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Abstract

Rain and lightning associated with thunderstorms can cause damage to crops, cars, houses and other prop-

erties. As the climate is warming, it is expected that the frequency of lightning will increase, but it is highly

uncertain to what degree. For the KNMI’23 climate scenarios, it becomes essential to make reliable state-

ments on future thunderstorm scenarios. This research evaluates a new thunderstorm predictor, the LPI,

proposed by Yäır et al. (2010), that uses the vertical velocity and presence of hydrometeors for thunderstorm

prediction. Both are important for the formation of a thunderstorm. This study generates LPI results for

the Netherlands using hourly output data from the operational weather prediction model HARMONIE. The

results are compared to the results of other widely used indices, the Modified Jefferson index, the K-index,

the MUCAPE (Most Unstable Convective Available Potential Energy) and evaluated with historical obser-

vations. The period over which the study is done is the 15th of April to the 15th of October of 2016 and

2017. The different indices are compared using case studies and objectively by deriving logistic regression

equations using the indices as a single predictor. The resulting probabilistic forecasts are compared using

the Brier Skill Score and reliability plots. Besides, scatter plots have been made to study the relationship

between the indices and the number of discharges.

The LPI as a thunderstorm predictor was found to perform worse than the other indices. The case study

showed that the instability of the atmosphere is modelled correctly by HARMONIE but that precipitation

and vertical velocity are often modelled at the wrong place by the HARMONIE model. The LPI output is

strongly related to this model output of the precipitation and vertical velocity. Therefore, the LPI is wrong

if the model output is wrong. Furthermore, the case study showed that the LPI gives a very local, discrete

result, which makes it prone to uncertainties. The other indices have a much smoother and continuous result.

This smoothness makes them less prone to, for example, phase errors. Although this result was only seen

in the case study, it is very well possible it is true for more cases. Therefore, apart from improving the LPI

formulation itself, a future study could use the LPI as an extra potential predictor to improve probabilistic

forecasts of thunderstorms.
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1 Introduction

Thunderstorms, often accompanied by hail and strong wind gusts, cause damage to crops, cars, houses

and other properties. Thunderstorms disrupt society, cause millions of euros in damages each year in the

Netherlands, and are a significant liability for insurance companies. Lightning is a characteristic of this severe

weather and a natural hazard by itself. It injures humans and damages nature and human-made structures.

A recent example is a thunderstorm on the 18th of June, 2021 in Brabant nearby Eindhoven. Due to the

wind gusts, many trees were uprooted and fell on houses and cars. Due to the heavy rain, the capacity of the

sewage system was insufficient, which resulted in flooding. It caused a lot of nuisance (HartvanNederland,

2021).

As the climate is warming, it is expected that the weather will become more extreme, and the frequency

and intensity of thunderstorms (as well as hailstorms) in the Netherlands will increase (Klein Tank et al.,

2015). However, it is highly uncertain to what degree. With the arrival of the KNMI’23 climate scenarios in

mind, it becomes essential to make reliable statements on the future scenarios for hail- and thunderstorms

and inform the public about the effect of climate change on the frequency and intensity of both.

Traditionally, statistical models for predicting thunderstorms were mainly based on precipitation and the

thermal instability of the atmosphere (Schmeits et al., 2008). Such an approach can be improved as such

approaches do not account for factors such as the existence of convective clouds, vertical updraft and the

presence of hydrometeors (supercooled water, graupel, ice) (Siebesma et al., 2019). Therefore, it is essential

to investigate other approaches for predicting thunderstorms that account for these physical mechanisms.

Understandably, the traditional indices that have been used for a long time, as weather models were

not as advanced. However, the development of weather models continued, and for some years now, new

numerical weather prediction (NWP-) models have been used. These models have a high resolution and can

resolve deep convection, which is relevant for thunderstorms, explicitly. HARMONIE (used by the Dutch

KNMI) and COSMO (used by the German Deutscher Wetterdienst) are examples of such new NWP models.

For some years, the Royal Netherlands Meteorological Institute (KNMI) has used HARMONIE, a storm-

permitting model for numerical weather prediction (NWP). HARMONIE explicitly resolves deep convection

(De Wit & Tijm, 2010), i.e. is not parameterized. Hydrometeors, such as cloud-water, cloud-ice, rain,

graupel, and snow, are given as prognostic variables. HARMONIE makes it possible to use more accurate

predictors for lightning than the ones only based on atmospheric instability and precipitation. An example of

such an accurate predictor is the Lightning Potential Index (LPI) introduced by Yair et al. 2010, which uses

the vertical updraft and the presence of hydrometeors for lightning prediction. The LPI uses the added value

of the storm-resolving model HARMONIE and is expected to provide an improved estimate of thunderstorm

frequency and intensity.

Recent studies done by Brisson et al. (2021) using the operational NWP model COSMO have demonstrated

that using more sophisticated indicators like the LPI gives more accurate results and an improved prediction

of the spatiotemporal distribution of lightning. Brisson et al. (2021) also used the LPI to investigate the

effect of climate change on the lightning frequency. According to the LPI, there will be a 4.8% decrease

in lightning flash rate by the end of the century, in contrast to traditional predictors, which predicted an

increase of 17.4%.
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It becomes apparent when looking at the result of Brisson et al. (2016) that we will not be able to make

reliable statements about the thunderstorm frequency in the future climate, without an innovative step.

The innovative step proposed here is combining a new predictor, the LPI (Siebesma et al., 2019) together

with an NWP model such as HARMONIE. Therefore, it is necessary to dive deeper into the definition and

performance of the LPI by using HARMONIE data and see how it will affect the thunderstorm predictions.

It is helpful to compare the LPI with indices currently used by KNMI to predict thunderstorms to see

whether or not predictions improve by using the LPI. Such comparison is a known way of getting insight into

the performance of different predictors. For example, Schmeits (2002) compared 19 different indices using

binary and continuous scatter plots to show which predictors are most suitable for predicting thunderstorms.

Schmeits (2002) concluded that a combination of two or more indices may be preferable when predicting

thunderstorms. Different indices focus on different atmospheric characteristics, so a combination may result

in a more complete picture of the atmosphere and, therefore, a more accurate prediction than when only one

predictor is used. Such a combination of predictors was used in logistic regression equations by Schmeits

et al. (2008). More recently, Groot (2019) used logistic regression and quantile regression forests to search

for the optimal combination of predictors. The LPI is not investigated in Groot (2019). Even though a

combination of different predictors may be desirable, the new Lightning Potential Index is not combined

with other indices in this thesis, because the LPI is relatively new and the performance of LPI using data

produced by HARMONIE is hitherto unknown, the performance of the LPI alone is first evaluated.

Accordingly, the scope of this thesis is to give a first evaluation of the performance of the LPI in the

Netherlands by testing and evaluating the LPI offline using output diagnostics of HARMONIE cycle 40

and comparing it with historical observed lightning data. Furthermore, this paper gives a first insight into

variables that affect the Lightning Potential Index. Further, this thesis compares the performance of the LPI

to traditional predictors using statistical forecast tools and verification metrics to see the effect of using not

only thermal instabilities as traditional predictors but also vertical updraft and the presence of hydrometeors

being included in the LPI.

In this research, the following research question is answered:

Could the prediction of lightning in HARMONIE become more accurate by the use of a new

predictor, the Lightning Potential Index?

Including the following sub-question:

To what extent does the use of the Lightning Potential Index have an added value for climate

predictions?

To answer these research questions, the Lightning Potential Index will be compared with traditional

predictors. The predictors used for the comparison are briefly stated here and discussed in-depth in section

3. The first two indices are the Modified Jefferson index and the K-index, both based on vertical profiles of

atmospheric temperatures and dew point temperatures but using a different formulation. The third predictor

is the MUCAPE, which is related to the instability of the atmosphere. These three indices previously gave

the best result for the prediction of thunderstorm occurrence, and lightning intensity (Groot, 2019).

In this thesis, the three predictors above and the LPI are evaluated for the Netherlands, as this area is
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the main focus of KNMI and, therefore, of this research. To answer the different research questions, different

domains are used. In the case of the general research question about LPI as a predictor for short-term

weather forecasting, it is essential to forecast where lightning might occur. Therefore, in this paper, the

Netherlands is divided into 20 subdomains, each of 5625 km2, which cover the whole country, plus parts of

Germany and Belgium. The subdomains are pooled into land, shore and sea, based on their dominant land

type. In this way, the effect of water and land surface cover can be evaluated.

For climate runs, the specific location of lightning is not relevant, but frequency distribution is relevant.

Therefore, in that case, the whole of the Netherlands is used without dvision into subdomains.

It is crucial to have enough data on thunderstorms to get a good result of the evaluations of the predic-

tors. Therefore, in this research, historical data about the Netherlands thunderstorm season (April through

October) of 2016 and 2017 are used. Most thunderstorms occur during that time of the year.

In this study logistic regression equations are derived using the different indices as single predictors. The

resulting probabilistic forecasts are compared using two different verification metrics. The first metric is the

Brier Score (BS, (Wilks, 2011)) that is calculated for all forecasts using the maximum or mean value of an

index, for all 20 subdomains (or over the whole domain), and for all different lead times, separately. The

use of separate leadtimes is to evaluate the effect of a shorter or longer lead time on the performance of the

LPI. The Brier Score is translated into a Brier Skill Score (BSS) with the mean LPI as a reference, so that

the performance of the other indices can be easily compared to that of the LPI.

The second method is using a reliability plot (Wilks, 2011; Jiang, 2020), which gives more information than

the BSS. For the reliability plot, different lead times and all subdomains are used.

In the third method, scatter plots (as in Schmeits, 2002) that plot the number of observed discharges against

the mean predicted index value are used to investigate the relation between the number of discharges and

the different indices.

Furthermore, two case studies are considered to get a deeper insight into the performance of the LPI and

the other indices. The case studies show the details of the forecasted indices, giving a better understanding

of the differences between the indices and their dependence on the model.

The structure of this thesis is as follows:

In section 2, a brief theoretical background is given. Section 3 describes the methods that were used to give

the results. In section 4, the two case studies are discussed. In section 5, logistic regression examples and

results of the verification are shown. In section 6, the results are discussed. Section 7 presents conclusions

and recommendations.
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2 Theoretical background

In this section, information on the physical processes behind thunderstorms and lightning is provided. There-

after, HARMONIE is discussed in-depth. Lastly, a theoretical introduction of the Lightning Potential Index

follows.

2.1 Physics behind Thunderstorms

In the atmosphere, different kinds of clouds can form, based on the condition of the atmosphere. Cumulonim-

bus clouds, or thunderclouds, are one kind of cloud that can form and are the only cloud type that produces

lightning. The formation of a cloud is the result of cooling air parcels due to a rising motion (Siebesma &

De Roode, 2020; Poelman, 2010; Rakov & Uman, 2003). Three mechanisms could be responsible for rising

motion (Siebesma & De Roode, 2020):

1. Large scale lifting; Two air masses with different conditions in temperature or moisture meet each

other and form fronts

Figure 1: A schematic representation of the front lifting rising mechanism (National Weather Service, 2007).

2. Orography; Mountains force the air mass to rise

Figure 2: A schematic representation of the orographic rising mechanism (Canada Avalanche, 2021).

3. Convection; Air movement induced by temperature differences in atmospheric layers: cold air is denser

and moves downward, while warm air is less dense and rises. It is the most common mechanism.

Thunderclouds are formed by the convective rising mechanism.

Figure 3: A schematic representation of the convection rising mechanism (Canada Avalanche, 2021).
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In an unstable atmosphere, the temperature of the environment (TV ) decreases rapidly with altitude

(Arasa, 2010). Surface air parcels may start to accelerate upward (Arasa, 2010; Siebesma & De Roode,

2020) due to this instability. A parcel will rise until the level of neutral buoyancy (LNB), at which the parcel

and the environment have the same virtual potential temperature (De Roode, 2020; Arasa, 2010). Above this

level, a stable layer is present. Since such a parcel has a positive (upward) vertical velocity, it overshoots the

LNB into the stable layer (De Roode, 2020). In the stable layer, the parcel gradually decelerates (De Roode,

2020). Above the LNB the parcel adiabatically expands and its the temperature decreases (Poelman, 2010;

Rakov & Uman, 2003). As the parcel becomes colder, its water carrying capacity decreases. When the

temperature of the parcel reaches its dew point temperature, which depends on the relative humidity of the

parcel, the saturation point is reached (Poelman, 2010; Rakov & Uman, 2003; De Roode, 2020). Before this

saturation point, the parcel is unsaturated, and the relative humidity is less than 100%. After the saturation

point is exceeded, the parcel becomes saturated, having a relative humidity of 100 %, and water starts to

condense (Arasa, 2010) on cloud condensation nuclei (CCN). This point is called the lifting condensation

level (LCL) and forms the cloud base (De Roode, 2020). As many of these small water droplets together

make a visible cloud (Poelman, 2010; Rakov & Uman, 2003). During condensation, latent heat is released.

This warms the parcel. The rate of adiabatic cooling of the parcel is reduced so that the temperature

difference between the parcel and the environment stays large. This increases buoyancy.

Above the LCL, the saturated air parcel follows the moist-adiabatic lapse rate (De Roode, 2020). Here, the

parcel follows one of two options. First, if the vertical temperature gradient of the environment is larger than

the moist adiabatic lapse rate, the parcel remains negatively buoyant with respect to the environment and

the vertical motion is damped (De Roode, 2020). In such condition, the height of such clouds is limited. The

amount of negatively buoyant energy that suppresses the upward motion is indicated by CIN (convective

inhibition) and defined by the formula:

CIN =

∫ LFC

LNB

g
Tv,p − Tv,env

Tv,env
dz (1)

where LNB is the level of neutral buoyancy, LFC is the level of free convection, i.e. where Tv,p = Tv,env,

g is 9.81 [m/s2], Tv,p is the virtual temperature of the parcel and Tv,env is the virtual temperature of the

environment.

Second, if the vertical temperature gradient of the environment is less than the moist-adiabatic lapse rate,

the vertical velocity of the parcel is not damped, and the parcels (the cloud) reaches the level of free

convection (LFC) (De Roode, 2020). At the LFC, the buoyancy of the parcel is neutral with respect to the

environment. Above this level, the parcel becomes positively buoyant, and the vertical upward motion starts

again (De Roode, 2020). The parcel rises until the limit of free convection (LOC) is reached. Due to the

positive vertical velocity, the parcel overshoots the LOC and therefore, the cloud top is often found above

this level (De Roode, 2020). The positively buoyant energy that air parcels experience is indicated by CAPE

and defined by:

CAPE =

∫ LOC

LFC

g
Tv,p − Tv,env

Tv,env
dz (2)

where LOC is the limit of free convection, i.e. the maximum level where Tv,p = Tv,env, LFC is the

level of free convection, i.e. where Tv,p = Tv,env below the CAPE layer, g is 9.81 [m/s2], Tv,p is the virtual

temperature of the parcel and Tv,env is the virtual temperature of the environment.

The process of the rising parcel for the second case is represented schematically in Figure 4 showing how a

cumulus cloud is formed. If there is enough atmospheric instability, moisture and lifting, a strong vertical
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updraft will let the cumulus cloud grow into a thundercloud.

Figure 4: A schematic representation of the path that an air parcel follows during ascent when the vertical gradient of
the atmosphere is less than the moist adiabatic lapse rate. The virtual potential temperature is shown on the x-axis.
The virtual potential temperature is defined by: θ = T +

cp
g
z. The grey dashed lines are the profiles of dry-adiabatic

parcels. The blue dashed lines are the profiles of moist-adiabatic parcels. The solid black line is the temperature profile
of the environment. Below the cloud base, parcels follow the dry-adiabatic lapse rate. Above the cloud base, the virtual
potential temperature increases due to latent heat release (De Roode, 2020).

As stated above, thunderclouds are the only clouds that produce lightning. This lightning production is

the result of different processes in the cloud. The next part of this section focuses on the origin of lightning

inside a cumulonimbus cloud.

In the troposphere, the temperature decreases with increasing height at about 6.5 ◦C per 1000 m (Poelman,

2010). With a height that varies from 10 km to 18 km over the earth (KNMI, 2021; Rakov & Uman,

2003), there is a point in the atmosphere where a rising parcel reaches a temperature below 0 ◦C. At this

point, some water droplets will freeze, while others remain liquid, called supercooled particles (Poelman,

2010; Rakov & Uman, 2003). A mixed-phase region forms due to the co-existence of supercooled water

particles and ice particles, in this mixed-phase region, graupel forms. It forms when ice particles collide

with supercooled water particles (Palmer, 2017; Greitemann, 2014). The supercooled water particles freeze

instantly (Greitemann, 2014) on the hail particles and form a layer of ice particles covering the hail particles

(Palmer, 2017). During the freezing, the supercooled water droplets release latent heat to the hail particle,

so that the temperature of the hail particle increases (Greitemann, 2014). The result is a soft hail particle

(Greitemann, 2014) with a lower density (Palmer, 2017), this is known as graupel (Greitemann, 2014).

The upper limit of this mixed-phase layer is the -40 ◦C isotherm. It was found that above this temperature,

all particles will freeze and become ice (Poelman, 2010; Rakov & Uman, 2003). It is in this mixed-phase

layer that most electrification of thunderstorms takes place (Poelman, 2010; Rakov Uman, 2003; Deierling

et al., 2008).
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Figure 5: A schematic representation of the forming of a thunderstorm. The updraft takes a warm, moist air parcel to
higher levels in the atmosphere. The parcel cools down due to adiabatic expansion to below its dew point temperature
forming water droplets. The water droplets constitute a cloud. Above the 0 ◦C isotherm, some, but not all, of the
water droplets freeze. A downdraft is present to compensate for the updraft (Roose, 2015).

The mechanism that dominates thunderstorm electrification is non-conductive charging (Brisson et al.,

2021; Yair et al., 2010; Saunders, 1993; Latham et al., 1978), which involves the collision between graupel

and small cloud-ice particles as well as deep convection (Poelman, 2010; Yair et al., 2010).

First, the most dominant mechanism is electric charge separation through the collision of graupel and

small cloud-ice particles (Poelman, 2010; Brisson et al., 2021). Here significant charging occurs because

graupel, ice crystals, and supercooled water droplets co-exist (Deierling et al., 2008). Graupel takes the

electron of the smaller ice crystals while descending (Saunders, 1993). As a result, the graupel particles

become negatively charged, and the ice particles become positively charged (Poelman, 2010). The lighter,

positively charged ice crystals ascend, while the heavier negatively-charged graupel particles descend due

to gravity (Poelman, 2010; Saunders, 1993; Brisson et al., 2021). On a macroscale, the cloud top is more

positive, while the cloud base is more negative. Field and laboratory evidence points out the importance

of interactions between particles in the ice phase in the presence of supercooled liquid water droplets, for

separating electric charge in thunderstorms (Saunders, 1993; Yair et al., 2021; Deierling et al., 2008).
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Figure 6: An illustration of the process of charge transfer between graupel and small cloud-ice particles. The green
dashed circled electron is transferred. The downward-moving graupel takes an electron from the rising ice particle. As
a result, graupel is negatively-charged, while the ice particle is positively-charge (Stull, 2020).

The second mechanism is deep convection. Positively-charged particles near the ground surface are

brought to the top of the cumulus by vertical updrafts (Poelman, 2010). Negatively-charged particles pro-

duced by cosmic rays are attracted and attached at the positive cloud boundary (Poelman, 2010). The

downdrafts outside the cloud, resulting from convective circulation, are thought to carry the negative charges

down to the cloud’s base (Poelman, 2010). Again this results in a positive charge at the top and a negative

charge at the bottom of the cloud. This convection mechanism is less critical for cloud electrification. The

charge between the positive earth surface and the negative bottom of a cloud base has a magnitude compa-

rable to a single lightning discharge. However, thunderstorms often produce several lightning discharges and

not only one (Poelman, 2010). However, convection is an essential condition that affects the collisions in the

charging zone (0 ◦C to -40 ◦C) (Yair et al., 2010). Many field observations suggest that a strong vertical

updraft in the mixed-phase region is necessary to produce lightning (Deierling et al., 2008). The strong

vertical updraft lift water droplets to above the 0 ◦C isotherm, such that the mixed-phase layer is replen-

ished with supercooled particles. The strong vertical updraft should lift graupel to above the reversal zone

(-15 [◦C]) (Yair et al., 2010), below which it takes negatively charged particles (Saunders, 1993; Poelman,

2010), and it should disperse the positively charged ice particles upward. Further, a larger vertical updraft

volume produces more hydrometeors in the charging zone, leading to more collisions between graupel and

ice crystals. As a result, a more significant charge separation will be present, and lightning activity increases

(Deierling et al., 2008).

Although there is some clarity about the physics of thunderstorms, uncertainties about details on the

formation of thunderstorms are still present. For example how the water/ice collisions occur (Poelman,

2010) and how charge is transferred between the two interacting particles (Saunders, 1993). Despite these

uncertainties, the literature seems to agree on the fact that the occurrence of thunderstorms and lightning

discharges is related to deep convection, with a strong vertical updraft in the mixed-phase layer and the

co-existence of solid and liquid hydrometeors, such as graupel, ice, snow and water droplets. All these effects

are captured in the LPI.
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2.2 HARMONIE

Weather models are computer calculations that describe the state of the atmosphere. Using recent data of

the atmosphere, such as temperature, pressure, and wind, the model calculates what is expected to happen

based on physical laws (KNMI, n.d.-b). This model calculation results in a weather prediction.

Since 1993 KNMI had used the HIRLAM model for the short-term weather forecasting (48 hours), but more

recently has used a new model named HARMONIE (KNMI, 2020, n.d.-b). HARMONIE was developed

by the ALADIN (Aire Limiteé Adaption Dynamique Développement International), and HIRLAM (High-

Resolution Limited Area Model) consortia, which together hold 26 countries from north and south Europe

(Bengtsson et al., 2017; KNMI, 2020). The prime objectives of the consortia is ’to provide all members with a

numerical weather prediction (NWP) model for short and very short-range forecasting including nowcasting

for both research and development activities and operational usage’ (Malcorps & Agren, 2005). One main

focus of the consortia is adapting the French weather model AROME in such a way that it can be used in the

standard ALADIN-HIRLAM NWP system to make it accessible to all the countries (Bengtsson et al., 2017).

The implementation and the optimisation of the AROME model for both the northern and the southern

European conditions led to improvements to the model’s physical parameterisations (Bengtsson et al., 2017).

As a result, the existing biases were reduced, and the physical description of clouds and land surface fluxes

improved (Bengtsson et al., 2017). The model configuration with the updated physical parameterisations is

called HARMONIE-AROME, from hereon HARMONIE, and is different from the French model definition

AROME (Bengtsson et al., 2017).

As noted above, for some years KNMI has used HARMONIE instead of HIRLAM. HARMONIE brings

new and vital improvements concerning general weather forecasting and specifically thunderstorm predic-

tions. One of the differences is in the resolution of both models. The resolution of the HIRLAM model is 5

kilometres to 10 kilometres, which means that the physical parameters simulated by the model represent a

large grid box volume (KNMI, 2020).

Furthermore, HIRLAM is a hydrostatic model, which uses a hydrostatic approximation for simulations. It

uses the momentum equations, but vertical velocities are neglected. Therefore, it cannot capture features

on the vertical length scales, which becomes valid for thunderstorm up- and downdrafts.

HARMONIE, on the other hand, has a resolution of 2.5 kilometres (KNMI, 2020), which makes it

much more suitable for the description and the prediction of small scale processes. HARMONIE is a non-

hydrostatic model (Van den Brink, 2018; Bengtsson et al., 2017), of which the core is based on the fully

compressible Euler equations (Bengtsson et al., 2017). The evolution of the equations inside the model

is based on the semi-Langrangian advection scheme (Bengtsson et al., 2017; Gregow et al., 2020). The

horizontal diffusion is based on semi-Langrangian horizontal diffusion (Bengtsson et al., 2017). The lateral

boundary conditions are given by the ECMWF model (Bengtsson et al., 2017).

The HARMONIE model consists of 65 vertical levels, with the top (level = 0) at 10 [hPa] and the lowest

level (level = 64) at 12 [m] above the ground (Bengtsson et al., 2017). The levels are not all of the same

thickness. Closer to the surface, the model levels are thinner and have smaller mutual distances, which

increases with height. The lowest levels follow the terrain, and the upper levels follow the pressure levels.

The model consists of half levels and full levels. For the full levels, temperature, moisture, and wind are

computed. For the half levels, the fluxes are computed (Bengtsson et al., 2017). Figure 7 shows an example

of the half and full levels in the HARMONIE model. This figure shows a model that consists of 60 levels.

This is different from the 65-levels of the HARMONIE model.
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Figure 7: Example of full (solid, red) and half (striped, black) levels in the operational ECMWF model. The HAR-
MONIE model looks the same but has 65 levels (Krol et al., 2005).

The physics in the HARMONIE model consists of many different aspects, such as radiation, cloud

microphysics and turbulence. These physical processes are combined in an AROME package (Ivanov et

al., 2021). Different schemes parameterize these processes (Gregow et al., 2020). Below an overview of the

HARMONIE model physics is given. First, zoom in on the radiation used in the HARMONIE model. As

a default for shortwave radiation parameterisation, the Morcrette radiation scheme from ECMWF is used,

which contains six spectral intervals ranging from 0.185 to 4.00 [m] (Bengtsson et al., 2017; Gregow et al.,

2020). For longwave radiation, the default settings are based on the rapid radiative transfer model of Mlawer

et al. (1997) (Bengtsson et al., 2017). These settings contain 16 spectral bands ranging between 3.33 and 1000

[m] (Bengtsson et al., 2017; Gregow et al., 2020). The diagnostic output from the radiation parameterisations

includes different factors, namely, the accumulated spectrally averaged downwelling shortwave globally, direct

and indirect normal irradiances at the surface and the net shortwave and longwave radiative fluxes at the

top of the atmosphere, at the surface and on each model level (Bengtsson et al., 2017).

The cloud microphysics scheme used in HARMONIE is a one-moment bulk scheme (Bengtsson et al.,

2017; Ivanov et al., 2021). It uses a three-class ice parameterisation, which contains the following solid

hydrometeors as prognostic variables: cloud ice, snow, and a combination of graupel and hail (Bengtsson

et al., 2017; Ivanov, Michaelides, Ruban, Charalambous, & Tymvios, 2021). The liquid hydrometeors that

are present as prognostic variables in the microphysics scheme are water vapour, cloud liquid water, and

rain (Bengtsson et al., 2017; Ivanov et al., 2021). All hydrometeors are advected horizontally by a semi-

Langrangian scheme and vertically by a sedimentation scheme (Bouteloup et al., 2011).

In the HARMONIE model, the cloud fraction is not a prognostic variable. It is modelled using a cloud and

condensation scheme (Gregow et al., 2020; Bengtsson et al., 2017; Ivanov et al., 2021).
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The HARMONIE model uses the momentum equations for simulating the vertical wind speed and cal-

culating vertical movements, (Van den Brink, 2018). This enables the model to resolve deep convection

and explicitly represent the model’s non-hydrostatic dynamics, i.e. there is no parameterisation of deep

convection (Bengtsson et al., 2017).

Shallow convection, however, needs to be parameterised (Bengtsson et al., 2017). In HARMONIE, a dual

mass-flux framework is used for this, which consists of two updrafts that transport heat, moisture, and

momentum (Bengtsson et al., 2017; Ivanov et al., 2021). One of the two updrafts is an unsaturated up-

draft that never reaches the lifting condensation level, and the other is a saturated updraft that condenses

and becomes a cloud (Bengtsson et al., 2017). The convective transport is proportional to the difference

between the updraft properties and the environment, times the amount of mass transported by the updraft

(Bengtsson et al., 2017; Ivanov et al., 2021). The upward mass flux can be described by an eddy diffusivity

mass-flux framework (Ivanov et al., 2021; Bengtsson et al., 2017).

The eddy-diffusivity, i.e. the turbulence part, is given by the turbulence scheme HARATU (Bengtsson et

al., 2017), which initially was developed for the regional climate model RACMO (Bengtsson et al., 2017). It

is based on a prognostic equation for turbulent kinetic energy (TKE) equation combined with a diagnostic

mixing length scale (Bengtsson et al., 2017; Ivanov et al., 2021). The mixing length scales are different for

heat, and momentum (Bengtsson et al., 2017).

The mass-flux component describes transport by updrafts that are saturated as well as unsaturated

(Bengtsson et al., 2017). The mass-flux scheme starts with the initialisation of the excess of the updrafts,

whereafter a vertical velocity equation (De Rooy & Siebesma, 2010) is used to determine the updraft vertical

velocity and the height to which the updraft can come (Bengtsson et al., 2017). This gives the cloud-base and

-top height, and using these heights, the profiles of entrainment rate could be defined as it is a function of these

heights (Bengtsson et al., 2017). For the unsaturated updraft, the entrainment formulation of Siebesma et al.

(2007) is used. This formulation is based on large eddy simulation results for the dry convective boundary

layer (Bengtsson et al., 2017). In the case of the saturated updraft, the entrainment profile consists of

two parts. The first part goes from the surface to the cloud base and has the formulation for unsaturated

updrafts (Bengtsson et al., 2017). The second part goes past the cloud base and represents larger, faster-

rising thermals that are associated with lower entrainment rates in comparison to the unsaturated updrafts

(Bengtsson et al., 2017). The value for entrainment at the cloud base in saturated updrafts are scaled with

the inverse of the cloud base height, which is suggested by LES (Bengtsson et al., 2017). This relation shows

that higher vertical velocities and larger thermals are related to deeper mixed layers (De Rooy & Siebesma,

2010). Furthermore, the considerable variation of detrainment and the strong relation with mass flux is

considered in the model (Bengtsson et al., 2017). In the model, environmental conditions influence both

the cloud layer depth and the detrainment (Bengtsson et al., 2017). The relation represents that if relative

humidity and buoyancy excess of the updraft increases, detrainment decreases and the mass flux decrease

with altitude. This is again related to large clouds with high vertical updraft velocities (Bengtsson et al.,

2017).

The surface physics is described by an external surface scheme called SURFEX (Ivanov et al., 2021), which

was developed by Météo-France (Bengtsson et al., 2017). It consists of a set of physical models for different

surface types (Ivanov et al., 2021; Bengtsson et al., 2017), such as natural land surfaces, sea and inland water

bodies, and urban environments (Ivanov et al., 2021; Bengtsson et al., 2017). SURFEX is a model on its

own and can be used in standalone or in combination with an atmospheric model (Bengtsson et al., 2017).

12



Four surface tiles represent each grid box: seas, inland water bodies, urban area and nature (Bengtsson et

al., 2017; Ivanov et al., 2021). Each surface tile is modelled with a specific surface model, and the total

flux of the grid box results from the addition of the individual fluxes weighted by their respective fraction

(Bengtsson et al., 2017). The default topography is based on Global Multi-resolution Terrain Elevation Data

(Bengtsson et al., 2017).

As became clear in this section, many parameterisation schemes are used to solve and describe the atmo-

spheric processes in HARMONIE. The high resolution and the non-hydrostatic properties of HARMONIE

give a more realistic description of the atmospherical processes (Van den Brink, 2018) compared to HIRLAM.

Furthermore, HARMONIE not only resolves deep convection explicitly, but it also uses a cloud microphysics

scheme which contains the following prognostic variables: cloud ice, snow, graupel, hail, water vapour, cloud

liquid water, and rain (Bengtsson et al., 2017). It simulates microphysical mixed-phase precipitation forma-

tion processes. The presence and amount of these hydrometeors are essential indicators of thunderstorms.

It is apparent that HARMONIE could improve the prediction of thunderstorms due to the high resolution,

the explicit simulation of deep convection at a small scale, and hydrometeors’ presence as prognostic variables.

2.3 Lightning Potential Index

The connection between cloud microphysics and thunderstorms and lighting is apparent. Still, commonly

used thunderstorms and lightning potential forecasting indices mostly rely on the stability and thermody-

namical properties of the atmosphere (Yair et al., 2010). They may be not related to the electrification

process (Brisson et al., 2021). In this respect, the Lightning Potential Index proposed by Lynn and Yair

(2010) is a new and innovative thunderstorm predictor, as it focuses on the microphysics of the clouds and

it accounts for the presence of both solid and liquid hydrometeors (Brisson, Blahak, Lucas-Picher, Purr, &

Ahrens, 2021), inherent to the origin of lightning and thunderstorms. As such it could use the thunderstorm-

predicting qualities of HARMONIE.

The LPI is a measure of the kinetic energy of an updraft in a developing thundercloud, scaled by the

potential for charge separation based on ratios of solid and liquid hydrometeors in the main charging zone of

the cloud (Yair & Lynn, 2008; Yair et al., 2010). The LPI portrays the potential for charge generation and

separation that leads to lightning flashes in developing convective thunderclouds based on model outputs

of vertical updraft and mass mixing ratios of hydrometeors (Fiori et al., 2016; Yair & Lynn, 2008) in a

relatively simple and computationally cheap way (Brisson et al., 2021). It leads to the ability to determine

areas prone to lightning (Sokol & Minářová, 2020), but it does not calculate the resulting electric field or its

evolution (Yair & Lynn, 2008; Yair et al., 2010).

The original LPI definition by Yair and Lynn (2010) is derived from the vertical updraft and the mass

mixing ratios of liquid water, cloud ice, snow and graupel (Yair et al., 2010), integrated from the freezing

level to the -20 [◦C] isotherms. The definition is the following.

LPI =
1

V

∫ ∫ ∫
εw2dxdydz (3)

It has its most significant values in the presence of strong vertical updraft when liquid and solid hy-

drometeors coexist (Fiori et al., 2016). The approach of this derivation is in line with the theory showing

the critical relation of the vertical updraft, hydrometeors and lightning (Lagasio et al., 2017). Brisson et
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al. (2021) changed the original definition by adding a filter for large-amplitude gravity waves caused by

orographic features.

Others already researched the performance of the LPI, and the obtained results were promising. The

Mediterranean case studies done by Yair et al. (2010) and Lynn and Yair (2010) showed ’superiority of the

LPI against other thermodynamic indices’. Brisson et al. (2021) changed the definition of the LPI by adding

the CAPE, which resulted in the following formulation.

LPI = fw,maxfCAPE
1

H−20◦C −H0◦C

∫ H−20◦C

H0◦C

εg(w)dz (4)

Brisson at al. (2021) showed that the LPI is much better at deriving a correct representation of tem-

poral probability densities and latitudinal dependencies in the COMSO-model in comparison with another

index.(Brisson et al., 2021). In addition, another research done in the COSMO model done by Sokol et al.

(2020) confirms that the LPI is a suitable tool for implicit forecasting of lightning. Lagasio et al. (2017)

concluded that the LPI shows a high correlation with the observed lightning and is helpful for real-time

forecasting, if a discrimination is made between cases leading to deep moist convective and persistent storms

and shallower and chaotic convective situations, lacking significant ground effects.

Furthermore, it could be helpful as a hindcast tool for more in-depth investigations into the physical param-

eters that form lightning activity. In addition the LPI could reproduce essential parameters responsible for

high-impact events over complex topography areas (Lagasio et al., 2017). In another research, the LPI is

considered as a good forecasting tool whenever the model can reproduce the convective process (Fiori et al.,

2016) as the main problem seems to be that the model has difficulty in correctly reproducing the convective

field characterising the event. In this research (Fiori et al., 2016), the effect of orographic up- and downdrafts

on the LPI becomes clear and shows that the LPI will result in a non-homogeneous signal.

To conclude this section, the LPI uses vertical updraft and the mass mixing ratios of liquid and solid

hydrometeors, which are the most important conditions of the initation of lightning and thunderstorms.

Furthermore, the LPI takes advantage of one of the main features of HARMONIE, the explicitly resolved

deep convection. In addition, the results obtained by previously-done research shows the LPI’s outperforms

traditional indices. Therefore, it is expected that the LPI used together with HARMONIE will give a

considerable improvement on the prediction of the probability of thunderstorm occurrence in the Netherlands

compared to the currently used indices.
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3 Methods

3.1 Model Setup

3.1.1 HARMONIE

All data used in this research is instantaneous hourly output data of HARMONIE cycle 40. HARMONIE

is a non-hydrostatic, area limited, storm permitting model and a terrain-following pressure-based system

(Bengtsson et al., 2017). It contains 65 levels in the vertical, with the lowest at 12 metres and the top at

circa ten [hPa].

The lateral boundary conditions are given by the ECMWF model (Bengtsson et al., 2017). Surface physics

are simulated by the surface scheme named SURFEX, developed by Météo France (Masson, 2013). The cloud

microphysics scheme used in HARMONIE is a one-moment bulk scheme containing prognostic variables for

hydrometeors (Bengtsson et al., 2017). Deep convection is solved explicitly, i.e. it is not parameterized.

The horizontal resolution is 2.5 kilometres, and the model time step is 75 seconds (Bengtsson et al., 2017;

personal communication De Rooy, W., 2021). The area of the HARMONIE domain that is available for this

study is shown in Figure 8. The computational area of HARMONIE is larger than the area used in this

study.

Figure 8: The black rectangle shows the
HARMONIE domain that is available for this
study. The red rectangle inside is the area of
interest for this research.

Figure 9: Map of the Netherlands and surroundings divided
into 20 subdomains. This area is the area of interest for
this research.

3.1.2 Area and time of interest

Figure 9 shows the area used in this research. It covers the Netherlands and parts of the North Sea, Belgium

and Germany. The reason for choosing only the Netherlands and not the whole domain of HARMONIE is

that this is the area of interest for KNMI, and historical observations of this area are available. The area

is divided into 20 subdomains, each 5625 [km2], which is 30 x 30 times larger than the grid box size but

still small enough to make forecasts for an area that is not too large. The subdomains are pooled into land,

shore, and sea to get more data per group and insight into the effect of land cover on the LPI performance.

The area division is as follows:

land: AV, BV, BW, CV, CW, CX, DV, DW, DX

shore: AW, BX, BY, CY, CZ, DY, DZ
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sea: AX, AY, AZ, BZ

The periods used for the research are April 15 to October 15 for the years 2016 and 2017. These periods

correspond to the thunderstorm season in the Netherlands (KNMI, n.d.-a, 2016). The years 2016 and

2017 are chosen because observations and reforcasted indices are already available in the KNMI database.

Furthermore, 2016 was a thunderstorm-rich year (Météorage, n.d.; Groot, 2019) and the 2017 KLDN data

showed to have many lightning detections (Groot, 2019).

3.2 Lightning parameterizations

3.2.1 Lightning Potential Index

The lightning parameterisation used in this research is based on the LPI formulation of Yair et al. (2010).

However, as some details in the formulation were unclear, the parameterisation proposed by Brisson et al.

(2021) is also used. Output data of HARMONIE of two thunder seasons was used to evaluate the performance

of the LPI. The LPI has the units of [J/kg] and is defined by:

LPI = f1
1

H−20 −H0

∫ H−20

H0

εw2dz (5)

where w is the vertical updraft in [m/s]. The integral is taken over the primary charging zone in one

grid point, between the 0 ◦C and -20 ◦C isotherm, as most effective charge separation by collisions of ice

and graupel in the presence of supercooled water, occurs within this zone (Fiori et al., 2016). The units for

height of these levels is metres above the earth surface. ε is a dimensionless number having a value between

0 and 1 related to relative amounts of liquid and solid hydrometeors, defined by the formula:

ε =
2
√
RL ∗RF

RL +RF
(6)

with RL the total liquid mass mixing ratio [kg/kg], containing all liquid species and RF is the ice fractional

mixing ratio [kg/kg], containing all frozen hydrometeors. These are defined by the formulae:

RL = rc + rr (7)

RF =
rg
2

[
2
√
rirg

ri + rg
+

2
√
rsrg

rs + rg

]
(8)

where rc, rr, rg, ri and rs are the mass mixing ratios of cloud water, rain water, graupel, cloud ice and

snow [kg/kg], respectively. The model output was specific humidity [kg/kg]. Before adding it to the formula,

the specific humidity was converted to mass mixing ratios using r = q
1−q , where r is the mass mixing ratio

[kg/kg] and q is the specific humidity [kg/kg].

The ε reaches its maximum value when the mass mixing ratios of the liquid and solid hydrometeors are

equal. It shows the importance of the simultaneous existence of both hydrometeors for the initialisation of

lightning. A minimum is reached when the hydrometeors do not exist simultaneously. No charge separation

will occur so that thunderclouds are not electrified, so no lightning discharge can happen.

Based on the findings of Yair et al. (2010) and Brisson et al. (2021), a filter is added to correct for updrafts

that do not represent physically coherent convective updrafts. Km-scale models, such as HARMONIE, do

not fully resolve small scale convective updrafts, resulting in the modelling of isolated single-grid-column
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updrafts. As a result, the LPI signal becomes weak, noisy and unrealistic as a result. To correct for this, the

LPI for a particular grid point is only non-zero when a majority of the neighbouring horizontal cells within

a 5 grid-radius (10 x 10 [km2]) of that grid point have a vertical updraft above a specific threshold (Yair &

Lynn, 2008; Brisson et al., 2021). For this research, the threshold is set to 0.5 m/s (Yair et al., 2010). The

5 grid-radius surroundings represent a 12.5 x 12.5 [km2] area in HARMONIE. The reason is that because of

the resolution of HARMONIE in combination with the demands of the LPI definition, a 10 [km] x 10 [km]

was not possible. This correction filter is called f1, and it is not related to a physical mechanism of charge

separation in a thunderstorm. The correction filter resembles like:

f1 =

1 , if C > 0.5 ∗ TG

0 , else

TG is the total number of grid points in the 5 grid radius, and C is the number of grid points with a

vertical updraft greater than the threshold in [m/s].

The comparison with observations is not made by converting the LPI into lightning flash rate, as was

proposed by Brisson et al. (2021). Instead, a threshold value based on the spatial distribution of the

maximum and mean value of the LPI is set, above which it is assumed lightning and thunderstorms occur.

3.2.2 Modified Jefferson Index

In this research, a comparison between the LPI and currently used indices is made. The first index that will

be discussed is the Modified Jefferson Index, hereinfurther MJI. The MJI describes the instability between

the 925 [hPa] and the 500 [hPa] levels and is defined by the formula:

MJI = 1.6θw,925 − T500 − 0.5DD700 (9)

where θw,925 is the wet-bulb potential temperature at 925 [hPa], T500 is the temperature at 500 [hPa],

and DD700 is the dew point depression, which is the difference between the temperature and the dewpoint

temperature at 700 [hPa].

The MJI used nowadays is a modification of the original Jefferson Index established by Jefferson in 1963.

The modification includes an addition of the 700 [hPa] dewpoint depression, which increases with decreasing

relative humidity (Haklander & Van Delden, 2013; Groot, 2019). This accounts for the fact that a rising air

parcel can be diluted or cool due to entrainment of drier air (Haklander & Van Delden, 2013; Groot, 2019).

The MJI does not give a direct relation between a parcel with latent heat release and its environment. The

MJI does discriminate well between stable and unstable conditions, which lead to convective storms (Groot,

2019).

3.2.3 K-index

The second index used for comparison is the K-Index defined by the formula:

KI = T850 − T500 + Td,500 −DD700 (10)

where T850 is the temperature at 850 [hPa] and Td,500 is the dew point temperature at 500 [hPa].

The K-index is a measure of thunderstorm potential. A higher value indicates a higher thunderstorm

probability. A higher value is reached if the stability between 850 [hPa] and 500 [hPa] decreases, if the

moisture increases at 500 [hPa], and relative humidity increases at 700 [hPa].
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3.2.4 Most Unstable CAPE

The third and last index is the MUCAPE or most unstable CAPE. MUCAPE is the CAPE (convective

available potential energy), where the parcel used for initialisation is the one that gives the largest value

of CAPE. The MUCAPE is found by lifting a parcel from every one of the lowest pressure levels in the

troposphere. For every parcel, the CAPE will be calculated, and the parcel that produces the highest CAPE

is the MUCAPE and is defined by the formula:

MUCAPE =

∫ LOC

LFC

g
Tv,p − Tv,env

Tv,env
dz (11)

where LOC is the limit of free convection, i.e. the maximum level where Tv,p = Tv,env, LFC is the

level of free convection, i.e. where Tv,p = Tv,env below the CAPE layer, g is 9.81 [m/s2], Tv,p is the virtual

temperature of the parcel and Tv,env is the virtual temperature of the environment.

CAPE describes the instability of the atmosphere by measuring the amount of energy a parcel has gained

after rising to the LNB. CAPE provides an approximation of updraft strength within a thunderstorm. The

more potential energy an air parcel possesses, the higher the CAPE value is. A higher CAPE value means a

more unstable atmosphere and a stronger updraft. A sufficiently strong updraft means a parcel can be lifted

high enough in the atmosphere to produce a convective weather systems.

3.3 Validation Data set

A data set of observed number of lightning discharges is needed as a reference data set to compare the

various indices and assess how well they perform. In this research, the reference data set consists of lightning

discharges as detected by Météorage, the operator of the European lightning detection network headquar-

tered in Pau, Cedex 9, France. Météorage has detected lighting since 1987 and since 2010 part of the data

is delivered to KNMI. More recently, Météorage started to operationally deliver data to KNMI, which is

referred to as KLDN. In the past, FLITS was used for the lightning detection (Groot, 2019; De Vos, 2015).

The full period data set of KLDN contains some inhomogeneities due to the improvement and addition of

extra sensors in the UK (autumn of 2015) and the Netherlands (2017, June) (Groot, 2019). Unfortunately,

there is no homogeneous detection system so it is impossible to correct these inhomogeneities (Groot, 2019).

The reference data sets used herein were gathered using KLDN. KLDN detects lightning using electromag-

netic signals and can distinguish and classify cloud-to-ground (CG), and cloud-to-cloud (CC) discharges, but

not unambiguously. KLDN can detect CC lightning, but such a detection can consist of different segments

of the same discharge. For CG lightning, KLDN can distinguish between the first return stroke and the

subsequent return strokes that originate from the same lightning event(De Vos, 2015). In this research both

CC and CG discharges are used and no distinction is made between the two.

In KLDN some discharges are missed, but more often, extra detections from another source are counted as

discharges. This is explained by the fact that KLDN measures electromagnetic signals to detect lightning

discharges but there are other sources of electromagnetic signals such as a flying aeroplane. The lightning

detection system could catch the signal of an airplane and register this as a discharge, while there was not

any. An additional source of a false lightning strike detected by KLDN is a horizontal lightning which is not

counted as a single event, but as at least two different events at different locations. This, too, increases the

number of detected lightning discharges, while only one discharge was present. In this study, a threshold was

used to decrease the probability of incorporating the non-lightning signals. An event of lightning discharges

is only accepted as such if two or more detections were made in a specific time and area.
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3.4 Data description

3.4.1 Reforecasted data used for LPI

The LPI is a new index, and therefore, unlike the other three indices, the LPI predictions are not available

in the archive of KNMI. In this study, new LPI output is generated using instantaneous hourly reforecasted

data of HARMONIE cycle 40 on a 2.5 [km] grid, using the analysis time 00 with the corresponding lead

times +00, +01, ..., to +48.

The reason behind the analysis time of 00 UTC is twofold. Lightning and thunderstorms are known to

happen in the afternoon and evening. The model needs some time to develop, which means that the first

lead times are not useable for forecasting. By using 00 UTC, the model is fully developed at the time

lightning and thunderstorms are generally present.

3.4.2 Reforecasted Indices

The other three indices, MUCAPE, K-Index and the MJI, are currently used by KNMI for weather forecast-

ing. The data set of these three indices used in this research is computed from the same HARMONIE cycle

40 reforecast data for previous research. Corresponding to the LPI data, the analysis time used is 00, with

lead times +00 to +48.

3.5 Forecast and verification methods

The observation output, which originally is the number and the current of the discharges at specific locations

and times, is changed to a binary data set containing zeros (no thunderstorms) and ones (thunderstorms).

The current of the discharges is in this case not taken into account. The forecast output is taken as the

maximum and the mean value of each index per time span and subdomain. As noted above, the area of

interest is divided into 20 subdomains of 75 [km] x 75 [km] (31 by 31 grid points) each. The subdivision

of these subdomains was done for the observations and the indices, such that all cover the same area and

subdomains. Regarding the time, the observations and the indices are binned in 6-hour non-overlapping

periods, such that the comparison is done for the same time span and that the daily cycle is present and

could be considered. The averaging over time and area is done to reduce location errors and increase

predictability.

3.5.1 Logistic regression

The forecast probability is determined using logistic regression and produces a value in the range of 0 to

1. Before going deeper into the verification metrics, first an explanation of logistic regression will be given.

Part of the logistic regression examples will be shown in the Results section the rest can be found in the

Appendix.

Logistic regression is used to make probability forecasts and estimates the relationship between one

dependent binary variable and one or more independent variables (StatisticsSolutions, 2021). Single variate

logistic regression is the most straightforward one, in which there is only one independent variable, also called

predictor. Here, one set of input-output pairs exist (Stojiljković, 2019). Logistic regression finds the weights

(regression coefficients) b0, b1, bn that corresponds to the maximum likelihood estimation (Stojiljković, 2019).

It is an iterative method that maximizes the product of all computed probabilities of the (non)occurrence
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of the event in the dependent data set (Schmeits et al., 2008). This method gives the probability P that an

event y occurs by (Schmeits, Kok, Vogelezang, & Van Westrhenen, 2008; Stojiljković, 2019)

P (y) =
1

1 + exp(b0 + b1x1 + a2x2 + ...+ bnxn)
. (12)

The predictors (x1, x2, ..., xn) are selected via the forward stepwise selection method (Schmeits et al.,

2008). It means that for each step, the predictor that produces the best regression in co-occurrence with

the previously chosen predictors is selected (Schmeits et al., 2008). In this research, single variate logistic

regression is used, so only 1 predictor (i.e. 1 index) is used.

3.5.2 Verification metrics

There are numerous verification measures to compare forecasts based on the different indices. An often used

verification measure for verification of probabilistic forecasts is the Brier Score (BS). It directly verifies a

probability forecast, which is more preferable than a categorical forecast, which only has two options, 0 (no)

and 1 (yes), i.e. probability forecasts have more skill than categorical forecasts. The Brier Score is given as

the mean square error (MSE) of the probability forecasts and is defined by (Wilks, 2011):

BS =
1

n

n∑
k=1

(pk − ok)2 (13)

In this equation, pk is the forecast probability, ok is the binary observation, and n is the number of

observations in the data set. The binary observation can have a value of either 0 (no event) or 1 (event).

Because the Brier Score is an MSE, the lower the value, the higher the performance of the forecast. This

means that BS = 0 indicates that the forecast is perfect, while BS=1 indicates that none of the predictions

corresponds to the observations.

The Brier Score can be decomposed into three components: resolution, reliability and uncertainty. The

resolution indicates how well a forecast discriminates between thunderstorms and no thunderstorms. A

high-resolution model will result in no thunderstorms for a probability of 0%, and the probability will be

100% if a thunderstorm is observed. It becomes clear that it is better when this resolution term is higher.

In the worst case, the resolution is zero. The reliability indicates how close the forecast probabilities are to

the observed frequencies. If the reliability is perfect, the forecasted probability always corresponds to the

thunderstorm observation frequency. For example, if a forecast probability is 25%, for a perfectly reliable

model, it means the event would happen 25% of the time. The uncertainty indicates to what extent one

can trust the outcome. If the probability is 50% for a reference forecast, the data distribution is uniformly

between 0 to 1, and the outcome is highly uncertain. A probability 0f 50% will give a maximum in the

reference Brier Score, which will be 0.25. For reference probabilities that are high or low, the outcome

becomes more certain. It results in a lower Brier Score than 0.25.

The Brier Score indicates the accuracy of a forecast in terms of resolution, reliability and uncertainty

but does not compare it with a reference. In this research, the goal was to compare different indices. Thus,

it makes more sense to use a skill score that makes it possible to compare the different indices. Therefore,

the Brier Skill Score (BSS) is used, which is defined as:

BSS =
BSref −BS

BSref
= 1− BS

BSref
(14)
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The BSref is the Brier Score of a reference forecasting method, and BS is the Brier Score of the forecasting

method that one wants to compare with the former score. The BSS shows the improvement of the forecasting

method compared to the reference forecasting method. The climatological forecast is often used as the

reference forecast, which is issued using historical records. In this research, the calculated mean value of

the LPI (BSLPI,mean) was used instead of the climatological forecast. This was done because the most

important goal of this research is to get a clear view of the performance of the LPI in comparison with the

currently used indices. The BSS can have a value between -∞ and 1. If BSS > 0, the forecasting method’s

performance is better than the reference. If BSS < 0, the performance is worse.

The Brier Skill Scores are presented in Box and Whisker plots that visualize the data distribution using

the five-number summary of the data: ’minimum’, first quartile, median, third quartile, ’maximum’. Box

and Whisker plots give a good indication of the spread of the values in the data. Below in Figure 10, an

example is presented using random numbers (not based on the data) to explain how Box and Whisker plots

are read.

Figure 10: Example of a Box and Whisker plot using random numbers. It shows some quantity versus the experiment
number.

Starting with the box, where the lowest line of the box represents the 1st quartile, and the upper line of

the box represents the 3rd quartile. The red line inside the box represents the median (2nd quartile). The

interquartile range (IQR) is the distance between the 1st and third quartile (Q3 −Q1). The IQR describes

the variability of the data. The larger the IQR, the larger the variability of the data set. The vertical

lines extending parallel from the boxes are called the whiskers. The whisker at the top is measured as 1.5

times the IQR and drawn up to the largest observed point from that data set that falls in that distance

(Q3 + 1.5 ∗ IQR). From below, a distance of 1.5 times the IQR is drawn from the lower quartile down to the

lowest point that falls in this range (Q1 − 1.5 ∗ IQR). The points not included in the whiskers or the box

are called outliers.

In addition to the BSS, reliability plots are used to get more insight into the performance of the probability

forecasts based on the indices. An example of a reliability plot is shown in Figure 11, using random data

non-related to this project.
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Figure 11: Upper panel: Example of a reliability plot using random numbers. On the x-axis it shows the binned forecast
probabilities of a specific event and on the y-axis the observed frequency of the same specific event. The dashed black
line shows a perfectly reliable model. The red line represents some data. Lower panel: The graph shows the number
of observations per bin. On the x-axis there is the forecasted probability of an event and on the y-axis the count or
the number of observations of that specific event. The data used is not related to this study.

In a reliability plot, the forecast probabilities are binned. These binned probabilities are plotted (x-axis)

against the observed relative frequency (y-axis). The diagonal black line represents the line that a perfectly

reliable forecast would follow. A perfectly reliable forecast would mean that, for example, if a forecast states

that an event will occur with a probability of 40%, then the event will occur 40% of the time. As the plotted

curve deviates more from this black line, the reliability becomes less. If the curve lies above the diagonal

line, the forecast probabilities are too low (under-forecast). If the curve lies below the line, the forecast

probability is too high (over-forecast). There may be only a few probabilities issued that lie within a specific

bin. It then becomes more likely that the result will deviate from the diagonal. As a result, the diagram

will look very unstable. A second plot gives insight in the number of issued probabilities per bin (Figure 11,

lower panel).

For the above described forecast and verification methods Python packages have been used. The logistic

regression was performed using sklearn.linear model LogisticRegression. The Brier Score was calculated using

sklearn.metrics.brier score loss, the Box and Whisker plots are made using matplotlib.pyplot.boxplot and for

the reliability plots sklearn.calibration.calibration curve was used.
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3.5.3 Continuous predictand

The skill scores described so far were based on a binary predictand (thunderstorm or not). To make the

analysis complete and get a better impression of the performance of the LPI, another analysis is done using

a continuous predictand. This predictand is the total number of discharges in the specific time frame in a

specific subdomain. The result is plotted in a scatter plot, where the y-axis represents the total number of

discharges and the x-axis represents the mean value of the index. The mean is calculated inside the time

frame for every specific subdomain. The mean can be used to find a threshold index value above which there

is a higher chance of many discharges. An example of such a scatter plot is shown in Figure 12.

Figure 12: Example of a scatter plot which shows the number of discharges as a function of the mean of a specific
index. The data in this scatter plot is random and does not describe the data used in this research.

23



4 Case Studies

In this chapter, two case studies at different lead times will be considered in-depth. The case studies will focus

on two specific days when many lightning discharges were detected. They give insight into the performance of

the LPI and the other indices for a shorter and longer lead time. They demonstrate how the LPI behaves in

these cases for different lead times, and the behaviour of diverse components of the LPI. This allows a deeper

insight into the relationship of the LPI and the other indices with the physical and dynamic atmospheric

processes. Moreover, the case studies will help explain and understand the results.

As said, two case studies will be discussed in the following subsections. The first case study represents a

situation in which the LPI operates reasonably. In the second case study the LPI provided predictions that

were far from the actual observed lightning discharges.

The subsections start with an introduction to the atmospheric state and weather. Then the analyses for two

different lead times will be performed based on a visual result of the different indices. Lastly, the performance

of the LPI is evaluated.

4.1 23 June 2016

On the 22nd and 23rd of June, 2016, the thunderstorms that crossed the Netherlands led to much nuisance.

Flooding, strong wind, large hail, and gusts damaged nature and human properties. On the 23rd, an

exceptionally high number of lightning discharges was registered. This heavy thunderstorm related to a south

southwest air flow containing hot, moist air that was highly unstable, which arose due to a high-pressure

area above the Baltic states and a low-pressure area to the west of the United Kingdom (Sluijter, 2016).

Other thunderstorms resulted from this airflow, but the focus of this case study will be the thunderstorm

cluster that passed the south-east of the Netherlands at the end of 23rd June 2019. Radar observations of

this storm are found in the Appendix.

Figure 13: A map of Europe with the locations of the low and high pressure system on 23 June, 2016. The low pressure
system is found west of the UK and the high pressure system is located above the Baltic states (Sluijter, 2016).

At the end of the morning of 23 June 2016, after the previous thunderstorms were gone, the sky cleared

up, resulting in very high temperatures. In the east and southeast, the temperatures passed 30 ◦C, and

the humidity was high. The dewpoint temperature reached 22 ◦C and, at some places, even higher. Two

mechanisms probably caused air to move upward. The first mechanism was the effect of the diurnal cycle:
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because the surface temperature becomes hotter than the air temperature, the air close to the ground warms

and starts to rise. The second mechanism was the presence of the low-pressure system, in which air converges

at the surface and starts to rise. Thunderstorms start to develop in the unstable air in the early evening

in the east. Later on, thunderstorms that developed in France and Belgium in the evening moved to the

Netherlands.

4.1.1 Lead time: 23 June 2016, 00 UTC +18 until 00 UTC +24

(a) Observations done by KLDN (b) LPI forecast over whole range (c) LPI forecast, range until 3 [J/kg]

(d) K-index forecast (e) Modified Jefferson index forecast (f) MUCAPE forecast

Figure 14: The observations and the result of the four indices are shown. The observations originate from 23 June
2016 18.00 until 24.00. The indices are simulated for 23 June 2016 for the 00 UTC +18 to 00 +24 run and averaged
over this period. The LPI is shown twice, both representing the same situation. The upper-middle plot shows the
result for the whole LPI range. The right upper plot shows the LPI values for the range until 3 [J/kg], values above
3 [J/kg] are not shown in the plot. This was done to see the lower LPI values better.

Figure 14 shows the observations of 23 June 2016 18.00 until 24.00 and the predictions of the indices using

HARMONIE output for the lead time of 00 UTC +18 until 00 UTC +24. The discharges are observed by

KLDN and are detected in the South, south-east and east of the Netherlands, in Belgium, and in part of

Germany.

It can be seen that the LPI prediction of lightning discharges spans the correct domain shape, as it is

oriented southwest to northeast. However, it is shifted to the north compared to the observations.

Interestingly, the K-Index shows high values precisely at the location where discharges are observed. The

domain and the exact location seem to be correct.

The MJI also shows to have higher values in the areas where discharges were observed. The highest values

are predicted in northern Belgium at the border with the Netherlands.

The higher values predicted by the MJI could be explained by the difference in temperature of the different

atmospheric layers. The lower atmospheric layer (950 [hPa] and 850 [hPa]) have different temperatures for

different locations in the Netherlands. Figure 15 shows that the temperature at 850 [hPa] for the area of

Limburg is higher than for the area closer to the sea (west and north Netherlands). The temperature of
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the 500 [hPa] layers seems to have the same temperature range. This means that for the more inland areas

the K-index and the MJI, the values are expected to be higher as the differences in temperature are larger,

based on the observations.

The highest values predicted by MUCAPE are found in the area where the discharges are actually

observed. The general area span of the high values of MUCAPE corresponds to the observations.

This result seems to show that the HARMONIE model predicts the potential of thunderstorms well. As the

K-index, the MJI and the MUCAPE represent the thunderstorm occurrence well. The question is therefore

why does the LPI not predict the correct location of the thunderstorms. The different input parameters of

the LPI are plotted to investigate the relation between the LPI inputs and resulting LPI predictions.

(a) The geopotential height (white lines) and the temperature
(the colourbar) at a height of 850 hPa in Europe for 23 June
2016, 00z.

(b) The geopotential height (white lines), the temperature
(grey, dashed lines and the surface pressure (colourbar) in Eu-
rope for 23 June 2016, 00z.

Figure 15: In the figures above the geopotential height and the temperature are shown. In the right on the surface
pressure is present too (Müller and Floors, 2021).

In Figure 16 the different input parameters used in the calculation of the LPI are plotted in six different

images. The vertical up- and downdraft and the different hydrometeors are plotted as an average over 6

hours from 00 UTC +18 until 00 UTC +24. The instantaneous values per hour are used. The values for

hydrometeors that are plotted are averaged over height and time. This is not the same as an accumulation

over time, but it gives an impression of where the hydrometeors are present and in what amount. This

method is chosen because the unit of the hydrometeors given in the output file is in [kg/kg].
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(a) Vertical Velocity (b) Cloud water (c) Rain

(d) Ice (e) Snow (f) Graupel

Figure 16: The vertical velocity [m/s] and the hydrometeors [kg/kg] as an average over 18.00 until 24.00 for 23 June
2016. The instantaneous values per hour are used to generate the average.

Figure 16 shows, is that for all hydrometeors and the vertical velocity, the highest values are present

more to the north than where the discharges were detected. The figure shows that the locations of high

vertical velocity and rain values correspond to high LPI signals. Furthermore, there is a correlation between

the extent of the graupel and the extent of the LPI. These results indicate, that in this case, the two most

essential hydrometeors are rain and graupel. This is consistent with the literature, in which it is stated that

there is a high relation between graupel, heavy precipitation and lightning. The LPI signal fits the area of

where these two hydrometeors and the vertical velocity exist, perfectly, as is expected due to the formulation

of the LPI.

The results in Figure 14 and Figure 16 show that there is a difference in the model between the potential for

thunderstorms due to instability and the actual consequence of the instability, the occurrence of precipitation

and vertical updrafts. This effect will be researched by using the Most Unstable CIN (MUCIN). The MUCIN

for this case is plotted in Figure 17. The MUCIN is the same as the other indices, averaged for 23 June 2016

over the six hours 00 UTC +18 until 00 UTC +24.

Figure 17: The most unstable CIN for 23 June 2016 averaged over the period 00 UTC +18 until 00 UTC +24. The
values are negative.
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Figure 17 shows the MUCIN for this case. MUCIN is the most unstable convective inhibition and is the

energy that parcels need to overcome to rise higher in the atmosphere. It serves as a cap in the atmosphere,

which hinders vertical updrafts from producing convective systems. If the MUCIN has a larger negative

value, the negative buoyancy is more significant. This means that it becomes more difficult for the parcels to

break through the CIN, and the probability of a thunderstorm is low. A first evaluation of the performance

of the LPI can made using this theory.

When looking at Figure 17, it can be seen that at the location where discharges were observed, the

instability was large and the MUCIN was large too, i.e. the MUCIN has large negative values. These

high values of MUCAPE could be a possible explanation for the fact that no precipitation was modelled by

HARMONIE. However, it could also be that when the model generates precipitation the MUCIN is reduced.

4.1.2 Lead time: 22 June 2016, 00 UTC +42 until 00 UTC +48

This subsection shows the case for 23 June 2016 from 18.00 to 24.00, but uses longer lead times (+24

hours) than the abovementioned subsection. To see the effect of the lead time on the performances. The

observations and the indices are presented in Figure 18. The indices are made by averaging 22 June 2016

over 00 UTC +42 until 00 +48.

(a) Observations done by KLDN (b) LPI forecast whole range (c) LPI forecast, range until 3 [J/kg]

(d) K-index forecast (e) Modified Jefferson index forecast (f) MUCAPE forecast

Figure 18: The observations and the result of the four indices are shown. The observations originate from 23 June
2016 18.00 until 24.00. The indices are simulated for 22 June 2016 for the 00 UTC +42 to 00 +48 run and averaged
over this period. The LPI is shown twice, both times representing the same situation. The upper-middle plot shows
the result for the whole LPI range. The right upper plot shows the LPI values for the range until 3 [J/kg], values
above 3 [J/kg] are not shown in the plot. This was done to better see the lower LPI values

Figure 18 shows the forecast for a longer lead time. All indices performed less well than when a shorter

lead time was used, as expected. All four indices have their highest values shifted to the north west compared

to the observations and with the previous shown short lead time forecast.

When comparing the different indices with each other, it can be seen that the LPI seems to diverge most

from the observations. Almost all high values of the LPI do not correspond to where the discharges were
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observed. Only in the north east, the LPI covers the observations, but that area contains mostly low LPI

values. The K-index predicts part of the observed area, but fails to predict discharges over Limburg and

parts of Germany. The MJI fails to predict discharges over a large part of the observed thunderstorm area.

MJI does predict high values in northern Belgium and Brabant that do correspond to the thunderstorm area.

Further to the north east, less high values are predicted. Lastly, the MUCAPE discharge prediction covers

a more significant part of the observed discharge area, but the area with high predicted MUCAPE values is

much larger than the actual area where discharges were observed.

4.2 19 July 2017

4.2.1 Lead time: 19 July 2017, 00 UTC + 12 until 00 UTC +18

The second case that will be studied is 19 July 2017 00 UTC +12. Observations show that a low-pressure

system was present above the United Kingdom, and a high-pressure system north of the Netherlands moved

east. A warm, moist and unstable airflow moved to the Netherlands from the South between these two

pressure systems. During the day, in some parts of the country, the temperature reached 30 ◦C or higher.

For some periods, the sun shined, and sometimes there were clouds. Although most of the thunderstorms

resulting from this air flow were over Germany, during the day some thunderstorms reached the Netherlands

(Sluijter, 2017).

As with the first case, for this second case the actual observations and the result of predictions for different

indices are presented. The results are shown in Figure 19. The observations represent 19 July 2017 from

12.00 until 18.00. The indices are averaged for 19 July 2017 over 00 UTC +12 until +18.

(a) Observations done by KLDN (b) LPI forecast whole range (c) LPI forecast, range until 3[J/kg]

(d) K-index forecast (e) Modified Jefferson index forecast (f) MUCAPE forecast

Figure 19: The observations and the result of the four indices are shown. The observations originate from 19 July
2017 12.00 until 18.00. The indices are simulated for 19 July 2017 for the 00 +12 to 00 +18 run and averaged over
this entire period. The LPI is shown twice both representing the same situation. The upper-middle plot shows the
result for the whole LPI range. The right upper plot shows the LPI values for the range until 3 [J/kg], values above
3 [J/kg] are not shown in the plot. This was done to better see the lower LPI values.

Figure 19 shows that the lightning discharges are primarily registered in the east of the Netherlands and in
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Germany. Some discharges are registered in the middle and western parts of the Netherlands. The forecast of

the LPI is inaccurate: most values are in the south of the Netherlands, some in the north of the Netherlands

and a tiny part in Germany. The northern part of the LPI does correspond to the observations, but the most

significant part does not (observations in the east while the LPI predictions were in the south). The K-index

shows the highest values from the east, over the center towards the northwest of the Netherlands with some

additional high values in the southwest over Belgium. In this whole area, thunderstorms did indeed occur.

However, the actual discharge detection is not related one-to-one to high values of the K-index. The K-index

failed to predict discharges in the northeast corner and had low values around Limburg in the southeast,

actual discharges were detected there. The MJI has higher values in the east, middle and northwest of the

Netherlands, approximately where thunderstorms were actually observed. The northern and southern part

of the thunderstorm area were not predicted by the MJI. The MUCAPE predicts that the highest values

are present in the east, which is the location where many discharges are measured. The MUCAPE predicts

high values in the northern part of the Netherlands and a part in the middle, which corresponds with the

observations. The MUCAPE predicted lower values for Limburg, where discharges were detected.

In general the figures show that CAPE, K-index and MJI, i.e. the instability, are low at the location where

the precipitation was generated by HARMONIE. This is expected as the convection in the model consumes

the CAPE.

For this second case, too, HARMONIE seems to predict the potential for thunderstorms at the right location,

as the three indices, excluding LPI, predict the general area of the thunderstorms.

As in this research, we are most interested in the details of the LPI performance, the model outputs of

the hydrometeors and the vertical velocity are plotted. This is done to get insight into how the LPI reacts to

these model outputs. Figure 20 presents the results. The hydrometeors and vertical velocities are visualised

in the same way as was done above.

(a) Vertical Velocity (b) Cloud water (c) Rain

(d) Ice (e) Snow (f) Graupel

Figure 20: The vertical velocity [m/s] and the hydrometeors [kg/kg] as an average over 12.00 until 18.00 for 19 July
2017. The instantaneous values per hour are used to generate the average.

Figure 20 shows that locations of high hydrometeors and high vertical velocity values are related to the
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LPI. All highest values of the hydrometeors from HARMONIE are located in the south of the Netherlands

and in the north above the North Sea. These values corresponds to the location of high values of the LPI.

The important hydrometeors are again graupel and rain, but in this case, cloud water is significant too. This

case again makes it clear that the ratio of hydrometeors is responsible for the general location of the LPI

and the vertical updraft is responsible for the detailed location and the magnitude of the LPI.

Again the plots show that HARMONIE seems to give a fair prediction on the potential for thunderstorms,

given by the K-index, the MJI and the MUCAPE. However, the actual rainfall seems to be predicted in the

wrong location, which could be the effect of the MUCIN. For the completeness of the analysis, MUCIN will

be plotted for this case.

(a) MUCIN over the whole range (b) MUCIN with a range starting from -200 [J/kg]

Figure 21: The most unstable CIN for 19 July 2017 averaged over the period 00 UTC +12 until 00 UTC +18. The
figure left is the MUCIN plotted over its whole range. The figure on the right represent the MUCIN only over a range
which starts from -200 [J/kg]. The -200 [J/kg] threshold is used, as after this values a significant amount of energy
is needed to break through the CIN (Hallar, 2017; Pier, n.d.).

Figure 21 shows the most unstable CIN for the case of 19 July 2017. The left plot is the MUCIN over the

whole range, but a second plot is made as it is hard to see the details. The plot on the right represents the

MUCIN over the range starting from -200 [J/kg]. Using these figures, it becomes clear that small negative

MUCIN values are present at the locations where the LPI predicts higher values. However, the plots also

show that only a part of the area where the other indices show a high value has a larger negative value for

the MUCIN, which suggests that maybe the MUCIN is not the only factor affecting the result. Another

possibility is that the model generates the MUCIN correctly, but that it does not have enough capacity to

overcome the MUCIN.

4.2.2 Lead time: 18 July 2017, 00 UTC + 36 until 00 UTC +42

Another example is given in this subsection that shows the effect of a different lead-time. In this example,

a +24 hours lead time is taken compared to the previous example, 18 July 2017 00 UTC +36 until 00 UTC

+42. The observations still represent 19 July 12.00 until 18.00.
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(a) Observations done by KLDN (b) LPI forecast whole range (c) LPI forecast, range until 3 [J/kg]

(d) K-index (e) Modified Jefferson index forecast (f) MUCAPE forecast

Figure 22: The observations and the result of the four predictors are shown. The observations originate from 19 July
2017 12.00 until 18.00. The predictors are simulated for 18 July 2017 and averaged over 00 UTC +36 until 00 UTC
+42 run. The LPI is shown two times. They represent the same situation. The upper-middle plot shows the result
for the whole LPI range. The right upper plot shows the LPI values for the range until 3 [J/kg], values above 3 [J/kg]
are not shown in the plot. This was done to see the lower LPI values better.

The difference in performance for the different lead times is represented in Figure 22. The K-index, MJI,

and the MUCAPE are all shifted. The MUCAPE and the MJI have highest values shifted to west and

northwest. The MJI is shifted to the south along the coastline. For these three indices, the performance is

worse for a longer lead time, as expected. However, the LPI prediction shifted the forecast to the east. It

means that in contrast to the other indices and unexpectedly, the LPI predicts the thunderstorm location

better for the longer lead time than for the shorter lead time. The LPI location relative to the location of

hydrometeors and vertical updraft as forecasted by HARMONIE. Although there is no clear explanation for

this result, the most logical explanation is that incidentally the LPI at this longer lead time relates better

to the observations than at the shorter lead time.

4.3 Concluding summary of the two case studies

Based on the two case studies discussed, three short conclusions are stated. First, overall, the K-Index and

the MUCAPE perform very well when predicting lightning discharge location. The MJI performance is not

bad but sometimes misses parts of the area. The LPI performance is the worst. HARMONIE accurately

represents the potential of thunderstorms, but for some reason, the actual precipitation and strong convective

activity are modelled at the wrong place. Because the LPI is directly related to the HARMONIE’s vertical

updraft and rain (and graupel) output, the LPI predicts the wrong discharge area if the precipitation is

modelled in the wrong area. A reason for this wrong prediction could be the forecast of the MUCIN is

incorrect. Another reason could be that the prediction of the MUCIN is accurate, but that the modelled

convection is not strong enough. However, the effect of the MUCIN on the modelled precipitation and

convection after it occurred is not known. This unknown effect impedes the certainty on which one is the

cause and which one the consequence.
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Second, the effect of the components of the LPI is better understood. The ratio of the hydrometeors is

responsible for the general area of the LPI. The vertical velocity is responsible for the area span details and

the magnitude of the LPI.

Third, the LPI is shown to generate a more local and more variable field. As a result errors will be

punished more than if a smooth field was generated, as is done by the other indices. If the LPI could be

changed to give a less variable more homogenous field, the performance could improve.
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5 Logistic regression examples and verification results

Following the case studies that gave insight into the LPI performance for two specific cases, this chapter aims

to provide insight into the performance of the probabilistic forecasts based on the different indices for a more

extensive data set (the thunderstorms season of two different years). The performances of the individual

indices are compared to answer the research questions. First, a number of logistic regression examples are

shown. Subsequently, as explained in the Methods section, three different analysis methods are presented.

All three analysis methods will be presented here: Brier Skill Score, reliability plots and scatter plots. At

the end of this section, verification results will be presented when the whole domain is used, i.e. when the

area is not subdivided.

5.1 Logistic regression examples

In this first subsection, logistic regression examples will be presented. Figure 23 shows the logistic regression

fit for the four indices for one lead time and one subdomain. Other results are presented in the Appendix.

Logistic regression is done for every mean and maximum index at all lead times, separately for every subdo-

main.

(a) LPI, 00 UTC +12 (b) K-index, 00 UTC +12

(c) MJI, 00 UTC +12 (d) MUCAPE, 00 UTC +12

Figure 23: Scatter plots with the results of the binary lightning observations versus four index values (black dots).
Including a logistic regression fit (red line) over a shore area (CZ). The mean index value over a specific time and
area is used.
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For the LPI there is not a clear separation of cases where thunderstorms occurred (black dots at y = 1

in Figure 23 and where they did not (black dots at y = 0). The logistic regression fit (the red line) starts a

little bit above a probability of 0 and ends at a probability of 0.8.

The K-index and the MJI data both show a different spread than the LPI data. In this case, values of

1 are only found for high values of the mean index. Values of 0 are found over the whole mean index value

range. The logistic regression fit starts to rise only at higher MJI and KI values and reaches a probability

of 0.5.

The spread of the MUCAPE data is larger than for the other three indices. The plots show that both

values of 1 and 0 are present at high and low mean MUCAPE values. The logistic regression fit reaches a

probability of around 0.7. This is higher than is the case for the K-index and the MJI.

5.2 Brier Skill Score

The Brier Skill Score (BSS) box plots results are displayed in Figure 24. The BSS is evaluated for the

maximum and the mean of all four indices and all lead times. Both the mean and maximum are calculated

in each time frame and subdomain. The BSS results from combining the subdomains by taking sea, shore

and land subdomains together, respectively. The reference (zero-line) is the BSS for the mean value of the

LPI. The plots where the results for the K-index and the MJI are zoomed in can be found in the Appendix.
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(a) Land, mean (b) Land, maximum

(c) Shore, mean (d) Shore, maximum

(e) Sea, mean (f) Sea, maximum

Figure 24: Box and Whisker plots containing the Brier Skill Score on the y-axis. The x-axis represents the lead times
of the forecasts. Left the BSS values of the mean index values are plotted and at the right the BSS values of the
maximum index values are plotted. Each colour represents a different one of the four indices, as indicated in the
legend.

The first noteworthy feature is that the BSS values for the maximum values of almost all indices and

lead times are lower than for the mean values. This means that the mean value for all indices in general
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performs better as a thunderstorm predictor than the maximum value.

The second noteworthy feature that the figure shows is that the K-index and the MJI have a higher BSS

than the LPI and the MUCAPE for every lead time and every area. The MUCAPE often shows a lower

BSS than the LPI for the mean values, but sometimes it falls in the same range. Therefore, the plot shows

that the K-index and the MJI perform better than the LPI and the MUCAPE. For the maximum values,

the LPI performs the worst. The differences in BSS for the K-index and the MJI are minor. This is not

surprising, as the definition of both is similar. In general, the K-index seems to have a slightly higher BSS,

but the MJI has a higher BSS value for some lead times.

Furthermore, the Box and Whisker plots give an indication about the spatial variability of the BSS data. The

variability is much more significant for the MUCAPE and the maximum LPI: the results are less consistent

than the results of the K-Index and the MJI. This data spread is partly the result of unlimited negative

values, but most of the time, the KI and MJI indices seem not the be affected by the positive limit. Nothing

can be said about the variability of the mean of the LPI using this plot, as it is taken as the zero reference.

The difference in BSS for land, shore and sea is not large for all four indices. The BSS values at different

lead times for the different area types are about the same. The K-index, MJI and the maximum LPI do

not show a clear trend in BSS concerning the different area types compared to the mean LPI. For the mean

MUCAPE, there seems to be a difference in BSS values between the area types: the BSS of the mean

MUCAPE for the shore area seems to be the highest when compared to the mean LPI.

In addition, Figure 24 shows an unexpected trend of the BSS as a function of lead time. The expectation

would be that shorter lead times show better skill, but the result shows a different outcome. This is because

the reference is not climatology, but the mean value of the LPI. Therefore, based on this plot, nothing can

be said about the performance of the indices at different lead times compared to the climatology, only in

comparison to the mean LPI.

It can be concluded that forecasts based on the mean index values perform better than those based on the

maximum values. Further, between the indices these results show that the K-index performs best, followed

closely by the MJI. The mean and maximum MUCAPE, in general, perform worse than the mean LPI index.

Moreover, in general, the maximum values of the LPI perform the least. There is not a clear pattern of the

BSS of the indices through the lead times, as the BSS changes for indices and the areas. The reason for this

could be that there is too little data to make a clear pattern.

5.3 Reliability Plots

Reliability plots are the second method used to analyse the LPI performance compared to the other indices.

The reliability plots were made separately for different lead times, and for land, shore and sea areas. Figure 25

shows part of the resulting reliability plots that help to answer the research question. More reliability plots

can be found in the Appendix.
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(a) Land, 00 UTC +18 (b) Land, 00 UTC +36

(c) Shore, 00 UTC +18 (d) Shore, 00 UTC +36

(e) Sea, 00 UTC +18 (f) Sea, 00 UTC +36

Figure 25: In the upper part of the plots, reliability plots are presented where the forecasted probability given by logistic
regression versus the observed frequency is shown. In the lower part it is shown how often logistic regression issues a
probability in the same bin. The black, dotted line is a perfectly reliable model. The other lines represent the forecasts
based on the different indices, as indicated.
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The histograms in the figure show a difference in the number of thunderstorm cases between land, sea

and shore. Most cases are observed above land, least cases are observed above the sea, and for the shore,

the amount of observed cases lies somewhere in between. The reliability plots that represent the areas above

sea show a significant deviation from the diagonal for all indices. Next, the figure shows that sometimes the

reliability curve for some of the indices does not reach a probability of 1. This happens more often for the

graphs that represent the areas above the sea. It happens the least for the curves that represent the areas

above land. Both can be explained by the fact that fewer observed thunderstorm cases are present above

the sea than above land. As a result, it is hard to make a sharper forecast above sea areas.

In addition, the figure shows a clear distribution for high and low probabilities. For all indices and area

types, the maximum number of cases is near low probabilities and progressively decreases towards the high

probabilities. For this reason, the reliability curves show a larger deviation from the black line for higher

probabilities than for lower probabilities and not all curves reach the probability of one.

However, there is a difference: for land, more high probabilities are present than for shore and sea. As a

result, the curves representing the land areas deviate less from the black line, while the curves representing

the sea areas start to deviate already for small probabilities. Based on all the described features of the plot,

it seems that the reliability is higher for lower probabilities than for higher probabilities for this data.

The figure further presents variations in probability distribution and reliability for the different indices.

The figure indicates that the LPI forecast shows the largest occurrence of low probabilities. After the LPI,

the MUCAPE is in second place in the bin for the lowest probabilities. The K-index and the MJI alternate

between the third and fourth places. Figure 25 shows that the representation of higher probabilities differs

for the different indices. If a sufficient amount of high probabilities is present for all indices, then the MJI

and K-index have higher reliability than the LPI. However, for the shore and sea areas, the K-index and the

MJI do not show any value for the higher probabilities, while the MUCAPE and LPI do. Although they

are predicting high probabilities of a lightning event, there is no skill in those predictions as their observed

frequency is much too low.

In the reliability plots, the reliability curves show some other differences between the indices. The curves

of the K-index and the MJI follow a course that ends above the diagonal (perfect-reliability-line), implying

under-forecasting. The curves of the MUCAPE and the LPI follow a course that ends below the perfect-

reliability line, implying over-forecasting, i.e. the forecasted probability is too high. Additionally, it is seen

that the reliability curve of the MJI, in general, deviates from the perfect-reliablility-line the least of the four

indices. The K-index follows this diagonal second best, the MUCAPE third and the LPI generally deviates

most. Based on these plots, the LPI is most often the least reliable and the MJI is the most reliable. This

conclusion applies to the sea and shore areas as well as for the land areas. In some cases, the LPI contains

fewer values in a bin, which could explain smaller reliability. However, in general, the reliability curves of the

LPI deviate more than the reliability curves of the other indices, even when they contain more probabilities

in a specific bin.

5.4 Scatter plots

The third analysis method uses scatter plots, but as already discussed in the Methods section, the scatter

plots are not based on the binary predictand but on the continuous predictand, i.e. the number of discharges.

The scatter plots are made separately for each index and lead time, and the subdomains are again subdivided
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into the land, shore and sea. Figure 26 shows the resulting scatter plots. More scatter plots can be found in

the Appendix.

(a) LPI, 00 UTC +12, sea (b) LPI, 00 UTC +12, shore (c) LPI, 00 UTC +12, land

(d) MJI, +12, sea (e) MJI, 00 UTC +12, shore (f) MJI, 00 UTC +12, land

(g) KI, 00 UTC +12, sea (h) KI, 00 UTC +12, shore (i) KI, 00 UTC +12, land

(j) MUCAPE, 00 UTC +12, sea (k) MUCAPE, 00 UTC +12, shore (l) MUCAPE, 00 UTC +12, land

Figure 26: Scatter plots containing the number of discharges versus the mean value of the different indices over land,
sea and shore for one lead time (00 UTC +12).

This figure shows that more discharges happen over land than over shore, and more discharges happen

over shore than over sea. This finding is in accordance with the results of the reliability plots. The presence

of a relation between the number of discharges and the value of an index seems to be independent of the

land cover (sea, shore or land). If for a given index the number of discharges is found to be related to the

value of the index for land, such relationship is also found for that index for shore and sea. If for a given
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index no such relationship is found for land, then none is found for shore and sea also.

It is important to see whether or not there is a correlation between the number of discharges and the

values of an index.

For the LPI, the first thing that stands out is the distribution of the LPI values, which shows that low values

of the mean LPI relate to low and high number of discharges and that higher values of the mean relate to

low and, to a lesser extent, to high values of number of discharges. This characteristic seems to make it

harder to find a correlation. In addition, the results show that the range of the mean value of the LPI is

not related to the area (sea/shore/land) over which it is calculated. Furthermore, Figure 26 shows that over

land low LPI values more often correspond to high number of discharges than over sea and shore. Over sea,

less high number of discharges are plotted for low LPI values.

In contrast to the LPI, the MJI seems to show a correlation between high mean values and high number

of discharges: The figure shows that higher mean values of MJI are related to higher numbers of discharges.

No high numbers of discharges are found at lower mean values. The result corresponds to what was found

by Groot (2019). This property allows one to decide on a threshold MJI value, below which threshold value

it can be said that there is a low chance of high number discharges and above which threshold value it can

be said there is a high chance of high number of discharges. The value of this threshold does not seem to

be related to the area type over which it is taken, because discharges start at approximately the same value

for land, shore and sea type areas.

The K-index shows a similar correlation to the observed lightning strikes as the MJI, where a higher mean

value correlates with a higher number of discharges. This result is confirmed by Groot (2019) and expected

as the definitions of the indices are very similar. Like with the MJI, this allows one to decide on a threshold

MJI value, below which threshold value it can be said there is a low chance of a high number of discharged

and above which threshold value it can be said there is a high chance of high number of discharges. The

range of the values and the threshold value are not dependent on the areas above which the K-Index is

computed.

In contrast to the MJI and K-index, the MUCAPE does not show a clear relationship between high

mean values and a high number of discharges. There are situations in which a high number of discharges

corresponds to a high mean value, but there are many situations where a low mean value relates to a high

number of discharges. This spread is found in the sea, shore, and land areas. Setting a threshold based on

these plots is therefore not possible. In addition, when going from sea to shore to land, low and high number

of discharges are seen in the scatter plots. In contrast to the scatter plots of the previous two indices, in

which only low or high numbers of discharges were seen.

All four indices, when implemented in a simple framework as used here, could lead to false alarms, which

means that a high mean value of the index relates to a small number of discharges.

5.5 LPI potential for climate runs

The case studies showed that phase errors are the most significant problem in the usefulness of the LPI as

a predictor for thunderstorms. These phase errors are present because the predictions are made over small,

local subdomains, although the temporal aggregation over 6 hours diminishes those errors. KNMI wants to

use the LPI also for climate runs. The specific area where lightning can happen is less relevant for climate
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runs, but the lightning frequency is important. Therefore, it makes sense to focus on the performance of

the LPI for large areas when studying the potential of the LPI for a climate run. In addition, the effect of

phase errors becomes less significant when a prediction is done over a larger area. To see the effect on the

LPI performance when having less phase errors and the potential performance in climate runs, the area of

interest taken as a whole is verified using the same methods as above. In this subsection, the verification

results of the three different methods are shown.

The indices are binned in 6-hour, non-overlapping bins. The mean and maximum of the indices are taken

over the whole area in each time bin. The observations, too, are evaluated over the whole area in a specific

6 hour time bin. The reason for using a 6-hour bin is the fact that the presence of discharges is influenced

by the daily cycle. When using 6-hour bins, the daily cycle is still visible. The first result that will be shown

is the Box and Whisker plots containing the Brier Skill Score.

5.5.1 Box and Whisker plot for data over the whole domain

(a) Mean of indices (b) Maximum of indices

Figure 27: Box and Whisker plots containing the Brier Skill Score on the y-axis. The x-axis represents the lead times
of the forecasts. Left the BSS values of the mean index values are plotted and at the right the BSS values of the
maximum index values are plotted. Every colour stands for an index, as indicated in the legend.

Figure 27 shows the plots containing the Brier Skill Score for the four different indices for all lead times.

The left plot shows the Brier Skill Scores when the mean index value was used for the calculation, and the

right plot shows the result of when the maximum index value was used. The zero reference line is given by

the BSS of the LPI mean values.

The plots show that the BSS for the mean index values is lower than for the maximum index values. The

BSS of the mean values of the K-index and the MJI is mostly above 0.4. The BSS of the maximum values

of the K-index and the MJI is mostly below 0.4. The BSS of the mean MUCAPE is around 0. The BSS of

the maximum value of the MUCAPE and the LPI are almost always lower than 0.

A number of differences in BSS for the four indices can be seen. First, looking at the BSS of the mean

values: the BSS of the mean K-index and MJI is higher than the BSS of the mean value of the MUCAPE

and LPI. The mean K-index has a slightly higher BSS than the MJI, and therefore performs best. The MJI

performs second best based on this plot. The BSS of the mean MUCAPE and the mean LPI seems to have

around the same value. The BSS of the mean MUCAPE fluctuates around 0.

When looking at the BSS of the maximum index values, the results are partly is the same. The maximum
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values of the K-index and of the MJI have a higher BSS than the maximum values of the LPI and the

MUCAPE. The maximum value of the K-index has a slightly higher BSS value than that of the MJI. The

right plot shows that the BSS of the maximum LPI is lower than the BSS of the maximum MUCAPE.

When comparing Figure 24 and Figure 27, the results show that the difference in the BSS for the four

indices is smaller for the whole area than for the subdomains. The difference is smaller between the mean

values and the maximum values and between all indices.

5.5.2 Reliability curve for data over the whole domain

As with the verification methods of the data over the subdomains, the second method for the verification of

the whole area is the reliability curve. Part of the resulting reliability diagrams is shown in Figure 28. The

other results are included in the Appendix.
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(a) 00 UTC +06 (b) 00 UTC +12

(c) 00 UTC +18 (d) 00 UTC +30

Figure 28: In the upper part of the plots, reliability diagrams are presented where the forecasted probability given by
logistic regression versus the observed frequency is shown. In the lower part it is shown how often logistic regression
issues a probability in the same bin. The black, dotted line is a perfectly reliable model. The other lines represent the
forecasts based on the different indices, as indicated. This plot represents the result calculated over the whole area and
using the mean values of the indices.

Figure 28 shows that the curves of the K-index follow the diagonal most closely in most cases in compar-

ison with the other indices. This result seems to show that the K-index is most reliable. The curves of the

MJI deviate from the diagonal slightly more than the curves of the K-index but seem to be the second-best.

The curves of the LPI seem to deviate most from the diagonal in most cases. For some bins and lead times,

the LPI curves deviate from the diagonal the least. However, the number of cases in which this happens is
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much smaller than the number of cases in which the curves of the LPI deviate the most. This result seems

to show that the LPI is the least reliable for predicting lightning over the whole area. The curves of the

MUCAPE deviates from the diagonal less than the curve of the LPI but more than either the curves of the

K-index or the MJI.

Comparing Figure 25 and Figure 28, the difference in performance is not obvious. The deviation for lower

probabilities does not seem to increase when taking this larger area. This statement is true for all indices.

However, the deviation is much smaller for higher probabilities for all indices. All indices are more capable

of predicting high probabilities for the large area than is the case for the subdivided area.

5.5.3 Scatter plots for data over whole domain

The third method used for the analysis of the data over the whole domain is the scatter plots. This method

is used to investigate the relation between the number of discharges and the mean value of the index. Part

of the results is shown in Figure 29. The rest of the results are shown in the Appendix.
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(a) LPI, 00 UTC +12 (b) LPI, 00 UTC +18 (c) LPI, 00 UTC +30

(d) K-index, 00 UTC +12 (e) K-index, 00 UTC +18 (f) K-index, 00 UTC +30

(g) Modified Jefferson index, 00 UTC
+12

(h) Modified Jefferson index, 00 UTC
+18

(i) Modified Jefferson index, 00 UTC
+30

(j) MUCAPE, 00 UTC +12 (k) MUCAPE, 00 UTC +18 (l) MUCAPE, 00 UTC +30

Figure 29: Scatter plots containing the number of discharges versus the mean value of the different indices over the
whole area for three lead times (00 UTC +12, +18 and +30).

Based on the results, partly shown in Figure 29, it can be said that a clear relationship between a high

number of actually observed discharges and a high mean LPI value is not found. In many cases a high number

of discharges are found at low LPI values, which makes it hard to define a clear relation. However, for some

cases, it seems that a high number of discharges is present only above a value of 0.5 [J/kg]. This could

indicate that there is some correlation but this correlation is not clear based on all the results. However,

comparing Figure 29 with Figure 26, the result shows that the LPI values have a more substantial correlation

with the number of discharges for the larger area than for the subdivided areas.
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The mean value of the K-index shows to have a clear correlation with the number of discharges. Low

mean K-index values correlate with a low number of discharges while high mean values correlate with a large

number of discharges. For all cases, many discharges are detected when the K-index has a value above 10
◦C.

For the MJI, a correlation is clear as well. High mean MJI values correlate with many discharges, and

low mean MJI values correlate with a small numbers of lightning discharges. The threshold above which the

larger number of discharges are observed is 20 ◦C.

The results show that the distribution for the MUCAPE is large. No correlation is seen relation the

number of discharges and the mean MUCAPE value. Large numbers of discharges are mainly present at low

mean values of the MUCAPE. However, some cases show that high mean values of MUCAPE only relate to

large numbers of discharges. Compared with the results over the subdivided domains, the MUCAPE using

the whole domain shows to have a somewhat stronger relationship with the number of discharges.

All four indices, when implemented in a simple framework as used here, could lead to false alarms, i.e. a

high mean index value, but no discharges are observed.
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6 Discussion

In this study, a first insight into the performance of the Lightning Potential Index using HARMONIE output

data is given. The performance of the LPI was already studied by other researchers, but not when using

HARMONIE output data. This research tried to evaluate the performance of the LPI in comparison with

three other traditional indices and to provide insight into how the LPI works. This section will discuss and

interpret the results of this research. They are put in perspective with the results of previous studies. The

significance of the results will be discussed, and the limits of the research will be reviewed.

This research shows that the LPI performs worse than the K-Index and the MJI. The MUCAPE perfor-

mance fluctuates from lead time to lead time in being better than, worse than or around the same as the

performance of the LPI. The result that instability indices are performing well for thunderstorm prediction

supports the results of Groot (2019), in which he stated that instability indices are the most important for

thunderstorm prediction. The here-observed result of the worse performing LPI is based on verification of

logistic regression equations using each index as a single predictor. The used verification metrics are the

Brier Skill Score and reliability plots, in which the LPI showed to not perform very well. Besides case stud-

ies have been performed, from which it became clear that for the cases considered the LPI often predicts

thunderstorms at the wrong places. The result of the LPI is affected by the definition of the filter function

elaborated on earlier in this thesis. However, the definition is changeable, and the effect on the results could

be studied more in further research.

The case study showed that a possible reason for the incorrect thunderstorm forecasts of the LPI is that the

HARMONIE model predicts the location of strong vertical updrafts and heavy precipitation at the wrong

place. However, this is not researched in depth for the whole time series. As expected, the LPI is strongly

related to a model’s prediction of vertical updraft and hydrometeors. As a result, no LPI signal is produced

when the model does not predict heavy precipitation. The other indices show that the HARMONIE model

performs well when modelling the potential for thunderstorms. Thus, for some reason, the thunderstorm

potential is modelled correctly, but the actual precipitation is modelled slightly off. One of the explanations

is that the MUCIN is incorrect and that modelled convection is not strong enough to break trough. It is

a known feature of this model. If there is no break through, convection does not start, and precipitation

will not occur. As a result, the LPI is 0. However, the effect of precipitation on the breaking through of

convection is not studied in this thesis and is therefore unknown. It could be that if heavy precipitation

occurs, the MUCIN is consumed, which will result in low modelled convection. This effect makes it hard to

decide which factor is the cause and which the consequence: does precipitation happen because MUCIN is

low? Or does the MUCIN disappear after precipitation has happened?

The case studies gave insight into the effect of the vertical velocity and the hydrometeors on the distribu-

tion and value of the LPI. It seems that the ratio of different hydrometeors is responsible for the broad span

of the LPI. The vertical velocity is responsible for the details of the LPI’s location and the magnitude of the

LPI. The first result can be explained by the fact that the filter function depends on the vertical updraft.

The second would be that if the vertical velocity is large, the air is more unstable (UniveristyOfIllinois, 2010).

Parcels will reach deeper in the atmosphere, and more interchanging of charges will be present (Deierling,

Petersen, Latham, Ellis, & H.J., 2008). As a result, more enormous charge differences emerge in the cloud,

and the thunderstorm will be more severe, the LPI value will be higher.

Furthermore, the case study showed the LPI to be a very local and variable indicator, which is the result
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of how the LPI is defined. As a result, the LPI is prone to phase errors. The other studied indices generate

a much smoother field. If the LPI field would become smooth too, part of the problem for the LPI as a

thunderstorm predictor would probably be solved.

Assumptions were made in the definition of the LPI and the filter function, such as a threshold for the

vertical velocity of 0.5 [m/s] and an area over which the majority of the surrounding grid points is taken.

These assumptions are based on the definition of Lynn and Yair (2010) but are changeable. This thesis has

not investigated different assumptions for the LPI definition, as it was out of the scope. However, it could

affect the performance of the LPI and would therefore be interesting to investigate in subsequent research.

A first try could be to decrease the vertical velocity threshold to 0.1 [m/s], which will increase the area over

which the LPI is defined. It could increase the performance of the LPI.

The purpose of this study was to study the performance of the LPI compared to three other indices and

not to develop the best statistical model for probabilistic forecasts of (severe) thunderstorms as in Schmeits

et al. (2008) and Groot (2019). When a statistical model is trained, tested and validated, different data sets

should be used for this, namely, a training data set and an independent validation data set. The training

data set consists of all the available data in this study. This means that for the training data set, 14 months

of data have been used. Using this data logistic regression equations (using the LPI and the other indices as

single predictors), have been derived and tested. As the difference between the performance of the LPI on

one hand and that of the K-index and the MJI on the other hand is so large, the conclusions would be the

same if an independent validation set would have been used. The most optimal parameters for the LPI have

not been studied here. Finding the optimal parameters and using the adjusted LPI in a statistical model as

an extra potential predictor is recommended for further research.

In this research, the original data was modified before it was used for the analysis. The data were binned

in 6 hours non-overlapping bins, and the area was divided into 20 subdomains.

The subdivision of the large area makes the result more prone to phase errors, as the prediction becomes very

localised. The phase errors can be reduced by taking the whole area and not subdividing it into subdomains.

However, in this part of the research, the main focus was not the frequency distribution in climate runs but

a first insight into the performance of the LPI as a thunderstorm and lightning predictor. When predicting

lightning in the short term (+48 hour forecast), the probabilities of lightning in relatively small areas is

important. Therefore, the subdivision of the larger area in this research makes sense.

The whole forecast period of 48 h is used in this research. The results show that for all lead times the

LPI does not perform well. It is known that forecasts for short lead times are generally better than for long

lead times. It could be questioned if it would not have been better to focus on one short lead time and try

to increase the performance of the LPI based on this one short lead time. However, the model is affected by

spin-up. It means the model needs some time to develop fully.

Furthermore, it is preferable to include the daily cycle in thunderstorms in the analysis which means that at

least 24 hours of the forecast is needed.

Furthermore, this research investigated the correlation between high LPI values and a high number of

discharges. However, according to the results of this research, this correlation does not exist. This became

clear from the scatter plots. The same lack of correlation was found for the MUCAPE. For the K-index and

the MJI, the correlation was much better. For both indices a threshold value can be deduced, above which
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almost all large numbers of discharges occur.

The results show that, in general, the LPI does not work as well, altough that was expected based on

the studies of Brisson et al. (2021) and Yair and Lynn (2008). They both found that the LPI outperforms

other indices and shows a robust relationship with observational data. The results obtained in this research

show that the LPI does not correlate to the observations so well, and it does not outperform the traditional

indices when using HARMONIE output.

The differences are partly explainable. In their research, Yair and Lynn (2008) focus only on two specific

cases, which are two days. It is very well possible that the LPI works perfectly for these two days. However,

to make a more reliable statement about the overall performance of the LPI, a more extensive data set should

be used, as we have done.

The data set used in this research spans seven months of two years, which means that data of 14 months is

used.

Brisson et al. (2021) used a longer and more extensive data set (13 years). Their results showed that

the LPI performed well, but they did not verify the performance of the LPI in a forecasting context. They

looked at the relation between the LPI value and the discharge frequency distribution. They also used a

different definition of the LPI. Their definition included the buoyancy effect in the form of CAPE by adding

an extra filter function. This different definition could affect the performance of the LPI. However, suppose

a look is taken at the results of the case studies and the definition of the extra filter function. In that case, it

is not plausible that it explains the significant difference in the outcome. The extra filter function is added

to prevent false LPI signals that result from deep orographic wave clouds. First, in the Netherlands, there

are not many orographical features that could be responsible for these false LPI signals. Maybe, it could

happen in Maastricht, but when looking at the case studies, no LPI signal is detected in Maastricht three

out of four times.

Furthermore, the case studies show that the problem of the wrong forecast of the LPI is not related to too

many LPI signals but to phase errors. Therefore, when looking at the case studies, the added filter function

does not seem to be the reason for the difference in the outcome. However, the effect on the whole data set

is not tested so that nothing can be said about the effect on the overall outcome.

Another reason for the differences could be the definition of the filter function. Starting with the area

over which the majority is taken: Brisson et al. (2021) used an area of 10 [km] x 10 [km], in this research an

area of 12.5 [km] x 12.5 [km] is used. The effect of taking a different area is not studied here. The results

could become different if the LPI is evaluated over a larger area because it becomes less local. However,

when looking at the case studies, this condition does not seem to solve the problem.

In addition, there is another difference in the definition of the filter function. Brisson et al. (2021) state that

valid LPI values are restricted to grid points for which the majority of grid columns in a specific horizontal

neighbourhood (10 [km] x 10 [km]) exhibit a maximum updraft speed of the column above a certain threshold.

In this research, not the maximum of the surrounding columns is used, but the value of each grid point in

the horizontal plane of the grid point of interest should be larger than a threshold.

The last difference for the definition of the filter is this certain threshold. The wind speed that is used as

the threshold by Brisson et al. (2021) is 1.1 [m/s], while in this study, 0.5 [m/s] is used.

Although the results show that the LPI is not performing as well as a traditional thunderstorm predictor
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using HARMONIE, it does not mean the LPI can not be used for climate runsa and on the short-term KNMI

would like to use the LPI for climate runs. Based on the case study, the most important reason for the LPI

to perform bad seems to be the wrong location of thunderstorms at the wrong time. For climate runs, the

location of the thunderstorms is less critical. More important is the frequency of the thunderstorms that

occur. Therefore, in this research, a first look is taken into the performance of the LPI over a large area, not

using subdomains.

However, the verification results showed that the LPI does not perform well when evaluated over the

whole domain. The reliability plot and the Brier Skill Score showed that the mean K-index, in general,

performs best and that the mean Modified Jefferson index performs second best. The mean MUCAPE and

mean LPI perform around the same. The maximum values of all indices perform worse than the mean values

of the same index. Among the maximum index values, the maximum value of the LPI performed the worst,

and the maximum values of the K-index performed best.

The differences in performance between the four indices did become smaller for a larger area than for the

subdomains.

The reliability plots show that, in general, the indices are better at predicting high probabilities for the

large domain than for the smaller subdomains. Furthermore, the LPI seems to predict small probabilities

well. However, larger probabilities are harder to predict using the LPI. The last thing that becomes apparent

when looking at the reliability plots is having fewer issued probabilities. The effect is mainly visible for the

LPI at low probabilities. If fewer probabilities are issued, the reliability line of the index can more easily

deviate from the hypothetical perfectly reliable model.

Because the whole domain is used, fewer combinations of observations and index values are present. As

a result, the statistical significance of the result of the whole domain will be less than for the results of the

subdomains. However, as it was intended to use the data to give a first impression of the performance of the

LPI on a larger area, the results give relevant information. If research into the performance of the LPI on a

larger area is done in the future, a higher statistical significance is essential. Then more data is needed.
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7 Conclusion and Recommendations

The performance of the LPI has been evaluated and compared with traditional thunderstorm indices. Based

on model verification results and the case studies, a conclusion can be drawn. Furthermore, recommendations

for further research will be mentioned.

7.1 Conclusion

Previous research showed that the new LPI, based on microphysics and resolved vertical motions in the

atmosphere, gives an accurate representation of the location of lightning. This research focused on the

LPI’s performance using output data of HARMONIE cycle 40 compared to traditionally used indices. Based

on the results of the case studies, the BSS and the reliability plots, I found that the LPI performs worse

than the traditionally used indices. The K-index and Modified Jefferson index perform relatively well when

predicting lightning. It means that I would not recommend the LPI as a lightning predictor using the

formulation assumed in this research. Furthermore, the LPI was found to be dependent on the location of

the vertical updraft and the presence of hydrometeors. The definition of the LPI explains this, but it makes

it very prone to errors in the model. If the precipitation is placed at the wrong location, nothing can be

expected from the LPI. The hydrometeors are responsible for the area span of the LPI. The vertical velocity

determines the details of the LPI and the magnitude of the LPI signal. Further, the HARMONIE model

predicts the potential of lightning relatively well, shown by the smooth fields generated by the instability

indices. The HARMONIE model has more difficulties in predicting the exact location of the thunderstorm,

i.e. the location where the instability is consumed, which is predicted by the LPI. Additionally, the LPI

produces a local, strongly fluctuating field and is more prone to phase errors than when the field would be

smooth, as is the case for the other investigated indices.

The conclusions above hint to at how the LPI could be improved as a thunderstorm predictor. However,

one of the most important goals of future research is to see how the LPI will perform during climate runs, it

makes sense to see how the LPI performs on a larger area, where phase errors have a lesser impact. Therefore,

a first, small study was done on the performance of the LPI over the whole area of interest. Based on the

verification results, some conclusions can be drawn. First, the mean value of every index works better than

the maximum value of the same index. Second, the differences in performance of the indices are smaller when

taking the whole domain than when using the subdomains. However, the LPI is not the best performing

index, not even when we diagnose the performance on a very large domain. The K-index performs best, and

the Modified Jefferson index performs second best. The performance of the MUCAPE and the LPI seems to

be around the same. The last thing the results show is that the LPI is best in predicting low probabilities.

High probabilities, however, are predicted less accurately.

Lastly, as this thesis gives a first impression of the performance of the LPI with HARMONIE, it does

not include different formulations of the LPI, which is essential for optimizing its performance. Therefore, I

would recommend further research on the LPI to investigate how it could perform better.

7.2 Recommendations

As stated, profound research is needed, as still a lot is unknown about the LPI. Furthermore, although the

performance of the LPI as a thunderstorm predictor in this research was not well, the potential for the LPI

when the HARMONIE model would not have phase errors is large.
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The performance of the LPI is evaluated in this research only using one set of formulations of the filter

function and the LPI. More definitions are possible and could affect the performance of the LPI. Therefore,

the first recommendation is to test the LPI with other formulations or assumptions. Examples of assumptions

or formulations that could be changed are:

1. the minimum vertical updraft in the filter function

2. a larger area, wherein the majority of surrounding grid points should have this minimum vertical

updraft

3. the definition of the filter function such that not a majority of the parcels, but the majority of the

columns have a minimum vertical velocity

The data used in this research is given as instantaneous hourly output. The result is that the LPI is

calculated with instantaneous hydrometeor content data for every hour. This amplifies the local character-

istics of the LPI. In the following research, I would recommend using data output that is accumulated for

over a whole hour or use output data of the hydrometeors for every 15 minutes or even test the LPI online.

Such that a calculation is done for every moment. This would probably give a smoother field. I think it is

interesting to study the effect of a smoother field on the performance of the LPI.

It is well known that the individual performance of predictors is less than when multiple predictors are

used. Therefore, it would be interesting to investigate the performance of the LPI together with other

predictors. I would recommend using the mean value of the LPI as it has been shown to perform better

than the maximum value. A statistical forecast model can be developed using post-processing techniques.

I would recommend using quantile regression forests (QRF) as this was found to be the best performing

post-processing method for probabilistic forecasts of thunderstorm occurrence (Groot, 2019). Combining

the benefits of the instability indices and the theoretical benefits of the LPI, which possibly give independent

information, will likely improve the performance.

It is known that the LPI response is strongly intertwined with the NWP-model and that the new HAR-

MONIE cycles perform better than cycle 40. Even though the microphysical scheme will not affect the

MUCIN and the resolved convection, it could impact the performance of the LPI and the precipitation. Due

to a stronger build-up of moisture under the inversion at the top of the boundary layer in the new version

of the HARMONIE model, strongly resolved convection is supported. It would mean that the LPI would

work better too if using the output of the new model. Therefore, it is interesting to test the LPI using data

of the new cycle with different microphysical schemes and see if there is an improvement in the performance

of the LPI.

The recommendations above are mainly related to increasing the performance of the LPI as a thunder-

storm indicator. This is interesting and could be significant, in particular, if the new HARMONIE cycle

achieves a higher hit rate. However, in the long term, KNMI also wants to use the LPI for climate runs.

Therefore it would make sense to also dive deeper into that. I recommend that subsequent research focuses

on the formulation of the LPI to find the preferred formulation that gives the best representation of lightning

appearance. Furthermore, it would make sense to investigate the relation between the Lightning Potential

Index value and the discharge frequency distribution as in Brisson et al. (2021). At last, after the preferred
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formulation is found, it is recommended to study the discharge frequency distribution based on lightning

observations and compare it with the distribution for other indices for the past, present, and future.
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A - Logistic regression fit

(a) LPI, 00 UTC +12 (b) LPI, 00 UTC +18 (c) LPI, 00 UTC +24 (d) LPI, 00 UTC +30

(e) K-index, 00 UTC +12 (f) K-index, 00 UTC +18 (g) K-index, 00 UTC +24 (h) K-index, 00 UTC +30

(i) Modified Jefferson index,
00 UTC +12

(j) Modified Jefferson index,
00 UTC +18

(k) Modified Jefferson index,
00 UTC +24

(l) Modified Jefferson index,
00 UTC +30

(m) MUCAPE, 00 UTC +12 (n) MUCAPE, 00 UTC +18 (o) MUCAPE, 00 UTC +24 (p) MUCAPE, 00 UTC +30

Figure 30: Scatter plots with the results of the binary lightning observations versus four index values. Including a
logistic regression fit (red line) over a sea area (AZ). The maximum index value over a specific time and area.
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(a) LPI, 00 UTC +12 (b) LPI, 00 UTC +18 (c) LPI, 00 UTC +24 (d) LPI, 00 UTC +30

(e) K-index, 00 UTC +12 (f) K-index, 00 UTC +18 (g) K-index, 00 UTC +24 (h) K-index, 00 UTC +30

(i) Modified Jefferson index,
00 UTC +12

(j) Modified Jefferson index,
00 UTC +18

(k) Modified Jefferson index,
00 UTC +24

(l) Modified Jefferson index,
00 UTC +30

(m) MUCAPE, 00 UTC +12 (n) MUCAPE, 00 UTC +18 (o) MUCAPE, 00 UTC +24 (p) MUCAPE, 00 UTC +30

Figure 31: As Figure 30 but for the mean index value over a specific time and area.
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(a) LPI, 00 UTC +12 (b) LPI, 00 UTC +18 (c) LPI, 00 UTC +24 (d) LPI, 00 UTC +30

(e) K-index, 00 UTC +12 (f) K-index, 00 UTC +18 (g) K-index, 00 UTC +24 (h) K-index, 00 UTC +30

(i) Modified Jefferson index,
00 UTC +12

(j) Modified Jefferson index,
00 UTC +18

(k) Modified Jefferson index,
00 UTC +24

(l) Modified Jefferson index,
00 UTC +30

(m) MUCAPE, 00 UTC +12 (n) MUCAPE, 00 UTC +18 (o) MUCAPE, 00 UTC +24 (p) MUCAPE, 00 UTC +30

Figure 32: As Figure 30 but for the shore area (CZ).
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(a) LPI, 00 UTC +12 (b) LPI, 00 UTC +18 (c) LPI, 00 UTC +24 (d) LPI, 00 UTC +30

(e) K-index, 00 UTC +12 (f) K-index, 00 UTC +18 (g) K-index, 00 UTC +24 (h) K-index, 00 UTC +30

(i) Modified Jefferson index,
00 UTC +12

(j) Modified Jefferson index,
00 UTC +18

(k) Modified Jefferson index,
00 UTC +24

(l) Modified Jefferson index,
00 UTC +30

(m) MUCAPE, 00 UTC +12 (n) MUCAPE, 00 UTC +18 (o) MUCAPE, 00 UTC +24 (p) MUCAPE, 00 UTC +30

Figure 33: As Figure 30 but for the shore area (CZ) and for the mean index value over a specific time and area.
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(a) LPI, 00 UTC +12 (b) LPI, 00 UTC +18 (c) LPI, 00 UTC +24 (d) LPI, 00 UTC +30

(e) K-index, 00 UTC +12 (f) K-index, 00 UTC +18 (g) K-index, 00 UTC +24 (h) K-index, 00 UTC +30

(i) Modified Jefferson index,
00 UTC +12

(j) Modified Jefferson index,
00 UTC +18

(k) Modified Jefferson index,
00 UTC +24

(l) Modified Jefferson index,
00 UTC +30

(m) MUCAPE, 00 UTC +12 (n) MUCAPE, 00 UTC +18 (o) MUCAPE, 00 UTC +24 (p) MUCAPE, 00 UTC +30

Figure 34: As Figure 30 but for the land area (CX).
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(a) LPI, 00 UTC +12 (b) LPI, 00 UTC +18 (c) LPI, 00 UTC +24 (d) LPI, 00 UTC +30

(e) K- index, 00 UTC +12 (f) K- index, 00 UTC +18 (g) K- index, 00 UTC +30 (h) K- index, 00 UTC +30

(i) Modified Jefferson index,
00 UTC +12

(j) Modified Jefferson index,
00 UTC +18

(k) Modified Jefferson index,
00 UTC +24

(l) Modified Jefferson index,
00 UTC +30

(m) MUCAPE, 00 UTC +12 (n) MUCAPE, 00 UTC +18 (o) MUCAPE, 00 UTC +30 (p) MUCAPE, 00 UTC +30

Figure 35: As Figure 30 but for the land area (CX) and for the mean index value over a specific time and area.
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B - Radar observations of 23 June 2016

(a) Radar observations at 18.00 h (b) Radar observations at 19.00 h

(c) Radar observations at 20.00 h (d) Radar observations at 21.00 h

(e) Radar observations at 22.00 h (f) Radar observations at 23.00 h

Figure 36: Historical radar observations done by Buienradar over the time span of interest (Buienradar, n.d.).
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C - Box and Wishker plots

(a) Land, mean (b) Land, maximum

(c) Shore, mean (d) Shore, maximum

(e) Sea, mean (f) Sea, maximum

Figure 37: Box and Whisker plots containing the Brier Skill Scores of only the K-index (red) and the Modified
Jefferson index (blue). The Brier Skill Score are presented on the y-axis. The x-axis represents the lead times of the
forecasts. Left are the mean values plotted and at the right the maximum values are plotted.
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D - Reliability plots

(a) Land, 00 UTC +00 (b) Shore, 00 UTC +00 (c) Sea, 00 UTC +00

(d) Land, 00 UTC +06 (e) Shore, 00 UTC +06 (f) Sea, 00 UTC +06

(g) Land, 00 UTC +12 (h) Shore, 00 UTC +12 (i) Sea, 00 UTC +12
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(a) Land, 00 UTC +24 (b) Shore, 00 UTC +24 (c) Sea, 00 UTC +24

(d) Land, 00 UTC +30 (e) Shore, 00 UTC +30 (f) Sea, 00 UTC +30

(g) Land, 00 UTC +42 (h) Shore, 00 UTC +42 (i) Sea, 00 UTC +42

Figure 39: Reliability plots with on the x-axis the forecasted probability and on the y-axis the observed frequency. The
black striped line is for a perfect reliable model. The lines with colours represent the indices. In the lower part of the
plots the number of issued probabilities in each bin is shown.
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E - Scatter plots

(a) LPI, 00 UTC +18, sea (b) LPI, 00 UTC +18, shore (c) LPI, 00 UTC +18, land

(d) MJI, 00 UTC +18, sea (e) MJI, 00 UTC +18, shore (f) MJI, 00 UTC +18, land

(g) KI, 00 UTC +18, sea (h) KI, 00 UTC +18, shore (i) KI, 00 UTC +18, land

(j) MUCAPE, 00 UTC +18, sea (k) MUCAPE, 00 UTC +18, shore (l) MUCAPE, 00 UTC +18, land

Figure 40: Scatter plots containing the number of discharges versus the mean value of the different indices over land,
sea and shore for 00 UTC +18.
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(a) LPI, 00 UTC +30, sea (b) LPI, 00 UTC +30, shore (c) LPI, 00 UTC +30, land

(d) MJI, 00 UTC +30, sea (e) MJI, 00 UTC +30, shore (f) MJI, 00 UTC +30, land

(g) KI, 00 UTC +30, sea (h) KI, 00 UTC +30, shore (i) KI, 00 UTC +30, land

(j) MUCAPE, 00 UTC +30, sea (k) MUCAPE, 00 UTC +30, shore (l) MUCAPE, 00 UTC +30, land

Figure 41: As Figure 40 but for 00 UTC +30.
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(a) LPI, 00 UTC +36, sea (b) LPI, 00 UTC +36, shore (c) LPI, 00 UTC +36, land

(d) MJI, 00 UTC +36, sea (e) MJI, 00 UTC +36, shore (f) MJI, 00 UTC +36, land

(g) KI, 00 UTC +36, sea (h) KI, 00 UTC +36, shore (i) KI, 00 UTC +36, land

(j) MUCAPE, 00 UTC +36, sea (k) MUCAPE, 00 UTC +36, shore (l) MUCAPE, 00 UTC +36, land

Figure 42: As Figure 40 but for 00 UTC +36.
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F - Reliability plots over whole area

(a) 00 UTC +00 (b) 00 UTC +24

(c) 00 UTC +36 (d) 00 UTC +42

Figure 43: The reliability diagrams present the forecast probability given by the model on the y-axis versus the observed
frequency on the x-axis. The lower part of the plot shows how often a model issues a probability in the same bin. The
black striped line is a perfectly reliable model. The other lines represent the indices. This plot shows different lead
times and represents the result over the whole area.
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G -Scatter plots over whole area

(a) LPI, 00 UTC +00 (b) LPI, 00 UTC +06 (c) LPI, 00 UTC +24

(d) K-index, 00 UTC +00 (e) K-index, 00 UTC +06 (f) K-index, 00 UTC +24

(g) Modified Jefferson index, 00 UTC
+00

(h) Modified Jefferson index, 00 UTC
+06

(i) Modified Jefferson index, 00 UTC
+24

(j) MUCAPE, 00 UTC +00 (k) MUCAPE, 00 UTC +06 (l) MUCAPE, 00 UTC +24

Figure 44: Scatter plots containing the number of discharges versus the mean value of the different indices over the
whole area for three lead times (00 UTC +00, +06, +24 ).
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(a) LPI, 00 UTC +36 (b) LPI, 00 UTC +42

(c) K-index, 00 UTC +36 (d) K-index, 00 UTC +42

(e) Modified Jefferson index, 00 UTC
+36

(f) Modified Jefferson index, 00 UTC
+42

(g) MUCAPE, 00 UTC +36 (h) MUCAPE, 00 UTC +42

Figure 45: Scatter plots containing the number of discharges versus the mean value of the different indices over the
whole area for two lead times (00 UTC +36, +42).
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