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Nonlinear Differential Equations
and Applications NoDEA

Comparison Principle for
Hamilton-Jacobi-Bellman Equations via a
Bootstrapping Procedure

Richard C. Kraaij and Mikola C. Schlottke

Abstract. We study the well-posedness of Hamilton–Jacobi–Bellman equa-
tions on subsets of R

d in a context without boundary conditions. The
Hamiltonian is given as the supremum over two parts: an internal Hamil-
tonian depending on an external control variable and a cost functional
penalizing the control. The key feature in this paper is that the control
function can be unbounded and discontinuous. This way we can treat
functionals that appear e.g. in the Donsker–Varadhan theory of large de-
viations for occupation-time measures. To allow for this flexibility, we
assume that the internal Hamiltonian and cost functional have controlled
growth, and that they satisfy an equi-continuity estimate uniformly over
compact sets in the space of controls. In addition to establishing the
comparison principle for the Hamilton–Jacobi–Bellman equation, we also
prove existence, the viscosity solution being the value function with ex-
ponentially discounted running costs. As an application, we verify the
conditions on the internal Hamiltonian and cost functional in two exam-
ples.

Mathematics Subject Classification. 49L25, 35F21.

Keywords. Hamilton–Jacobi–Bellman equations, Comparison principle,
Viscosity solutions, Optimal control theory.

1. Introduction and aim of this note

The main purpose of this note is to establish well-posedness for first-order
nonlinear partial differential equations of Hamilton–Jacobi–Bellman type on
subsets E of Rd,

u(x) − λ H (x,∇u(x)) = h(x), x ∈ E ⊆ R
d, (HJB)

in the context without boundary conditions and where the Hamiltonian flow
generated by H remains inside E. In (HJB), λ > 0 is a scalar and h is a
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continuous and bounded function. The Hamiltonian H : E × R
d → R is given

by

H(x, p) = sup
θ∈Θ

[Λ(x, p, θ) − I(x, θ)] , (1.1)

where θ ∈ Θ plays the role of a control variable. For fixed θ, the function Λ can
be interpreted as an Hamiltonian itself. We call it the internal Hamiltonian.
The function I can be interpreted as the cost of applying the control θ.

The main result of this paper is the comparison principle for (HJB) in
order to establish uniqueness of viscosity solutions. The standard assumption
in the literature that allows one to obtain the comparison principle in the
context of optimal control problems (e.g. [2] for the first order case and [10]
for the second order case) is that either there is a modulus of continuity ω
such that

|H(x, p) − H(y, p)| ≤ ω (|x − y|(1 + |p|)) , (1.2)

or that H is uniformly coercive:

lim
|p|→∞

inf
x

H(x, p) = ∞. (1.3)

More generally, the two estimates (1.2) and (1.3) can be combined in a single
estimate, called pseudo-coercivity, see [4, (H4), Page 34], that uses the fact
that the sub- and supersolution properties roughly imply that the estimate
(1.2) only needs to hold for appropriately chosen x, y and p such that H is
finite uniformly over these chosen x, y, p.

In the Hamilton–Jacobi–Bellman context, the comparison principle is
typically obtained by translating (1.2) into conditions for Λ and I of (1.1),
which include (e.g. [2, Chapter III])

(I) |Λ(x, p, θ) − Λ(y, p, θ)| ≤ ωΛ(|x − y|(1 + |p|)), uniformly in θ, and
(II) I is bounded, continuous and |I(x, θ) − I(y, θ)| ≤ ωI(|x − y|) for all θ.

The pseudo-coercivity property is harder to translate as in this way the control
on H does not necessarily imply the same control on Λ, in particular in the
case when I is unbounded. We return on this issue below.

The estimates (I) and (II) are not satisfied for Hamiltonians arising from
natural examples in the theory of large deviations [12,13] for Markov processes
with two scales (see e.g. [6,18,27,29] for PDE’s arising from large deviations
with two scales, see [3,16,17,20,21] for other works connection PDE’s with
large deviations). Indeed, in [6] the authors mention that well-posedness of the
Hamilton–Jacobi–Bellman equation for examples arising from large deviation
theory is an open problem. Recent generalizations of the coercivity condition,
see e.g. [9], also do not cover these examples.

In the large deviation context, however, we typically know that we have
the comparison principle for the Hamilton–Jacobi equation in terms of Λ. In
addition, even though I might be discontinuous, we do have other types of
regularity for the functional I, see e.g. [32]. Thus, we aim to prove a comparison
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principle for (HJB) on the basis of the assumption that we have the following
natural relaxations of (or the pseudo-coercive version of) (I) and (II).

(i) For θ ∈ Θ, define the Hamiltonian Hθ(x, p) := Λ(x, p, θ). We have an
estimate on Hθ that is uniform over θ in compact sets K ⊆ Θ. This esti-
mate, for one fixed θ, is in spirit similar to the pseudo-coercivity estimate
of [4] and is morally equivalent to the comparison principle for Hθ. The
uniformity is made rigorous as the continuity estimate in Assumption
2.14 (Λ5) below.

(ii) The cost functional I(x, θ) satisfies an equi-continuity estimate of the
type |I(x, θ) − I(y, θ)| ≤ ωI,C(|x − y|) on sublevel sets {I ≤ C} which
we assume to be compact. This estimate is made rigorous in Assumption
2.15 (I5) below.

To work with these relaxations, we introduce a procedure that allows
us to restrict our analysis to compact sets in the space of controls. In the
proof of the comparison principle, the sub- and supersolution properties give
boundedness of H when evaluated in optimizing points. We then translate
this boundedness to boundedness of I, which implies that the controls lie in a
compact set.

The transfer of control builds upon (i) for Λ(x, p, θ0
x) when we use a

control θ0
x that satisfies I(x, θ0

x) = 0. This we call the bootstrap procedure: we
use the comparison principle for the Hamilton–Jacobi equation in terms of
Λ(x, p, θ0

x) to shift the control on H to control on Λ and I for general θ. That
way the comparison principle for the internal Hamiltonian Λ bootstraps to the
comparison principle for the full Hamiltonian H.

Clearly, this bootstrap argument does not come for free. We pose four
additional assumptions:

(iii) The function Λ grows roughly equally fast in p: For all compact sets
̂K ⊆ E, there are constants M,C1, C2 such that

Λ(x, p, θ1) ≤ max {M,C1Λ(x, p, θ2) + C2} ,

for all x ∈ ̂K, p ∈ R
d, θ1, θ2 ∈ Θ.

(iv) The function I grows roughly equally fast in x: For all x ∈ E and M ≥ 0
there exists an open neighbourhood U of x and constants M ′, C ′

1, C
′
2

such that

I(y1, θ) ≤ max{M ′, C ′
1I(y2, θ) + C ′

2}
for all y1, y2 ∈ U and for all θ such that I(x, θ) ≤ M .

(v) I ≥ 0 and for each x ∈ E, there exists θ0
x such that I(x, θ0

x) = 0.
(vi) The functional I is equi-coercive in x: for any compact set K̂ ⊆ E the

set
⋃

x∈K̂{θ | I(x, θ) ≤ C} is compact.

These four assumptions are stated below as Assumptions 2.14 (Λ4), 2.15 (I4),
2.15 (I2), and 2.15 (I3). To explain in more detail our argument, we give a
sketch of the bootstrap procedure, which can be skipped on first reading. In
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this sketch, we refrain from performing localization arguments that are needed
for non-compact E.

Sketch of the bootstrap argument

Let u and v be a sub- and supersolution to f − λHf = h respectively. We
estimate supx u(x) − v(x) by the classical doubling of variables by means of
penalizing the distance between x and y by some penalization αΨ(x − y) and
aim to send α → ∞. Let xα, yα denote the optimizers, and denote by pα the
corresponding momentum pα = α∂xΨ(xα − yα). Let θα be the control such
that H(xα, pα) = Λ(xα, pα, θα) − I(xα, θα) and let θ0

α be a control such that
I(yα, θ0

α) = 0, which exists due to (v).
The supersolution property for v yields the following estimate that is

uniform in α > 0

∞ >
||v − h||

λ
≥ H(yα, pα) ≥ Λ(yα, pα, θ0

α) − I(yα, θ0
α) = Λ(yα, pα, θ0

α).(1.4)

Using (iii), we obtain a uniform estimate in α:

sup
α

Λ(yα, pα, θα) < ∞. (1.5)

which will allow us to use (i) if we can show that the controls θα take their
value in a compact set K ⊆ Θ. For this, it suffices by (vi) to establish

sup
α

I(xα, θα) < ∞. (1.6)

This, in fact, implies by (iv) that

sup I(yα, θα) ∨ I(xα, θα) < ∞
so that we can also apply (ii). This, in combination with the application of (i)
establishes the comparison principle for f − λHf = h.

We are thus left to prove (1.6), which is where our bootstrap comes
into play. The subsolution property for u yields the following estimate that is
uniform in α > 0

−∞ <
||u − h||

λ
≤ H(xα, pα) = Λ(xα, pα, θα) − I(xα, θα).

Thus, (1.6) follows if we can establish

sup
α

Λ(xα, pα, θα) < ∞,

which in turn (by (iii)) follows from

sup
α

Λ(xα, pα, θ0
α) < ∞.

To establish this final estimate, note that

Λ(xα, pα, θ0
α) = Λ(yα, pα, θ0

α) +
[

Λ(xα, pα, θ0
α) − Λ(yα, pα, θ0

α)
]

and that we have control on the first term by means of (1.4) and on the second
term by the pseudo-coercivity estimate of (i) on Λ for the controls θ0

α which
lie in a compact set due to (vi). �
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Thus, to summarize, we use the growth conditions posed on Λ and I and
the pseudo-coercivity estimate for Λ to transfer the control on the full Hamil-
tonian H to the functions Λ and the cost function I. Then the control on Λ
and I allows us to apply the estimates (i) and (ii) to obtain the comparison
principle.

Next to our main result, we also state for completeness an existence result
in Theorem 2.8. The viscosity solution will be given in terms of a discounted
control problem as is typical in the literature, see e.g. [2, Chapter 3]. Minor
difficulties arise from working with H that arise from irregular I.

Finally, we show that the conditions (i) to (vi) are satisfied in two ex-
amples that arise from large deviation theory for two-scale processes. In our
companion paper [26], we will use existence and uniqueness for (HJB) for these
examples to obtain large deviation principles.

Illustration in the context of an example

As an illustrating example, we consider a Hamilton–Jacobi–Bellman equation
that arises from the large deviations of the empirical measure-flux pair of
weakly coupled Markov jump processes that are coupled to fast Brownian
motion on the torus. We skip the probabilistic background of this problem
(See [26]), and come to the set-up relevant for this paper.

Let G := {1, . . . , q} be some finite set, and let Γ = {(a, b) ∈ G2 | a 
= b}
be the set of directed bonds. Let E := P(G)× [0,∞)Γ, where P(G) is the set of
probability measures on G. Let F = P(S1) be the set of probability measures
on the one-dimensional torus. We introduce Λ and I.

• Let r : G × G × P(E) × P(S1) → [0,∞) be some function that codes
the P(E)×P(S1) dependent jump rate of the Markov jump process over
each bond (a, b) ∈ Γ. The internal Hamiltonian Λ is given by

Λ(μ, p, θ) =
∑

(a,b)∈Γ

μar(a, b, μ, θ)
[

epb−pa+pa,b − 1
]

.

• Let σ2 : S1 ×P(G) → (0,∞) be a bounded and strictly positive function.
The cost function I : E × Θ → [0,∞] is given by

I(μ,w, θ) = I(μ, θ) = sup
u∈C∞(S1)

u>0

∫

S1
σ2(y, μ)

(

−u′′(y)
u(y)

)

θ(dy).

Aiming for the comparison principle, we note that classical methods do not
apply. The functionals Λ are not coercive and do not satisfy (I). We show in
“Appendix E” that they are also not pseudo-coercive as defined in [4]. The
functional I is neither continuous nor bounded. Once can check e.g. that if θ
is a finite combination of Dirac measures, then I(μ, θ) = ∞.

We show in Sect. 5, however, that (i) to (vi) hold, implying the compari-
son principle for the Hamilton–Jacobi–Bellman equations. The verification of
these properties is based in part on results from [23,32].
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Summary and overview of the paper

To summarize, our novel bootstrap procedure allows to treat Hamilton–Jacobi–
Bellman equations where:

• We assume that the cost function I satisfies some regularity conditions on
its sub-levelsets, but allow I to be possibly unbounded and discontinuous.

• We assume that Λ satisfies the continuity estimate uniformly for controls
in compact sets, which in spirit extends the pseudo-coercivity estimate of
[4]. This implies that Λ can be possibly non-coercive, non-pseudo-coercive
and non-Lipschitz as exhibited in our example above.

In particular, allowing discontinuity in I allows us to treat the comparison
principle for examples like the one we considered above, which so far has been
out of reach. We believe that the bootstrap procedure we introduce in this note
has the potential to also apply to second order equations or equations in infinite
dimensions. Of interest would be, for example, an extension of the results of
[10] who work with continuous I. For clarity of the exposition, and the already
numerous applications for this setting, we stick to the finite-dimensional first-
order case. We think that the key arguments that are used in the proof in
Sect. 3 do not depend in a crucial way on this assumption.

The paper is organized as follows. The main results are formulated in
Sect. 2. In Sect. 3 we establish the comparison principle. In Sect. 4 we establish
that a resolvent operator R(λ) in terms of an exponentially discounted con-
trol problem gives rise to viscosity solutions of the Hamilton–Jacobi–Bellman
equation (HJB). Finally, in Sect. 5 we treat two examples including the one
mentioned in the introduction.

2. Main results

In this section, we start with preliminaries in Sect. 2.1, which includes the
definition of viscosity solutions and that of the comparison principle.

We proceed in Sect. 2.2 with the main results: a comparison principle for
the Hamilton–Jacobi–Bellman equation (HJB) based on variational Hamilto-
nians of the form (1.1), and the existence of viscosity solutions. In Sect. 2.3
we collect all assumptions that are needed for the main results.

2.1. Preliminaries

For a Polish space X we denote by C(X ) and Cb(X ) the spaces of continuous
and bounded continuous functions respectively. If X ⊆ R

d then we denote by
C∞

c (X ) the space of smooth functions that vanish outside a compact set. We
denote by C∞

cc (X ) the set of smooth functions that are constant outside of
a compact set in X , and by P(X ) the space of probability measures on X .
We equip P(X ) with the weak topology induced by convergence of integrals
against bounded continuous functions.

Throughout the paper, E will be the set on which we base our Hamilton–
Jacobi equations. We assume that E is a subset of Rd that is a Polish space
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which is contained in the R
d closure of its R

d interior. This ensures that gra-
dients of functions are determined by their values on E. Note that we do not
necessarily assume that E is open. We assume that the space of controls Θ is
Polish.

We next introduce viscosity solutions for the Hamilton–Jacobi equation
with Hamiltonians like H(x, p) of our introduction.

Definition 2.1. (Viscosity solutions and comparison principle) Let A : D(A) ⊆
Cb(E) → Cb(E) be an operator with domain D(A), λ > 0 and h ∈ Cb(E).
Consider the Hamilton–Jacobi equation

f − λAf = h. (2.1)

We say that u is a (viscosity) subsolution of equation (2.1) if u is bounded
from above, upper semi-continuous and if, for every f ∈ D(A) there exists a
sequence xn ∈ E such that

lim
n↑∞

u(xn) − f(xn) = sup
x

u(x) − f(x),

lim
n↑∞

u(xn) − λAf(xn) − h(xn) ≤ 0.

We say that v is a (viscosity) supersolution of Eq. (2.1) if v is bounded from
below, lower semi-continuous and if, for every f ∈ D(A)there exists a sequence
xn ∈ E such that

lim
n↑∞

v(xn) − f(xn) = inf
x

v(x) − f(x),

lim
n↑∞

v(xn) − λAf(xn) − h(xn) ≥ 0.

We say that u is a (viscosity) solution of Eq. (2.1) if it is both a subsolution and
a supersolution to (2.1). We say that (2.1) satisfies the comparison principle
if for every subsolution u and supersolution v to (2.1), we have u ≤ v.

Remark 2.2. (Uniqueness) If u and v are two viscosity solutions of 2.3, then
we have u ≤ v and v ≤ u by the comparison principle, giving uniqueness.

Remark 2.3. Consider the definition of subsolutions. Suppose that the test-
function f ∈ D(A) has compact sublevel sets, then instead of working with a
sequence xn, there exists x0 ∈ E such that

u(x0) − f(x0) = sup
x

u(x) − f(x),

u(x0) − λAf(x0) − h(x0) ≤ 0.

A similar simplification holds in the case of supersolutions.

Remark 2.4. For an explanatory text on the notion of viscosity solutions and
fields of applications, we refer to [8].

Remark 2.5. At present, we refrain from working with unbounded viscosity
solutions as we use the upper bound on subsolutions and the lower bound on
supersolutions in the proof of Theorem 2.6. We can, however, imagine that
the methods presented in this paper can be generalized if u and v grow slower
than the containment function Υ that will be defined below in Definition 2.13.
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2.2. Main results: comparison and existence

In this section, we state our main results: the comparison principle in Theorem
2.6, and existence of solutions in Theorem 2.8.

Consider the variational Hamiltonian H : E × R
d → R given by

H(x, p) = sup
θ∈Θ

[Λ(x, p, θ) − I(x, θ)] . (2.2)

The precise assumptions on the maps Λ and I are formulated in Sect. 2.3.

Theorem 2.6. (Comparison principle) Consider the map H : E × R
d → R

as in (2.2). Suppose that Assumptions 2.14 and 2.15 are satisfied for Λ and
I. Define the operator Hf(x) := H(x,∇f(x)) with domain D(H) = C∞

cc (E).
Then:
(a) For any f ∈ D(H) the map x �→ Hf(x) is continuous.
(b) For any h ∈ Cb(E) and λ > 0, the comparison principle holds for

f − λHf = h. (2.3)

Remark 2.7. (Domain) The comparison principle holds with any domain that
satisfies C∞

cc (E) ⊆ D(H) ⊆ C1
b (E). We state it with C∞

cc (E) to connect it with
the existence result of Theorem 2.8, where we need to work with test functions
whose gradients have compact support.

Consider the Legendre dual L : E × R
d → [0,∞] of the Hamiltonian,

L(x, v) := sup
p∈Rd

[〈p, v〉 − H(x, p)] ,

and denote the collection of absolutely continuous paths in E by AC.

Theorem 2.8. (Existence of viscosity solution) Consider H : E×R
d → R as in

(2.2). Suppose that Assumptions 2.14 and 2.15 are satisfied for Λ and I, and
that H satisfies Assumption 2.17. For each λ > 0, let R(λ) be the operator

R(λ)h(x) = sup
γ∈AC
γ(0)=x

∫ ∞

0

λ−1e−λ−1t

[

h(γ(t)) −
∫ t

0

L(γ(s), γ̇(s))
]

dt.

Then R(λ)h is the unique viscosity solution to f − λHf = h.

Remark 2.9. The form of the solution is typical, see for example Section III.2
in [2]. It is the value function obtained by an optimization problem with ex-
ponentially discounted cost. The difficulty of the proof of Theorem 2.8 lies in
treating the irregular form of H.

2.3. Assumptions

In this section, we formulate and comment on the assumptions imposed on
the Hamiltonians defined in the previous sections. The key assumptions were
already mentioned in the sketch of the bootstrap method in the introduction.
To these, we add minor additional assumptions on the regularity of Λ and I in
Assumptions 2.14 and 2.15. Finally, Assumption 2.17 will imply that even if
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E has a boundary, no boundary conditions are necessary for the construction
of the viscosity solution.

We start with the continuity estimate for Λ, which was briefly discussed
in (i) in the introduction. To that end, we first introduce a function that is
used in the typical argument that doubles the number of variables.

Definition 2.10. (Penalization function) We say that Ψ : E2 → [0,∞) is a
penalization function if Ψ ∈ C1(E2) and if x = y if and only if Ψ(x, y) = 0.

We will apply the definition below for G = Λ.

Definition 2.11. (Continuity estimate) Let Ψ be a penalization function and
let G : E × R

d × Θ → R, (x, p, θ) �→ G(x, p, θ) be a function. Suppose that for
each ε > 0, there is a sequence of positive real numbers α → ∞. For sake of
readability, we suppress the dependence on ε in our notation.

Suppose that for each ε and α we have variables (xε,α, yε,α) in E2 and
variables θε,α in Θ. We say that this collection is fundamental for G with
respect to Ψ if:
(C1) For each ε, there are compact sets Kε ⊆ E and ̂Kε ⊆ Θ such that for

all α we have xε,α, yε,α ∈ Kε and θε,α ∈ ̂Kε.
(C2) For each ε > 0, we have limα→∞ αΨ(xε,α, yε,α) = 0. For any limit point

(xε, yε) of (xε,α, yε,α), we have Ψ(xε,α, yε,α) = 0.
(C3) We have for all ε > 0

sup
α

G (yε,α,−α(∇Ψ(xε,α, ·))(yε,α), θε,α) < ∞, (2.4)

inf
α

G (xε,α, α(∇Ψ(·, yε,α))(xε,α), θε,α) > −∞. (2.5)

We say that G satisfies the continuity estimate if for every fundamental
collection of variables we have for each ε > 0 that

lim inf
α→∞ G (xε,α, α(∇Ψ(·, yε,α))(xε,α), θε,α)

−G (yε,α,−α(∇Ψ(xε,α, ·))(yε,α), θε,α) ≤ 0. (2.6)

Remark 2.12. In “Appendix C”, we state a slightly more general continuity
estimate on the basis of two penalization functions. A proof of a comparison
principle on the basis of two penalization functions was given in [23].

The continuity estimate is indeed exactly the estimate that one would per-
form when proving the comparison principle for the Hamilton–Jacobi equation
in terms of the internal Hamiltonian (disregarding the control θ). Typically,
the control on (xε,α, yε,α) that is assumed in (C1) and (C2) is obtained from
choosing (xε,α, yε,α) as optimizers in the doubling of variables procedure (see
Lemma 3.5), and the control that is assumed in (C3) is obtained by using
the viscosity sub- and supersolution properties in the proof of the comparison
principle. The required restriction to compact sets in Lemma 3.5 is obtained
by including in the test functions a containment function.

Definition 2.13. (Containment function) We say that a function Υ : E →
[0,∞] is a containment function for Λ if Υ ∈ C1(E) and there is a constant
cΥ such that
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• For every c ≥ 0, the set {x |Υ(x) ≤ c} is compact;
• We have supθ supx Λ (x,∇Υ(x), θ) ≤ cΥ.

To conclude, our assumption on Λ contains the continuity estimate, the
controlled growth, the existence of a containment function and two regularity
properties.

Assumption 2.14. The function Λ : E ×R
d × Θ → R in the Hamiltonian (2.2)

satisfies the following.

(Λ1) The map Λ : E × R
d × Θ → R is continuous.

(Λ2) For any x ∈ E and θ ∈ Θ, the map p �→ Λ(x, p, θ) is convex. We have
Λ(x, 0, θ) = 0 for all x ∈ E and all θ ∈ Θ.

(Λ3) There exists a containment function Υ : E → [0,∞) for Λ in the sense
of Definition 2.13.

(Λ4) For every compact set K ⊆ E, there exist constants M,C1, C2 ≥ 0 such
that for all x ∈ K, p ∈ R

d and all θ1, θ2 ∈ Θ, we have

Λ(x, p, θ1) ≤ max {M,C1Λ(x, p, θ2) + C2} .

(Λ5) The function Λ satisfies the continuity estimate in the sense of Defini-
tion 2.11, or in the extended sense of Definition C.2.

Our second main assumption is on the properties of I. For a compact
set K ⊆ E and a constant M ≥ 0, write

ΘK,M :=
⋃

x∈K

{

θ ∈ Θ
∣

∣ I(x, θ) ≤ M
}

, (2.7)

and

ΩK,M :=
⋂

x∈K

{

θ ∈ Θ
∣

∣ I(x, θ) ≤ M
}

. (2.8)

Assumption 2.15. The functional I : E × Θ → [0,∞] in (2.2) satisfies the
following.

(I1) The map (x, θ) �→ I(x, θ) is lower semi-continuous on E × Θ.
(I2) For any x ∈ E, there exists a control θ0

x ∈ Θ such that I(x, θ0
x) = 0.

(I3) For any compact set K ⊆ E and constant M ≥ 0 the set ΘK,M is
compact.

(I4) For each x ∈ E and constant M ≥ 0, there exists an open neighbourhood
U ⊆ E of x and constants M ′, C ′

1, C
′
2 ≥ 0 such that for all y1, y2 ∈ U

and θ ∈ Θ{x},M we have

I(y1, θ) ≤ max {M ′, C ′
1I(y2, θ) + C ′

2} .

(I5) For every compact set K ⊆ E and each M ≥ 0 the collection of functions
{I(·, θ)}θ∈ΩK,M

is equicontinuous. That is: for all ε > 0, there is a δ > 0
such that for all θ ∈ ΩK,M and x, y ∈ K such that d(x, y) ≤ δ we have
|I(x, θ) − I(y, θ)| ≤ ε.
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To establish the existence of viscosity solutions, we will impose one ad-
ditional assumption. For a general convex functional p �→ Φ(p) we denote

∂pΦ(p0) :=
{

ξ ∈ R
d : Φ(p) ≥ Φ(p0) + ξ · (p − p0) (∀p ∈ R

d)
}

. (2.9)

Definition 2.16. The tangent cone (sometimes also called Bouligand cotingent
cone) to E in R

d at x is

TE(x) :=
{

z ∈ R
d
∣

∣ lim inf
λ↓0

d(x + λz,E)
λ

= 0
}

.

Assumption 2.17. The set E is closed and convex. The map Λ is such that
∂pΛ(x, p, θ) ⊆ TE(x) for all x ∈ E, p ∈ R

d and θ ∈ Θ.

In Lemma 4.1 we will show that the assumption implies that ∂pH(x, p) ⊆
TE(x), which in turn implies that the solutions of the differential inclusion in
terms of ∂pH(x, p) remain inside E. Motivated by our examples, we work with
closed convex domains E. While in this context we can apply results from
e.g. Deimling [11], we believe that similar results can be obtained in different
contexts.

Remark 2.18. The statement that ∂pH(x, p) ⊆ TE(x) is intuitively implied
by the comparison principle for H and therefore, we expect it to hold in any
setting for which Theorem 2.6 holds. Here, we argue in a simple case why
this is to be expected. First of all, note that the comparison principle for H
builds upon the maximum principle. Suppose that E = [0, 1], f, g ∈ C1

b (E)
and suppose that f(0) − g(0) = supx f(x) − g(x). As x = 0 is a boundary
point, we conclude that f ′(0) ≤ g′(0). If indeed the maximum principle holds,
we must have

H(0, f ′(0)) = Hf(0) ≤ Hg(0) = H(0, g′(0))

implying that p �→ H(0, p) is increasing, in other words

∂pH(x, p)) ⊆ [0,∞) = T[0,1](0).

3. The comparison principle

In this section, we establish Theorem 2.6. To establish the comparison principle
for f − λHf = h we use the bootstrap method explained in the introduction.
We start by a classical localization argument.

We carry out the localization argument by absorbing the containment
function Υ from Assumption 2.14 (Λ3) into the test functions. This leads to
two new operators, H† and H‡ that serve as an upper bound and a lower
bound for the true H. We will then show the comparison principle for the
Hamilton–Jacobi equation in terms of these two new operators. We therefore
have to extend our notion of Hamilton–Jacobi equations and the comparison
principle. This extension of the definition is standard, but we included it for
completeness in the appendix as Definition A.1.
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This procedure allows us to clearly separate the reduction to compact
sets on one hand, and the proof of the comparison principle on the basis of the
bootstrap procedure on the other. Schematically, we will establish the following
diagram:

comparison

H†

H

H‡

sub

super

In this diagram, an arrow connecting an operator A with operator B with
subscript ’sub’ means that viscosity subsolutions of f − λAf = h are also
viscosity subsolutions of f − λBf = h. Similarly for arrows with a subscript
’super’.

We introduce the operators H† and H‡ in Sect. 3.1. The arrows will be
established in Sect. 3.2. Finally, we will establish the comparison principle for
H† and H‡ in Sect. 3.3. Combined these two results imply the comparison
principle for H.

Proof of Theorem 2.6. We start with the proof of (a). Let f ∈ D(H). Then Hf
is continuous since by Proposition B.3 in “Appendix B”, the Hamiltonian H
is continuous.

We proceed with the proof of (b). Fix h1, h2 ∈ Cb(E) and λ > 0.
Let u1, u2 be a viscosity sub- and supersolution to f − λHf = h1 and

f − λHf = h2 respectively. By Lemma 3.3 proven in Sect. 3.2, u1 and u2 are
a sub- and supersolution to f − λH†f = h1 and f − λH‡f = h2 respectively.
Thus supE u1 −u2 ≤ supE h1 −h2 by Proposition 3.4 of Sect. 3.3. Specialising
to h1 = h2 gives Theorem 2.6. �

3.1. Definition of auxiliary operators

In this section, we repeat the definition of H, and introduce the operators H†
and H‡.

Definition 3.1. The operator H ⊆ C1
b (E)×Cb(E) has domain D(H) = C∞

cc (E)
and satisfies Hf(x) = H(x,∇f(x)), where H is the map

H(x, p) = sup
θ∈Θ

[Λ(x, p, θ) − I(x, θ)] .

We proceed by introducing H† and H‡. Recall Assumption (Λ3) and the
constant CΥ := supθ supx Λ(x,∇Υ(x), θ) therein. Denote by C∞

� (E) the set
of smooth functions on E that have a lower bound and by C∞

u (E) the set of
smooth functions on E that have an upper bound.

Definition 3.2. (The operators H† and H‡) For f ∈ C∞
� (E) and ε ∈ (0, 1) set

fε
† := (1 − ε)f + εΥ

Hε
†,f (x) := (1 − ε)H(x,∇f(x)) + εCΥ.
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and set

H† :=
{

(fε
† ,Hε

†,f )
∣

∣ f ∈ C∞
� (E), ε ∈ (0, 1)

}

.

For f ∈ C∞
u (E) and ε ∈ (0, 1) set

fε
‡ := (1 + ε)f − εΥ

Hε
‡,f (x) := (1 + ε)H(x,∇f(x)) − εCΥ.

and set

H‡ :=
{

(fε
‡ ,Hε

‡,f )
∣

∣ f ∈ C∞
u (E), ε ∈ (0, 1)

}

.

3.2. Preliminary results

The operator H is related to H†,H‡ by the following Lemma.

Lemma 3.3. Fix λ > 0 and h ∈ Cb(E).

(a) Every subsolution to f −λHf = h is also a subsolution to f −λH†f = h.
(b) Every supersolution to f − λHf = h is also a supersolution to f −

λH‡f = h.

We only prove (a) of Lemma 3.3, as (b) can be carried out analogously.

Proof. Fix λ > 0 and h ∈ Cb(E). Let u be a subsolution to f − λHf = h. We
prove it is also a subsolution to f − λH†f = h.

Fix ε > 0 and f ∈ C∞
� (E) and let (fε

† ,Hε
†,f ) ∈ H† as in Definition 3.2.

We will prove that there are xn ∈ E such that

lim
n→∞

(

u − fε
†
)

(xn) = sup
x∈E

(

u(x) − fε
† (x)

)

, (3.1)

lim sup
n→∞

[

u(xn) − λHε
†,f (xn) − h(xn)

] ≤ 0. (3.2)

As the function [u − (1 − ε)f ] is bounded from above and εΥ has compact
sublevel-sets, the sequence xn along which the first limit is attained can be
assumed to lie in the compact set

K :=
{

x |Υ(x) ≤ ε−1 sup
x

(u(x) − (1 − ε)f(x))
}

.

Set M = ε−1 supx (u(x) − (1 − ε)f(x)). Let γ : R → R be a smooth increasing
function such that

γ(r) =

{

r if r ≤ M,

M + 1 if r ≥ M + 2.

Denote by fε the function on E defined by

fε(x) := γ ((1 − ε)f(x) + εΥ(x)) .
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By construction fε is smooth and constant outside of a compact set and thus
lies in D(H) = C∞

cc (E). As u is a viscosity subsolution for f − λHf = h there
exists a sequence xn ∈ K ⊆ E (by our choice of K) with

lim
n

(u − fε) (xn) = sup
x

(u(x) − fε(x)) , (3.3)

lim sup
n

[u(xn) − λHfε(xn) − h(xn)] ≤ 0. (3.4)

As fε equals fε
† on K, we have from (3.3) that also

lim
n

(

u − fε
†
)

(xn) = sup
x∈E

(

u(x) − fε
† (x)

)

,

establishing (3.1). Convexity of p �→ H(x, p) yields for arbitrary points x ∈ K
the estimate

Hfε(x) = H(x,∇fε(x))

≤ (1 − ε)H(x,∇f(x)) + εH(x,∇Υ(x))

≤ (1 − ε)H(x,∇f(x)) + εCΥ = Hε
†,f (x).

Combining this inequality with (3.4) yields

lim sup
n

[

u(xn) − λHε
†,f (xn) − h(xn)

]

≤ lim sup
n

[u(xn) − λHfε(xn) − h(xn)] ≤ 0,

establishing (3.2). This concludes the proof. �

3.3. The comparison principle

In this section, we prove the comparison principle for the operators H† and
H‡.

Proposition 3.4. Fix λ > 0 and h1, h2 ∈ Cb(E). Let u1 be a viscosity subsolu-
tion to f −λH†f = h1 and let u2 be a viscosity supersolution to f −λH‡f = h2.
Then we have supx u1(x) − u2(x) ≤ supx h1(x) − h2(x).

The proof uses a variant of a classical estimate that was proven e.g. in
[8, Proposition 3.7] or in the present form in Proposition A.11 of [7].

Lemma 3.5. Let u be bounded and upper semi-continuous, let v be bounded and
lower semi-continuous, let Ψ : E2 → R

+ be penalization functions and let Υ
be a containment function.

Fix ε > 0. For every α > 0 there exist xα,ε, yα,ε ∈ E such that

u(xα,ε)
1 − ε

− v(yα,ε)
1 + ε

− αΨ(xα,ε, yα,ε) − ε

1 − ε
Υ(xα,ε) − ε

1 + ε
Υ(yα,ε)

= sup
x,y∈E

{

u(x)
1 − ε

− v(y)
1 + ε

− αΨ(x, y) − ε

1 − ε
Υ(x) − ε

1 + ε
Υ(y)

}

.

(3.5)

Additionally, for every ε > 0 we have that
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(a) The set {xα,ε, yα,ε |α > 0} is relatively compact in E.
(b) All limit points of {(xα,ε, yα,ε)}α>0 as α → ∞ are of the form (z, z) and

for these limit points we have u(z) − v(z) = supx∈E {u(x) − v(x)}.
(c) We have

lim
α→∞ αΨ(xα,ε, yα,ε) = 0.

Proof of Proposition 3.4. Fix λ > 0 and h1, h2 ∈ Cb(E). Let u1 be a viscosity
subsolution and u2 be a viscosity supersolution of f − λH†f = h1 and f −
λH‡f = h2 respectively. We prove Theorem 3.4 in five steps of which the first
two are classical.

We sketch the steps, before giving full proofs.
Step 1: We prove that for ε > 0 and α > 0, there exist points xε,α, yε,α ∈

E satisfying the properties listed in Lemma 3.5 and momenta p1
ε,α, p2

ε,α ∈ R
d

such that

p1
ε,α = α∇Ψ(·, yε,α)(xε,α), p2

ε,α = −α∇Ψ(xε,α, ·)(yε,α),

and

sup
E

(u1 − u2) ≤ λ lim inf
ε→0

lim inf
α→∞

[H(xε,α, p1
ε,α) − H(yε,α, p2

ε,α)
]

+ sup
E

(h1 − h2). (3.6)

This step is solely based on the sub- and supersolution properties of u1, u2,
the continuous differentiability of the penalization function Ψ(x, y), the con-
tainment function Υ, and convexity of p �→ H(x, p). We conclude it suffices to
establish for each ε > 0 that

lim inf
α→∞ H(xε,α, p1

ε,α) − H(yε,α, p2
ε,α) ≤ 0. (3.7)

Step 2 : We will show that there are controls θε,α such that

H(xε,α, p1
ε,α) = Λ(xε,α, p1

ε,α, θε,α) − I(xε,α, θε,α). (3.8)

As a consequence we have

H(xε,α, p1
ε,α) − H(yε,α, p2

ε,α) ≤ Λ(xε,α, p1
ε,α, θε,α) − Λ(yε,α, p2

ε,α, θε,α)

+I(yε,α, θε,α) − I(xε,α, θε,α). (3.9)

For establishing (3.7), it is sufficient to bound the differences in (3.9) by using
Assumptions 2.14 (Λ5) and 2.15 (I5).

Step 3: We verify the conditions to apply the continuity estimate, As-
sumption 2.14 (Λ5).

The bootstrap argument allows us to find for each ε a subsequence α =
α(ε) → ∞ such that the variables (xε,α, xε,α, θε,α) are fundamental for Λ with
respect to Ψ (See Definition 2.11).

Step 4 : We verify the conditions to apply the estimate on I, Assumption
2.15 (I5).
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Step 5 : Using the outcomes of Steps 3 and 4, we can apply the continuity
estimate of Assumption 2.14 (Λ4) and the equi-continuity of Assumption 2.15
(I5) to estimate (3.9) for any ε:

lim inf
α→∞ H(xε,α, p1

ε,α) − H(yε,α, p2
ε,α)

≤ lim inf
α→∞ Λ(xε,α, p1

ε,α, θε,α) − Λ(yε,α, p2
ε,α, θε,α)

+I(yε,α, θε,α) − I(xε,α, θε,α) ≤ 0, (3.10)

which establishes (3.7) and thus also the comparison principle.
We proceed with the proofs of the first four steps, as the fifth step is

immediate.
Proof of Step 1: The proof of this first step is classical. We include it for

completeness. For any ε > 0 and any α > 0, define the map Φε,α : E × E → R

by

Φε,α(x, y) :=
u1(x)
1 − ε

− u2(y)
1 + ε

− αΨ(x, y) − ε

1 − ε
Υ(x) − ε

1 + ε
Υ(y).

Let ε > 0. By Lemma 3.5, there is a compact set Kε ⊆ E and there exist
points xε,α, yε,α ∈ Kε such that

Φε,α(xε,α, yε,α) = sup
x,y∈E

Φε,α(x, y), (3.11)

and

lim
α→∞ αΨ(xε,α, yε,α) = 0. (3.12)

As in the proof of Proposition A.11 of [23], it follows that

sup
E

(u1 − u2) ≤ lim inf
ε→0

lim inf
α→∞

[

u1(xε,α)
1 − ε

− u2(yε,α)
1 + ε

]

. (3.13)

At this point, we want to use the sub- and supersolution properties of u1 and
u2. Define the test functions ϕε,α

1 ∈ D(H†), ϕ
ε,α
2 ∈ D(H‡) by

ϕε,α
1 (x) := (1 − ε)

[

u2(yε,α)
1 + ε

+ αΨ(x, yε,α) +
ε

1 − ε
Υ(x) +

ε

1 + ε
Υ(yε,α)

]

+ (1 − ε)(x − xε,α)2,

ϕε,α
2 (y) := (1 + ε)

[

u1(xε,α)
1 − ε

− αΨ(xε,α, y) − ε

1 − ε
Υ(xε,α) − ε

1 + ε
Υ(y)

]

− (1 + ε)(y − yε,α)2.

Using (3.11), we find that u1 − ϕε,α
1 attains its supremum at x = xε,α, and

thus

sup
E

(u1 − ϕε,α
1 ) = (u1 − ϕε,α

1 )(xε,α).
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Denote p1
ε,α := α∇xΨ(xε,α, yε,α). By our addition of the penalization (x −

xε,α)2 to the test function, the point xε,α is in fact the unique optimizer, and
we obtain from the subsolution inequality that

u1(xε,α) − λ
[

(1 − ε)H (

xε,α, p1
ε,α

)

+ εCΥ

] ≤ h1(xε,α). (3.14)

With a similar argument for u2 and ϕε,α
2 , we obtain by the supersolution

inequality that

u2(yε,α) − λ
[

(1 + ε)H (

yε,α, p2
ε,α

)− εCΥ

] ≥ h2(yε,α), (3.15)

where p2
ε,α := −α∇yΨ(xε,α, yε,α). With that, estimating further in (3.13) leads

to

sup
E

(u1 − u2) ≤ lim inf
ε→0

lim inf
α→∞

[

h1(xε,α)
1 − ε

− h2(yε,α)
1 + ε

+
ε

1 − ε
CΥ

+
ε

1 + ε
CΥ + λ

[H(xε,α, p1
ε,α) − H(yε,α, p2

ε,α)
]

]

.

Thus, (3.6) in Step 1 follows.
Proof of Step 2: Recall that H(x, p) is given by

H(x, p) = sup
θ∈Θ

[Λ(x, p, θ) − I(x, θ)] .

Since Λ(xε,α, p1
ε,α, ·) : Θ → R is bounded and continuous by (Λ1) and (Λ4),

and I(xε,α, ·) : Θ → [0,∞] has compact sub-level sets in Θ by (I3), there
exists an optimizer θε,α ∈ Θ such that

H(xε,α, p1
ε,α) = Λ(xε,α, p1

ε,α, θε,α) − I(xε,α, θε,α). (3.16)

Choosing the same point in the supremum of the second term H(yε,α, p2
ε,α),

we obtain for all ε > 0 and α > 0 the estimate

H(xε,α, p1
ε,α) − H(yε,α, p2

ε,α) ≤ Λ(xε,α, p1
ε,α, θε,α) − Λ(yε,α, p2

ε,α, θε,α)

+I(yε,α, θε,α) − I(xε,α, θε,α). (3.17)

Proof of Step 3: We will construct for each ε > 0 a sequence α = α(ε) →
∞ such that the collection (xε,α, yε,α, θε,α) is fundamental for Λ with respect
to Ψ in the sense of Definition 2.11. We thus need to verify for each ε > 0

(i)

inf
α

Λ(xε,α, p1
ε,α, θε,α) > −∞, (3.18)

(ii)

sup
α

Λ(yε,α, p2
ε,α, θε,α) < ∞ (3.19)

(iii) The set of controls θε,α is relatively compact.
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To prove (i), (ii) and (iii), we introduce auxiliary controls θ0
ε,α, obtained

by (I2), satisfying

I(yε,α, θ0
ε,α) = 0. (3.20)

We will first establish (i) and (ii) for all α. Then, for the proof of (iii), we will
construct for each ε > 0 a suitable subsequence α → ∞.

Proof of Step 3, (i) and (ii) :
We first establish (i). By the subsolution inequality (3.14),

1
λ

inf
E

(u1 − h) ≤ (1 − ε)H(xε,α, p1
ε,α) + εCΥ

≤ (1 − ε)Λ(xε,α, p1
ε,α, θε,α) + εCΥ, (3.21)

and the lower bound (3.18) follows.
We next establish (ii). By the supersolution inequality (3.15), we can

estimate

(1 + ε)Λ(yε,α, p2
ε,α, θ0

ε,α) = (1 + ε)
[

Λ(yε,α, p2
ε,α, θ0

ε,α) − I(yε,α, θ0
ε,α)

]

≤ (

(1 + ε)H (

yε,α, p2
ε,α

)− εCΥ

)

+ εCΥ

≤ 1
λ

sup
E

(u2 − h) + εCΥ < ∞,

and the upper bound (3.19) follows by Assumption 2.14 (Λ4).
Proof of Step 3, (iii): To prove (iii), it suffices by Assumption 2.15 (I3)

to find for each ε > 0 a subsequence α such that

sup
α

I(xε,α, θε,α) < ∞. (3.22)

By (3.21), we have

1
λ

inf
E

(u1 − h) ≤ (1 − ε)H(xε,α, p1
ε,α) + εCΥ

= (1 − ε)
[

Λ(xε,α, p1
ε,α, θε,α) − I(xε,α, θε,α)

]

+ εCΥ.

We conclude that supα I(xε,α, θε,α) < ∞ is implied by

sup
α

Λ(xε,α, p1
ε,α, θε,α) < ∞

which by (Λ4) is equivalent to

sup
α

Λ(xε,α, p1
ε,α, θ0

ε,α) < ∞. (3.23)

To perform this estimate, we first write

Λ(xε,α, p1
ε,α, θ0

ε,α)

= Λ(yε,α, p2
ε,α, θ0

ε,α) +
[

Λ(xε,α, p1
ε,α, θ0

ε,α) − Λ(yε,α, p2
ε,α, θ0

ε,α)
]

.

(3.24)

To estimate the second term, we aim to apply the continuity estimate for the
controls θ0

ε,α. To do so, must establish that (xε,α, yε,α, θ0
ε,α) is fundamental for
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Λ with respect to Ψ. By Assumption 2.15 (I3), for each ε the set of controls
θ0

ε,α is relatively compact. Thus it suffices to establish

inf
α

Λ(xε,α, p1
ε,α, θ0

ε,α) > −∞, (3.25)

sup
α

Λ(yε,α, p2
ε,α, θ0

ε,α) < ∞. (3.26)

These two estimates follow by Assumption 2.14 (Λ4) and (3.18) and (3.19).
The continuity estimate of Assumption 2.14 (Λ5) yields that

lim inf
α→∞ Λ(xε,α, p1

ε,α, θ0
ε,α) − Λ(yε,α, p2

ε,α, θ0
ε,α) ≤ 0.

This means that there exists a subsequence, also denoted by α such that

sup
α

Λ(xε,α, p1
ε,α, θ0

ε,α) − Λ(yε,α, p2
ε,α, θ0

ε,α) < ∞. (3.27)

Thus, we can estimate (3.24) by (3.27) and (3.26). This implies that (3.22)
holds for the chosen subsequences α and that for these the collection (xε,α, yε,α, θε,α)
is fundamental for Λ with respect to Ψ establishing Step 3.

Proof of Step 4:
For the subsequences constructed in Step 3, we have by (3.22) that

sup
α

I(xε,α, θε,α) < ∞. (3.28)

As established in Step 1, following Lemma 3.5, for each ε > 0 the set {(xε,α, yε,α)}
is relatively compact where α varies over the subsequences selected in Step 3.
In addition, for each ε > 0 there exists z ∈ E such that (xε,α, yε,α) → (z, z).
It follows by (3.28) and Assumption 2.15 (I4) that also

sup
α

I(yε,α, θε,α) < ∞. (3.29)

With the bounds (3.28) and (3.29), the estimate (I5) is satisfied for the sub-
sequences (xε,α, yε,α, θε,α). �

4. Existence of viscosity solutions

In this section, we will prove Theorem 2.8. In other words, we show that
for h ∈ Cb(E) and λ > 0, the function R(λ)h given by

R(λ)h(x) = sup
γ∈AC
γ(0)=x

∫ ∞

0

λ−1e−λ−1t

[

h(γ(t)) −
∫ t

0

L(γ(s), γ̇(s))
]

dt

is indeed a viscosity solution to f−λHf = h. To do so, we will use the methods
of Chapter 8 of [19]. For this strategy, one needs to check three properties of
R(λ):
(a) For all (f, g) ∈ H, we have f = R(λ)(f − λg).
(b) The operator R(λ) is a pseudo-resolvent: for all h ∈ Cb(E) and 0 < α < β

we have

R(β)h = R(α)
(

R(β)h − α
R(β)h − h

β

)

.
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(c) The operator R(λ) is contractive.

Thus, if R(λ) serves as a classical left-inverse to 1− λH and is also a pseudo-
resolvent, then it is a viscosity right-inverse of (1 − λH). For a second proof
of this statement, outside of the control theory context, see Proposition 3.4 of
[24].

Establishing (c) is straightforward. The proof of (a) and (b) stems from
two main properties of exponential random variable. Let τλ be the measure on
R

+ corresponding to the exponential random variable with mean λ−1.

• (a) is related to integration by parts: for bounded measurable functions
z on R

+, we have

λ

∫ ∞

0

z(t) τλ(dt) =
∫ ∞

0

∫ t

0

z(s) ds τλ(dt).

• (b) is related to a more involved integral property of exponential random
variables. For 0 < α < β, we have

∫ ∞

0

z(s)τβ(ds)

=
α

β

∫ ∞

0

z(s)τα(ds) +
(

1 − α

β

)∫ ∞

0

∫ ∞

0

z(s + u) τβ(du) τα(ds).

Establishing (a) and (b) can then be reduced by a careful analysis of optimizers
in the definition of R(λ), and concatenation or splittings thereof. This was
carried out in Chapter 8 of [19] on the basis of three assumptions, namely [19,
Assumptions 8.9, 8.10 and 8.11]. We verify these below.

Verification of Conditions 8.9, 8.10 and 8.11. In the notation of [19], we use
U = R

d, Γ = E × U , one operator H = H† = H‡ and Af(x, u) = 〈∇f(x), u〉
for f ∈ D(H) = C∞

cc (E).
Regarding Condition 8.9, by continuity and convexity of H obtained in

Propositions B.1 and B.3, parts 8.9.1, 8.9.2, 8.9.3 and 8.9.5 can be proven e.g.
as in the proof of [19, Lemma 10.21] for ψ = 1. Part 8.9.4 is a consequence of
the existence of a containment function, and follows as shown in the proof of
Theorem A.17 of [7]. Since we use the argument further below, we briefly recall
it here. We need to show that for any compact set K ⊆ E, any finite time T > 0
and finite bound M ≥ 0, there exists a compact set K ′ = K ′(K,T,M) ⊆ E
such that for any absolutely continuous path γ : [0, T ] → E with γ(0) ∈ K, if

∫ T

0

L(γ(t), γ̇(t)) dt ≤ M, (4.1)

then γ(t) ∈ K ′ for any 0 ≤ t ≤ T .
For K ⊆ E, T > 0, M ≥ 0 and γ as above, this follows by noting that

Υ(γ(τ)) = Υ(γ(0)) +
∫ τ

0

∇Υ(γ(t))γ̇(t) dt

≤ Υ(γ(0)) +
∫ τ

0

[L(γ(t), γ̇(t))) + H(x(t),∇Υ(γ(t)))] dt
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≤ sup
K

Υ + M + T sup
x∈E

H(x,∇Υ(x)) =: C < ∞, (4.2)

for any 0 ≤ τ ≤ T , so that the compact set K ′ := {z ∈ E : Υ(z) ≤ C}
satisfies the claim.

We proceed with the verification of Conditions 8.10 and 8.11 of [19].
By Proposition B.1, we have H(x, 0) = 0 and hence the application of H to
constant 1 function 1 satisfies H1 = 0. Thus, Condition 8.10 is implied by
Condition 8.11 (see Remark 8.12 (e) in [19]).

We establish that Condition 8.11 is satisfied: for any function f ∈ D(H) =
C∞

cc (E) and x0 ∈ E, there exists an absolutely continuous path x : [0,∞) → E
such that x(0) = x0 and for any t ≥ 0,

∫ t

0

H(x(s),∇f(x(s)) ds =
∫ t

0

[ẋ(s) · ∇f(x(s)) − L(x(s), ẋ(s))] ds. (4.3)

To do so, we solve the differential inclusion

ẋ(t) ∈ ∂pH(x(t),∇f(x(t))), x(0) = x0, (4.4)

where the subdifferential of H was defined in (2.9) on page 10.
Since the addition of a constant to f does not change the gradient, we

may assume without loss of generality that f has compact support. A general
method to establish existence of differential inclusions ẋ ∈ F (x) is given by
Lemma 5.1 of Deimling [11]. We have included this result as Lemma D.5, and
corresponding preliminary definitions in “Appendix D”. We use this result for
F (x) := ∂pH(x,∇f(x)). To apply Lemma D.5, we need to verify that:

(F1) F is upper hemi-continuous and F (x) is non-empty, closed, and convex
for all x ∈ E.

(F2) ‖F (x)‖ ≤ c(1 + |x|) on E, for some c > 0.
(F3) F (x)∩TE(x) 
= ∅ for all x ∈ E. (For the definition of TE , see Definition

2.16 on page 10).
Part (F1) follows from the properties of subdifferential sets of convex and
continuous functionals. H is continuous in (x, p) and convex in p by Proposition
B.1. Part (F3) is a consequence of Lemma 4.1, which yields that F (x) ⊆
TE(x). Part (F2) is in general not satisfied. To circumvent this problem, we
use properties of H to establish a-priori bounds on the range of solutions.

Step 1: Let T > 0, and assume that x(t) solves (4.4). We establish that
there is some M such that (4.1) is satisfied. By (4.4) we obtain for all p ∈ R

d,

H(x(t), p) ≥ H(x(t),∇f(x(t))) + ẋ(t) · (p − ∇f(x(t))),

and as a consequence

ẋ(t)∇f(x(t)) − H(x(t),∇f(x(t))) ≥ L(x(t), ẋ(t)).

Since f has compact support and H(y, 0) = 0 for any y ∈ E, we estimate

∫ T

0

L(x(t), ẋ(t)) ds ≤
∫ T

0

ẋ(t)∇f(x(t)) dt − T inf
y∈supp(f)

H(y,∇f(y)).
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By continuity of H the field F is bounded on compact sets, so the first term
can be bounded by

∫ T

0

ẋ(t)∇f(x(t)) dt ≤ T sup
y∈supp(f)

‖F (y)‖ sup
z∈supp(f)

|∇f(z)|.

Therefore, for any T > 0, we obtain that the integral over the Lagrangian is
bounded from above by M = M(T ), with

M := T sup
y∈supp(f)

‖F (y)‖ sup
z∈supp(f)

|∇f(z)| − inf
y∈supp(f)

H(y,∇f(y)).

From the first part of the, see the argument concluding after (4.2), we find
that the solution x(t) remains in the compact set

K ′ :=
{

z ∈ E
∣

∣Υ(z) ≤ C
}

, C := Υ(x0) + M + T sup
x

H(x,∇Υ(x)),

(4.5)

for all t ∈ [0, T ].
Step 2 : We prove that there exists a solution x(t) of (4.4) on [0, T ].
Using F , we define a new multi-valued vector-field F ′(z) that equals

F (z) = ∂pH(z,∇f(z)) inside K ′, but equals {0} outside a neighborhood of
K. This can e.g. be achieved by multiplying with a smooth cut-off function
gK′ : E → [0, 1] that is equal to one on K ′ and zero outside of a neighborhood
of K ′.

The field F ′ satisfies (F1), (F2) and (F3) from above, and hence there
exists an absolutely continuous path y : [0,∞) → E such that y(0) = x0 and
for almost every t ≥ 0,

ẏ(t) ∈ F ′(y(t)).

By the estimate established in step 1 and the fact that Υ(γ(t)) ≤ C for any
0 ≤ t ≤ T , it follows from the argument as shown above in (4.2) that the
solution y stays in K ′ up to time T . Since on K ′, we have F ′ = F , this implies
that setting x = y|[0,T ], we obtain a solution x(t) of (4.4) on the time interval
[0, T ]. �

Lemma 4.1. Let Assumption 2.17 be satisfied. Then the map H : E ×R
d → R

defined in (2.2) is such that ∂pH(x, p) ⊆ TE(x) for all p and x ∈ E.

Proof. Fix x ∈ E and p0 ∈ R
d. We aim to prove that ∂pH(x, p0) ⊆ TE(x).

Recall the definition of H:

H(x, p) = sup
θ∈Θ

{Λ(x, p, θ) − I(x, θ)} . (4.6)

Let Ω(p) ⊆ Θ be the set of controls that optimize H: thus if θ ∈ Ω(p) then
H(x, p) = Λ(x, p, θ) − I(x, θ).
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The result will follow from the following claim,

∂pH(x, p0) = ch
⋃

θ∈Ω(p0)

∂pΛ(x, p0, θ), (4.7)

where ch denotes the convex hull. Having established this claim, the result
follows from Assumption 2.17 and the fact that TE(x) is a convex set by
Lemma D.4.

We start with the proof of (4.7). For this we will use [22, Theorem
D.4.4.2]. To study the subdifferential of the function ∂pH(x, p0), it suffices to
restrict the domain of the map p �→ H(x, p) to the closed ball B1(p0) around
p0 with radius 1.

To apply [22, Theorem D.4.4.2] for this restricted map, first recall that
Λ is continuous by Assumption 2.14 (Λ1) and that I is lower semi-continuous
by Assumption 2.15 (I1). Secondly, we need to find a compact set Ω ⊆ Θ such
that we can restrict the supremum (for any p ∈ B1(p0)) in (4.6) to Ω:

H(x, p) = sup
θ∈Ω

{Λ(x, p, θ) − I(x, θ)} .

In particular, we show that we can take for Ω a sublevelset of I(x, ·) which is
compact by Assumption 2.15 (I3).

Let θ0
x be the control such that I(x, θ0

x) = 0, which exists due to As-
sumption 2.15 (I2). Let M∗ be such that (with the constants M,C1, C2 as in
Assumption 2.14 (Λ4))

M∗ = sup
p∈B1(p0)

{

max
{

M,C1Λ(x, p, θ0
x) + C2

}− Λ(x, p, θ0
x)
}

< ∞.

Note that M∗ is finite as p �→ Λ(x, p, θ0
x) is continuous on the closed unit

ball B1(p0). Then we find, due to Assumption 2.14 (Λ4), that if θ satisfies
I(x, θ) > M∗, then for any p ∈ B1(p0) we have

Λ(x, p, θ) − I(x, θ) < Λ(x, p, θ0
x) ≤ H(x0, p).

We obtain that if p ∈ B1(p0), then we can restrict our supremum in (4.6) to
the compact set Ω := Θ{x},M∗ , see Assumption 2.15 (I3).

Thus, it follows by [22, Theorem D.4.4.2] that

∂pH(x, p0) = ch

⎛

⎝

⋃

θ∈Θ{x},M̄∗

∂p (Λ(x, p0, θ) − I(x, θ))

⎞

⎠ ,

where ch denotes the convex hull. Now (4.7) follows by noting that I(x, θ)
does not depend on p. �

5. Examples of Hamiltonians

In this section we specify our general results to two concrete examples of
Hamiltonians of the type

H(x, p) = sup
θ∈Θ

[Λ(x, p, θ) − I(x, θ)] . (5.1)
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The purpose of this section is to showcase that the method introduced in this
paper is versatile enough to capture interesting examples that could not be
treated before.

First, we consider in Proposition 5.1 Hamiltonians that one encounters
in the large deviation analysis of two-scale systems as studied in [6] and [27]
when considering a diffusion process coupled to a fast jump process. Second,
we consider in Proposition 5.7 the example treated in our introduction that
arises from models of mean-field interacting particles that are coupled to fast
external variables. This example will be further analyzed in [26].

Proposition 5.1. (Diffusion coupled to jumps) Let E = R
d and F = {1, . . . , J}

be a finite set. Suppose the following:
(i) The set of control variables is Θ := P({1, . . . , J}), that is probability

measures over the finite set F .
(ii) The function Λ is given by

Λ(x, p, θ) :=
∑

i∈F

[〈a(x, i)p, p〉 + 〈b(x, i), p〉] θi,

where a : E × F → R
d×d and b : E × F → R

d, and θi := θ({i}).
(iii) The cost function I : E × Θ → [0,∞) is given by

I(x, θ) := sup
w∈RJ

∑

ij

r(i, j, x)θi

[

1 − ewj−wi
]

,

with non-negative rates r : F 2 × E → [0,∞).
Suppose that the cost function I satisfies the assumptions of Proposi-

tion 5.9 below and the function Λ satisfies the assumptions of Proposition 5.11
below. Then Theorems 2.6 and 2.8 apply to the Hamiltonian (5.1).

Proof. To apply Theorems 2.6 and 2.8, we need to verify Assumptions 2.14,
2.15 and 2.17. Assumption 2.14 follows from Proposition 5.11, Assumption
2.15 follows from Proposition 5.9 and Assumption 2.17 is satisfied as E = R

d.
�

Remark 5.2. We assume uniform ellipticity of a, which we use to establish
(Λ4). This leaves our comparison principle slightly lacking to prove a large
deviation principle as general as in [5]. In contrast, we do not need a Lipschitz
condition on r in terms of x.

While we believe that the conditions on a can be relaxed by performing
a finer analysis of the estimates in terms of a, we do not pursue this relaxation
here.

Remark 5.3. The cost function is the large deviation rate function for the occu-
pation time measures of a jump process taking values in a finite set {1, . . . , J},
see e.g. [13,14].

Remark 5.4. In the context with a = 0 and I as general as Assumption 2.15,
we improve upon the results of Chapter III of [2] by allowing a more general
class of functionals I, that are e.g. discontinuous as for example in Proposition
5.7 below.
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In [10] the authors consider a second order Hamilton–Jacobi–Bellman
equation, with the quadratic part replaced by a second order part. They work,
however, with continuous cost functional I. An extension of [10] that allows
for a similar flexibility in the choice of I would therefore be of interest.

Remark 5.5. Under irreducibility conditions on the rates, as we shall assume
below in Proposition 5.9, by [15] the Hamiltonian H(x, p) is the principal
eigenvalue of the matrix Ax,p ∈ MatJ×J(R) given by

Ax,p = diag [〈a(x, 1)p, p〉 + 〈b(x, 1), p〉, . . . , 〈a(x, J)p, p〉 + 〈b(x, J), p〉] + Rx,

where x, p ∈ R
d and Rx is the matrix

⎛

⎜

⎜

⎜

⎜

⎝

−∑

j 	=1 r(1, j, x) r(1, 2, x) . . . r(1, J, x)

r(2, 1, x) −∑

j 	=2 r(2, j, x) . . .
...

...
...

. . .
...

r(J, 1, x) . . . r(J, J − 1, x) −∑

j 	=J r(J, j, x)

⎞

⎟

⎟

⎟

⎟

⎠

,

that is (Rx)ii = −∑

j 	=i r(i, j, x) on the diagonal and (Rx)ij = r(i, j, x) for
i 
= j.

Next we consider Hamiltonians arising in the context of weakly inter-
acting jump processes on a collection of states {1, . . . , q} as described in our
introduction. We analyze and motivate this example in more detail in our com-
panion paper [26]. We give the terminology as needed for the results in this
paper.

The empirical measure of the interacting processes takes its values in the
set of measures P({1, . . . , q}). The dynamics arises from mass moving over the
bonds (a, b) ∈ Γ =

{

(i, j) ∈ {1, . . . , q}2 | i 
= j
}

. As the number of processes is
send to infinity, there is a type of limiting result for the total mass moving
over the bonds.

We will denote by v(a, b, μ, θ) the total mass that moves from a to b if
the empirical measure equals μ and the control is given by θ. We will make
the following assumption on the kernel v.

Definition 5.6. (Proper kernel) Let v : Γ × P({1, . . . , q}) × Θ → R
+. We say

that v is a proper kernel if v is continuous and if for each (a, b) ∈ Γ, the map
(μ, θ) �→ v(a, b, μ, θ) is either identically equal to zero or satisfies the following
two properties:
(a) v(a, b, μ, θ) = 0 if μ(a) = 0 and v(a, b, μ, θ) > 0 for all μ such that

μ(a) > 0.
(b) There exists a decomposition v(a, b, μ, θ) = v†(a, b, μ(a))v‡(a, b, μ, θ) such

that v† is increasing in the third coordinate and such that v‡(a, b, ·, ·) is
continuous and satisfies v‡(a, b, μ, θ) > 0.

A typical example of a proper kernel is given by

v(a, b, μ, θ) = μ(a)r(a, b, θ)e∂aV (μ)−∂bV (μ),
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with r > 0 continuous and V ∈ C1
b (P({1, . . . , q})).

Proposition 5.7. (Mean-field coupled to diffusion) Let the space E be given
by the embedding of E := P({1, . . . , J}) × [0,∞)Γ ⊆ R

d and F be a smooth
compact Riemannian manifold without boundary. Suppose the following.
(i) The set of control variables Θ equals P(F ).
(ii) The function Λ is given by

Λ((μ,w), p, θ) =
∑

(a,b)∈Γ

v(a, b, μ, θ)
[

exp
{

pb − pa + p(a,b)

}− 1
]

with a proper kernel v in the sense of Definition 5.6.
(iii) The cost function I : E × Θ → [0,∞] is given by

I(x, θ) := sup
u∈D(Lx)
inf u>0

[

−
∫

F

Lxu

u
dθ

]

,

where Lx is a second-order elliptic operator locally of the form

Lx =
1
2
∇ · (ax∇) + bx · ∇,

on the domain D(Lx) := C2(F ), with positive-definite matrix ax and
co-vectors bx.

Suppose that the cost function I satisfies the assumptions of Proposition 5.10
and the function Λ satisfies the assumptions of Proposition 5.13. Then Theo-
rems 2.6 and 2.8 apply to the Hamiltonian (5.1).

Proof. To apply Theorems 2.6 and 2.8, we need to verify Assumptions 2.14,
2.15 and 2.17. Assumption 2.14 follows from Proposition 5.13 and Assumption
2.15 follows from Proposition 5.10. We verify Assumption 2.17 in Proposition
5.19. �

Remark 5.8. The cost function stems from occupation-time large deviations
of a drift-diffusion process on a compact manifold, see e.g. [15,32]. We ex-
pect Proposition 5.7 to extend also to non-compact spaces F , but we feel this
technical extension is better suited for a separate paper.

5.1. Verifying assumptions for cost functions I
Here we verify Assumption 2.15 for two types of cost functions I(x, θ) appear-
ing in the examples of Propositions 5.1 and 5.7.

Proposition 5.9. (Donsker–Varadhan functional for jump processes) Consider
a finite set F = {1, . . . , J} and let Θ := P({1, . . . , J}) be the set of probability
measures on F . For x ∈ E, let Lx : Cb(F ) → Cb(F ) be the operator given by

Lxf(i) :=
J
∑

j=1

r(i, j, x) [f(j) − f(i)] , f : {1, . . . , J} → R.

Suppose that the rates r : {1, . . . , J}2 × E → R
+ are continuous as a function

on E and moreover satisfy the following:
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(i) For any x ∈ E, the matrix R(x) with entries R(x)ij := r(i, j, x) for i 
= j
and R(x)ii = −∑

j 	=i r(i, j, x) is irreducible.
(ii) For each pair (i, j), we either have r(i, j, ·) ≡ 0 or for each compact set

K ⊆ E, it holds that

rK(i, j) := inf
x∈K

r(i, j, x) > 0.

Then the Donsker–Varadhan functional I : E × Θ → R
+ defined by

I(x, θ) := − inf
φ∈Cb(F )
inf φ>0

∫

Lxφ(z)
φ(z)

dθ

= sup
w∈RJ

∑

ij

r(i, j, x)θi

[

1 − ewj−wi
]

satisfies Assumption 2.15.

Proof.(I1): For a fixed vector w ∈ R
J , the map

(x, θ) �→
∑

ij

r(i, j, x)θi

[

1 − ewj−wi
]

is continuous on E × Θ. Hence I(x, θ) is lower semicontinuous as the
supremum over continuous functions.

(I2) : Let x ∈ E. First note that for all θ, the choice w = 0 implies that
I(x, θ) ≥ 0. By the irreducibility assumption on the rates r(i, j, x), there
exists a unique measure θ0

x ∈ Θ such that for any f : {1, . . . , J} → R,
∑

i

Lxf(i)θ0
x(i) = 0. (5.2)

We establish that I(x, θ0
x) = 0. Let w ∈ R

J . By the elementary estimate
(

1 − eb−a
) ≤ −(b − a) for all a, b > 0,

we obtain that
∑

ij

r(i, j, x)θ0
x(i)

(

1 − ewj−wi
) ≤

∑

ij

r(i, j, x)θ0
x(i) (wj − wi)

=
∑

i

(Lxw)(i)θ0
x(i) = 0

by (5.2). Since I ≥ 0, this implies I(x, θ0
x) = 0.

(I3): Any closed subset of Θ is compact.
(I4): Let xn → x in E. It follows that the sequence is contained in some

compact set K ⊆ E that contains the xn and x in its interior. For any
y ∈ K,

I(y, θ) ≤
∑

ij,i	=j

r(i, j, y)θi ≤
∑

ij,i	=j

r(i, j, y) ≤
∑

ij,i	=j

r̄ij , r̄ij := sup
y∈K

r(i, j, y).

Hence I is uniformly bounded on K × Θ, and (I4) follows with Ux the
interior of K.



   22 Page 28 of 45 R. C. Kraaij and M. C. Schlottke NoDEA

(I5) : Let d be some metric that metrizes the topology of E. We will prove
that for any compact set K ⊆ E and ε > 0 there is some δ > 0 such
that for all x, y ∈ K with d(x, y) ≤ δ and for all θ ∈ P(F ), we have

|I(x, θ) − I(y, θ)| ≤ ε. (5.3)

Let x, y ∈ K. By continuity of the rates the I(x, ·) are uniformly
bounded for x ∈ K:

0 ≤ I(x, θ) ≤
∑

ij,i	=j

r(i, j, x)θi ≤
∑

ij,i	=j

r(i, j, x) ≤
∑

ij,i	=j

r̄ij , r̄ij := sup
x∈K

r(i, j, x).

For any n ∈ N, there exists wn ∈ R
J such that

0 ≤ I(x, θ) ≤
∑

ij,i	=j

rij(x)θi(1 − ewn
j −wn

i ) +
1
n

.

By reorganizing, we find for all bonds (a, b) the bound

θaewn
b −wn

a ≤ 1
rK,a,b

⎡

⎣

∑

ij,i	=j

r(i, j, x)θi +
1
n

⎤

⎦ ≤ 1
rK,a,b

⎡

⎣

∑

ij,i	=j

r̄ij +
1
n

⎤

⎦ ,

where rK,a,b := infx∈K r(a, b, x). Thereby, evaluating in I(y, θ) the same vector
wn to estimate the supremum,

I(x, θ) − I(y, θ)

≤ 1
n

+
∑

ab,a	=b

r(a, b, x)θa(1 − ewn
b −wn

a ) −
∑

ab,a	=b

r(a, b, y)θa(1 − ewn
b −wn

a )

≤ 1
n

+
∑

ab,a	=b

|r(a, b, x) − r(a, b, y)|θa +
∑

ab,a	=b

|r(a, b, y) − r(a, b, x)|θaewn
b −wn

a

≤ 1
n

+
∑

ab,a	=b

|r(a, b, x) − r(a, b, y)|
⎛

⎝1 +
1

rK,a,b

⎡

⎣

∑

ij,i	=j

r̄ij + 1

⎤

⎦

⎞

⎠ .

We take n → ∞ and use that the rates x �→ r(a, b, x) are continuous, and
hence uniformly continuous on compact sets, to obtain (5.3). �

Proposition 5.10. (Donsker–Varadhan functional for drift-diffusions) Let F be
a smooth compact Riemannian manifold without boundary and set Θ := P(F ),
the set of probability measures on F . For x ∈ E, let Lx : C2(F ) ⊆ Cb(F ) →
Cb(F ) be the second-order elliptic operator that in local coordinates is given
by

Lx =
1
2
∇ · (ax∇) + bx · ∇,

where ax is a positive definite matrix and bx is a vector field having smooth
entries aij

x and bi
x on F . Suppose that for all i, j the maps

x �→ ai,j
x (·), x �→ bi

x(·) (5.4)
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are continuous as functions from E to Cb(F ), where we equip Cb(F ) with the
supremum norm. Then the functional I : E × Θ → [0,∞] defined by

I(x, θ) := sup
u∈D(Lx)

u>0

[

−
∫

F

Lxu

u
dθ

]

satisfies Assumption 2.15.

Proof.(I1): For any fixed function u ∈ D(Lx) such that u > 0, the function
(−Lxu/u) is continuous on F . Note that by definition of I it suffices to
only consider u > 0. Thus, for any such fixed u > 0 it follows by (5.4)
and compactness of F that

(x, θ) �→ −
∫

F

Lxu

u
dθ

is continuous on E×Θ. As a consequence I(x, θ) is lower semicontinuous
as the supremum over continuous functions.

(I2): Let x ∈ E. The stationary measure θ0
x ∈ Θ satisfying

∫

F

Lxg(z) θ0
x(dz) = 0 for all g ∈ D(Lx) (5.5)

is the minimizer of I(x, ·), that is I(x, θ0
x) = 0. This follows by con-

sidering the Hille-Yosida approximation Lε
x of Lx and using the same

argument (using w = log u) as in Proposition 5.9 for these approxima-
tions. For any u > 0 and ε > 0,

−
∫

F

Lxu

u
dθ = −

∫

F

Lε
xu

u
dθ +

∫

F

(Lε
x − Lx)u

u
dθ

≤ −
∫

F

Lε
xu

u
dθ +

1
infF u

‖(Lε
x − Lx)u‖F

≤ −
∫

F

Lε
x log(u) dθ + o(1).

Sending ε → 0 and then using (5.5) gives (I2).
(I3): Since Θ = P(F ) is compact, any closed subset of Θ is compact. Hence

any union of sub-level sets of I(x, ·) is relatively compact in Θ.
(I4): Fix x ∈ E and M ≥ 0. Let θ ∈ Θ{x},M . As I(x, θ) ≤ M , we find by [31]

that the density dθ
dz exists, where dz denotes the Riemannian volume

measure.

In addition it follows from [31, Theorem 1.4] there exists constants c1(y),
c2(y), c3(y), c4(y), c1(y), c2(y) being positive, depending continuously on
ay, a−1

y , by (See the derivation of [30, Eq. (2.18), (2.19)]), but not on θ,
such that

c1(y)
∫

F

|∇gθ|2 dz − c2(y) ≤ I(y, θ) ≤ c3(y)
∫

F

|∇gθ|2 dz + c4(y), (5.6)

where gθ = (dθ/dz)1/2.
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As the dependence is continuous in y, we can find a open set U ⊆ E of
x such that there are constants c1, c2, c3, c4, c1, c3 being positive, that
do not depend on θ, such that for any y ∈ U :

c1

∫

F

|∇gθ|2 dz − c2 ≤ I(y, θ) ≤ c3

∫

F

|∇gθ|2 dz + c4. (5.7)

From (5.7), (I4) immediately follows.
(I5): Since the coefficients ax and bx of the operator Lx depend continuously

on x, assumption (I5) follows from Theorem 2 of [32]. �

5.2. Verifying assumptions for functions Λ
In this section we verify Assumption 2.14 for two types of functions Λ(x, p, θ)
appearing in the examples of Propositions 5.1 and 5.7.

Proposition 5.11. (Quadratic function Λ) Let E = R
d and Θ = P(F ) for some

compact Polish space F . Suppose that the function Λ : E × R
d × Θ → R is

given by

Λ(x, p, θ) =
∫

F

〈a(x, z)p, p〉 dθ(z) +
∫

F

〈b(x, z), p〉 dθ(z),

where a : E × F → R
d×d and b : E × F → R

d are continuous. Suppose that
for every compact set K ⊆ R

d,

aK,min := inf
x∈K,z∈F,|p|=1

〈a(x, z)p, p〉 > 0,

aK,max := sup
x∈K,z∈F,|p|=1

〈a(x, z)p, p〉 < ∞,

bK,max := sup
x∈K,z∈F,|p|=1

|〈b(x, z), p〉| < ∞.

Furthermore, there exists a constant L > 0 such that for all x, y ∈ E and
z ∈ F ,

‖a(x, z) − a(y, z)‖ ≤ L|x − y|,
and suppose that the functions b are one-sided Lipschitz. Then Assumption 2.14
holds.

Remark 5.12. The above proposition is slightly more general than what we
consider in Proposition 5.1, as there we assume that F = {1, . . . , J} is a finite
set.

Proof.
(Λ1) : Let (x, p) ∈ E × R

d. Continuity of Λ is a consequence of the fact that

Λ(x, p, θ) =
∫

F

V (x, p, z) dθ(z)

is the pairing of a continuous and bounded function V (x, p, ·) with the
measure θ ∈ P(F ).
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(Λ2): Let x ∈ E and θ ∈ P(F ). Convexity of p �→ Λ(x, p, θ) follows since
a(x, z) is positive definite by assumption. If p0 = 0, then evidently
Λ(x, p0, θ) = 0.

(Λ3): We show that the map Υ : E → R defined by

Υ(x) :=
1
2

log
(

1 + |x|2)

is a containment function for Λ. For any x ∈ E and θ ∈ P(F ), we have

Λ(x,∇Υ(x), θ) =
∫

F

〈a(x, z)∇Υ(x),∇Υ(x)〉 dθ(z) +
∫

F

〈b(x, z),∇Υ(x)〉 dθ(z)

≤ a{x},max|∇Υ(x)|2 + b{x},max|∇Υ(x)|

≤ C(1 + |x|) x2

(1 + x2)2
+ C(1 + |x|) x

(1 + x2)
,

and the boundedness condition follows with the constant

CΥ := C sup
x

(1 + |x|)
[

x2

(1 + x2)2
+

x

(1 + x2)

]

< ∞.

(Λ4): Let K ⊆ E be compact. We have to show that there exist constants
M,C1, C2 ≥ 0 such that for all x ∈ K, p ∈ R

d and all θ1, θ2 ∈ P(F ), we
have

Λ(x, p, θ1) ≤ max {M,C1Λ(x, p, θ2) + C2} . (5.8)

Fix θ1, θ2 ∈ P(F ). We have for x ∈ K
∫

〈a(x, z)p, p〉dθ1(z) ≤ aK,max

aK,min

∫

〈a(x, z)p, p〉dθ2(z)

In addition, as aK,min > 0 and bK,max < ∞ we have for any C > 0 and
sufficiently large |p| that

∫

〈b(x, z), p〉 dθ1(z) − (C + 1)
∫

〈b(x, z), p〉 dθ2(z) ≤ C

∫

〈a(x, z)p, p〉 dθ2(z)

Thus, for sufficiently large |p| (depending on C) we have

Λ(x, p, θ1) ≤ (1 + C)Λ(x, p, θ2).

Fix a C =: C1 and denote the set of ‘large’ p by S. The map (x, p, θ) �→
Λ(x, p, θ) is bounded on K × ×Sc × Θ. Thus, we can find a constant C2

such that (5.8) holds.
(Λ5): By the assumption on a(x, z), the function Λ is uniformly coercive in

the sense that for any compact set K ⊆ E,

inf
x∈K,θ∈Θ

Λ(x, p, θ) → ∞ as |p| → ∞,

and the continuity estimate follows by Proposition 5.15.

�
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We proceed with the example in which Λ depends on p through exponen-
tial functions (Proposition 5.7). Let q ∈ N be an integer and

Γ :=
{

(a, b)
∣

∣ a, b ∈ {1, . . . , q}, a 
= b
}

be the set of oriented edges in {1, . . . , q}.

Proposition 5.13. (Exponential function Λ) Let E ⊆ R
d be the embedding of

E = P({1, . . . , q}) × (R+)|Γ| and Θ be a topological space. Suppose that Λ is
given by

Λ((μ,w), p, θ) =
∑

(a,b)∈Γ

v(a, b, μ, θ)
[

exp
{

pb − pa + p(a,b)

}− 1
]

where v is a proper kernel in the sense of Definition 5.6. Suppose in addition
that there is a constant C > 0 such that for all (a, b) ∈ Γ such that v(a, b, ·, ·) 
=
0 we have

sup
μ

sup
θ1,θ2

v(a, b, μ, θ1)
v(a, b, μ, θ2)

≤ C. (5.9)

Then Λ satisfies Assumption 2.14.

Remark 5.14. Similar to the previous proposition, the assumptions on Λ are
satisfied when Θ = P(F ) for some Polish space F , we have v(a, b, μ, θ) =
μ(a)

∫

r(a, b, μ, z)θ(dz), and there are constants 0 < rmin ≤ rmax < ∞ such
that for all (a, b) ∈ Γ such that supμ,z r(a, b, μ, z) > 0, we have

rmin ≤ inf
z

inf
μ

r(a, b, μ, z) ≤ sup
z

sup
μ

r(a, b, μ, z) ≤ rmax.

Regarding (5.9), for (a, b) ∈ Γ for which v(a, b, ·, ·) is non-trivial, we have

v(a, b, μ, θ1)
v(a, b, μ, θ2)

=
∫

r(a, b, μ, z)θ1(dz)
∫

r(a, b, μ, z)θ2(dz)
≤ rmax

rmin
.

Proof of Proposition 5.13.(Λ1): The function Λ is continuous as the sum of
continuous functions.

(Λ2): Convexity of Λ as a function of p follows from the fact that Λ is a finite
sum of convex functions, and Λ(x, 0, θ) = 0 is evident.

(Λ3): The function Υ : E → R defined by

Υ(μ,w) :=
∑

(a,b)∈Γ

log
[

1 + w(a,b)

]

is a containment function for Λ. For a verification, see [23].
(Λ4): Note that

Λ((μ,w), θ1, p) ≤
∑

(a,b)∈Γ

v(a, b, μ, θ1)epa,b+pb−pa

≤ C
∑

(a,b)∈Γ

v(a, b, μ, θ2)epa,b+pb−pa
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≤ C
∑

(a,b)∈Γ

v(a, b, μ, θ2)
[

epa,b+pb−pa − 1
]

+ C2.

Thus the estimate holds with M = 0, C1 = C and C2 = supμ,θ

∑

a,b

v(a, b, μ, θ).
(Λ5): The continuity estimate is the content of Proposition 5.18 below.

�

5.3. Verifying the continuity estimate

With the exception of the verification of the continuity estimate in Assump-
tion 2.14 the verification in Sect. 5.2 is straightforward. On the other hand,
the continuity estimate is an extension of the comparison principle, and is
therefore more complex. We verify the continuity estimate in three contexts,
which illustrates that the continuity estimate follows from essentially the same
arguments as the standard comparison principle. We will do this for:

• Coercive Hamiltonians
• One-sided Lipschitz Hamiltonians
• Hamiltonians arising from large deviations of empirical measures.

This list is not meant to be an exhaustive list, but to illustrate that the
continuity estimate is a sensible extension of the comparison principle, which
is satisfied in a wide range of contexts. In what follows, E ⊆ R

d is a Polish
subset and Θ a topological space.

Proposition 5.15. (Coercive Λ) Let Λ : E × R
d × Θ → R be continuous and

uniformly coercive: that is, for any compact K ⊆ E we have

inf
x∈K,θ∈Θ

Λ(x, p, θ) → ∞ as |p| → ∞.

Then the continuity estimate holds for Λ with respect to any penalization func-
tion Ψ.

Proof. Let Ψ(x, y) = 1
2 (x−y)2. Let (xα,ε, yα,ε, θε,α) be fundamental for Λ with

respect to Ψ. Set pα,ε = α(xε,α −yε,α). By the upper bound (2.4), we find that
for sufficiently small ε > 0 there is some α(ε) such that

sup
α≥α(ε)

Λ (yε,α, pε,α, θε,α) < ∞.

As the variables yα,ε are contained in a compact set by property (C1) of
fundamental collections of variables, the uniform coercivity implies that the
momenta pε,α for α ≥ α(ε) remain in a bounded set. Thus, we can extract a
subsequence α′ such that (xε,α′ , yε,α′ , pε,α′ , θε,α′) converges to (x, y, p, θ) with
x = y due to property (C2) of fundamental collections of variables. By conti-
nuity of Λ we find

lim inf
α→∞ Λ (xε,α, pε,α, θε,α) − Λ (yα,ε, pε,α, θε,α)

≤ lim
α′→∞

Λ (xε,α′ , pε,α′ , θε,α′) − Λ (yε,α′ , pε,α′ , θε,α′) = 0

establishing the continuity estimate. �
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Proposition 5.16. (One-sided Lipschitz Λ) Let Λ : E × R
d × Θ → R satisfy

Λ(x, α(x − y), θ) − Λ(y, α(x − y), θ) ≤ c(θ)ω(|x − y| + α(x − y)2) (5.10)

for some collection of constants c(θ) satisfying supθ c(θ) < ∞ and a function
ω : R+ → R

+ satisfying limδ↓0 ω(δ) = 0.
Then the continuity estimate holds for Λ with respect to Ψ(x, y) = 1

2 (x −
y)2.

Proof. Let Ψ(x, y) = 1
2 (x−y)2. Let (xα,ε, yα,ε, θε,α) be fundamental for Λ with

respect to Ψ. Set pα,ε = α(xε,α − yε,α). We find

lim inf
α→∞ Λ (xε,α, pε,α, θε,α) − Λ (yα,ε, pε,α, θε,α)

≤ lim inf
α→∞ c(θε,α)ω

(|xε,α − yε,α| + α(xε,α − yε,α)2
)

which equals 0 as supθ c(θ) < ∞, limδ↓0 ω(δ) = 0 and property (C2) of a
fundamental collection of variables. �

For the empirical measure of a collection of independent processes one
obtains maps Λ that are neither uniformly coercive nor Lipschitz. Also in this
context one can establish the continuity estimate. We treat a simple 1d case
and then state a more general version for which we refer to [23].

Proposition 5.17. Suppose that E = [−1, 1] and that Λ(x, p, θ) is given by

Λ(x, p, θ) = (1 − x)c+(θ) [ep − 1] + (1 + x)c−(θ)
[

e−p − 1
]

with c−, c+ non-negative functions of θ. Then the continuity estimate holds for
Λ with respect to Ψ(x, y) = 1

2 (x − y)2.

Proof. Let Ψ(x, y) = 1
2 (x−y)2. Let (xα,ε, yα,ε, θε,α) be fundamental for Λ with

respect to Ψ. Set pα,ε = α(xε,α − yε,α).
We have

Λ (xε,α, pε,α, θε,α) − Λ (yα,ε, pε,α, θε,α)

= (yε,α − xε,α) c+(θε,α) [epε,α − 1] + (xε,α − yε,α) c−(θε,α)
[

e−pε,α − 1
]

Now note that yε,α − xε,α is positive if and only if epε,α − 1 is negative so that
the first term is bounded above by 0. With a similar argument the second term
is bounded above by 0. Thus the continuity estimate is satisfied. �

Proposition 5.18. Suppose E = P({1, . . . , q} × (R+)Γ and suppose that Λ is
given by

Λ((μ,w), θ, p) =
∑

(a,b)∈Γ

v(a, b, μ, θ)
[

exp
{

pb − pa + p(a,b)

}− 1
]

where v is a proper kernel. Then the continuity estimate holds for Λ with
respect to penalization functions (see Sect. C)

Ψ1(μ, μ̂) :=
1
2

∑

a

((μ̂(a) − μ(a))+)2,
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Ψ2(w, ŵ) :=
1
2

∑

(a,b)∈Γ

(w(a,b) − ŵ(a,b))2.

Here we denote r+ = r ∨ 0 for r ∈ R.

In this context, one can use coercivity like in Proposition 5.15 in combi-
nation with directional properties used in the proof of Proposition 5.17 above.

To be more specific: the proof of this proposition can be carried out
exactly as the proof of Theorem 3.8 of [23]: namely at any point a converging
subsequence is constructed, the variables α need to be chosen such that we
also get convergence of the measures θε,α in P(F ).

5.4. Verifying assumption 2.17 for the exponential internal Hamiltonian

Proposition 5.19. Let Λ be as in Proposition 5.7:

Λ((μ,w), p, θ) =
∑

(a,b)∈Γ

v(a, b, μ, θ)
[

exp
{

pb − pa + p(a,b)

}− 1
]

Then we have ∂pΛ((μ, x), p) ⊆ TE(μ,w).

A sketch of the verification of Assumption 2.17. We sketch the proof in a sim-
plified case, the general case being similar. Consider E = P({a, b}) (ignoring
the flux for the moment), and identify E with the simplex in R

2. Fix the
control θ ∈ Θ. We have to show ∂pΛ(μ, p, θ) ⊆ TE(μ). Recall that TE(μ) is
the tangent cone at μ, that means the vectors at μ pointing inside of E. We
compute the vector ∇pΛ(μ, p, θ) ∈ R

2,

∇pΛ(μ, p, θ) =
(−v(a, b, μ, θ)epb−pa + v(b, a, μ, θ)epa−pb

v(a, b, μ, θ)epb−pa − v(b, a, μ, θ)epa−pb

)

.

For μ = (μa, μb) ∈ E with μa, μb > 0, the tangent cone TE(μ) is spanned
by (1,−1)T . Since ∇pΛ(μ, p, θ) is orthogonal to (1, 1)T , we indeed find that
∂pΛ(μ, p, θ) ⊆ TE(μ) in that case. For μ = (1, 0), the tangent cone is TE(1, 0) =
{λ(−1, 1)T : λ ≥ 0}. We have

∇pΛ(μ, p, θ) =
(−v(a, b, μ, θ)epb−pa

v(a, b, μ, θ)epb−pa

)

,

which is parallel to (−1, 1)T , and therefore ∂pΛ(μ, p, θ) ⊆ TE(μ). The argument
is similar for μ = (0, 1). The general case (including the fluxes) follows from a
more tedious, but straightforward, computation. �
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A. Viscosity solutions

In Sect. 3 we work with a pair of Hamilton–Jacobi equations instead of a
single Hamilton–Jacobi equation. To this end, we need to extend the notion
of a viscosity solution and that of the comparison principle of Sect. 2.1.

Definition A.1. Let A1 ⊆ C(E) × C(E) and A2 ⊆ C(E) × C(E). Fix λ > 0
and h1, h2 ∈ Cb(E). Consider the equations

f − λA1f = h1, (A.1)

f − λA2f = h2. (A.2)

We say that u is a (viscosity) subsolution of Eq. (A.1) if u is bounded,
upper semi-continuous and if for all (f, g) ∈ A1 there exists a sequence xn ∈ E
such that

lim
n↑∞

u(xn) − f(xn) = sup
x

u(x) − f(x),

lim
n↑∞

u(xn) − λg(xn) − h(xn) ≤ 0.

We say that v is a (viscosity) supersolution of Eq. (A.2) if v is bounded, lower
semi-continuous and if for all (f, g) ∈ A2 there exists a sequence xn ∈ E such
that

lim
n↑∞

v(xn) − f(xn) = inf
x

v(x) − f(x),

lim
n↑∞

v(xn) − λg(xn) − h(xn) ≥ 0.

If h1 = h2, we say that u is a (viscosity) solution of Eqs. (A.1) and (A.2) if it
is both a subsolution to (A.1) and a supersolution to (A.2).

We say that (A.1) and (A.2) satisfy the comparison principle if for every
subsolution u to (A.1) and supersolution v to (A.2), we have supE u − v ≤
supE h1 − h2.

As before, if test functions have compact levelsets, the existence of a
sequences can be replaced by the existence of a point.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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B. Regularity of the Hamiltonian

In this section, we establish continuity, convexity and the existence of a con-
tainment function for the Hamiltonian H of (2.2). We repeat its definition for
convenience:

H(x, p) = sup
θ∈Θ

[Λ(x, p, θ) − I(x, θ)] . (B.1)

Proposition B.1. (Regularity of the Hamiltonian) Let H : E × R
d → R be

the Hamiltonian as in (B.1), and suppose that Assumptions 2.14 and 2.15 are
satisfied. Then:

(i) For any x ∈ E, the map p �→ H(x, p) is convex and H(x, 0) = 0.
(ii) With the containment function Υ : E → R of (Λ3), we have

sup
x∈E

H(x,∇Υ(x)) ≤ CΥ < ∞.

Proof. The map p �→ H(x, p) is convex as it is the supremum over convex (in
p) functions.

For proving H(x, 0) = 0, let x ∈ E. Then by (Λ2) of Assumption 2.14,
we have Λ(x, 0, θ) = 0, and therefore

H(x, 0) = − inf
θ∈Θ

I(x, θ) = 0,

since I ≥ 0 by Assumption 2.15 and I(x, θ0
x) = 0 for some θ0

x by (I2) of
Assumption 2.15. Regarding (ii), we note that by (Λ3),

H(x,∇Υ(x)) ≤ sup
θ

Λ(x,∇Υ(x), θ) ≤ sup
θ∈Θ

sup
x∈E

Λ(x,∇Υ(x), θ) ≤ CΥ.

�

To prove that H is continuous, we use Assumption 2.15. What we truly
need, however, is that I Gamma converges as a function of x. We establish
this result first.

Proposition B.2. (Gamma convergence of the cost functions) Let a cost func-
tion I : E × Θ → [0,∞] satisfy Assumption 2.15. Then if xn → x in E, the
functionals In defined by

In(θ) := I(xn, θ)

converge in the Γ-sense to I∞(θ) := I(x, θ). That is:

1. If xn → x and θn → θ, then lim infn→∞ I(xn, θn) ≥ I(x, θ),
2. For xn → x and all θ ∈ Θ there are controls θn ∈ Θ such that θn → θ

and lim supn→∞ I(xn, θn) ≤ I(x, θ).

Proof. Let xn → x. If θn → θ, then by lower semicontinuity (I1),

lim inf
n→∞ I(xn, θn) ≥ I(x, θ).
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For the lim-sup bound, let θ ∈ Θ. If I(x, θ) = ∞, there is nothing to prove.
Thus suppose that I(x, θ) is finite. Then by (I4), there is a neighborhood Ux

of x and a constant M < ∞ such that for any y ∈ Ux,

I(y, θ) ≤ M.

Since xn → x, the xn are eventually contained in Ux. Taking the constant
sequence θn := θ, we thus get that I(xn, θn) ≤ M for all n large enough.
By (I5),

lim
n→∞ |I(xn, θn) − I(x, θ)| ≤ 0,

and the lim-sup bound follows. �

Proposition B.3. (Continuity of the Hamiltonian) Let H : E × R
d → R be the

Hamiltonian defined in (2.2), and suppose that Assumptions 2.14 and 2.15 are
satisfied. Then the map (x, p) �→ H(x, p) is continuous and the Lagrangian
(x, v) �→ L(x, v) := supp〈p, v〉 − H(x, p) is lower semi-continuous.

Before we start with the proof, we give a remark on the generality of its
statement and on the assumption that Θ is Polish.

Remark B.4. The proof of upper semi-continuity of H works in general, using
continuity properties of Λ, lower semi-continuity of (x, θ) �→ I(x, θ) and the
compact sublevel sets of I(x, ·). To establish lower semi-continuity, we need
that the functionals I Gamma converge as a function of x. This was established
in Proposition B.2.

Remark B.5. In the lemma we use a sequential characterization of upper hemi-
continuity which holds if Θ is Polish. This is inspired by the natural formulation
of Gamma convergence in terms of sequences. An extension of our results to
spaces Θ beyond the Polish context should be possible to Hausdorff Θ that
are k-spaces in which all compact sets are metrizable.

We will use the following technical result to establish upper semi-continuity
of H.

Lemma B.6. (Lemma 17.30 in [1]) Let X and Y be two Polish spaces. Let
φ : X → K(Y), where K(Y) is the space of non-empty compact subsets of Y.
Suppose that φ is upper hemi-continuous, that is if xn → x and yn → y and
yn ∈ φ(xn), then y ∈ φ(x).

Let f : Graph(φ) → R be upper semi-continuous. Then the map m(x) =
supy∈φ(x) f(x, y) is upper semi-continuous.

Proof of Proposition B.3. We start by establishing upper semi-continuity of
H. We argue on the basis of Lemma B.6. Recall the representation of H of
(B.1). Set X = E × R

d for the (x, p) variables, Y = Θ, and f(x, p, θ) =
Λ(x, p, θ) − I(x, θ) and note that this function is upper semi-continuous by
Assumption 2.15 (I1) and by Assumption 2.14 (Λ1).
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By Assumption 2.15 (I2), we have H(x, p) ≥ Λ(x, p, θ0
x), where θ0

x is a
control such that I(x, θ0

x) = 0. Thus, it suffices to restrict the supremum over
θ ∈ Θ to θ ∈ φ(x, p) where

φ(x, p) :=
{

θ ∈ Θ
∣

∣ I(x, θ) ≤ 2 ||Λ(x, p, ·)||Θ
}

,

where ||·||Θ denotes the supremum norm on Θ. Note that ||Λ(x, p, ·)||Θ < ∞ by
Assumption 2.14 (Λ4). It follows that

H(x, p) = sup
θ∈φ(x,p)

[Λ(x, p, θ) − I(x, θ)] .

φ(x, p) is non-empty as θ0
x ∈ φ(x, p) and it is compact due to Assumption

2.15 (I3). We are left to show that φ is upper hemi-continuous.
Thus, let (xn, pn, θn) → (x, p, θ) with θn ∈ φ(xn, pn). We establish that

θ ∈ φ(x, p). By (I1) and the definition of φ we find

I(x, θ) ≤ lim inf
n

I(xn, θn) ≤ lim inf
n

2 ||Λ(xn, pn, ·||Θ = 2 ||Λ(x, p, ·)||Θ
which implies indeed that θ ∈ φ(x, p). Thus, upper semi-continuity follows by
an application of Lemma B.6.

We proceed with proving lower semi-continuity of H. Suppose that (xn, pn)
→ (x, p), we prove that lim infn H(xn, pn) ≥ H(x, p).

Let θ be the measure such that H(x, p) = Λ(x, p, θ) − I(x, θ). We have

• By Proposition B.2 there are θn such that θn → θ and lim supn I(xn, θn) ≤
I(x, θ).

• Λ(xn, pn, θn) converges to Λ(x, p, θ) by Assumption (Λ1).

Therefore,

lim inf
n→∞ H(xn, pn) ≥ lim inf

n→∞ [Λ(xn, pn, θn) − I(xn, θn)]

≥ lim inf
n→∞ Λ(xn, pn, θn) − lim sup

n→∞
I(xn, θn)

≥ Λ(x, p, θ) − I(x, θ) = H(x, p),

establishing that H is lower semi-continuous.
The Lagrangian L is obtained as the supremum over continuous functions.

This implies L is lower semi-continuous. �

C. A more general continuity estimate

In classical literature, the comparison principle for the Hamilton–Jacobi equa-
tion f − λHf = h is often proven using a squared distance as a penalization
function. This often works well due to the quadratic structure of the Hamil-
tonian. In different contexts, e.g. for the Hamiltonians arising from the large
deviations of jump processes, this is not natural, see the issues arising in the
proofs in [16,23]. In absence of a general method to solve these issues, ad-hoc
procedures can be introduced. One such ad-hoc procedure introduced in [23] is
to work with multiple penalization functions (in that context {Ψ1,Ψ2}) that
explore different parts of the state-space.
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Any argument that has been carried out in the main text can be carried
out with the generalization of the continuity estimate below.

Definition C.1. We say that {Ψ1,Ψ2}, Ψi : E2 → R
+ is a pair of penalization

functions if Ψi ∈ C1(E2) and if x = y if and only if Ψi(x, y) = 0 for all i.

Definition C.2. (Continuity estimate) Let G : E × R
d × Θ → R, (x, p, θ) �→

G(x, p, θ) be a function and {Ψ1,Ψ2} be a pair of penalization functions. Sup-
pose that for each ε > 0 there is a sequence α2 → ∞. As before, we suppress
the dependence on ε. Suppose that for each ε and α2 , there is a sequence
α1 → ∞. We suppress writing the dependence of the sequence α1 on ε and α2.
We write α = (α1, α2).

Suppose that for each triplet (ε, α1, α2) as above we have variables (xε,α, yε,α)
in E2 and variables θε,α in Θ. We say that this collection is fundamental for
G with respect to {Ψ1,Ψ2} if:

(C1) For each ε, there are compact sets Kε ⊆ E and ̂Kε ⊆ Θ such that for
all α we have xε,α, yε,α ∈ Kε and θε,α ∈ ̂Kε.

(C2) For each ε > 0 and α2 there are limit points xε,α2 , yε,α2 ∈ Kε of xε,α

and yε,α as α1 = α1(ε, α2) → ∞. For each ε there are limit points xε, yε

in Kε of xε,α2 and yε,α2 as α2 → ∞. We furthermore have

Ψ1(xε,α2 , yε,α2) = 0 ∀ ε > 0, ∀α2,

Ψ1(xε, yε) + Ψ2(xε, yε) = 0, ∀ ε > 0,

lim
α1→∞ α1Ψ1(xε,α1,α2 , xε,α1,α2) = 0, ∀ ε > 0, ∀α2,

lim
α2→∞ α2Ψ2(xε,α1 , xε,α1) = 0, ∀ ε > 0.

(C3) We have

sup
α2

sup
α1

G
(

yε,α,−
2
∑

i=1

αi(∇Ψi(xε,α, ·))(yε,α), θε,α

)

< ∞, (C.1)

inf
α2

inf
α1

G
(

xε,α,

2
∑

i=1

αi(∇Ψi(·, yε,α))(yε,α), θε,α

)

> −∞. (C.2)

In other words, the operator G evaluated in the proper momenta is
eventually bounded from above and from below.

We say that G satisfies the continuity estimate if for every fundamental col-
lection of variables we have for each ε > 0 that

lim inf
α2→∞ lim inf

α1→∞ G
(

xε,α,

2
∑

i=1

αi∇Ψi(·, yε,α)(xε,α), θε,α

)

−G
(

yε,α,−
2
∑

i=1

αi∇Ψi(xε,α, ·)(yε,α), θε,α

)

≤ 0. (C.3)
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D. Differential inclusions

To establish that Condition 8.11 of [19] is satisfied in the proof of Theorem
2.8, we need to solve a differential inclusion. The following appendix is based
on [11,28] and is a copy of the one in [25]. We state it for completeness.

Let D ⊆ R
d be a non-empty set. A multi-valued mapping F : D →

2R
d \ {∅} is a map that assigns to every x ∈ D a set F (x) ⊆ R

d, F (x) 
= ∅.

Definition D.1. Let I ⊆ R be an interval with 0 ∈ I, D ⊆ R
d, x ∈ D and

F : D → 2R
d \ ∅ a multi-valued mapping. A function γ such that

(a) γ : I → D is absolutely continuous,
(b) γ(0) = x,
(c) γ̇(t) ∈ F (γ(t)) for almost every t ∈ I

is called a solution of the differential inclusion γ̇ ∈ F (γ) a.e., γ(0) = x.

If we assume sufficient regularity on the multi-valued mapping F , we can
ensure the existence of a solution to differential inclusions that remain inside
D.

Definition D.2. Let D ⊆ R
d be a non-empty set and let F : D → 2R

d \ {∅} be
a multi-valued mapping.

(i) We say that F is closed, compact or convex valued if each set F (x), x ∈ D
is closed, compact or convex, respectively.

(ii) We say that F is upper hemi-continuous at x ∈ D if for each neigh-
bourhood U of F (x), there is a neighbourhood V of x in D such that
F (V) ⊆ U . We say that F is upper hemi-continuous if it is upper hemi-
continuous at every point. F is upper hemi-continuous if and only if for
each sequence xn → x in D and ξn ∈ F (xn) such that ξn → ξ we have
ξ ∈ F (x).

Definition D.3. Let D ⊆ R
d be a closed non-empty set. The tangent cone to

D at x is

TD(x) :=
{

z ∈ R
d
∣

∣ lim inf
λ↓0

d(y + λz,D)
λ

= 0
}

.

The set TD(x) is sometimes called the the Bouligand cotingent cone.

Lemma D.4. (Proposition 4.1 in [11]) Let D ⊆ R
d be a closed, convex, non-

empty set. Then the set TD(x) is convex and contains 0.

Lemma D.5. (Theorem 2.2.1 in [28], Lemma 5.1 in [11]) Let D ⊆ R
d be closed

and let F : D → 2R
d \ {∅} satisfy

(a) F has closed convex values and is upper hemi-continuous;
(b) for every x, we have F (x) ∩ TD(x) 
= ∅;
(c) F has bounded growth: there is some c > 0 such that ||F (x)|| = sup

{|z| ∣∣ z ∈ F (x)
} ≤ c(1 + |x|) for all x ∈ D.

Then the differential inclusion γ̇ ∈ F (γ) has a solution on R
+ for every starting

point x ∈ D.
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E. Pseudo-coercivity for exponential Hamiltonians

In this section we consider the notions of pseudo-coercivity and the continuity
estimate for the Hamiltonian-Jacobi equation f −Λf = h on E = [0,∞), with
h ∈ Cb(E) for the Hamiltonian Λf(x) = Λ(x, f ′(x)) with

Λ(x, p) = x
[

e−p − 1
]

(E.1)

which is a simplified version of the Hamiltonian given in the introduction and
Proposition 5.7.

The pseudo-coercivity estimate of [4, Pages 34 and 35] translates into the
present context as

|Λ(x, p) − Λ(y, p)| ≤ m (|x − y|(1 + |p|)) Q(x, y, p) (E.2)

where Q(x, y, p) = max (Ψ(H(x, p)),Ψ(H(y, p))), where m : [0,∞) → [0,∞) is
such that limt↓0 m(t) = 0 and Ψ : R → [0,∞) is continuous.

We first make some general remarks on the relation between pseudo-
coercivity and the continuity estimate. We then show that for E.1, pseudo-
coercivity fails, whereas the continuity estimate holds (in the case of a single
θ).

The continuity estimate (for a single θ) is more general than pseudo-
coercivity in the sense that:

• It does not rely on the fact that you use a multiple of |x−y|2 as a penaliza-
tion in the comparison principle. This is of importance for Hamiltonians
Λ on e.g. the set of probability measures P({1, . . . , q}) with q ∈ {3, 4, . . . }
like in Proposition 5.18.

• It removes the necessity of taking absolute values in the estimate. This
last fact is important as can be seen for the Hamilton–Jacobi equation
for f − λΛf = h, h ∈ Cb, λ > 0 for the Hamiltonian Λf(x) = Λ(x, f ′(x))
with

Λ(x, p) = x
[

e−p − 1
]

, x ∈ [0,∞), p ∈ R,

for which the comparison principle holds, whereas for ˜Λ(x, p) := Λ(x,−p)
it fails. Our continuity estimate holds for Λ, but not for ˜Λ. Pseudo-
coercivity fails for both as we explain below.
We first show that pseudo-coercivity fails for the Hamilton–Jacobi equa-

tion in terms of Λ of (E.1).

Lemma E.1. Λ is not pseudo-coercive.

Proof. A counterexample suffices.
Let W be the Lambert function. That is, W is the inverse of φ where

φ(x) = xex. Next, let xα = 0, yα = α−1W (α). Then we have yα → 0, αyα →
∞, αy2

α = W (α)2

α → 0 and

yαeαyα = 1.

Thus, with pα = α(xα − yα) = −αyα,

Λ(xα, pα) − Λ(yα, pα) = yα − 1 → −1 (E.3)
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contradicting (E.2). �

Note that the comparison principle for f−λΛf = h does in fact hold. This
is due to the fact that one only needs to establish that lim infα→∞ Λ(xα, pα)−
Λ(yα, pα) ≤ 0 for appropriately chosen xα, yα, pα without absolute value signs,
see Proposition 5.17. The removal of absolute value signs is essential: the com-
parison principle for f − ˜Λf = h for

˜Λ(x, p) = x [ep − 1]

fails. This is related to the statement that an associated large deviation prin-
ciple fails, see Example E of [33].
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