out to be
much more stable. The VAE is trained for 100
epochs using the ADAM optimizer [40] with a
learning rate of 5E — 4. Before the input data is
used it is first rescaled to be between [0, 1], values
below 0.05 are then thresholded to remove possi-
ble background noise.

7.3. Identifiable variational autoen-

coder
Recent work has unified previous work on non-
linear ICA [32-34] and variational autoencoders
[38]. This work proves that conditioning the la-
tent representation z on an additional auxiliary
variable pg (29 |x¢9, 1) leads to an identifiable
model [38]. In the case of our work we choose
the auxiliary variable to be the current time step of
each volume: pg (29 |xED, ). A visual represen-
tation of the identifiable VAE is shown in Figure 5.
The multilayer perceptron (MLP) consists of three
linear layers with a hidden size of 512. The non-
linearities between the layers is an ELU [10] and
each layer is weight normalized [77]. The output of
the last layer in the MLP is mapped to a mean u®
and a variance ¢® using two linear layers, similar
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pad)
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Figure 5: A visual representation of the identifiable VAE, where the prior is conditioned on the timestep t of volume x*t. The
function that is used to map t to ut and ot is a multilayer perceptron (MLP) followed by two linear layers, one for the mean and

one for the variance.

to the VAE. The KL-divergence between a static
prior and the predicted distribution pg (240 |x ()
can then no longer be used. To optimize the MLP
and the VAE conjointly we instead minimize the log
probability of pg (z(#9|x(“)) and maximize the log
probability of p, (z(D|t). This is similar to having
the mean and variance of the prior be timestep-
dependent and maximizing the similarity between
the predicted and the timestep-dependent prior.

The identifiable VAE is compared to the nor-
mal VAE for most experiments to evaluate whether
moving towards identifiable VAEs is a valuable
step for future work. The identifiable VAE is hence-
forth referred to as an iVAE.

7.4. Regression and classification

After training the VAE, there are multiple ways to
evaluate what information is contained in the rep-
resentations (z(9, .., z¢T)). To evaluate whether
the temporal information improves classification
and regression with simple machine learning clas-

sifiers, these classifiers are trained with a sub-
ject’s latent temporal average z(**) and also with a
subject’s concatenated latent time series. This al-
lows us to determine whether the temporal dynam-
ics captured in the latent time series can be used
to improve the performance on the downstream
tasks. The machine learning classifiers that are
used in this work are a support vector machine
(SVM) and a k-nearest neighbor classifier (KNN-
C) for the classification tasks and a support vector
regression (SVR) and k-nearest neighbor regres-
sor (KNN-R) for the age regression task. These
classifiers give us insight into the linear separabil-
ity of the representations (SVM) or how well they
are clustered (KNN-C). To take the temporal infor-
mation between the representations into account
more specifically, we also train a long-short term
memory (LSTM) [30] on the full latent time se-
ries. LSTMs have commonly been used to model
time series and can model temporal relations be-
tween the points to predict a certain target vari-
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able [52]. The LSTM is either trained with a mean
squared error (MSE) for the regression task or a
binary cross-entropy (BCE) loss for the classifica-
tion task. The hidden size for the hidden states
in the LSTM (h©, ..., k() are twice the size of the
input representations, and all of the hidden states
in the LSTM are concatenated together to form a
feature vector that is then mapped to a prediction
using a linear layer. The LSTM that is used for
classification is shown in Figure 6. Since the size
of that feature vector can be quite big, we apply
dropout to the last layer, which is a common tech-
nique to counter overfitting and promote a more
robust prediction model [79].

7.5. Evaluation measures

To be able to compare the results obtained using
each of the methods, we use multiple evaluation
measures. The first measure is used for the clas-
sification tasks and computes the area under the
receiver operating characteristic (ROC-AUC), this
is a more complete way of comparing binary clas-
sifiers. The ROC-AUC does not only look at the
number of correctly classified samples, but also
takes into account the false positive rate (FPR),
and the true positive rate (TPR). To evaluate the
regression task, we use three measures, the first
is the mean average error (MAE) which is the L1-
norm between the predicted age and the correct
age. The second measure is the R2-score, which
is also referred to as the coefficient of determina-
tion. It is proportional to the explained variance in
the true variable. The last measure is the Pear-
son product-moment correlation between the pre-
dicted ages and the true ages. We use multiple
measures to obtain a more complete picture of the
predictions because a low MAE may, for example,
not imply that the predictions necessarily explain
the variance in the true variables.

8. Experiments

8.1. Experimental settings

The code for the VAE was implemented using
PyTorch [67], training was performed with Cata-
lyst [47] and TorchlO [70], and the regression and
classification pipelines were implemented using
RAPIDS-AI [82], scikit-learn [68], and NumPy [85].
Most if not all code was written by the authors of
the paper, especially because voxelwise rs-fMRI
data requires many custom pipelines due to the
size of the data. To minimize costly transfers be-
tween the CPU and the GPU, most of the clas-
sifications were done using RAPIDS-AI [82] , to
make sure the computed representations could be
kept in GPU memory without any copies or trans-

fers from or to the CPU. All of the experiments
were performed on an NVIDIA DGX-1 V100. Due
to time restrictions, the UK Biobank experiments
could only be performed on one train and test split,
because each VAE epoch takes around 45 min-
utes on a single GPU. Training on multiple train-
ing and test folds is essential for the schizophre-
nia task because the variance between predictions
can be large, especially for deep learning mod-
els. The schizophrenia results are thus trained
over 5-folds, where one fold is used as the held-out
set and the other four folds are used as a train-
ing and validation set. To make sure the model
does not overfit, we use an early stopping crite-
rion that stops the model if its loss objective has
not improved on the validation set for 20 epochs.

8.2. Latent dimensionality

To determine the effect that the size of the repre-
sentations has on the performance of the age re-
gression and sex classification tasks, the model
is trained with multiple latent dimensionalities,
specifically: 64, 128, 256, and 512. These tests
are done on the UK Biobank dataset because we
noticed that training on a larger dataset is more
stable.

8.3. Pre-training

Pre-training is valuable for rs-fMRI [56] and as reg-
ularization for low-data regimes in deep learning
[16]. To do so, we train on a larger dataset and
finetune the weights of the neural network on a
smaller dataset. In this case, the work contains
two datasets, one large dataset: UK Biobank,
and one smaller dataset that is comprised of
multiple smaller datasets: FBIRN, COBRE, and
BSNIP. Given that the UK Biobank dataset is
about 12 times bigger, we tested whether initial-
izing a model for the schizophrenia classification
task with a pre-trained model on UK Biobank im-
proves the results on that task. The number of
latent dimensions that are used for the transfer
learning task is 256.

8.4. Baseline

The baseline for this work is IncrementalPCA,
which is implemented in scikit-learn [68]. It is a
PCA that can be trained using batches, which is
necessary because the dataset can not easily be
kept in memory due to its size. Just like with the
VAE, the principal components are obtained for
each volume in a subject’s time series indepen-
dently. The components are also whitened and
after finding the components, they are averaged
over time and then used as inputin an SVM and an
SVR for the sex classification and age regression
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Figure 6: A visual representation of the way the LSTM is used to come to a prediction for a subject. The hidden state for each
time point is taken into account for the prediction. The representation on the right is equivalent to the unrolled version on the

right.

tasks. The sex classification and age regression
tasks are used because they can be done on a
larger dataset, which leads to more robust results.
The schizophrenia task does not always converge
well for the VAE.

9. Results

9.1. Latent spaces

The iVAE is trained with a modified objective, such
that the location of the prior for a volume is based
on an auxiliary variable, in this case, the timestep
of a volume. To inspect how the representations
for an iVAE differ from a VAE in the test set, the
representations are visualized as a 2D figure us-
ing t-SNE [84], as seen in Figure 7. t-SNE approx-
imately preserves local and global distances for
high-dimensional points in a 2-dimensional plot.
The perplexity, a t-SNE hyperparameter, is set to
a low value for this plot to focus on the local differ-
ences. Each timestep is assigned a different color.
Although the plots are fairly similar, the timesteps
in Figure 7b for the iVAE seem to be more dis-
persed around a subject’s cluster. The increased
spread of the timesteps in the latent space is likely
caused by the iVAE’s flexible timestep prior. Fur-
thermore, in both Figures 7a and 7b, the subjects
seem to be clustered in the latent space. This
points towards VAEs learning timesteps from the

same subjects as being similar. One reason that
may cause this is the way the batches are con-
structed. The batches consist of 4 subjects for this
task and because each subject has 33 timesteps,
the optimizer takes gradient steps based only on a
few subjects and more so based on the timesteps
for each subject. This may bias the optimizer to-
wards finding local minima that cluster subjects.

9.2. Latent dimensionality

The age and sex downstream tasks are evaluated
for multiple latent dimensionalities and compared
with a baseline PCA that has the same number of
components. The classification methods are re-
ferred to as SVM and kNN when the representa-
tions for each timestep are concatenated to cre-
ate a single feature vector (z9), ..., z(D) for each
subject. Classifiers mSVM and mkNN take the av-
erage representation over the timesteps as input
for each subject. The 128-dimensional VAE did
not converge well which leads to worse results for
that specific model.

Age regression results

The age regression task is evaluated using
three measures, the mean absolute error (MAE)
is seen as most important in this work, the re-
sults for the task are shown in Figure 8. All of
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(a) A t-SNE plot for a 256-dimensional VAE
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(b) A t-SNE plot for a 256-dimensional iVAE

Figure 7: These are two t-SNE plots with low perplexity to show the local differences in the latent space on the test set for both
a VAE (left) and an iVAE (right). It seems like the subjects with their timesteps, each timestep in a different color, are clustered.
Noticeably, the timesteps in the iVAE TSNE plot are further apart, which is likely caused by the iVAE’s flexible time prior.

the VAE models, even the non-converging 128-
dimensional VAE, outperform the baseline PCA
method. All of the VAE models, except the 128-
dimensional VAE, outperform the iVAE. The best
performing model is the 512-dimensional VAE-
SVM with an MAE of 4.014 years, an R2 score of
0.5288, and a correlation between the predicted
and ground truth ages of 0.727. The general trend
for the number of latent dimensions is that more
latent dimensions improve the downstream per-
formance on the age regression task. The differ-
ence between the 256-dimensional VAE and the
512-dimensional VAE is significantly smaller than
between the two smaller latent dimensionalities.
Furthermore, the SVM performs roughly on par
with the mSVM for the VAE and iVAE although
sometimes slightly better, this seems to align with
the clustering of subjects in Figure 7. If the sub-
jects are clustered with their timepoints, the time-
points will likely not contain any extra information
for the regression nor classification task. Another
interesting result is that the SVM and mSVM al-
ways outperform the kNN and mkNN, which sug-
gests that the latent space is linearly separable
for the age regression task, as opposed to clus-
tered based on age. Furthermore, the SVM and
mSVM also outperform the LSTM, which makes
sense if the subject clustering hypothesis is true.
The LSTM highly focuses on temporal information
and it may struggle with data where temporal rela-
tions do not aid in regression improvements. The
LSTM surprisingly does perform well for the cor-

relation between the predicted and ground truth
ages.

Comparatively, unpublished work [2] reports
that on the same dataset, a voxelwise super-
vised deep learning model achieves an MAE of
3.54 years, an R2 score of 0.65, and a correla-
tion of 0.82. It is important to note that the VAE
model in this work received no supervised signal to
model the features necessary to achieve its down-
stream age regression results. Further, the unpub-
lished work [2] finds that using the ICA time series
achieves an MAE of 4.66, which is worse than the
results reported in this work. Further, they find that
taking the mean over the temporal dimension be-
fore using the input for the classification task im-
proves performance, which seems to be the same
in this work.

To visualize how age is distributed throughout
the latent space, representations for the training
set, validation set, and test set are encoded us-
ing the 256-dimensional VAE and visualized in a
t-SNE plot [84] in Figure 9b. Although there is
no clear age gradient in the t-SNE plot between
younger and older subjects, it seems like the older
subjects are in general clustered more towards the
bottom right part of the plot, with the younger sub-
jects in the top left and middle left. The weak la-
tent space gradient between ages in the t-SNE plot
does not mean that that structure does not exist in
the 256-dimensional latent space. In fact, given
the good results on the age regression task, the
structure likely exists but is hard to visualize in a
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Figure 8: The results for the downstream age regression task, the three metrics are MAE (mean absolute error), the R2 score,
and the correlation between the predictions and the ground truth values. Each bar plot shows all of the models at the 4 different
latent dimensionalities: 64, 128, 256, 512 on the x-axis. The run with a 128-dimensional VAE did not converge well, an anomaly,
which leads to worse results but, a VAE-SVM performs best overall. Note that for the MAE lower is better, and for the R2 score
and correlation higher is better. The baseline performs significantly worse on all three of the metrics. Further, the VAE and
iVAE-LSTM perform relatively well on the correlation metrics but significantly underperform on the MAE and the R2 score.

2-dimensional image.

Sex classification results

The sex classification task is evaluated using
the area under the curve for the receiver oper-
ating characteristic (ROC-AUC). As opposed to
evaluating the task using classification accuracy,
ROC-AUC also takes the false-positive rate and
false-negative rate into account. The results show
that the age classification task for this dataset is
fairly trivial and the baseline performs only slightly
worse than the VAE-SVM and VAE-mSVM. The
baseline outperforms the 128-dimensional VAE
though because that model did not converge. In
general the baseline also slightly outperforms all
forms of the iVAE, which is surprising, but only un-
derlines that the combined effect of a flexible prior
and subject clustering may hurt performance. The

root cause of the problem is the subjects cluster-
ing in the latent space because it may reduce the
group-wise features that are modeled.

All of the models improve with increasing la-
tent dimensionality, although the models only
slightly improve after 256 dimensions. Interest-
ingly, as opposed to the age regression results,
the LSTM performs only slightly worse than the
mSVM and SVM for both the VAE and the iVAE.
The mkNN and kNN are always outperformed by
the mSVM, SVM, and LSTM however for both the
VAE and iVAE. The best performing model is the
512-dimensional VAE-mSVM with a ROC-AUC of
0.994. In general, except for the 128-dimensional
VAE, the mSVM outperforms the SVM, which sug-
gests that the temporal information for each sub-
ject does not help with the linear separability of sex
in the latent space. Although the SVM slightly out-
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(a) A t-SNE plot for a 256-dimensional VAE with sex colored differently ~ (b) A t-SNE plot for a 256-dimensional VAE with age colored differently
Figure 9: Two t-SNE plots showing a 2-dimensional projection of the latent space learnt by a 256-dimensional VAE. Representa-
tions in the training, validation, and test set are all included, they are combined and each subject is represented as the average
representation over their timesteps. The plot where sex is colored differently shows that the representations differ in location
based on sex, which is also clear from the classification results. Higher ages are slightly more clustered towards the bottom right

with lower ages more clustered towards the top left.

performed the mSVM for most latent dimensional-
ities, the conclusion was generally the same, the
temporal information does not add much to the
task performance, likely because of the subject-
wise clustering.

The organization of the latent space, colored
based on sex, as encoded by the 256-dimensional
VAE is shown in Figure 9a. The points that are
embedded are averages over the temporal dimen-
sion and come from the training, validation, and
test set. The linear separability seems to be al-
most perfect in the 256-dimensional space, based
on the ROC-AUC reported in Figure 10. The 2-
dimensional t-SNE projection seems less linearly
separable, but the male subjects are embedded
more on the top left side of the plot and the female
subjects are embedded on the bottom right side of
the plot. This shows that the VAE learns to repre-
sent sex differently without any supervision.

9.3. Schizophrenia classification
sults

The downstream schizophrenia classification task
is evaluated for 3 different models, a randomly
initialized (as described in subsection 7.1) 256-
dimensional VAE, a 256-dimensional iVAE, and a
256-dimensional VAE that was pre-trained on the
UKBB dataset. The results are visualized in Fig-
ure 11. The results are averaged over 5 folds and
the best average result is achieved by the pre-

re-

trained VAE-mSVM with a maximum ROC-AUC of
0.5914. These results indicate that the model per-
forms slightly better than predicting the labels ran-
domly, which is not a convincing result. Figure 11
does show that pre-training improves the result for
the VAE-mSVM and the VAE-LSTM, further, the
iVAE-mSVM, iVAE-SVM, and iVAE-KNN outper-
form their VAE counterparts. This indicates that
the flexible time prior and pre-training may be valu-
able to obtain better representations for a down-
stream schizophrenia prediction task, but that fur-
ther work is needed. The mSVM also outperforms
the SVM for all models, this again suggests that
the temporal dimension adds no valuable informa-
tion for linear separability in the latent space.

A reason for the marginal improvement with pre-
training may be tied back to the subject-wise clus-
tering in the latent space that is apparent in Figure
7a. In the case of subject-wise clustering, finetun-
ing on another dataset will only add new subject-
wise clusters but may not necessarily lead to a bet-
ter local minimum with more valuable and regular-
ized features.

9.4. Sex-based group differences voxel
space
A VAE is a generative model, as explained in sec-

tion 4 and is thus capable of reconstructing loca-
tions from the latent space. To visualize the differ-
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Figure 10: The results for the downstream sex classification task, the area under the curve for the receiver operating characteristic
(ROC-AUC) is shown on the y-axis. The 4 different latent dimensionalities are shown on the x-axis: 64, 128, 256, and 512.
The run with a 128-dimensional VAE did not converge well, an anomaly, but a VAE-mSVM performs best overall. The models
perform similarly to the baseline, the VAE-mSVM and VAE-SVM perform slightly better, the iVAE-mSVM and iVAE-SVM perform
slightly worse. The highest ROC-AUC is achieved using a 512-dimensional VAE-mSVM: 0.994

ences in the VAE models between males and fe-
males in its latent space, the average representa-
tion for both groups is decoded back into the voxel
space and the reconstruction for males is sub-
tracted from the reconstruction for females. The
resulting volume is then thresholded at the highest
80th quantile absolute value and the differences
are shown in Figure 12. The decoded group-wise
differences show that women on average have in-
creased activation in a large area of the prefrontal
cortex, which has been reported in the literature
before [28]. There also appears to be some in-
creased average activity in the left and right inferior
parietal lobules. The activity in the inferior parietal
lobules looks more like noise and does not persist
when higher thresholds are used. There are also
some differences between the occipital lobe and
the cerebellum outside of the brain, these differ-
ences are also likely reconstruction noise.

10. Conclusion

This work investigated whether unsupervised
deep learning techniques, more specifically a VAE,
can learn robust representations that can be used
in downstream neuroimaging tasks from minimally
preprocessed voxelwise rs-fMRI data. The repre-
sentations learned by a VAE and an iVAE were
evaluated on multiple downstream tasks and for
multiple different latent dimensionalities on two
of those downstream tasks. The most important
downstream tasks in this work are the age re-
gression and sex classification tasks on the UK
Biobank dataset. Further, the models performed
a downstream schizophrenia classification task on
a combined schizophrenia dataset, which consists
of B-SNIP, FBIRN, and COBRE. The downstream
task was performed using a normal VAE, an iVAE,
and a pre-trained VAE. Finally, the group differ-
ences for the sex classification task were visu-
alized to understand what sex differences were
learned by the VAE model.
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Figure 11: The results for the downstream schizophrenia classification task, the area under the curve for the receiver operating
characteristic (ROC-AUC) is shown on the y-axis. The 3 different models are shown on the x-axis: the VAE model, the iVAE
model and the pre-trained VAE model (VAE-PT). The pre-training improves the ROC-AUC for the mSVM and LSTM. The iVAE-
SVM and iVAE-mSVM outperform all other models, although the results in general are rather disappointing, with a maximum
ROC-AUC of 0.592.

Figure 12: The brain differences in females compared to males, calculated by subtracting the reconstructed average latent
representation for males from the reconstructed average latent representation for females. The volume is then thresholded at
the highest 80th quantile absolute value. The visualization shows significantly higher activation in the prefrontal cortex and some
small increased activation in the occipital lobe.

The VAE generally outperformed the iVAE Iatent space. Including a flexible time prior as
model, which was likely because the VAE clus- part of the objective does not alter the subject-
tered subjects with their timesteps together in the wise clustering, it just results in timesteps being
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more dispersed around a subject’s cluster. Fur-
ther, the SVM and mSVM outperform all other
downstream classification and regression meth-
ods, which suggests that the representations allow
for linear separation in the latent space for both
the sex classification task and the age regression
task. The SVM and mSVM perform similarly on
tasks which indicates that there is no extra infor-
mation in the temporal element of the represen-
tations, which was also found in similar unpub-
lished work with supervised models [2]. In the un-
published work, a supervised deep learning model
trained on the same dataset found that taking the
mean over the rs-fMRI time series improved the
age regression performance as opposed to us-
ing the complete time series. The best perfor-
mance for the age classification task was achieved
by the 512-dimensional VAE-mSVM with a ROC-
AUC of 0.994, which slightly outperforms the base-
line: 0.993. The best performance for the age re-
gression task is achieved by the 512-dimensional
VAE-SVM with an MAE of 4.014 years, an R2
score of 0.5288, and a correlation between the pre-
dicted and ground truth ages of 0.727. This VAE-
SVM significantly outperforms the best performing
baseline with an MAE of 16.765 years, an R2 score
of —5.691, and a correlation between the predicted
and ground truth ages of 0.101. The VAE performs
better with larger latent dimensionalities, although
the 128-dimensional VAE did not converge.

The performance on the downstream
schizophrenia classification task requires fu-
ture work. The best ROC-AUC, 0.5914, was
achieved by a pre-trained 256-dimensional VAE-
mSVM. The mSVM outperformed the SVM for all
models, which again suggests that the temporal
dimension of the representations does not add
any valuable information for linear separability.
The iVAE and pre-trained VAE perform better than
the VAE, which indicates that the flexible time
prior and pre-training could be interesting future
directions to adapt the VAE towards improved
downstream schizophrenia classification.

The results on the age regression and sex clas-
sification tasks are promising and the results on
the schizophrenia classification task require fur-
ther work. A common theme for the results seems
to be that the temporal dimension of the represen-
tations does not add any information that may be
valuable for downstream tasks, even when a flex-
ible time prior is introduced. An almost equiva-
lent problem with voxelwise rs-fMRI data also ap-
pears in unpublished work for a supervised classi-
fication task [2]. Future work should focus on un-
derstanding the temporal dynamics of voxelwise
rs-fMRI data with respect to downstream tasks. It

seems unlikely that the information embedded in
the dynamics of the rs-fMRI data would not aid
in more meaningful representations. Further, this
work finds that subject-wise clustering is a problem
that should be tackled in future work to possibly im-
prove all downstream tasks and their pre-training.

11. Discussion

The results in this work show that there is great po-
tential for voxelwise rs-fMRI representation learn-
ing with a VAE. The representations that are
learned by the VAE contain information that allows
linear classifiers and regressors to predict the sex
and age of a subject with high precision. Further
work is required to improve the representations for
mental disorders and increase the meaningful in-
formation embedded in the dynamics of the repre-
sentations. The current models seem to perform
subject-wise clustering, which may be caused by
a small batch size. Other optimizers, learning rate
schedules, and larger batch sizes need to be ex-
plored further to counter this problem. This also
ties into work that needs to be done to make this an
efficient solution. An important bottleneck during
this project was loading the large data files onto the
GPU. Improving data movement and transfer will
make experimentation more feasible and may also
address the shortcomings of smaller batch sizes.
If training times can be reduced, it is also possible
to train on larger datasets and perform hyperpa-
rameter tuning on a large scale. Larger datasets
may also help solve the non-convergence of the
VAEs on the downstream schizophrenia classifi-
cation task. Smaller datasets are more likely to
lead to overfitting, especially since voxelwise rs-
fMRI data is highly noisy. Not only should fu-
ture work look at larger datasets, but also move
towards models that more efficiently use the in-
formation embedded in smaller datasets. Models
that incorporate inductive biases and/or forms of
regularization are required to move towards mean-
ingful non-linear representations for mental disor-
ders from voxelwise rs-fMRI data. Previous work
has already explored the addition of extra regular-
ization in the latent space to improve the disentan-
glement of the latent space dimensions in VAEs
[8, 27].

Although the iVAE did not perform better on the
downstream age regression and sex classification
tasks, the downstream schizophrenia classifica-
tion tasks point towards the possibility of future im-
provement for more complex tasks. The underper-
formance of the iVAE may be caused by the struc-
ture of the latent space and the subject-wise clus-
tering. Future work should explore other auxiliary
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variables, such as previous timesteps, which were
also mentioned in the original work [38]. Auxiliary
variables such as previous timesteps may help un-
cover more meaningful information from the dy-
namics in the rs-fMRI signal. Another inductive
prior that may improve the meaningful information
in the temporal dimension of the representations
is to parametrize a neural network that is trained
in an end-to-end manner and tries to predict future
timesteps. This is in line with recent developments
in reinforcement learning [23—-25]. The work could
also try to mimic ICA a little more by imposing a
flexible prior based on the dFNC state of the cur-
rent input volume. Another way to move more to-
wards ICA is to use the time series of an ICA com-
ponent as a prior for the time series of a certain la-
tent dimension. The number of latent dimensions
would have to equal the number of ICA compo-
nents to obtain a one-to-one mapping, where each
latent dimension could be interpreted as the ICA
component. Recent work [46] also points to im-
posing an L1 prior on the state changes between
representations and explores a tighter identifiabil-
ity proof for natural data than Khemakhem et al.
[38].

Other future work, certainly for the downstream
schizophrenia classification task, could look at im-
proving the classifiers in this work that are used
for the downstream classification tasks. The work
could also shift towards semi-supervised learning,
by adding a classifier and a term in the objec-
tive function that optimizes classification accuracy.
More powerful or specific classifiers may be able
to use the information in the representations and
make more accurate predictions. The LSTM used
in this work did not outperform any of the linear
methods though. Classifiers may also improve on
downstream classification tasks when a single rep-
resentation is learned for a subject. These types
of representations could be achieved by training
an LSTM to produce a single representation for a
subject based on its latent time series. Further,
there is work on hierarchical VAEs [45, 65, 74]
that may allow for a hierarchy where a subject
representation generates the time series repre-
sentations. These hierarchical VAEs may in gen-
eral perform better on classification tasks because
they can achieve tighter marginal log-likelihood
bounds. Flow-based models have also recently
been introduced as a method to perform exact in-
ference and train with an exact evaluation of the
marginal log-likelihood [6, 13, 14, 41, 45, 66]. Ex-
act evaluation of the marginal log-likelihood and
the ability to learn a prior without having to use
variational methods can lead to much better gen-
erative models. These methods seem to have a

high potential for data where a reasonable prior
can be constructed, which is true for rs-fMRI data.
Flow-based models have also recently been ex-
tended to video data, a derivative of which may be
useful for future work on voxelwise rs-fRMI repre-
sentation learning [49].
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