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Abstract

Software engineers new to a project are often stuck sorting through
hundreds of classes in order to find those few classes that offer a sig-
nificant insight into the inner workings of the software project. To help
stimulate this process, we propose a technique which can identify the most
important classes in a system, or the key classes of that system. Software
engineers can use these classes to focus their understanding efforts when
starting to work on a new software project. Those key classes are typically
characterized with having a lot of “control” within the application. In or-
der to find these controlling classes, we present a detection approach that
is based on dynamic coupling and webmining. We demonstrate the poten-
tial of our technique using two open source software systems, which have
a rich documentation set. During the case studies we use dynamically
gathered coupling information and vary between a number of coupling
metrics. The case studies show that we are able to retrieve 90% of the
classes deemed important by the orginal maintainers of the systems, while
maintaining a level of precision of around 50%.

1 Introduction

Most successful software system are in a state of constant flux, evolving towards
new business needs, higher performance, better reliability and perhaps even a
better internal structure [1]. When this evolution is applied to a system, a
software engineer who is not completely familiar with the system that needs to
be evolved, first needs to go through a process of acquiring enough knowledge
about the system before making alterations [2, 3]. This process, which is termed
the program comprehension process [4, 3], is known to take up between 30 and
60% of a software engineer’s total allocated time [5, 6, 3]. When it comes to a

∗This paper has been accepted for publication in Wiley’s Journal of Software Maintenance
and Evolution.
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definition of what program comprehension means, we adhere to the definition
introduced by Biggerstaff et al. [7]:

“A person understands a program when able to explain the program,
its structure, its behavior, its effects on its operation context, and its
relationships to its application domain in terms that are qualitatively
different from the tokens used to construct the source code of the
program.”

Although the manner in which a programmer builds up his understanding
of a software system varies greatly [8, 9, 10, 3], we do realize that for large-scale
software systems building up knowledge of that system is a daunting task. Just
think of how difficult it can be to find your way in an unknown software system
containing hundreds or thousands of classes: where do you need to start looking
in order to understand part of the system? Knowing where to start looking, i.e.,
which classes are important, and from there on following links to other classes
in order to understand the inner workings of an application, is certainly more
time-efficient.

These starting-point classes often have a controlling function within the
software system and they are typically characterized by the fact that they use
a large amount of other classes to implement their functionality. However, the
identification of these classes with a controlling function, so-called key classes is
not so straightforward when working with an unfamiliar system. Other resources
like documentation might be outdated and fellow software engineers might not
know much about a specific application. In this light, we developed a heuristic
approach that automatically identifies a set of candidate classes within a system
that are prime candidates to be studied during initial program understanding.

In her research about design flaws, Tahvildari has also noticed these key
classes [11]:

“These key classes are described as the classes that implement the
key concepts of a system. Usually, these most important concepts
of a system are implemented by very few key classes, which can be
characterized by a number of properties. These classes which we
called key classes manage a large amount of other classes or use
them in order to implement their functionality. The key classes are
tightly coupled with other parts of the system. Additionally, they
tend to be rather complex, since they implement much of the legacy
system’s functionality.”

It is our goal to automatically detect these key classes. The observation from
Tahvildari that these classes are characterized by being tightly coupled, made
us build our key class identification technique around detecting tight coupling.
Our specific angle is to focus on dynamic coupling, i.e., coupling information
that was gathered from a running system. Two reasons instigate our choice for
dynamic coupling, namely: (1) we expect that a higher level of precision can
be obtained in the light of the abundant presence of polymorphism in object-
oriented software systems and (2) by actually only collecting coupling metrics
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Figure 1: Overview of the approach.
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of specific execution scenarios we are able to follow a goal-oriented comprehen-
sion strategy, which will focus the comprehension process even more. Another
important ingredient of our approach is the addition of indirect coupling, or
coupling between two classes via a finite number of other classes. We add this
notion of indirect coupling through the use of a webmining algorithm.

The contributions of this paper are:
• We propose a technique to automatically identify so-called key classes of

a software system that can be useful for a software engineer who is trying
to get a high-level overview of system that he is unfamiliar with.

• Our technique is based on the identification of tightly coupled classes,
where we also take into account indirect coupling through the application
of a webmining algorithm.

• The comparison of a number of dynamic and static coupling metrics for
the purpose of identifying the coupling metric that is best suited for our
purposes.

• A demonstration of our technique using two open source case studies. For
both case studies we have extensive design documents from the original
developers and maintainers of the software projects, which helps us in
establishing a program comprehension baseline with which we are able to
evaluate our retrieval technique.

The structure of this paper is as follows: Section 2 introduces our approach
and provides detailed information on dynamic coupling metrics and webmining.
Section 3 explains our experimental setup and talks about our case studies and
research questions. Section 4 presents the results of applying dynamic coupling
to our case studies, while Section 5 continues with static coupling. In Section 6
we discuss the overall results of our case studies, including threats to validity
to our experimental setup. Section 7 contains related work, while Section 8
presents our conclusions and future work.

2 Approach

Our technique of automatically detecting the key classes of a software system
is based on the combination of two principles, namely (1) the identification of
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tightly coupled classes and (2) also taking into account indirect coupling with
the help of a webmining algorithm. Figure 1 shows an overview of the process
of our approach. After defining an execution scenario, we trace the application.
Post-mortem we use the trace to calculate coupling metrics between individual
classes. The next step has two alternatives, namely: (1) we simply aggregate
the coupling metric values that we have calculated between individual classes on
a per class basis or (2) if we want to take indirect coupling into consideration,
we directly provide the metric values between individual classes as input to the
webmining algorithm. A final step consists of ranking the results from strong
coupling to weak coupling for each class in the result set, where the actual rank
of the class serves as an indicator for its importance during initial program
comprehension.

Sections 2.1 and 2.4 will elaborate on these techniques, while Section 2.5 will
discuss how we combine both mechanisms.

2.1 Coupling

This section introduces coupling and reasons on the usefulness of coupling when
trying to detect the key classes of a software system. We first introduce dynamic
coupling metrics, after which we discuss static coupling metrics.

2.1.1 Introduction to coupling

Software systems are typically composed from several software entities — be it
modules, classes, components, aspects,... These entities work together to reach
their goal(s) and the collaborations that exist between these entities give rise to
the notion of coupling. Wand defines coupling as [12]:

Two things are coupled if and only if at least one of them “acts upon”
the other. X is said to act upon Y if the history of Y is affected by
X, where history is defined as the chronologically ordered states that
a thing traverses in time.

Although software engineers are constantly striving to minimize coupling in
order to improve, e.g., the understandability and reusability of software com-
ponents [13], we intuitively understand that coupling will always exist within
software systems, as classes need to work together to deliver the desired func-
tionality [14].

2.1.2 Static and dynamic coupling

Coupling metrics have for some time now been subject of research, e.g., in
the context of quality measurements [15]. These metrics have mostly been de-
termined statically, i.e., based upon structural properties of the source code (or
models thereof). However, with the wide-spread use of object oriented program-
ming languages, these static coupling metrics lose precision as more intensive
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Table 1: Dynamic coupling classification [16].

Entity Granularity Scope Direction
(Aggregation Level) (Include/Exclude)

Object Object Library objects Import/Export
Class Framework objects

(set of) Scenario(s) Exceptional use cases
(set of) Use case(s)

System

Class Class Library classes Import/Export
Inheritance Hierarchy Framework classes
(set of) Subsystem(s)

System

use of inheritance and dynamic binding occurs [16]. Another factor that possi-
bly negatively influences the measurements is the presence of dead code, which
can be difficult to detect statically in the presence of polymorphism.

This has led us to start looking at dynamic coupling metrics, a branch of
software engineering research that has only recently been developing [16]. We
propose the following working definition for dynamic coupling metrics:

Dynamic coupling metrics are defined based upon an analysis of
interactions of runtime objects. We say that two objects are dy-
namically coupled when one object acts upon the other. Object x
is said to act upon object y, when there is evidence in the execution
trace that there is a calling relationship between objects x and y,
originating from x. Furthermore, two classes are dynamically cou-
pled if there is at least one instance of each class for which holds
that they are dynamically coupled.

The basic framework we use when considering dynamic coupling metrics was
first introduced by Arisholm et al. [16].

2.1.3 Classification of dynamic coupling metrics

Dynamic coupling can be measured in different ways. Each of the measures can
be justified, depending on the application context where such measures are to
be used [16]. Table 1 gives an overview of the variations. Each of the variations
will also be discussed in this section.

1. Entity of measurement. Since dynamic coupling is calculated from
dynamic data stored in the event trace, we can calculate coupling at the
object-level or at the class-level.

2. Granularity. Orthogonal to the entity of measurement, dynamic cou-
pling measures can be aggregated at different levels of granularity. Dif-
ferent kinds of aggregations can be made depending on the entity of mea-
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surement. Aggregations that can be made include: at the (sub)system,
inheritance hierarchy, use case or scenario level.

3. Scope. Another variation can be the classes we want to consider when
calculating the metric(s). For example, instances of library or framework
classes can sometimes be of no special interest and as such they can be
excluded.

4. Direction (import or export). Consider two classes c and d being
coupled by the invocation of a method m2 of d in a method m1 in class c.
This relationship can be described as a client-server relationship between
the classes: the client class c uses (imports services), the server class d is
being used (exports services). This situation gives rise to the concepts of
import and export coupling.

2.1.4 Dynamic coupling for program comprehension

Based on the classification schema presented in Section 2.1.3 we will now discuss
which properties we expect from a coupling metric in order to be useful for
program comprehension purposes. Based on these properties, we will find those
dynamic coupling metrics that suit our intentions best.

1. At a cognitive level, the software engineer trying to get a first impression
of a piece of software, will try to comprehend the software at the class-
level, as these are the concepts he/she can recognize in the source code,
the documentation and the application domain.

2. As such we advocate either the use of classes as level of granularity or a
further aggregation up to the (sub)component (or in other terms package)
level.

3. A general purpose tracing mechanism usually traces everything, also low-
level calls to libraries. In order to keep focus, we discard all classes foreign
to the actual project (e.g., libraries), as they are not the target of the
comprehension process. Furthermore, choosing a well-defined execution
scenario of the software that involves exactly those features that the end-
user wants to understand, is essential.

4. In Section 1 we already stated that we are looking for classes that have a
prominent role within the system’s architecture. We expect these classes
to give orders to other classes, i.e., tell them what to do and what to give
in return. In terms of the direction of coupling, this means that we are
looking at import coupling. Vice versa, classes with strong export coupling
are classes that provide services to other classes.

Arisholm et al. defined twelve dynamic coupling metrics; two of these adhere to
the criteria we set out, namely: working at the class-level and measuring import
coupling [16]. We will now discuss these two metrics.

1. Distinct method invocations. This measure counts the number of distinct
methods invoked by each method in each object. This information is then
aggregated for all the objects of each class. Arisholm et al. call this
metric IC CM (Import Coupling, Class level, Distinct Methods). Calls to
methods from the same object or class (cohesion) are excluded.
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Table 2: Dynamic coupling measures [16].

Helper definitions

C Set of classes in the system.
M Set of methods in the system.
RMC RMC ⊆ M × C

The set of all methods that are actually defined in a class.
IV IV ⊆ M × C × M × C

The set of all possible method invocations.

Metric definitions

IC CM(c1) = | {(m1, c1, m2, c2) | (∃ (m1, c1), (m2, c2)
∈ RMC ) ∧ c1 �= c2 ∧ (m1, c1, m2, c2) ∈ IV } |

IC CC(c1) = | {(m1, c1, c2) | (∃ (m1, c1), (m2, c2) ∈ RMC )
∧ c1 �= c2 ∧ (m1, c1, m2, c2) ∈ IV } |

IC CC′(c1) = | {(m2, c1, c2) | (∃ (m1, c1), (m2, c2) ∈ RMC )
∧ c1 �= c2 ∧ (m1, c1, m2, c2) ∈ IV } |

2. Distinct classes. This measure counts the number of distinct server classes
that a method in a given object uses. That information is than aggregated
for all the objects of each class. Arisholm et al. call this metric IC CC
(Import Coupling, Class level, Distinct Classes). Calls to methods from
the same object or class (cohesion) are excluded.

Consider the formal definitions of IC CC and IC CM in Table 2.
Reconsider the IC CC metric. When we are looking for a metric that points

to classes that import a lot of services from other classes, we see that IC CC has
a limited range. IC CC counts the number of (m1, c1, c2) triples. Because the
first component in this triple is m1, the maximum metric value is the product
of the number of methods in the definition of c1 and the number of classes c1

interacts with. Because the number of methods defined in c1 plays a vital role in
the calculation of this metric, this can become a limiting factor. Furthermore,
it does not give a true reflection as to how many other classes and in particular
methods in other classes are used.

Therefore, we made a variation on the IC CC metric, called IC CC′. This
variation does not count the number of calling methods, but the number of
called methods. In other words, triples of the form (m2, c1, c2) are counted.
This metric gives a more accurate reflection of the number of “services”, i.e.,
distinct methods, that a class requests. A formal definition of IC CC′ can be
found in Table 2.

Example. Consider the three classes depicted in Figure 2. The IC CC metric
would yield a score of 4 for class 1, as the number of unique (m1, c1, c2) triples
is 4. For IC CC′ on the other hand, the metric value for class 1 is 6, which
corresponds with the number of unique methods called in foreign classes (i.e.,
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Figure 2: Comparison of IC CC and IC CC′
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no cohesion). This example also shows that when a class contains only one or a
limited number of very long methods (which is typical for “god classes”), that
the IC CC metric value is limited in its range, while the IC CC′ metric’s range
is not influenced.

In the first phase of our case studies (see Section 4) we will make a thorough
comparison of the effectiveness of the three aforementioned metrics.

2.2 Static coupling

In a previous experiment, we have compared these three dynamic coupling met-
rics for their effectiveness in detecting the key classes of a software system. In
that comparison, we have also included the static Coupling Between Objects
(CBO) metric [15, 17]. CBO however, proved to perform poorly against the
dynamic coupling metrics, which instigated us to research static coupling met-
rics that are very close to the dynamic coupling metrics defined in the previous
sections.

After performing the first phase of our case study in which we compare
the IC CM, IC CC and IC CC′ metrics, we take the best performing of these
three metrics and define one or more static coupling metrics that are close to
it. Sections 3.2 and 5 elaborate on the exact process that we follow.

2.3 Indirect coupling

Up until now we have talked about direct coupling. Direct coupling is a rela-
tionship between two entities. However, when considering large-scale software
systems it is far from inconceivable that more than 2 entities influence each
other. Reconsider the coupling definition from Wand (see Section 2.1.1) and
let X, Y and Z be 3 entities where, respectively (X, Y) and (Y, Z) are directly
coupled, i.e., X acts upon Y and Y acts upon Z. Intuitively, it is easy to un-
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derstand that it is possible that X also (indirectly) acts upon Z, e.g., through
parameter-passing and/or polymorphism (e.g., double-dispatch).

Based upon this observation, we investigate the notion of indirect cou-
pling [18]. Briand et al. use the following definition [19]:

Direct coupling describes a relation on a set of elements (e.g., a
relation “invokes” on the set of all methods of the system, or a
relation “uses” on the set of all classes of the system). To account
for indirect coupling, we need only use the transitive closure of that
relation.

The next section introduces the HITS webmining algorithm, which we will use
for taking into account indirect coupling.

2.4 The HITS webmining algorithm

2.4.1 Introduction

Webmining, a branch of datamining research, deals with analyzing the struc-
ture of the world wide web [20, 21, 22]. Typically, webmining algorithms see the
internet as a large graph, where each node represents a webpage and each edge
represents a hyperlink between two webpages. Using this graph as an input, the
algorithm allows us to identify so-called hubs and authorities [22]. Intuitively,
on the one hand, hubs are pages that refer to other pages containing informa-
tion rather than being informative themselves. Standard examples include web
directories, lists of personal pages, ... On the other hand, a page is called an
authority if it contains useful information and is referenced by others (e.g., web
pages containing definitions, personal information, ...).

Software systems can also be represented by graphs, where classes are nodes
and calling relationships between classes are edges. Furthermore, there is a
“natural” extension to the concepts of hubs and authorities in the context of
(object-oriented) software systems. Classes that exhibit a large level of import
coupling call upon a number of other classes that do the groundwork. In order
for them to control these assisting classes, they often contain important control
structures. As such, they have a considerable amount of influence on the data
and control flow within the application. Conceptually, the classes that have a
high level of import coupling are similar to the hubs in web-graphs.

Export coupling on the other hand is a sign of very specific functionality,
often frequently reused throughout the system. Because of their specificity, they
are conceptually similar to authorities in web-graphs.

Because of this conceptual similarity, we found it worthwhile to try and
reach our goal of identifying important classes in a system through the HITS
webmining algorithm [17], which also explains why we focus on retrieving hubs
for our technique.
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Figure 3: Example graph and the accompanying first iterations of the HITS
webmining algorithm.

Nodes
1 2 3 4 5

It
er

at
io

n
s 1 (1,1) (1,1) (1,1) (1,1) (1,1)

2 (2,0) (1,3) (0,3) (2,1) (2,0)
3 (4,0) (3,6) (0,5) (6,2) (6,0)
4 (8,0) (5,16) (0,15) (11,4) (11,0)
5 ... ... ... ... ...

2.4.2 HITS algorithm

The HITS algorithm works as follows. Every node i gets assigned to it two
numbers; ai denotes the authority of the node, while hi denotes the hubiness.
Let i → j denote that there is a link from node i to node j. The recursive
relation between authority and hubiness is captured by the following formulas:

hi =
∑

i→j

aj (1)

aj =
∑

i→j

hi (2)

The HITS algorithm starts with initializing all h’s and a’s to 1. In a number
of iterations, the values are updated for all nodes, using the previous iteration’s
values as input for the current iteration. Within each iteration, the h and a
values for each node are updated according to the formulas (1) and (2). If after
each update the values are normalized, this process converges to stable sets of
authority and hub weights [22].

Adding weights to the edges of the graph is also possible and can capture
the notion of relative importance of edges. This extension requires only a small
modification to the update rules. Let w[i, j] be the weight of the edge from node
i to node j. The update rules become:

hi =
∑

i→j

w[i, j] · aj (3)

aj =
∑

i→j

w[i, j] · hi (4)

Example. Consider the example graph of Figure 3. The accompanying table,
shows the first iteration steps of the hub and authority scores (represented by
tuples (H, A)) for each of the five nodes in the example graph. Even after only
3 iterations steps, it becomes clear that 2 and 3 will be good authorities, as can
be seen from their high A scores. Looking at the H values, 4 and 5 will be good
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Figure 4: Indirect coupling example.

hubs, while 1 will be a less good one. The algorithm generally stabilizes after
around 11 iterations [22].

2.5 How it works in practice

We will now describe how each of the steps in our process are combined.

Step 1. Once the execution trace has been obtained, we start by calculating
the metrics. For each type of metric, i.e., IC CM, IC CC or IC CC′, we first
calculate the individual coupling strengths that are present between individual
class pairs. An example of this can be see in the listing below.

Main Task 1
Task Element 5
Task Dependency 7
Task Thread 3

An alternative representation is the compacted call graph (see Figure 4), which
shows the exact same metric data, but in graphical form [23, 17]. This graph
is constructed by creating a node for each class that is present in the execution
scenario and by labeling the edges with the coupling strength (as determined
by either the IC CM, IC CC or IC CC′ metric).

Step 2. When we are interested in determining the direct coupling that exists
within an application, we simply aggregate the coupling per class, which, e.g.,
in the case of the Task class would give an import coupling strength – only
considering outgoing edges – of 15 in the above example.

Step 3. The compacted call graph is used as input for the HITS webmining
algorithm so that the algorithm can reason over it and determine those classes
that request a lot of services from other classes, i.e., import functionality. Be-
cause the HITS algorithm is iterative in nature, it not only takes into account
direct links between classes, but also classes that are indirectly coupled to each
other. When we reconsider the example in Figure 3 on page 10 we see that
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the hubiness score for node 1 benefits from the fact that node 4 is a good hub
(because it is connected to good authorities). Because the relationship between
hubs and authorities is mutually reinforcing (see formulas 1 and 2 on page 10),
there is also no danger that the hubiness (or authority) scores keep reinforc-
ing themselves, which would result in every node becoming strongly coupled to
every other node [22].

Step 4. Rank the results from Step 2 and/or Step 3 according to respectively
coupling strength and hubiness from high to low.

3 Case study setup

This section elaborates on the hypothesis, the research questions and the exper-
imental setup that we have created for answering the research questions.

3.1 Hypothesis

Our hypothesis is that dynamic coupling, which is very precise in its measure-
ments with regard to polymorphism in object-oriented software, is a good indi-
cator of whether a class in a system is actually a key class. In order to validate
this hypothesis, we refine it into a number of research questions:

1. Can dynamic coupling metrics provide an indication whether classes are
“key classes”?

2. Which of the proposed coupling metrics — IC CM, IC CC and IC CC′ —
performs the best when retrieving key classes?

3. Can we improve our key class indicator by also taking into account indirect
coupling?

4. As we know that dynamic analysis is typically an expensive operation due
to the massive amount of data involved [24], we want to know whether
static coupling is able to match the retrieval quality of dynamic coupling,
while improving time-efficiency.

.

3.2 Case study setup

Our experimental setup is such that we use two open source software systems as
case studies for answering the above research questions. Section 3.3 elaborates
on the choice of case studies.

We perform these case studies in two rounds: a first round that deals with
dynamic analysis and a second round that deals with static analysis. We now
explain the rationale behind those two rounds.

Round 1. In the first round we solely work with dynamic coupling metrics. As
dynamic coupling metrics have shown to be more precise in measuring coupling
in object-oriented software due to the presence of polymorphism [16], it is our
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Table 3: Size-related information of the two case studies.
Ant 1.6.1 JMeter 2.0.1

Classes (traced) 127 189
Classes (total) 1 216 245

Lines of code (LOC) 98 681 22 234

expectation that these metrics will perform best. An added benefit of using
dynamic analysis in this context is that it becomes possible to employ a goal-
driven strategy, wherein the program comprehension process can be steered by
the definition of the execution scenario in such a way that only the features of
interest of a software system are exercised [23].

Round 2. The second round deals with static analysis, as we want to make a
trade-off analysis of computational cost versus recall of a dynamic analysis based
solution versus a static analysis based solution. For this second round we take
the best performing dynamic coupling metric and define a static counterpart for
it.

3.3 Open source software systems

When selecting case studies, there are three requirements that we keep in mind
due to our program comprehension context:

• The case studies should be public in nature in order to ensure repeatability
of this (or similar) experiments within the research community.

• The case studies should have extensive design documentation available
that lets us verify whether we have actually detected all the classes that
need to be understood early on (i.e., the so-called key classes).

• Ideally, the design documentation is also freely available, which is a further
bonus with respect to the guarantee of repeatability of the experiment.

During our search, we found Apache Ant 1.6.1 and Jakarta JMeter 2.0.1 to
adhere best to these criteria. An added benefit of these two software systems
is that they are completely different kinds of applications: Ant is a command-
line batch application, while JMeter features a highly interactive graphical user
interface.

Some metric-related data of both projects can be found in Table 3. Please
note here that we mention both the total number of classes that are in the
“source distribution” and the total number of classes within that source distri-
bution that solely belong to the project itself, i.e., we removed classes that, e.g.,
belong to the Xerces XML parser, log4j, etc. The removal of library classes was
done on the basis of the package structure, which, for both software projects,
adhered to a clear naming convention making identification of library classes
straightforward.
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Apache Ant

Apache Ant 1.6.11 is a well-known build tool, mainly used in Java environ-
ments. It is a command-line tool, has no GUI and is single-threaded. It has
a relatively small footprint, but it does however use a lot of external libraries
(e.g., the Xerces XML library) and is user-extensible. Ant relies heavily on
XML, as the build files that Ant processes are written entirely in XML. Ant is
used in both open-source and industrial settings and it has been integrated in
numerous (Java) Integrated Development Environments (IDE’s) (e.g., Eclipse,
IntelliJ IDEA, ...).

The source-file distribution of Apache Ant 1.6.1 contains 1216 Java classes.
Only 403 of these classes (around 83 KLOC) are Ant-specific, as most of the
classes in the distribution belong to general purpose libraries or frameworks,
such as Apache ORO (for regular expressions) or Apache Xerces (XML parser).
These libraries could easily be recognized through their package structure and
package name and were omitted from the tracing operation.

Jakarta JMeter

Jakarta JMeter 2.0.12 is a Java application designed to test webapplications.
It allows to verify the application (functionally), but it also allows to perform
load-testing (e.g., to measure performance or stability of the software system).
It is frequently used to test webapplications, but it can also handle SQL queries
through JBDC. Furthermore, due to its architecture, plugins can be written for
other (network) protocols. Results of performance measuring can be presented
in a variety of graphs. JMeter is a tool which relies on a feature-rich GUI, uses
threads abundantly and relies mostly on the functionality provided by the Java
standard API (e.g., for network-related functionality).

The source-file distribution of Jakarta JMeter 2.0.1 consists of around 700
classes, while the core JMeter application is built up from 490 classes (23
KLOC).

3.4 Program comprehension baseline

When performing case studies with new reverse engineering techniques aimed at
understanding a software system, there basically exist two paths to follow when
trying to validate the results. A first path is the intrinsic evaluation, where the
original developers and maintainers serve as an “oracle”. Another possibility is
to perform an extrinsic evaluation, where, e.g., a controlled experiment would
serve as evaluator.

For this study we have chosen to follow the first route, namely to perform an
intrinsic validation with the help of design documents of open source software

1For more information, see: http://ant.apache.org. For the design documentation, see:
http://codefeed.com/tutorial/ant config.html

2For more information, see: http://jakarta.apache.org/jmeter/. The design documentation
can be found on the Wiki pages of the Jakarta JMeter project: http://wiki.apache.org/jakarta-
jmeter
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systems that were left behind by the original developers and maintainers of the
software projects.

Both software projects that we use in this paper have a particular type of
documentation that is aimed at developers who want to start contributing to the
project, but are unfamiliar with it. This documentation contains a high-level
view of the control-flow of the system and for each class involved in this high-
level view a short description is given. The program comprehension baseline is
distilled from these design documents in such a way that each and every class
mentioned in this high-level overview is contained in this baseline.

Understanding the classes involved in this program comprehension baseline
would thus give the novice developer a general knowledge of the system. This
“generality” should also be reflected in the choice of execution scenario when
using dynamic analysis. Details of the specific execution scenarios that we use
for both our case studies are explained in Sections 4.1 and 4.2.

3.5 Evaluation and validation

Typical in the field of information retrieval is the use of the concepts of precision
and recall for determining the retrieval power of a technique. As we have taken
great care during our case study selection process to have extensive design doc-
umentation available for our software systems, we are able to define a program
comprehension baseline, which in turn allows us to evaluate our approach in
terms of recall and precision. A third evaluation criterion, namely the time it
takes to run the analysis from start to finish, rounds out the evaluation criteria:

1. The recall of the result set, or in other words, the technique’s retrieval
power (the percentage of key classes retrieved by the technique versus the
total number of key classes present in the baseline).

2. The precision of the result set, or in other words, the technique’s retrieval
quality (the percentage of key classes retrieved versus the total size of the
result set).

3. The time it takes to perform the complete analysis, i.e., the time it takes
to run the analysis from start to finish.

The first two criteria will serve as deciding factors for determining (1) which
of the considered metrics performs best, (2) whether taking into account indirect
coupling serves its purpose and (3) last but certainly not least whether the
overall approach is indeed capable of detecting the key classes in a system. The
third criterion, the time it takes to perform the analysis, will be used to perform
a trade-off analysis and can also serve as a deciding factor when a number of
variations perform equally well on the first two criteria.

3.6 Evaluation of the results

In Step 4 of our approach (see Section 2.5) we mentioned that we ranked the
results of our approach (according to either their metric value or hubiness score,
depending on the technique used). The resulting list gives an indication of
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classes that are important (top-ranked) to less important (low-ranked). How-
ever, for evaluation purposes we have to somehow draw the line, as to what the
most important classes are that we want to compare with the baseline.

For this purpose we set the mark of classes to be compared with the baseline
at the top 15% highest ranked classes in the result set. The rationale behind
choosing this 15% marker is, firstly, the documentation from which we created
the baseline mentioned around 10% of the total number of classes that we con-
sidered. Because we still wanted to maintain a small margin, we extended the
set of classes to be evaluated to 15%. Secondly, because in practice we would
ideally want to have a concise set of key classes for starting to understand the
software, we did not want to extend the set of classes to be evaluated too much.

4 Case studies: 1st phase

In a first phase we will compare how the dynamic coupling metrics that were
defined in Section 2.1.4 perform in retrieving the key classes of both of our
case studies. We vary between using direct and indirect coupling. Section 4.1
discusses the results of Ant, while JMeter’s results are discussed in Section 4.2.

4.1 Apache Ant

Execution scenario

We chose to let Ant build itself as the execution scenario of choice for our
experiment. This scenario involved 127 classes. At first sight this may seem
rather low, considering that Ant is built from 403 classes in total, however,
this can be explained by the fact that the Ant architecture contains some very
broad (and sometimes deep) inheritance hierarchies. For example the number of
direct subclasses from the class Task is 104. Each of these 104 classes stands for a
typical command line task, such as mkdir, cvs, . . . As typical execution scenarios
do not contain all of these commands (some are even conflicting, e.g., different
versioning system or different platform-specific commands, e.g., ls versus dir),
the execution scenario containing 127 classes covers all basic functionality of
Ant.

The two main reasons why we chose this particular execution scenario are:
• From a post-mortem inspection of the trace, we know that this scenario

offers a good balance of features that get exercised. As such, this scenario
activates the most common features that are used to build a typical java
project, including those for compiling, copying files into different direc-
tories, generating jar (archive) files, etc. Because this scenario activates
the most common features, it serves our purpose of building up a general
knowledge of the software system, even though the class coverage of our
scenario is only 32%. We are aware that dynamic analysis techniques in
general often use more than one execution scenario, but as we are looking
for general knowledge, we preferred one general execution scenario, with
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Table 4: Ant dynamic metric data overview.
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Project
√ √ √ √ √

UnknownElement
√ √ √ √ √ √ √

Task
√ √ √ √ √ √

Main
√ √

IntrospectionHelper
√ √ √ √ √ √

ProjectHelper
√ √ √ √ √ √

RuntimeConfigurable
√ √ √ √ √ √ √

Target
√ √ √ √ √ √ √

ElementHandler
√ √ √ √

TaskContainer N/A N/A N/A N/A N/A N/A
√

→ recall (%) 40 70 70 60 80 90 -
→ precision (%) 21 37 37 32 42 47 -

Trace collection 1h 1h
Metric calculation 45 min 45 min
HITS algorithm 30 sec
→ total time 1h45 1h45:30

the option of refining our results later on with more specialized execution
scenarios.

• Every source file distribution of Ant contains this specific execution sce-
nario, through the build.xml file that is included in the distribution, mak-
ing replication of the experiment straightforward.

Results

Table 4 presents the metric-results for Apache Ant. We present the results for
each of the 3 basic metrics, i.e., IC CM, IC CC and IC CC′, both with and
without the webmining algorithm applied in columns 1 through 6. Column 7
contains the program comprehension baseline.

The IC CM metric for a class c1, which counts quadruples of the form
(m1, c1, m2, c2) 3, exhibits the lowest recall of all dynamic analysis solutions:
40%. The IC CM metric counts distinct method invocations originating from
the same source (m1, c1) combination. As such, a class c1 using low-level func-
tionality from c2 in each of its methods mi, will get a high metric value. This
causes noise in the result set, because we are actually looking for classes that use

3A tuple of the form (m1, c1, m2, c2) is the combination of a method m1 from a class c1
that calls a method m2 from class m2. The exact definition can be found in Table 2 on page 7.
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other (high-level) classes. This explains its relatively low recall when compared
to the baseline.

The IC CC and IC CC′ metrics, which count (m1, c1, c2) and (m2, c1, c2)
respectively, exhibit a similar recall of 70%. Although at this point, we would
have expected IC CC′ to perform considerably better, there is no noticeable
difference with regard to the recall. Our expectation for a better performance
from IC CC′ stems from the fact that, just as is the case for IC CM, IC CC
focusses on counting the originating class/method pair, while IC CC′ shifts focus
towards the target class/method pair.

When we apply the HITS webmining algorithm on the obtained results
(columns 4 through 6), we see that the retrieval power of each of the metrics
improves. IC CM now retrieves 60% of the program comprehension baseline,
IC CC goes from 70% to 80%, while IC CC′ improves to a recall of 90%.

The one class that none of the metrics detect is the TaskContainer class.
Upon closer inspection, we noticed that this class is no longer part of the Ant
distribution in version 1.6.1 and hence, we put N/A in Table 4. We decided to
explicitly mention the TaskContainer class, because it is a good example that
the documentation is often outdated. Table 4 only shows the scores for the 10
classes that are mentioned in the baseline, while each of our metric-variations de-
tect more than 10 classes, 19 to be exact for this experiment (we have taken 15%
of the 107 traced classes). For completeness sake, we add that the IC CC′ metric
has also detected the following classes: ComponentHelper, AbstractFileset,
SelectSelector, DirectoryScanner, TaskAdapter. Altough these classes are
not mentioned in the baseline, further inspection indicated that these classes
also have a controlling function, meaning that they are also potentially useful
to study early on.

Considering precision, applying the webmining algorithm allows to improve
precision for all of the considered metrics. In the case of IC CC′ it is able to
bring precision to a level of 47%, which is a very satisfying result, given the
fact that other than an execution scenario no domain knowledge is required for
our key class detection technique. Nevertheless, we should keep in mind that
around 50% of the program comprehension “pointers” returned are potentially
of lesser value to the user.

On a final note, we also want to add that we have experimented with chang-
ing our retrieval rate to the top 20% ranked classes. By doing so, we have seen
that recall did not significantly increase, to be more precise recall for IC CM
increased by 10% with all others remaining stable. Precision dropped for each of
the metric variations. Lowering the retrieval rate to 10% of the highest ranked
classes made recall drop significantly all over the line.

Time-effort analysis

When we run Ant according to the previously defined execution scenario, the
execution takes 23 seconds without collecting trace-information. Table 4 shows
that when we enable trace collection, this scenario now takes slightly under 1
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hour4, generating a trace of roughly 2 GB of data. Metric-calculation takes 45
minutes (the three metrics were calculated in parallel, only calculating one of
these at a time lowers the time needed by only a fraction), while applying the
HITS webmining algorithm on the metric data takes less than 30 seconds.

Discussion

For our first case study, we see that the IC CC′ metric in combination with the
HITS webmining algorithm outperforms the other metric-variations: it is able
to retrieve 90% of the classes in the program comprehension baseline, with a
precision of 47%. This kind of result makes the technique extremely useful for
getting an initial, high-level view of the software component under study.

With regard to the time-effort, the complete analysis takes roughly 1 hour 45
minutes. This seems long, but we expect to be able to improve our tools, which
are currently in a prototype state, and the algorithm can also be parallelized.

4.2 Jakarta JMeter

Execution scenario

The execution scenario for this experiment consists of testing a HTTP (Hyper-
Text Transfer Protocol) connection to a large online store. More precisely, we
configured JMeter to test the aforementioned connection 100 times and visual-
ize the results in a simple graph. Running this scenario took 82 seconds. The
scenario is representative for JMeter, because many of the possible variation
points in the execution scenario lie in (1) the usage of a different protocol (e.g.,
FTP) or (2) in the output format of the data (e.g., different type of graph or
plain-text). Also of importance to note here is that these 100 connections are
initiated by a number of different threads, in order to simulate concurrent ac-
cess to the web application. This entails that this particular experiment is an
example of a multi-threaded application.

Results

Table 5 provides an overview of the results of the Jakarta JMeter case study,
taking into account that the baseline contains 14 classes. For determining recall
and precision, we again looked at the highest 15% ranked classes, i.e., 28 classes
(15% of 189 classes).

The IC CM metric clearly lags behind the other dynamic metrics proposed
with a recall of 14% and a precision of 10%. The explanation for this relatively
bad result is identical to the reasoning given for Ant.

In contrast with the previous experiment, there is a notable difference be-
tween the most tightly coupled classes as reported by IC CC versus IC CC′.
Although not immediately visible from Table 5, this phenomenon is related to

4Experiment conducted on an AMD Athlon 800 with 512MB memory running Fedora Core
3 Linux.
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Table 5: JMeter dynamic metric data overview.
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AbstractAction
√ √ √ √ √ √

JMeterEngine
√ √ √ √ √

JMeterTreeModel
√ √

JMeterThread
√ √ √ √

JMeterGuiComponent
√ √ √ √

PreCompiler
√ √

Sampler
√ √ √ √ √ √

SampleResult
√ √ √ √ √

TestCompiler
√ √ √

TestElement
√ √ √ √

TestListener
√ √ √

TestPlan
√ √ √ √ √

TestPlanGui
√ √ √

ThreadGroup
√ √

→ recall (%) 14 21 71 36 50 93 -
→ precision (%) 7 11 36 18 25 46 -

Trace collection 45 min 45 min
Metric calculation 30 min 30 min
HITS algorithm 30 sec
→ total time 1h15 1h15:30
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the feature-rich graphical user interface (GUI). Even though there is evidence
of an attempt of a model-view-controller (MVC) pattern implementation [25]
(both from source code and from design documents), there still is a high degree
of coupling from the view to the model in the MVC scheme. Furthermore, a
high degree of coupling exists within the GUI layer.
Because certain classes in the GUI layer of JMeter can be catalogued as god
classes (many methods, large methods), the IC CC metric falsely registers these
classes as important, due to the high method count of these classes. IC CC′

however does not suffer from this because its measure is not dependent on the
number of methods defined within the class.

When we apply the HITS webmining algorithm to the previously discussed
metrics, we see that taking into account indirect coupling does help to identify
the key classes of a system. The IC CC′, which already was the best performer
without taking into account indirect coupling, comes out on top, attaining a
level of recall of 93% with a level of precision of 46%.

Again, we have experimented with a different retrieval rate. When retriev-
ing the highest 20% classes recall of IC CM, IC CC and IC CC + webmining
increased by respectively 14, 14 and 7%. Precision dropped for all metric vari-
ations. Lowering the retrieval rate to 10% leads to significant changes in both
recall and precision, with no technique being able to recall more than 65% of
the classes defined in the baseline.

Time-effort analysis

The original scenario that we studied during this experiment takes 82 seconds
to run. With the added overhead of tracing JMeter, it now takes around 45
minutes; the final trace was roughly 600 MB in size. Notice the difference with
the Ant experiment, where we collected 2 GB of trace data (for a time-wise
shorter execution). This difference in size can mainly be attributed to the fact
that JMeter heavily relies on library functions, which are excluded from the
trace. This exclusion process however, also comes at an additional cost because
for each call made, an exclusion-filter needs to be consulted before deciding
whether to output a call to the tracefile or not.

Table 5 shows that calculating the metrics takes slightly under 30 minutes
and applying the HITS webmining algorithm takes around 30 seconds.

Discussion

In terms of retrieval performance, we see a very similar situation to the one we
encountered with Ant. IC CC′ combined with the HITS webmining algorithm
performs very strongly and recall and precision results are similar. Again, the
time-effort proves worrisome.

21

SERG Zaidman & Demeyer – Automatic Identification of Key Classes in a Software System Using Webmining Techniques

TUD-SERG-2008-031 21



Table 6: Summary of the first phase of the case studies.

Recall Precision Time-effort
Ant JMeter Ant JMeter Ant JMeter

IC CM 40% 14% 21% 7% 1h45 1h15
IC CC 70% 21% 37% 11% 1h45 1h15
IC CC′ 70% 71% 37% 36% 1h45 1h15
IC CM + webmining 60% 36% 32% 18% 1h45:30 1h15:30
IC CC + webmining 80% 50% 42% 25% 1h45:30 1h15:30
IC CC′ + webmining 90% 93% 47% 46% 1h45:30 1h15:30

4.3 Discussion

Table 6 provides an overview of the results of the first phase of our case studies,
the phase in which we compare the dynamic coupling metrics.

For both our case studies, we see that applying the HITS algorithm to the
dynamic coupling metrics improves their ability to retrieve the key classes of a
system. In particular, the IC CC′ metric in combination with the HITS webmin-
ing algorithm delivers convincing results for identifying the key classes: respec-
tively 90% and 93% of the key classes as defined in the baseline are identified.
Meanwhile, precision hovers slightly under 50%.

Considering the time-effort we see that for both our case studies the approach
takes a long time. With this in mind, the applicability of the approach for large-
scale software projects becomes questionable, even though the benefit of the
approach is clear. Considering that a lot of this time-effort is spent in collecting
the trace information, our subsequent question becomes: can we reach similar
levels of retrieval performance, when considering only static information? This
question is answered in Section 5.

5 Case studies: phase 2

During the first phase of both of our case studies we noticed that using dynamic
analysis brought with it a number of constraints, namely:

• The need for a good execution scenario.
• The availability of a tracing mechanism.
• Scalability issues (the size of the trace file, run-time overhead introduced

by the tracing mechanism, etc.).
Because of these constraints, we initiated a second phase of our case stud-

ies in which we validate that the good results that we have obtained through
dynamic analysis, indeed warrant the time-effort [26]. In this second phase we
apply the same webmining technique on a static topological structure of the
application and investigate whether we can get a similar level of recall and pre-
cision as we found for the dynamic approach (see Section 4), with a significantly
diminished time-effort.
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In this new step we compare the best-performing dynamic coupling metric
from the first phase, namely the combination of the IC CC′ metric with the
HITS webmining technique, and compare it with a static coupling metric that
is modeled after the IC CC′ metric, also combined with the HITS webmining
technique.

Furthermore, because we want to make the comparison as objective as possi-
ble, the next section defines static coupling metrics that are as close as possible
to the IC CC′ metric used in the first phase of the case studies.

5.1 A static coupling metrics framework

The framework from Arisholm [16] does not have to make a distinction between
static and polymorphic calls due to the dynamic nature of its measurements.
We add notational constructs from the unified framework for (static) object-
oriented metrics from Briand et al [19] to the definitions that we previously
used from Arisholm. That way, we can still use the basic notation from Ar-
isholm we have used in the previous chapters. For that purpose, some helpful
definitions are:

Definition 1 Methods of a Class.
For each class c ∈ C let M(c) be the set of methods of class c.

Definition 2 Declared and Implemented Methods.
For each class c ∈ C, let:

• MD(c) ⊆ M(c) be the set of methods declared in c, i.e., methods that c inherits but
does not override or virtual methods of c.

• MI(c) ⊆ M(c) be the set of methods implemented in c, i.e., methods that c inherits
but overrides or nonvirtual noninherited methods of c.

Definition 3 M(C). The Set of all Methods.

M(C) = ∪c∈CM(c)

Definition 4 SIM(m). The Set of Statically Invoked Methods of m.

Let c ∈ C, m ∈ MI(c), and m′ ∈ M(C). Then m′ ∈ SIM(m) ⇔ ∃d ∈ C such that m′ ∈ M(d)

and the body of m has a method invocation where m′ is invoked for an object of static type

class d.

Definition 5 NSI(m, m′). The Number of Static Invocations of m′ by m.

Let c ∈ C, m ∈ MI(c), and m′ ∈ SIM(m). NSI(m, m′) is the number of method invocations

in m where m′ is invoked for an object of static type class d and m′ ∈ M(d).

Definition 6 PIM(m). The Set of Polymorphically Invoked Methods of m.

Let c ∈ C, m ∈ MI(c), and m′ ∈ M(C). Then m′ ∈ PIM(m) ⇔ ∃d ∈ C such that m′ ∈ M(d)

and the body of m has a method invocation where m′ may, because of polymorphism and

dynamic binding, be invoked for an object of dynamic type d.

Definition 7 NPI(m, m′). The Number of Polymorphic Invocations of m’ by m.

Let c ∈ C, m ∈ MI(c), and m′ ∈ PIM(m). NPI(m, m′) is the number of method invocations

in m where m′ can be invoked for an object of dynamic type class d and m′ ∈ M(d).
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Figure 5: Piece of Java code to help explain metrics.
1 public void foo() {
2 BaseClass base = new BaseClass();

3 base.doSomething();

4 // some other functionality

5 base.doSomething();

6 }

5.2 Expressing IC CC′ statically

With these added notational constructs, we are now able to write down four
static coupling measures that closely resemble the measurements that were de-
fined in Section 2.1.4.

The fact that one dynamic metric IC CC′ is translated into 4 static metrics
can be explained by the fact that the static environment offers some degrees of
choice when calculating the metrics. Consider the Java code snippet in Figure 5:

• The choice between static calls and polymorphic calls. In other words
when considering Figure 5, do we only count the reference to BaseClass
or also to all subclasses of BaseClass?

• Do we count duplicate calls for the same (origin, target) pairs? When
considering Figure 5 do we count the base.doSomething() call once or
twice (lines 3 and 5, Figure 5).

For the purpose of our research we have defined 4 metrics that vary over the
characteristics described above.

Definition SM SO Static Metric, Static calls, count every Occurrence of a call only once.

SM SO(c1, c2) = |{(m2, c2, c1)|∃ (m1, c1), (m2, c2) ∈ RMC

∧ c1 �= c2 ∧ (m1, c1, m2, c1) ∈ IV

∧ m2 ∈ SIM(m1)}|

Definition SM SW Static Metric, Static calls, count every occurrence of a call (Weighted).

SM SW (c1, c2) = identical to SM SO(c1, c2), but { } should be

interpreted as bag or multiset.

Definition SM PO Static Metric, Polymorphic calls, count every Occurrence of a call only

once.

SM PO(c1, c2) = |{(m2, c2, c1)|∃ (m1, c1), (m2, c2) ∈ RMC

∧ c1 �= c2 ∧ (m1, c1, m2, c1) ∈ IV

∧ m2 ∈ PIM(m1)}|

Definition SM PW Static Metric, Polymorphic calls, count every occurrence of a call

(Weighted).

SM PW (c1, c2) = identical to SM PO(c1, c2), but { } should be

interpreted as bag or multiset.
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Table 7: Ant metric data overview.
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Project
√ √ √ √ √ √

UnknownElement
√ √ √ √ √ √

Task
√ √

Main
√ √ √ √ √ √

IntrospectionHelper
√ √ √ √

ProjectHelper
√ √

RuntimeConfigurable
√ √ √ √

Target
√ √

ElementHandler
√ √

TaskContainer N/A N/A N/A N/A N/A
√

→ recall (%) 90 50 50 30 30 -
→ precision (%) 47 8 8 5 5 -

Trace collection 1h
Metric calculation 45 min 1h
HITS algorithm 30 sec 1 min
→ total time 1h45:30 1h01

To calculate these metrics, we used the JDT2MDR Eclipse plugin developed
at the University of Antwerp [26]. JDT2MDR transforms a Java project to
a graph representation closely resembling the metamodel employed by Briand
et al. in their unified framework for coupling measurements in object-oriented
software [19], thereby enabling the calculation of the coupling and cohesion
measures formalized in their paper.

5.3 The continuation of the case studies

This section compares and discusses the statically obtained results with (1) the
best-performing dynamic analysis approach and (2) the program comprehension
baseline that we have defined. Besides comparing recall and precision, we also
keep a close eye on time-effort, as this is a factor where we expect the static
approach to be able to significantly outperform the dynamic approach.

5.3.1 Ant

Based on the results shown in Table 7, two categories are formed, namely the
category of metrics that takes polymorphism into account (SM P*) and the
category that does not take polymorphism into account (SM S*). The former
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category exhibits a recall level of 50%, while the latter recalls 30%. Although
interesting from the point of view that polymorphism does indeed play an im-
portant role when considering program comprehension, from a practical per-
spective, these results are disappointing when compared to the results obtained
with the dynamic approach. The observation regarding polymorphism can be
explained by the fact that (1) sometimes a base class is abstract or (2) the
base class is not always the most important class in the inheritance hierarchy.
The second variation point for the static metrics, namely whether to only count
an occurrence of a particular call once or to count every occurrence of a call
(weighted), does not seem to make any difference with regard to our specific
context (small variations exist, but these do not influence the result set).

The fact that precision for the 4 static metrics in columns 2 through 5 is
much lower (8% or less) than what we experienced with the dynamic approach,
can be explained by the size of the inputsets, as the inputset for the static
experiment was 403 classes, while for the dynamic experiment this was only 127
classes. When using our rule-of-thumb of presenting the 15% highest ranked
classes in the final result set, we end up with 60 and 19 classes respectively.

A further point to be made regarding this rule-of-thumb is that when looking
at the ranking of classes that fall outside the top 15%, lowering the bar to 20%
would not have resulted in a (significant) gain in recall, while precision would
drop further. We can also add, that by raising the bar to 10%, recall would fall
significantly.

Considering the round-trip-time, we measured that the prototype (static)
metrics engine took one hour to calculate the metrics for Ant. Applying the
HITS algorithm takes less than one minute.

5.3.2 JMeter

Similar to what we saw with Ant, two groups can be identified within the JMeter
result set presented in Table 8, namely one group consisting out of SM PO
and SM PW, and one group formed by SM SO and SM SW. Within these two
groups, recall and precision are identical, although minimal differences exist
when looking at the ranking of some classes. In contrast with the results for
Ant, these differences are much more pronounced. It is our opinion that this
is probably due to the fact that most method calls happen only once in each
unique method, as opposed to multiple occurrences of a method call in a unique
method, where the weighted approach (of SM PW and SM SW) would make
the difference more pronounced.

Also to be noted is the sizeable dissimilarity between the results obtained
while only taking into account static calls versus also taking polymorphic calls
into account. As Table 8 shows, the SM P* metrics have a recall of 43%, while
the SM S metrics only recall 7%.

For what the round-trip-time is concerned, the metrics engine took almost
1 1

2 hours to calculate the metrics for JMeter. This is a considerable increase
from what we saw with Ant. This increase can be attributed to the fact that
JMeter has (1) a larger codebase and (2) uses more libraries, which also need
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Table 8: JMeter metric data overview.
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AbstractAction
√ √

JMeterEngine
√ √ √ √

JMeterTreeModel
√ √ √ √

JMeterThread
√ √ √ √

JMeterGuiComponent
√ √ √

PreCompiler
√ √

Sampler
√ √

SampleResult
√ √

TestCompiler
√ √ √ √

TestElement
√ √ √ √

TestListener
√ √

TestPlan
√ √

TestPlanGui
√ √ √ √

ThreadGroup
√ √

→ recall (%) 93 43 43 7 7 -
→ precision (%) 46 8 8 1.4 1.4 -

Trace collection 45 min
Metric calculation 30 min 1h30
HITS algorithm 30 sec 1 min
→ total time 1h15:30 1h31
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to be parsed. Applying the HITS algorithm takes slightly over one minute.

5.4 Discussion

We began this section by stating that there are three major drawbacks to the
dynamic approach that we presented. Now that we have performed the second
phase of our case study in which we tried out a static variant of our approach,
we come back to each of these drawbacks in order to verify whether the static
variant of our approach was able to solve them:

1. The necessity of a good execution scenario.
When performing static analysis, having an execution scenario is not an
issue. However, having access to the source code is an important prereq-
uisite for any static analysis based approach. On the other hand, having
access to the source is generally much easier than having access to a good
execution scenario. As such, for this criterion, static analysis is to be
favored.

2. The availability of a tracing mechanism.
Although a tracing mechanism is no longer an issue, having a metrics
engine remains a necessity. To implement such an engine, either open
source tools need to be available or a parser needs to be constructed.
Because a similar precondition exists for both processes, neither of the
two approaches has a clear advantage here.

3. Scalability issues.
In terms of scalability the dynamic process is plagued by the possibly
huge size of the trace file, which result in long analysis times. However,
when comparing these times with the static approach, we observe that our
prototype metrics engine also takes a long time to compute the metrics.
While the analysis times do not differ that much from the dynamic process,
the dynamic process is still burdened by the time-intensive tracing step,
which makes that the total time for the dynamic process is significantly
larger.

6 Discussion

Table 9 extends Table 6 by also taking into account the results of the static vari-
ant of our approach. Table 9 shows that the best-performing dynamic analysis
based variant of our approach, namely the IC CC′ metric combined with the
webmining solution provides a level of recall of at least 90%, while safeguard-
ing a level of precision of slightly under 50%. When we look at the results of
the static coupling metrics that we introduced in this chapter, we see that we
are able to reach a maximum level of recall of 50%, while the level of precision
drops to 8% or less. This observation makes it quite obvious that the dynamic
approach is the solution of choice when only considering the recall and precision
results.

When considering the time-effort for these analyses, we see that the static
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Table 9: Summary of the case studies.

Recall Precision Time-effort
Ant JMeter Ant JMeter Ant JMeter

Dynamic

IC CM 40% 14% 21% 7% 1h45 1h15
IC CC 70% 21% 37% 11% 1h45 1h15
IC CC′ 70% 71% 37% 36% 1h45 1h15
IC CM + webmining 60% 36% 32% 18% 1h45:30 1h15:30
IC CC + webmining 80% 50% 42% 25% 1h45:30 1h15:30
IC CC′ + webmining 90% 93% 47% 46% 1h45:30 1h15:30

Static

SM PO + webmining 50% 43% 8% 8% 1h01 1h31
SM PW + webmining 50% 43% 8% 8% 1h01 1h31
SM SO + webmining 30% 7% 5% 1.4% 1h01 1h31
SM SW + webmining 30% 7% 5% 1.4% 1h01 1h31

approach (the SM * metrics) performs better than the dynamic variants, with
the important remark that recall and precision clearly fall behind the best-
performing dynamic variant of our approach.

As such, we conclude that for the purpose of detecting the key classes that
can be helpful for early program comprehension, the dynamic variant of our
approach is the best choice, even though the time effort needed for the detection
process should be considered as a serious drawback.

6.1 Threats to validity

Over the course of our case studies we noted a number of factors that could
influence the validity of our conclusions. We will now discuss these threats to
validity.

1. The design documents that we use as the basis for the program compre-
hension baseline are likely to be subjective, as each developer probably has
a preference for the parts of the application that he has written himself.
This problem is inherent to the intrinsic evaluation that we perform and
would likely also occur when consulting the developers or maintainers of
a project directly (instead of working with documentation).

2. Although the results of our approach are very positive, we must also not
forget that the intrinsic evaluation as we have performed it in this paper
might not be representative for how developers get acquainted with a soft-
ware system. Therefore, we foresee a controlled experiment in the future
which will probably get a more realistic picture of the actual usefulness of
our technique in practice.

3. For the evaluation of our detection technique, we relied on the concepts of
precision and recall. However, when using a fixed retrieval rate (e.g., 15%)
precision is directly tied to recall and would thus appear to be redundant.
Nevertheless, when using the technique for understanding a software sys-
tem, it is still beneficial to know how many possible false positives are
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returned in the result set. As such, we continue to work with both recall
and precision.

7 Related work

Within the research community, three distinct approaches exist with regard
to reverse engineering software systems, namely (1) static analysis, (2) dynamic
analysis and (3) a hybrid approach combining the previous two. The second cat-
egory, dynamic analysis, is characterized by the need to process huge amounts
of data, and thus, dynamic analysis solutions are often tailored around the prob-
lem of scalability. Nevertheless, many researchers emphasize the importance of
dynamic analysis in the reverse engineering process; this is especially true in the
context of object-oriented systems [27]. The need for a hybrid approach where
static analysis is reinforced by dynamic information, or vice versa, has also been
advocated in the research community (e.g., [28]).

To overcome scalability issues when using dynamic analysis, two distinct
approaches are currently used, namely (1) the compression and abstraction of
dynamic information and (2) the visualization of dynamic information through
condensed views. We provide a brief overview of both categories in Sections 7.2
and 7.3 respectively. We start with Section 7.1 where we discuss a static analysis
based technique that closely matches our own technique.

7.1 Static analysis based

Robillard presents a technique whereby given a set of classes under investigation,
a number of (related) classes that should be investigated next are provided [29].
The technique described is based on the (static) topological structure of the
dependencies in a software system. Given an input set, the technique produces
a fuzzy set describing other elements of potential interest. As such, the main
difference between our solution and Robillard’s solution is the fact that his
solution needs a pre-established set of points of interest, whereas our solution
provides these automatically based on the execution scenario. Further study of
possible interactions between both solutions seems warranted.

7.2 Abstraction and compression

Hamou-Lhadj et al. have been working on a number of trace abstraction tech-
niques [30]. The one that is most relevant in the context of our own technique
is the technique that removes classes from a trace that are solely responsible for
low-level functionality [31]. Just as in our technique, determining coupling lies
at the basis of this removal technique. The major difference then being that
Hamou-Lhadj et al.’s technique works from the bottom up, while our technique
is more top-down oriented. Another technique of interest that was developed by
Hamou-Lhadj and Lethbridge is trace summarization, where interesting sections
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of a trace are identified, which are then presented to the user. This technique
can also be cataloged as being top-down [32].

Another common approach for abstracting traces is feature analysis, where –
parts of – traces are correlated to the exact feature that the trace is performing.
Greevy et al. [33] and Eisenbarth et al. [34] have been actively working in this
field. Other interesting work is performed by Reis and Renieris [35], who encode
program executions, and Richner and Ducasse [36], who reason over execution
traces with logic queries. None of these techniques however try to provide key
classes to the software engineer for further investigation.

7.3 Visualization

Over the years many visualization techniques have been used to visualize the
interaction of runtime objects [37, 38], with the main aim of abstracting the
large amounts of dynamic information. We list a number of recently developed
techniques in this context.

Some of the proposed visualizations build upon the idea of UML sequence
diagrams, such as the work of De Pauw et al. in Jinsight [39, 40]. Jerding et al.
also use sequence diagrams in ISVis, but in order to overcome scalability, they
also offer a mural view of that sequence diagram to allow for easy navigation [38,
41].

Other work introduces more novel visualization ideas. These visualizations
are often built around a metaphor, such as the work of Kuhn and Greevy,
who interpret traces as signals in time [42], or Cornelissen et al., who project
a software system’s execution on the edge of a circle [43]. Greevy et al. use
growing towers to visualize the number of instances of a certain class that are
active [44].

Finally, some techniques have previously been used for displaying static in-
formation, but have been adapted to work with dynamic information. In this
context Ducasse et al. use polymetric views [45]. These polymetric views were
borrowed from Lanza’s CodeCrawler tool [46]. The AVID visualization tool
from Walker et al. [47, 48], has close ties with Murphy et al.’s Reflexion [49].

8 Conclusion

New programmers are often stuck sorting through hundreds of classes in or-
der to find the few that offer significant insight into the interworkings of the
project. Our Key Class Identification technique approach can reduce their dif-
ficulties, because it allows for the automatic identification of those classes in
a software system that are prime candidates for early program comprehension.
We demonstrated our approach using two open source software systems, namely
Apache Ant and Jakarta JMeter, which were specifically chosen because of their
rich documentation set. With this documentation we were able to establish a
‘program comprehension baseline’.
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Fundamental to the approach we propose is the concept of coupling and
the HITS webmining technique. Using these two basic principles, we applied
our approach both on dynamically and statically obtained information from
the target systems. Our case studies have shown that when using dynamically
gathered information and taking into account indirect coupling, we are able to
recall 90% of the key classes present in a system according to the documentation.
Furthermore, we are able to provide this level of recall while remaining at a level
of precision of slightly under 50%.

As such, we feel that we have presented a valuable technique for a software
developer or maintainer who is aiming to familiarize himself with a previously
unknown software system. By starting from the key classes, the user has a
limited number of starting points to further his quest for gaining a thorough
level of knowledge of the system.

8.1 Future work

For future work, we have identified a number of paths that allow to refine the
validation of the key class identification technique. Firstly, we aim to perform a
controlled experiment that lets us assess the usefulness of having key classes to
start understanding a complex software system when the user has no knowledge
of the system. Secondly, we want to apply the technique on a wide variety of
applications from diverse problem domains. We have started working in this
direction by applying the technique on industrial software and performing a
validation with the actual developers. An initial report on this experiment can
be found in [50].
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