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”The Three Laws of Robotics:

1. A robot may not injure a human being or, through inaction, allow a human being to come to
harm;

2. A robot must obey the orders given it by human beings except where such orders would conflict
with the First Law;

3. A robot must protect its own existence as long as such protection does not conflict with the First
or Second Law”

— Isaac Asimov





Summary

This thesis describes the research to the fundamentals of an autonomous Zebro Swarm. Swarm is
defined in this thesis as:

”A swarm is a large number of homogenous, unsophisticated agents that interact locally
among themselves and their environment, without any central control or management to
yield a global behaviour to emerge.”

[1, p. 25]

The bigger perspective is to have the units within a swarm operate for a potentially infinite amount
of time, thus making algorithms and energy use as effective as possible. The research is split up in
different sections: sensors, communication and behaviour. The behaviour is split again: individual
behaviour, anti collision behaviour and swarming behaviour.

The research on the sensors and communication points out that the Bluetooth Low Energy (BLE)
sensor is the most suitable for an autonomous Zebro Swarm. BLE can be used to transfer data as well
as serve as a range sensor. As a communication device, BLE offers the ability to advertise data an has
a range of 50 meters which is sufficient for application in a swarm. Furthermore, iBeacon makes use of
the BLE protocol and therefore there will be a lot of information available. As a sensor, BLE offers fairly
accurate measurements in distances below 1 meter. Due to the properties of radio signal strength and
the always present radio frequency noise, the accuracy decreased with increasing distances.

The individual behaviour aims at exploring as much area as possible, with the amount of energy
available. The energy use therefore has to be minimised and the explored area maximised. Since
little is known on the energy use, this is assumed constant. Maximising area, however, has some
key elements. The first is to keep moving; standing still results in energy use without exploring new
terrain. The second is to make only gentle turns; the rotational centre must be outside of the detection
distance. When this centre lies inside of the detection distance, the inner turn will cover area for a
longer period making the turn ineffective.

The anti collision behaviour should prevent units from making physical contact. By using a con-
tactless sensor an approaching collision can be detected. Changing the parameters of the movement
of the units at the moment they enclose more than a certain value should prevent the approaching
collision. Letting the agents turn an angle between 90 + 𝑎𝑟𝑐𝑡𝑎𝑛( ⋅ ) degrees and 180 degrees in a
randomly chosen direction is proposed to be a simple and effective solution.

The anti separation behaviour should prevent units from separating from eachother. This can be
done by making units turn 180 degrees once the relative distance reaches a certain limit. The turning
on a certain limit is a simple algorithm and thus requires little processing power.

Apart from the anti collision behaviour and the anti separation behaviour, there is another approach
to deal with these behaviours. Since the units are able to communicate with each other, they can also
advertise their location to other units. There are several methods for a unit to acquire their location.
These methods are divided in approximate and exact location estimation methods. The Trial and Error
method is placed in the first category, the exact location estimation methods are: Time Based, Internal
Reference, External Reference and Radar. The External Reference method is considered the most
applicable of these methods since it is relatively accurate, simple and provides an direct location. The
downside is that an external reference is needed, but that is acceptable.
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1
Introduction

1.1. Introduction to the Zebro
The Zebro is a six legged robot [2], designed on the foundations of RHex. The name Zebro is derived
from the Dutch translation to ’six legged robot’: Zesbenige Robot.

Thanks to his six legs, the Zebro is capable of navigating through very rough terrain. The top and
bottom of the Zebro are symmetric, and therefore the Zebro will be able to walk along if it tips over.

Figure 1.1: The six legged robot: Zebro.

At the moment the Zebro is controlled through a Wi-Fi chip. The Zebro creates a server which can
be accessed through a tablet, computer or phone. The movement of the Zebro is controlled through
the server and therefore isn’t autonomous.

1.2. Research question
This project originated from a thesis proposal by the Technical University of Delft and was titled: ”Au-
tonomous Zebro Swarm Navigation”. The free translation of the project description is as follows:

”In this project a navigation system will be designed, with which Zebro Robots can swarm in and
out of the CyberZoo. Every Zebro is equipped which a radiobeacon based on the Low Energy Bluetooth
Protocol (as concluded from an earlier feasibility study). With these beacons the Zebro’s need to stay
together and form an effective swarm without colliding into each other. The swarm must be able to
react to its surroundings, like following a beacon.”

The description is later slightly changed to:

1



2 1. Introduction

”Zebro is a bio-inspired robot, designed for operation in rough terrain. At the moment Zebro does
not have any extereoceptive sensing capabilities, and as such it cannot move autonomously in the
Cyber Zoo arena. The objective of this project is to enable the Zebro robots to perform the top level
task of walking in the same direction with the same speed and synchronised leg movement. Before
this top level task can be accomplished basic swarming behaviours need to be implemented. In par-
ticular, collision avoidance and exploration while maintaining connectivity is necessary. On top to that,
when internal power runs low each individual Zebro must search and move towards a charging station.”

The related research questions:

1. What type of module is suited to handle the communication traffic between Zebros?

2. What data needs to be transferred between the Zebros to achieve swarming behaviour?

3. Order of working towards the final task:

First Avoid collisions
Second Stay together as a group while exploring
Third When low battery, individually search for charging station
Fourth Engage in synchronous movement

1.3. Problem analysis
This section elaborates the main objective of this study. Besides the main objective, different smaller
and more concise goals are required to eventually reach the main objective. By performing a problem
analysis on these objectives it is possible to construct a List of Requirements (LoR). By complying
to the list of requirements, the objectives will be met. To differentiate between solutions the bigger
perspective and a set of criteria is used to indicate to what extend a solution fulfils the LoR.

1.3.1. Main objective
The main objective is as follows:

Design a physical autonomous swarm of robots on a 2D plane.

1.3.2. Bigger perspective
The design will have to fit within a bigger perspective. This bigger perspective will give an overall
direction for the design choices that have to be made. The bigger perspective can be stated as:

Have a swarm operate for a(n) (potentially) infinite amount of time.

To reach this goal a robust system has to be designed. Since it is impossible to verify if this goal
is reached, signs of the potency to operate for an infinite amount of time will be looked for/at. In
this sentence, the operation of the swarm means that every unit within the swarm is either charging,
moving or communicating to other units. The idea is that in later stadiums more and more restrictions
are put on the system. To give an idea of the direction of the bigger perspective, a future goal could
be:

Have as many units operate with the amount of energy available.

The swarm will consist of a number of units. These units will behave in an environment in which a
certain amount of energy is available. The goal for the swarm is that as many as possible units are
operative. The assumption is that this will be the direction in which the project will progress after
completion. This gives direction to design choices.

1.4. List of requirements
To complete the partial objectives and finally the main objective, the requirements these objectives are
subjected to have to be clarified. These requirements are divided in hard and soft requirements. Hard
requirements have to be met, while soft requirements can help in ranking different design solutions
and do not necessarily have to be met.
The following LoR is assumed to be complete and correct.
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1.4.1. Swarm behaviour
The behaviour of the swarm is based upon the following hard requirements:

Hard requirements
1. Decision making must be decentralized

2. The path of the individual units may not be pre-defined

3. The swarm must be able to operate without any information from other sensors than the ones
equipped on the units themselves

4. The swarm must be able to operate independent of its absolute location

5. The behaviour must be designed for operation within a 2D plane

6. The behaviour must be designed for operation in a finite space, which has unknown dimensions

7. The space in which the swarm operates is big enough for the units to move without colliding

8. The individual units may not make physical contact

9. The maximum distance of separation between the individual units is fixed

10. An individual unit has contact with at least one other unit

11. A unit in the swarm gains its energy from a charging station

12. The (absolute) location of a charging station is unknown until the moment of detection

13. The swarm becomes more effective when the amount of units within the swarm increases

Soft requirements
1. Units must be moving at any moment in time, except for when charging, when out of energy or
when defect

2. The behaviour must be designed for operation in a finite space, which has unknown dimensions

1.4.2. Communication hardware
These are the requirements that have to be met for the communication hardware.

Hard requirements
1. The communication between units may not rely on anything else than the units themselves

2. The communication module must be able to communicate wirelessly with other communication
modules

3. The communication module must be able to effectively communicate within a distance of 50
meters without any disturbing factors in between

4. It must be possible to use the communication module effectively in a 3D swarm

5. The communication module must be compatible with the Delfly communication module

6. The module is capable of an advertising mode

Soft requirements
1. Energy use must be as low as possible

2. The communication module may not be influenced by any weather conditions

1.4.3. Sensors
These are the requirements that have to be met for the sensors.
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Hard requirements
1. The sensors have to fit on a Zebro

Soft requirements
1. Energy use must be as low as possible

2. The sensors may not be influenced by any weather conditions

1.4.4. List of assumptions
To reach a proper end result of this project within the limited time given, a few assumptions have to be
made, scaling down on the difficulty of this project. Furthermore, since some features/requirements
are yet unknown it is necessary to make assumptions as well. The list of assumptions (LoA) listed
below.

1. Energy can not be transferred along units

2. A charging station only has place for one robot

3. A charging station can be detected whenever a unit is within a fixed perimeter around the station

4. The area covered by the perimeter around the station is much smaller the total area of the search
field.

5. There is one active charging station at any point in time

6. The times at which the charging station becomes available is random

7. The amount of energy available within a period of time is variable

8. The geographical location of a charging station is fixed while available for units

9. The geographical location of a charging station is determined by a uniform random distribution

10. The speed of movement of the individual units is limited

11. The energy usage of the individual units is assumed to be constant for every speed of movement

12. The energy available for use by a unit is finite

13. There are no obstacles disrupting the communication between units

1.5. Plan of approach
The following list sums up the order in which the different tasks within the project are to be accom-
plished. To keep this project as general as possible, the term ”Zebro” is replaced by ”unit” since the
”Zebros” behave like an agent/unit within a swarm. Furthermore, the Charging Stations may be referred
to as ’Points of Interest’ (POI).

1.5.1. Plan 1.1
This was the initial plan, this was improved after receiving a brighter picture of the project.

Before building a physical swarm, the different algorithms need to be tested in a virtual simulation.
This simulation model can be built in V-Rep, a simulation program specially designed for robot simula-
tions. The algorithm that controls the simulation will be built in Matlab, which is virtually connected to
V-Rep. In short the general plan consisted of the following steps:

1. Build a swarm model in V-Rep, in which the units are controlled by an algorithm running in Matlab

2. Test several swarm models in V-rep

3. Replace V-Rep model with physical units, controlled by an external computer running the algo-
rithm in Matlab
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4. Implement Matlab algorithm on a chip on the units themselves

Within this general plan are two parts that have a plan of their own: the algorithm and the communi-
cation.

The plan on the design of the algorithm is as follows:

1. (Randomly) walk around, staying within a certain perimeter

2. (Randomly) walk around in the perimeter without collisions between units

3. (Randomly) walk around in the perimeter in a group without collisions between units

4. Walk around in the perimeter in a group without collisions between units, while having for example
synchronized movement or walking in a ’V’ shape.

The plan on designing the communication structure is as follows:

1. Unit in simulation model receives relevant parameters from the model itself.

2. Physical unit is controlled by Matlab on a computer, communication through computer, parameters
are received from camera system.

3. Physical unit is controlled by Matlab on a computer, communication through computer, parameters
are received from sensors on physical unit.

4. Physical unit is controlled by Matlab on a computer, communication directly to other units, pa-
rameters are received from sensors on physical unit.

5. Algorithm implemented on unit and the unit behaves autonomous.

1.5.2. Plan 1.2
This was the second and final plan of approach. Neatly split up in different phases, the structure of the
project is given here. What can be noticed is that the task of performing some kind of ”synchronised
movement” is left out. This is due to the decision of focusing on the main swarming behaviour.

Problem analyses
1. Set objectives

(a) Main objective

(b) Partial objective(s)

2. Set design goal

3. Set up LoR and LoA

(a) LoR for the behaviour

(b) LoR for the communication module

Synthesis
The following list is a sum of the activities that were to be performed in order to fulfil the main objective.

1. Sensors

(a) Find out what variables have to be communicated from unit to unit, for proper
functioning of the swarm

(b) Decide upon which sensors to use

2. Communication

(a) Decide which communication module should be used
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3. Searching behaviour

(a) Find out which type of walking/searching behaviour would best suit this specific situation

(b) Create the walking/searching behaviour

4. Charging station

(a) Find out what decisions have to be made when a unit finds a charging station

The underlined steps are the typical research steps. This project is focused mainly on walking
through the design cycle once (Analyses, Synthesis, Simulation, Evaluation and Decision making). So
the research steps are done with the goal of making a grounded decision, not in order to optimise to
the full extend.

Simulation
1. Make a virtual simulation

(a) Sensors
i. Make a unit register the relevant variables

(b) Communication
i. Make a unit transfer the above variables to (an) other unit(s)
ii. Make a unit receive/process the variables from (an) other unit(s)

(c) Searching behaviour
i. Program the walking/searching behaviour into the units

(d) Charging station
i. Make sure the units are able to detect a charging station
ii. Make the units take the earlier determined decisions when a charging station is found

2. Test and troubleshoot

3. Implement the simulation on physical robots

(a) Searching behaviour
i. Program the walking/searching behaviour into the units

(b) Sensors
i. Make a unit register the relevant variables
A. Unit receives relevant parameters from camera system via Wi-Fi through computer
(and possibly personal sensors).

(c) Communication
i. Make a unit transfer the above variables to (an) other unit(s)
A. Unit communicates to another unit over Wi-Fi (through computer) while receiving
the relevant parameters over Wi-Fi from the camera system (and possible personal
sensors).

B. Unit communicates to another unit over Wi-Fi (through computer) and will determine
the relevant parameters by itself (its sensors).

C. Unit will determine the relevant parameters by itself (its sensors), and will commu-
nicate with other units by means of the communication module.

ii. Make a unit process the variables from (an) other unit(s)
(d) Charging station

i. Make sure the units are able to detect a charging station
ii. Make the units take the earlier determined decisions upon finding a charging station

Evaluation
Test the design to the design goal Find out what features contribute to the proper and improper
functioning of the design.

Decision making
Advise on possible future steps to take.



2
Literature study

A numerous amount of papers are written on the subject of swarm intelligence (SI). From studying sev-
eral references a clear view on this concept was constructed. The most applicable and comprehensive
was considered to be the following:

”A swarm is a large number of homogenous, unsophisticated agents that interact locally
among themselves and their environment, without any central control or management to
yield a global behaviour to emerge.”

[1, p. 25]

An example of a field where use is made of swarm intelligence is optimization algorithms. These are
algorithms in which local and/or global optima of a function are investigated [1]. A lot of SI based
optimization algorithms are inspired by natural swarms/behaviours of animals. To name a few: ant
colonies, bee colonies, fireflies, cuckoo, fish schools and bird flocks. From studying these models it
soon became clear that a couple of ground rules make up the behaviour of these algorithms. These
ground rules hold for each individual agent the algorithm generates to solve the problem of finding
the optima. Another behavioural aspect which is easily noticed is the random factors involved in the
behaviour of each individual agent, which are used to make sure that the solutions are not deterministic.
Furthermore, in multiple algorithms (Hunting Search, Firefly) different behaviours are detected for
different situations. In the firefly algorithm the type of behaviour of an agent is determined by weight
factors, whereas with the Hunting Search algorithm the modes are switched between with the activity
of one excluding the activity of the other. All of the above mentioned has mainly produced an extended
inspiration for the design of a physical robot swarm.
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3
Sensors

This chapter will discuss the use of sensors for a physical robot swarm: which sensors should be used?

3.1. Requirements
The requirements for the sensors as earlier described are:

• The sensors have to fit on a Zebro

• Energy use must be as low as possible

• The sensors must measure the distances between robots

• Range for object/Zebro detection should be up to 50 cm

The first requirement is because of the limited dimensions of the Zebro. The second has everything
to do with the limited energy supply of the battery. To make a efficient exploration robot we would like
to explore the maximum area with the least amount of energy used. If the sensor is efficient enough
to be used in combination with a Delfly, that project could also benefit from this work.

The range requirement is because of the safety range around the Zebro. The safety range of 50 cm
is enough to avoid any contact with other Zebro’s or object’s in the walking area. The last requirement
is needed to keep the individual robots together. Knowing the relative distances, the robot can walk
away form the group or if the distance becomes too large, the robot can decide to return to the group.

3.2. Avoid obstacles
The first thing to be sure of is that Zebro doesn’t collide with an object in the walking area. A sensor
which is suitable for this job is a ultrasonic sensor. The decision for this sensor is based on earlier
research [3].

3.3. Measure relative distances
To measure relative distances there are multiple possibilities. In this research we divide the medium for
communication into two. The first way of communication is sound, for example communication through
ultrasonic acoustical sound. The second way is the use of light. The working principle of sound is that
it essentially is moving air. Compared to light which is based on electromagnetic radiation. Light travels
much faster than sound an because of this the delay of the signal becomes much lower.

Anohter important difference is the influence of the environment. For example wind speed has a
great influence on sound waves. To keep the influences of the surroundings as low as possible light is
the better option.

The spectrum of light gives us different zones like InfraRed an Radio Frequency (RF). Infrared uses
more energy and is more sensitive for environmental radiation in comparison to RF. In this research
we will continue with figuring out what the possibilities are for communication with RF between robots

9
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in a swarm.

Modules which are suitable for this task are Zigbee, BLE113 and Wi-Fi. These are all based on Radio
Frequency communication. Important factors for communication between robots in a swarm are the
network size, range, number of channels and the advertising mode. Table 3.1 gives an overview of the
characteristics of the different modules. In combination with the requirements for the communication
module we will find a suitable communication module.

3.4. Requirements for a communication module
The process starts with a list of constrains and requirements. Out of the literature study the module
characteristics became clear. The data sheets of the modules give the data to compare with the re-
quirements.

The following design requirements and constrains are taken in account during the design process:
Hard requirements

1. The communication between units may not rely on anything else than the units themselves

2. The communication module must be able to communicate wirelessly with other communication
modules

3. The communication module must be able to effectively communicate within a distance of 50
meters without any disturbing factors in between

4. It must be possible to use the communication module effectively in a 3D swarm

5. The communication module must be compatible with the Delfly communication module

6. The module is capable of an advertising mode

Soft requirements

1. Energy use must be as low as possible

2. The communication module may not be influenced by any weather conditions

3.5. Design Solutions
Zigbee(CC2520), BLE113 (CC2541) and Low Energy Wi-Fi (CC3000) have a 50 meter range data trans-
fer, have a low energy use and are light weighted. First we compare the energy use on a data
transmission scale between the modules.

Figure 3.1: Energy consumption of the Zigbee, BLE113 and Wi-Fi for different data loads [4].

The energy use (figure 3.1) is different. We can see that it depends on the amount of data sent. The
actual amount of data (in bytes) which will be send with the communication module is not yet defined.
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Standard ZigBee BLE Wi-Fi
Network size 65536 8 32
Range <50m <50m <100m
Number of channels 1/10/16 40 11-14
Advertising mode Yes Yes No

Table 3.1: A comparison of different parameters for ZigBee, BLE113 and Wi-Fi[5].

3.6. iBeacon
The BLE113 module is being used as a ranging tool in the form of an ”iBeacon”. This technology enables
a device to perform actions in a close proximity to an iBeacon by advertising. This BLE’s advertising
mode broadcasts packages of information in a set time frame. Another module can scan for these
packages. With this advertisement mode we can range distances and transfer data between two
modules and there’s no limiting network size. At this moment the iBeacon concept is in a development
state but will be used in a lot of places. In the future costs will be low and the reliability will be high.

3.7. Conclusion
To build a physical swarm, the BLE113 module or the Zigbee module are the best options. Zig-
bee(CC2520), BLE113 (CC2540) have a 50 meter range data transfer, have a low energy use and
are light weighted. Because the Wi-Fi doesn’t have the ability of advertisement it is less suitable.

So the characteristics of BLE and Zigbee are close. The choice for the BLE113 chip was because
it is foreseen that in the near future Apple will significantly improve the functionality of BLE. This is
beneficial for the project, because this save large amounts of research. Also, when this technique
becomes widely used, it’s price will go down. This is especially important for a swarming robot which
relies on large numbers to boost its performance.





4
Measuring RSSI with BLE

With the BLE protocol it is possible to measure Received Signal Strength Indication (RSSI) between
devices with little effort. A ready to use, build in function displays, among others, advertisement data
and RSSI. The goal is to use this RSSI to estimate the distance between devices. This measurement
should be accurate with a maximum deviation of half a meter within an obstacle free space. To test
whether the BLE device is suited for this purpose, RSSI measurements were done.

4.1. Goal and background information
The goal is to determine if the RSSI of a BLE module is suited to give an approximation of the distance
between two devices in a space with no obstacles. There are no obstacles because the first Zebro
swarm prototype will walk in an empty space. To give the swarm the intended behaviour it must have
a sense of distance. This can be the precise distance in meters or just a sense of ‘too close’ and ‘too far’.
Too close is in this case one meter. This distance is just an estimate when looking at the dimensions of
a Zebro and the speed with which it moves. With an accuracy of half a meter from the BLE module and
thus half a meter distance between Zebros they should never collide. There should always be about
ten centimetres of space left between the front legs sticking out.

The problem with RSSI is always the amount of noise of the signal. This noise comes from various
factors which are for example hardware factors like antenna pattern or influences from the surround-
ings. Indicating and researching all factors is beyond the scope of this research.

An easy way to make BLE113 useful for Zebro is to try and define the RSSI values for ‘too close’
and ‘too far’. These expressions are not really precise and allow a signal that’s a little noisy. To see if
it is possible to define ‘too close’ and ‘too far’, it was decided to do two sets of measurements. These
sets differ in the distance between the two modules. The first set has a distance between modules
ranging from zero to two meters with ten centimetre increments. The second set has distances ranging
between two and twenty meters with two meter increments. The first set was measured indoors and
serves to show what values of RSSI are detected from a nearing device. The second set was measured
outdoors and is used to determine what the RSSI is at greater distances. Both measurements should
also give a clear view of the amount of noise.

4.2. Setup
The BLE module is placed on top of the T-minus microcontroller board. One set was connected via USB
to a laptop and the other set via USB to a power bank. This allowed for one set to move freely and for
the other set to log the RSSI value to a log-file. To log the RSSI values coming from the T-minus board
the program ’GoBetwino’ [6] was used. Every time a gap_scan_response event is triggered because
the device receives an advertisement packet, the RSSI value is logged on the PC with the program.
This way around 100 values for every distance were collected. It is not possible to stop logging after
precisely 100 values, so for every measurement a minute of data was collected. Sometimes this results
in a little less than 100 values, sometimes a little more.

In the first measurement the modules were place on the floor as can be seen in figure 4.1 and in the
second measurement on small tables. The laptop was always closed to eliminate potential reflections
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Figure 4.1: The measurement setup

from the lid. Two extra single measurements were done out of curiosity and to create a little more
insight. One measurement outdoors at 62 meters and one indoors with both BLE devices in different
rooms with one closed door in between.

4.3. Results - post processing
All measured values were collected and assembled in Excel for post processing. To get insight in the
collected values they were plotted for every increment. See figure 4.2 for the first set of measurements
and figure 4.3 for the second set. There are multiple dots for every distance, which means multiple
RSSI values are measured while the modules are this particular distance apart. The plot does not show
how many times the different values were measured. Take for example the measurement at 1,4 meter
in table 4.1.

dB -63 -73 -74 -75 -80 -81 -82 -83 -84 -85 -86 -88 -93
# measured 36 3 27 7 3 7 7 2 5 2 2 1 1

Table 4.1: RSSI Values at 1.4m distance.

This measurement has 13 different values, but two of them are significantly more present than the
others. It is not known why these two specific values are more present. However it is proof that the
signal definitely has noise.

Before applying a filter it should be known what the real value for the RSSI should be. Otherwise
it cannot be verified afterwards if the filter works as necessary. The relation between received signal
strength and distance is described with the following equation. [7]

𝑃 (𝑑) = 𝑃 , − 10 ⋅ 𝑛 ⋅ 𝑙𝑜𝑔 (𝑑) + 𝑋 (4.1)

𝑃 (𝑑) Received RSSI at certain distance [dBm]
𝑃 , Received signal strength at 1 meter distance [dBm]
𝑑 Distance [m]
𝑛 Constant value that describes accounts for all noise
𝑋 Zero mean Gaussian distributed random variable with standard deviation 𝜎, accounts

for the random effect of shadowing.

This equation is correct only when the right values for 𝑃 , and 𝑛 are used and the devices are
operated in an open space. [8]

There are multiple ways to determine the values for 𝑃 , and n. The most common approach
for both is to try to measure them. For 𝑃 , this would mean building a set up with a receiver with
a known antenna pattern (preferably uniform) to measure the exact received signal strength at one
meter distance. The problem with this approach is that, even when assuming the custom receiver is
lossless, the losses within the transmitting device are already taken into account.
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Figure 4.2: RSSI Measurements Indoors Open Space At Fixed Intervals

Figure 4.3: RSSI Measurements Outdoors Open Space At Fixed Intervals
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Figure 4.4: RSSI Measurements Indoors Open Space At Fixed Intervals With Measured Instances As Bubble Size

Figure 4.5: RSSI Measurements Outdoors Open Space At Fixed Intervals With Measured Instances As Bubble Size
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Because the exact losses within the structure of the transmitter and the influence of the surroundings
are always fluctuating, the value for 𝑃 , will also fluctuate when measured. This is not beneficial for
the process keeping in mind that 𝑛 also has this character. To prevent this from happening 𝑃 , is
calculated with the following equation: [9]

𝑃 = 𝑃 − 20 ⋅ 𝑙𝑜𝑔 (4 ⋅ 𝜋 ⋅ 𝑓 ⋅ 𝑑𝑐 ) (4.2)

𝑃 Transmitted RSS [dBm]
𝑓 Frequency for Bluetooth 4.0 [Hz]
𝑐 Speed of light [ / ]
For 𝑑 one meter is used and according to [10] the frequency for the CC2541 radio chip is 2440 MHz.

Also according to [10], the value for 𝑃 is zero. Within the firmware of the BLE113 module this value
can be changed between -23 dBm and zero dBm. To maximize range, the module is currently set to its
maximum broadcasting signal strength of zero dBm. The equation now gives 𝑃 , = 40, 196[𝑑𝐵𝑚].
With this value and the adapted equation 4.1 the result is the equation as follows:

𝑑 = 10
,
⋅ (4.3)

In this equation the only unknown value is 𝑛. This value contains among other things losses in the
RF path and antenna outside of the radio chip. Also the influence of the surroundings on the RSSI are
within this parameter. To get the most accurate distance measurement with this equation, the value
of 𝑛 should cover all disturbance factors. To indicate and investigate all these factors is beyond the
scope of this research. It is almost standard practice, when looking at other papers, to calculate a
group mean and standard deviation for 𝑛. [8, 9] The way this is done differs. Of course it makes all
the difference what kind of distribution is chosen for the mean and standard deviation. Noise on the
RSSI signal is often modelled by a Gaussian white noise distribution [7], but other factors may have a
different distribution. In the end every situation will lead to its own unique distribution.

Lastly, the result for the extra outdoor measurement at 62 meters showed little difference from
the outdoor measurement at 20 meters. The other extra measurement (indoor with closed door) had
values only slightly larger than the 20 and 62 meter measurements. What became clearer is that it
took significantly longer to acquire about 100 RSSI packets.

4.4. Result and Discussion
Lots of research is being done on this subject. Also within The Zebro project a master’s thesis is being
centred around this problem. To check if distance measurement with BLE113s and RSSI can deliver an
accuracy of 0,5 m has proven to be too difficult for this project. The measurement shows clearly how
noisy the RSSI signal is and the fact that outdoor measurements contain far less noise when compared
to indoor measurements. According to [9, 11] a fairly accurate indoor measurement can be obtained
from RSSI when distances stay below one meter. This is a good thing for determining the ’too close’
statement. If it’s possible to accurately sense the ’too far’ statement is unclear. Formula 4.1 shows
that the difference in RSSI becomes smaller when distance increases which demands a more precise
RSSI measurement for larger distances.

It is also unclear from literature or experiments how well RSSI performs when placed on moving
robots.

The large amount of literature is very helpful in quickly discovering what has already been done on
the subject. Especially [7] is a useful paper. For future work it is highly recommended to start with this
paper and review its sources on roundtrip propagation time measurement and on equation 4.1.





5
Behaviour in general

This chapter will discuss the behaviour of a swarm in general. Aspects such as the energy use and the
different parts of the behaviour will come up in this chapter. This will create a base for the following
chapters on individual and interactive behaviour.

5.1. The concept of a swarm
In order to create a clear image on the swarm that is to be designed, it is of importance to define the
concept of a swarm in first place. As seen in the literature study (ch. 2) the definition is:

”A swarm is a large number of homogenous, unsophisticated agents that interact locally
among themselves and their environment, without any central control or management to
yield a global behaviour to emerge.”

[1, p. 25]

For this project, as can be concluded from the LoR, ”large” is assumed to be more than 2 agents.
In nature different swarms exist, to take some examples: ant colonies, bee colonies, fireflies, schools
of birds and fishes. Each of those swarms have a different way of behaving. [1, ch. 2] In order to
determine the behaviour of the swarm that is to be designed, we combine the features of the different
swarm examples out of nature to design a swarming behaviour that fits with the LoR in the best possible
way.

5.2. Ground rules
Since swarms exist in nature and have existed over a longer period of time, we can conclude that the
design of these swarms is effective for their purpose. For this reason, inspiration for the design of
the robot-swarm can be gotten from natural swarms. These swarms show to have several ’ground
rules’ which can be deduced from observing their behaviour. For the swarm that is to be designed, the
set of ground rules have to be defined in advance. These ground rules have to lead to a successful
functioning of the swarm. In other words, these have to make sure the design goal is reached (Have a
swarm operate for a(n) (potentially) infinite amount of time.) Where possible making a good step in the
direction of the future design goal: Have as many units operate with the amount of energy available.
These ground rules are (restrictions to) rules concerning the behaviour of the individual units within
the swarm. Every unit within the swarm follows this set of rules, resulting in the same behaviour for
each individual unit.

Slightly corresponding to the structure of fish school behaviour [1, p. 30], the ground rules for the
swarm that is to be designed are defined as follows:

Individual behaviour

• The individual units should perform an individual moving behaviour
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Interactive behaviour

• The individual units should prevent physical contact

• The individual units should stay together

For each of these rules, design choices have to be made about what actions to take in order to
comply with these rules. To do so, criteria and numerous possible solutions concerning each rule are
come up with. What has to be kept in mind is that the effectiveness of the final algorithm is dependent
on the combination of the different solutions.

5.3. Switching between different behavioural modes
As can be concluded from the previous chapters, three behavioural modes are distinguished:

1. The individual behaviour

2. The anti-collisional behaviour

3. The separation-prevention behaviour

Each individual agent has to decide upon the behavioural mode it will apply at any moment in
time. The choice of this mode is based upon at least the relative distance between other units. This
is because it is the least possible amount of information needed for an individual unit to interact with
others.

With the relative distance between two units ranging from zero to the maximum range of the sen-
sor, the activation of a certain mode should have a chance of occurring at every single one of these
distances. Variables for describing these chances are taken to be the following:

𝛾 = 𝑓(𝐷) The chance of execution of behavioural mode 𝑖, with 𝑓 being a function dependent
on 𝐷 the relative distance between two units

Δ𝐷 The 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝐷 −𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝐷 for the same/constant 𝛾
What has to be taken into account is that:

∑𝑓(𝐷) = 1, for every 𝐷 (5.1)

So that for 𝐷 ranging from zero to the limit of the sensor, any of the three behaviours are activated.
Possibly, a behaviour for the point at which no other agent is within range of the sensor could be
implemented just as well. However, for this project this is out of scope, and the unit is considered to
be separated from the ’swarm’. To get an idea of the possible distributions, the following plots were
made. With the functions defined as follows:

𝑓 (𝐷) = 1 − (𝑓 (𝐷) + 𝑓 (𝐷)) (5.2)

𝑓 (𝐷) = {1 − ( . ⋅ ) , if 𝑓 (𝐷) ≥ 0
0, if 𝑓 (𝐷) < 0

(5.3)

𝑓 (𝐷) = {1 − ( . ⋅ ) , if 𝑓 (𝐷) ≥ 0
0, if 𝑓 (𝐷) < 0

(5.4)

This gives a plot as can be seen in figure 5.1.
Now, with a continuous function having a gradient inequal to 0, Δ𝐷 approaches 0. Increasing Δ𝐷

would give the functions a more stepped-like character. The simplest form of this would be when the
functions are assumed to consist of stepfunctions which return 1 between two values:

𝛾 = 𝑓(𝐷){
𝑓 (𝐷) = 1, for 0 < 𝐷 < 𝐿
𝑓 (𝐷) = 1, for 𝐿 ≤ 𝐷 < 𝐿
𝑓 (𝐷) = 1, for 𝐿 ≤ 𝐷 < 𝐷

(5.5)
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Figure 5.1: Behaviour distribution
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Figure 5.2: Binary behaviour distribution

With 𝐿 , being the boundaries of where the step functions change value, and 𝐷 being the
maximum distance measured by the sensors.

This gives a plot like the one in figure 5.2.
In this manner, the distance 𝐷 between two units is directly related to the type of behaviour these

units perform. In addition, there is no chance of the agents executing a different behavioural mode
while measuring the same distance between them.

5.3.1. Design choice
Setting hard boundaries at which a switch is made between the different modes (as in figure 5.2),
results in a predictable behaviour of the system. This predictability is key to the functioning of the
implemented choices which are made for the different modes later in this document (6,7,8). After this
project, experimentation can be done on changing the functions that make up the chance of picking
a behavioural mode. Taking the functions to be step-like functions as in figure 5.2, at any distance
𝐷, one mode will definitely be activated. The distances 𝐿 , at which modes are changed can still be
chosen. 𝐿 is the moment at which the unit stops the anti collision behaviour and starts it’s individual
behaviour. This limit depends on parameters such as the size of the unit and its speed. The best value
for this limit has to be researched, but for units as Zebro’s it is assumed to be around 0,5 meter. 𝐿
determines the moment at which the unit stops the individual behaviour and starts to move back to
the swarm. Since the units need to keep contact, it is important to have 𝐿 smaller than 𝑅 . Since
the BLE module has a reach of around 50 meter, 𝐿 is assumed to be 45 meter. A higher 𝐿 value will
mean that the unit will use the individual behaviour relatively longer and thus make the swarm more
effective as a whole. The chance on losing contact also grows with a higher 𝐿 , thus the best balance
requires testing.
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5.4. Movement parameters
When looking at the movement of a unit, it is possible to construct a list of base parameters. These
parameters make up the movement of the agents. These are the following:

• Movement speed

– Relative increase/decrease

– Absolute increase/decrease

• Movement direction

– None

– Forward

– Backwards

• Turning radius

– Zero

– Smaller than field of view

– Bigger than or equal to field of view

• Turning angle

• Turn direction

The algorithm running on each agent should assign values to these parameters which on their turn
have the task to generate an effective global behaviour. These values can be obtained in the following
manners:

Movement speed Movement direction Turning radius Angle Turn direction
Fixed Fixed Fixed Fixed Fixed
Input based Input based Input based Input based Input based
History based History based History based History based History based
Random Random Random Random Random
None None None None None

Table 5.1: The movement parameters

The following chapters will discuss several parameters of importance to the different kinds of be-
haviour. The final combination of different parameters decides whether an algorithm is effective or
not. The best combination of parameters differs for each situation, so it is impossible to determine the
perfect way of assigning a value to a parameter. This will be discussed in the oncoming chapters.

5.5. Energy use
As explained earlier, searching for a charging station costs energy. The time in which a charging station
must be found (at a specific point in time) is limited by:

𝑇 = 𝐿
/ (5.6)

𝑇 The maximum amount of time in which a charging station has to be found
𝐿 The energy level of the unit at a specific point in time
/ The total energy use (per unit time)

As seen in equation 5.6, decreasing the energy use of the unit will extend the maximum searching
time. This total energy use is made up of different subcomponents, these include:

• Energy used for movement
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• Energy used for processing

• Energy used by sensors

• Energy used by communication devices

These possibly vary depending on the way of operation of the unit. Since nothing is known about
these factors, assumed is that / is constant.





6
Individual (independent) behaviour

This chapter focuses on the first behavioural mode, as described in chapter 5. The moving and search-
ing pattern, along with its effectiveness, will be discussed in this chapter.

6.1. Individual moving behaviour
The goal of the swarm is to operate for a (potentially) infinite amount of time. Since a group of units
make up the swarm, the individual units have to make sure that the swarm will reach this goal. To make
sure this goal is strived for by the units, they are designed to have almost the same goal (operate for an
as long as possible period of time). Assuming the LoR is met, the only variable that causes operation
to cease, is the energy level. In order for a unit to operate for an as long as possible time, it has to
maintain its energy level high enough to function. Now, by operating energy is used. To keep the
energy level of the individual units high enough, the energy has to be replenished. The environment
prescribes a non-moving charging station as a point where energy levels can be raised. So to keep
up the energy level, the unit has to move towards the station in order to charge. In addition, the
position of the charging station is unknown and is only known until the unit is within a certain range
of the charging station. So, finding the charging station is key for the operation of the units. In order
to make the chance of finding a charging station as big as possible, as much as possible area of the
environment must be discovered, using as little as possible energy:

𝑑𝐴
𝑑𝐸 (6.1)

𝐴 Area covered by a unit from start of operations until a specific moment in time
𝐸 Total energy used per agent from start of operations until that same point in time

Equation 6.1 must be as big as possible. For evaluation of different options later on, the point in
time at which the entire search field is covered and the point in time at which the charging station
is found could be relevant. Furthermore, of importance here is the assumption that / is constant.
The chance of finding a charging station increases with increasing area searched, because the amount
of area covered by charging station relative to the undiscovered area increases with every bit of area
searched

𝑃 = 𝐴
𝐴 (6.2)

𝑃 Chance of finding charging station
𝐴 Area covered by charging station
𝐴 Undiscovered area

This means with every bit of area searched, the chance of the next bit of area being the area
covered by a charging station increases. To decide upon the best individual moving behaviour, in first
place different options were come up with. These options can be read in table 6.1. To rank the different
options, criteria had to be set up. The criteria to rank the different algorithms are the following:
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Method Angle (0 ≤ 𝜃 ≤ 𝜋) Turn Direction Distance
Brownian Motion 𝜋 Bernoulli, 𝑝 = 0, 5
Lévy Flight Uniform distribution Bernoulli, 𝑝 = 0, 5 Lévy distribution
RARD Bernoulli, 𝑝 = 0, 5
FARD
RAFD

Fixed Stochastic

Table 6.1: Different methods, consisting of fixed and stochastic parameters

1. /

2. Required processing power (simplicity)

3. Time required to fill entire search space

4. Time required to find charging station

6.2. Construction of the individual behaviour
The movement algorithm is constrained to the physical characteristics of the (surrounding of the) units.
These constraints include:

1. When moving from one point to another, the units must cross every point in between

2. Search space does not converge towards the solution (charging station)

The second constraint is inherent to the property of the detection of a charging station. It can only
be detected when it is within a certain perimeter around the station. The rest of the search space does
not give any directional information regarding the location of a charging station. For the construction
of the algorithm, the movement of the units is split up in two:

1. Changing direction

2. Moving in a straight line

From which the following variables are extracted:
𝜃 Angle of directional change
𝐷 Length of line moved

When taking in mind the requirement of not moving in a fixed pattern, these variables can not be
considered constant (or predetermined) at the same time. Rather, at least one must be dependent on
any variable which is independent of the variables giving information about the state of the unit, the
relationship of the unit to its environment, or the environment itself. As in, a random factor should
be added to the process of determining these variables. The chosen solution to this is making sure 𝜃
and 𝐷 are dependent on stochastic variables. Some studies [1, p. 52] have hypothesized Lévy flights
or Lévy walks as an optimal search strategy adopted by many foragers in nature. Where it is worth
mentioning that foragers adapt their search strategy based on the density of prey , sometimes switching
between Lévy flights/walks and Brownian motion [1, ch. 3]. These Lévy flights/walks (LF/LW) base 𝐷
on a Lévy distribution, and 𝜃 on a uniform distribution. The options come up with are summed up in
the following table. For the RARD, FARD and RAFD methods, the R stands for random, F for fixed, A
for angle (𝜃) and D for distance (𝐷 ).

Two remarks have to be made concerning table 6.1. The distribution of the ”random” variables of
the RARD, FARD and RAFD methods could be of any kind. In first place, a uniform distribution was
assumed. For optimization purposes these can be changed, likely altering their performance. Secondly,
the option of basing a variable upon either an input argument or historical data was looked at. These
will likely give a kind of behaviour that can be determined beforehand. The question is if the resulting
path must be considered ”pre-defined” or not (LoR, 1.4). To be safe, in order for these variables to be
used as a ”random” input, a random factor must be added to this variable.



6.3. Design influencing factors 27

Figure 6.1: Turning

6.3. Design influencing factors
6.3.1. Turning
To start off, in order for a unit to be able to detect a charging station it has to have a sensorial device.
Assumed is that the charging stations can be detected by the BLE module, which gives the unit a circular
field of view. When performing a turn while having a circular field of view, the centre of rotation is of
importance when looking at the ratio (see equation 6.1) while turning. This point could be either:

• Outside the field of view

• Within the field of view

• On the edge of the field of view

• On the midpoint of the field of view

For covering area while turning, it is essential to make sure the centre of rotation is either on the
edge of the field of view or outside of the field of view. This is explained by the following.

Centre of rotation is on the midpoint of the field of view
In this case, with every turn energy is used without increasing the area of search. In addition, when
moving in a straight line after having turned on a spot (after having moved), a piece of area is covered
twice (coloured red in figure 6.1) . This total area covered twice is dependent on the angle turned,
and the radius of the search field around the agent.

Centre of rotation is within the field of view
When the centre of rotation is within the field of view, there is an area covered twice as in figure 6.1.
However, this area covered decreases with increasing distance between the midpoint of the field of
view, and the centre of rotation.

Centre of rotation is on the edge of the field of view
When the centre of rotation is on the edge of the field of view, no area is covered twice whenever the
turning angle (𝜃) is smaller than 180 degrees. With the centre of rotation being on the edge of the
field of view, the smallest possible turn is made without covering area twice. This means as much area
is covered as with walking in a straight line.

The area covered in 6.2a and 6.2b is equal. The red lines have a length 𝜋, the detectionradius is
considered 1:

𝐴 = 𝜋 ⋅ (2 ⋅ 𝑟) + 𝜋 ⋅ 𝑟 = 3𝜋 (6.3)



28 6. Individual (independent) behaviour

(a) Straight

(b) Turn

Figure 6.2: Area coverage in turns and going straight

𝐴 = 1
2 ⋅ 𝜋(2 ⋅ 𝑟) + 𝜋 ⋅ 𝑟 = 3𝜋 (6.4)

Turning with the centre of rotation on the edge of the field of view therefore is as effective as
walking in a straight line. However, turning with the centre in the middle of the field of view (on spot
turning) covers area twice and therefore is less effective.

Centre of rotation is outside of the field of view
In this case no area is covered twice as long as the turning angle (𝜃) is smaller than 180 degrees. This
means as much area is covered as with walking in a straight line.

6.3.2. Turning and the environment
As seen earlier (in 6.1), the requirements and assumptions regarding the environment influence the
design choices made for the swarming behaviour. Next to choosing upon a behaviour which aims
at searching area effectively, the requirement that operation is within a finite space has its influence
on the way the individual movement is constructed as well. If a single unit would operate within an
infinite space, performing the searching behaviour earlier described, it would not matter if turns would
be made or not. As long as the centre of rotation is outside, or on the edge of the field of view of the
unit. Furthermore, the sum of all turning angles (𝜃) can not exceed + or - 90 degrees. This of course
regarding the ratio, with / taken to be a constant (see 1.4.4). Now, restricting the unit
to a finite space, the need for turning is introduced. In order for the unit to cover as much as possible
area with its energy load, it can not stop its search at the boundary of the finite space. Nor can it
cross the boundary to continue its search outside of the finite space. Instead, it should make a turn
as effectively as possible, somewhere between the point of detection of the boundary and the point
of crossing the boundary of this finite space. Where effectiveness is again measured in the amount of
area covered, of which the area outside of the search space does not count as area. Zooming out, the
combination of turns and movements in straight lines can add up to a point at which the unit intersects
with its own historical path. This would mean area is covered twice, which makes its behaviour less
effective.

6.3.3. Conclusion on turning
To sum up, effectiveness is lost where area is covered twice. This happens whenever a unit crosses
its previous path (might it be immediately after turning, or later). Furthermore, effectiveness is lost
where area is covered that certainly does not contain a charging station. This type of area is the area
out of the boundaries of the finite space the unit operates within. Lastly, energy spent on turning while
not moving forward is a loss in effectiveness as well.

6.4. Conclusion
The conclusions that can be drawn from the preceding paragraphs are the following.
The first conclusion is that to cover as much as possible area with a given amount of energy, the
behaviour should cover as little as possible area which definitely not contains a charging station. In
addition, the energy use should be minimised. However, since the energy use for each manoeuvre is
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not clear, a constant energy use per unit time is assumed.
Secondly, in order to fulfil the goal of operating for a potentially infinite amount of time, the chance
of survival has to be 100% for each unit. For this, a unit has to be able to search the entire search
space with its amount of energy available. This of course assumes that only one unit is present within
the search space. Concluding from the LoR, this one unit does not make up a swarm. So in case of
the unit not being able to accomplish this task nothing can yet be concluded about the potential of the
swarm to fulfil its goal. The idea is that at least to make the chance of the swarm accomplishing the
goal as high as possible, the most effective individual behaviour must be explored and chosen.
The last conclusion is that the different algorithms should be tested on the criteria 6.1. This is because
nothing is known about the effectiveness of the different algorithms concerning this situation.

6.5. Design choice
To make sure the requirement of having a not-predefined path is met, the independent behaviour
implements two random factors. A random angle is chosen, after which a random distance is chosen,
etc. A uniform random distribution is chosen for the generation of the distances walked in a straight
line. The influence of the type of distribution on the entire swarm is not known, and therefore taken to
be uniform. Due to the assumption of a constant energy use, it does not matter if a turn is made or not,
as long as the turning radius is bigger or equal than the field of view. For this reason the angle does
not seem to matter either, the actual influence on the overall behaviour of the swarm is unknown and
should be explored. This type of behaviour was earlier mentioned under the name RARD. Following
table gives an insight in each variable and its value/way of generation.

Behavioural mode Anti collision
Variables 𝑉 Fixed

𝑀 Forward
𝑅 Fixed
𝜃 Random (uniform 0-180)
𝜃 Random (ber(0.5))

Limits between modes 𝑓 𝐿 -𝐿

For movement on a 2D plane, sudden changes in speed are unlikely and seem unnecessary for an
individual. For these reasons it is taken to be fixed. Due to the assumption of a constant energy use,
it does not matter if a turn is made or not, as long as the turning radius is bigger or equal than the
field of view. For this reason the angle does not seem to matter either, the actual influence on the
overall behaviour of the swarm is unknown and should be explored. With 𝑅 approaching infinity,
the turn approaches a straight line. This is not the goal, neither is the goal to have an as small
as possible turning radius since this means unnecessary area is searched. So, to give the agents a
versatile/dynamic behaviour while not wasting energy the centre of rotation is chosen to lay at the
edge of the search field of the agent.





7
Anti-Separation behaviour

From the same,zoomed in perspective as in the chapter of individual behaviour, the behavioural mode
of seperation-prevention is analyzed in this chapter. In order to prevent two units from crossing the
maximum limit of the relative distance, a contactless sensor has to make sure an approaching separation
is detected. Adjustments in the way of moving can be made in order to meet the requirement of staying
within the fixed maximum range of separation. These adjustments are mentioned in the chapter dealing
with the behaviour in general as well. To repeat:

• Movement speed

– Relative increase/decrease

– Absolute increase/decrease

• Movement direction

– None

– Forward

– Backwards

• Turning radius

– Zero

– Smaller than field of view

– Bigger than or equal to field of view

• Turning angle

• Turn direction

Deciding upon the generation of these parameters can be done in the following ways:
Where with random decision making the distribution can still be chosen. The criteria for the different

methods are considered to be the following:

Movement speed Movement direction Turning radius Angle Turn direction
Fixed Fixed Fixed Fixed Fixed
Input based Input based Input based Input based Input based
History based History based History based History based History based
Random Random Random Random Random
None None None None None

Table 7.1: Parameters collision prevention
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•

• Effectiveness
(how many times does a unit have to make the decision in order to prevent the collision from
happening)

7.1. Design Choice
From analysing the way two units separate, a simple solution can be deduced which should theoret-
ically prevent separation. This solution is only based on the distance between the two units, and is
independent of the historical/future distances. It is, turning 180 degrees with an 𝑅 of 0. 𝑅
can be taken bigger, until half of the distance between the maximum distance of separation and the
initiation point of this mode. Experiments must show in what way this influences the global behaviour.
Whenever the units A and B are on the verge of separation, a turn of 180 degrees will prevent this.
Even with small angles, as can be seen in figure 7.1b.

(a) agents leaving eachother (b) slight increase in relative dis-
tance 1

(c) slight increase in relative dis-
tance 2

angles:

Figure 7.1: different movements

Basis to this solution is the fact that two units can only cross the maximum distance of separation
whenever their movement is away from each other (the relative distance increases). Turning 180
degrees will change this into a behaviour which has a movement which decreases their relative distance.
Variations might be chosen for this concept. But due to the simplicity, the above stated actions are
assumed preferable. When displaying it in the table of movement this behavioural mode looks like:

Behavioural mode Anti separation
Variables 𝑉 Fixed

𝑀 Forward
𝑅 Fixed
𝜃 Fixed
𝜃 Fixed/Random(ber(0.5))

Limits between modes 𝑓 > 𝐿



8
Anti-collision behaviour

Units may not collide into each other and/or objects during operation. Therefore the unit should act
accordingly on a potential collision: the anti collision behaviour. This chapter will focus on the small
scale prevention: what should a unit do when it is driving towards an object or other unit.

8.1. Interactive behaviour: no collisions
In order to prevent physical contact, a contactless sensor has to make sure an approaching collision
is detected. After that, a decision has to be made about a directional change in movement to prevent
the collision from happening. The moment at which the decisions are executed is dealt with later.
Different variables can make up the behaviour to prevent physical contact between units. Each of these
variables having their own way of generating. As with the Anti Seperation behaviour 7, the parameters
could be based upon the following procedures:

Where with random decision making the distribution can still be chosen. The criteria for the different
methods are considered to be the following:

•

• Effectiveness
(how many times does a unit have to make the decision in order to prevent the collision from
happening)

8.2. Design Choice
From studying the possible ways of collisions between two agents to occur, one can deduce a simple
solution which should theoretically prevent all of these collisions from occurring. This by only knowing
the relative distance between two individual agents, without knowing the previous/future distances.
The solution is to turn an angle between 90 + 𝑎𝑟𝑐𝑡𝑎𝑛( ⋅ ) degrees and 180 degrees in clockwise, or
counter clockwise direction (trivial). Being a first concept, 𝑅 is taken 0, this radius likely has a
maximum value dependent on the relative distance at which the mode is initiated and the dimensions
of the agents though. See figure 8.1.

In this figure, a graphical representation is given of a single possible case in which the distance 𝐷
between two agents reaches the point at which the anti collision behaviour is executed. The circles

Movement speed Movement direction Turning radius Angle Turn direction
Fixed Fixed Fixed Fixed Fixed
Input based Input based Input based Input based Input based
History based History based History based History based History based
Random Random Random Random Random
None None None None None

Table 8.1: Parameters collision prevention
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Figure 8.1: Collision prevention

with the intersection point represented by the big red dot are the hypothetical paths of the agents given
in small red dots. When choosing parameters leading to the above represented behaviour, a collision
will occur. Here, the direction of the agents at the start of execution of the mode, the radius of turning
and the dimensions of the agent seem to be of influence. An important key in the analyses of when
collisions might occur is the assumption that units have the same speed.

Now, only with decreasing relative distance the units are able to cross the lower limit. This means
the directional vectors of the movement of the agents, should be pointing towards each other see 8.2a
for this situation. Figure 8.2c gives the situation of increasing relative distances.

If both units would have a relatively small size, a turning angle 𝜃 of a little more than 90 degrees
would suffice, assuming a turning radius of 0. See figure 8.2b. Here, a boundary condition is shown.
The point at which unit B only enters the range of relative distance in a slight amount. When turning
for a little more than 90 degrees, the agents will not collide. Another case is given by figure 8.2c.

The above mentioned theory is assumed to be valid, could be proven later, but needs testing
anyhow.

Looking at the area covered, turning on the centre of rotation makes this method not all to effective.

(a) Approaching agents (b) Turning agents (c) Trivial movement

Figure 8.2: Movements of agents
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However, it is chosen for its simplicity and might be expanded later on if it is worth the addition in
complexity.

With the above mentioned solution, the increase/decrease in angle could be randomly chosen be-
tween an (input based) boundary and a fixed boundary. Also, even simpler, it could be completely
input based. Within the movement table earlier seen, the concepts would look like the following:

Basically, these could be seen as design concepts. As mentioned in the earlier chapter, the random
distribution could be modified to alter the output behaviour. From these concepts, a (uniform) random
distribution is chosen because it contributes to an undefined/ unpredictable overall behaviour of the
different agents in the swarm. Which is desired. To give an overview:

Behavioural mode Anti collision
Variables 𝑉 Fixed

𝑀 Forward
𝑅 Fixed
𝜃 Random (between boundaries)
𝜃 Random (ber(0.5))

Limits between modes 𝑓 < 𝐿





9
Another Behavioural Approach

In the chapters 7 and 8 was discussed how individual agents, on a small scale, should react on other
swarm members. By thinking of different situations it was made plausible that the interactive behaviour
described in that chapter was the minimum to ensure agents stayed together and did not separate.
Preventing collisions and staying together can also be regulated on a large scale. The same require-
ments have to be met, agents can not collide nor seperate. Preventing these occurrences on a large
scale involves regulating the overall distribution of units. For instance, collisions are more likely to hap-
pen in very busy cities than in a remote desert. In this chapter a solution to the interactive behaviour
is discussed from a swarm point of view.

9.1. Behaviour
As can be concluded from the swarm definition and the requirements in chapter 5, there can not be any
form of central control. Every unit should decide for itself which way to go. The desired direction can
be achieved by turning accordingly, thus the most important parameter from table 5.1 in this behaviour
is therefore the Angle. The Angle parameter decides which way the unit goes. As can be seen in table
5.1, the different ways to assign a value to the Angle are as follows:

Angle
Fixed Assigning a fixed angle would make unit walk around in circles
Input based The turning angle will be determined by the information the algorithm receives.
History based The angle will be based on the earlier turns.
Random The assigned angle will be random generated.
None Not assigning a value to the angle would mean that the unit will keep driving straight

This chapter focuses on the input and history based angle. ’None’ and ’Fixed’ input will result in
units walking in a straight line or circle, but since the swarm needs to stay together these ways of
assigning a value will be neglected. The random input also doesn’t result in a swarming behaviour,
thus this method will also be neglected.

The coming sections will focus on input and history based value assigning. The values will be
generated through the positions of the other units and the location of the swarm. Not using the
positions of the other units will result in a behaviour as if the unit is not in a swarm. The way the
positions are translated to an angle value will also be discussed.

9.1.1. Location estimation
To establish the connection between units and to make a searching pattern as effective as possible,
it is important for the units to stay relatively close to each other. The maximum separation between
the individual units is determined by the maximum connection range as well as the detection range.
Besides the maximum distance, there is also a minimum separation distance. When different units
come close to each other, the effectiveness of the searching algorithm will decrease and the chance of
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colliding grows. The algorithm needs to cope with these limits on separation. In order to know if the
distances are within the set limits, the distances between the units should be known. These distances
can be calculated in several ways and depend on the available sensors. The units in this swarm will
make use of a BLE chip. This chip can be used for transferring data as well as for measuring distance
using RSSI.

Knowing distances between each other is not enough information for units within a swarm. The
algorithm also needs to know how to walk towards or away from an other unit when the separation
distance exceeded the limits. In other words, the algorithm needs to know how the unit is orientated
relative to the swarm and what the distance is to the other units in order to calculate a desired heading.
Taking in mind that the units will be equipped with a BLE chip, there are several ways to design the
location estimation part of the algorithm:

1. Approximate direction

(a) Trial and error
This is a history based method. By measuring an increase or decrease in the RSSI a unit
can determine whether it’s walking from or towards another unit. The desired direction can
be determined by logging the RSSI.

2. Exact location

(a) Time based
This history based method logs several RSSI measurements and then uses these to calculate
the approximate location of the other units using trilateration.

(b) Internal reference
The Internal Refence method is input based. Every unit advertises the distances of itself rel-
ative to others. Therefore each unit knows all the relative distances within the swarm, which
can be converted into the locations of the units in a 2D plane. This conversion doesn’t have
a unique solution, therefore each unit is also equipped with two additional range sensors so
make trilateration applicable: internal reference.

(c) External reference
This input based method relies on a external reference in the term of three fixed sensors.
Each unit calculates it’s location relative to the reference point(s) and advertises it’s location
in polar coordinates to the other units.

(d) Radar
The radar method is input based and makes use of a reflector circling around the range
sensor. This way the relative distances and angles of other units can be determined.

Trial and Error
This method is based on a self-learning principle. The unit will log the RSSI while walking in a certain
direction. This way it will know if a direction will result in a stronger or weaker signal of an other
unit. The more RSSI measurements are logged by a unit, the more reliable the prediction on the
signal strength will be. This method results in an approximate desired direction and only relies on RSSI
measurements, no data transfer is required.
However, the swarm is continuously changing. All the units within the swarm are moving, so what
once was a desired direction can be a wrong direction within a short time. This self-learning principle
therefore has to adapt itself to the changing situations. Furthermore, the unit will have to walk in each
direction to determine whether it is desired or not.

Time based
The Time Based algorithm logs the RSSI measurements and applies trilateration [12] on these mea-
surements to determine the location of the other units. Trilateration relies on at least three different
measurements, taken from at least three different locations that are not in line. The exact position
of these locations relative to each other are required to calculate a reliable solution, which is hard to
achieve since the turns and distances walked are hard to measure on rough terrain. Furthermore, the
measured object, the other units, should stay on a fixed place while the three measurements are made.
Since the other units are continuously moving, it is impossible to calculate their exact position using
trilateration.
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Internal reference
Since all the units are equipped with a range sensor and they advertise their own collected data, each
unit can construct a matrix consisting of all the relative distances. The size of this matrix is 𝑛×𝑛 with 𝑛
the amount of units, thus the data transferred grows significantly with an increasing amount of units.
The information gathered in this 𝑛×𝑛 matrix can be converted into the locations of all the units in a 2D
plane using Multi Dimensional Scaling [13]. There are, however, some downsides on using this method.

(a) Dots (b) Relative distances

1 2 3 4
1 0 1.581 3 3.354
2 1.581 0 1.581 2.5
3 3 1.581 0 3.354
4 3.354 2.5 3.354 0

(c) Relative distance matrix

Figure 9.1: From physical orientation to a relative distance matrix

When the 2D distribution is expressed in relative distances, all the information concerning rotation
and mirroring is lost [13, p. 22]. The constructed 2D plane can therefore be rotated (relative to a
fixed north) and mirrored in all directions, while the constructed 2D plane still copes with the relative
distance matrix.

As can be seen in figure 9.2, a 2D plane without a fixed orientation can’t be used by the algorithm.
When a unit for instance needs to move away from a crowded place, the algorithm can’t tell the desired
heading since it doesn’t know its own direction relative to the location of the crowded place. This can
be accomplished by installing 2 extra range sensors on the unit. Using these 3 sensors, placed as far
from each other as possible, the location of other units can be determined using trilateration.

Figure 9.2: Orientation issues without reference

Radar
The radar method is similar to the ’Internal Reference’ method since it is also based on the relative
distances between the different units. However, this method uses a radar instead of extra sensors and
trilateration for reference. This radar method is derived from a lighthouse; around the range sensor
circles a material that blocks all radio frequencies. This way the range and the direction of the other
units can be determined, thus a unique 2D orientation of the whole swarm can be constructed.
Since the range sensor, a BLE chip, is also used for data transfer, the blocking of the RF signals also
interrupts the data transfer. Furthermore this method makes use of an extra moving part: the circling
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RF blocking material. Moving parts break down relatively easy and since the functioning of the algorithm
depends on the rotating material, this method isn’t appropriate for this situation.

External reference
Where other methods make use of the relative distances between the units in a swarm, the ’External
reference’ method uses the relative distance to a specific reference point. The reference point consists
of 3 separate detectable points, so the units can determine their distance as well as their angle relative
to the reference point using trilateration. The acquired distance and angle can then be advertised, so
all the units within the swarm know each others’ exact location.
An other downside of the method is the detectable range of the reference. When a unit is too far
away from the reference point, it can’t calculate its own exact position. This issue can be resolved by
calculating its own position relative to three other units that know their exact position. Three units that
know their own exact position can act as a reference point themselves.

Figure 9.3: Polar reference

9.1.2. Determining heading
Now that each unit knows the position of all the other units relative to itself, the algorithm needs to
determine the desired heading. When this desired heading is know, the algorithm can assign a value to
the Angle parameter accordingly. Since the units may not get too close or too far from each other we
can conclude that the algorithm needs to aim for a certain spread of the units, which can be achieved
by sending units towards open areas and sending units away from areas that are too busy. This spread
can be expressed by counting the amount of units per area; the density.
The local density in the constructed 2D plane can be calculated using the Multi Variate Kernel Density
Estimation [14]. The obtained density field can be considered as an inverted potential field: dense
areas have a low potential and open areas have high potential. After a unit localised itself on the

(a) Density calculation (b) Density plot
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(c) Vectors from density

Figure 9.4: From 2D orientation to a vectorised density plot
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potential field, it can calculate the local slopes of the potential field (figure 9.4). The steepest slope
connects the highest local density to the lowest local density and is therefore the fastest direction
towards or away from a dense area. Thus, if the unit is in a too dense area and needs to move to an
open area, the direction can be determined by calculating the steepest slope of its local density field.
This method can be used as separation prevention and collision prevention. However, for this method
to be usable on collision prevention more research is needed. The exact location of the other units is
known, but how these locations translate into an evading manoeuvre is still unknown.

9.2. Conclusion
By comparing all the methods on location estimation, we can construct table 9.1. Some of the methods
have downsides that make them inapplicable for this purpose. The Trial and Error method can’t provide
an accurate desired heading, and can therefore not be used in a swarm. Also, in order to be able
to estimate an approximate desired direction, the unit itself has to gather several measurements by
walking into different directions. This isn’t always possible. The Time Based method is unusable
due to the lack of accuracy. It may be possible to achieve the desired accuracy, but then again the
algorithm will become a lot more complex. Since the algorithm should be as simple as possible, the
Time Based method is not desired for this application. The Internal Reference and Radar method are
very familiar, the only difference is the way the methods implement a reference. The Radar method
implements a reference with a circling RF blockade and the Internal Reference uses 2 extra sensors
and trilateration. These methods are both less suitable for this project due to the limited accuracy of
the Internal Reference and the interruption of the data transfer in the Radar method. The method
most suitable for an autonomous swarm is the External Reference method. Although it requires an
external reference point, it’s the best solution for implementation in a swarm: it’s a relatively simple
and accurate method for location calculation. The required reference point can be provided by the
instance that places the units on their location. For example, if the units are on Mars the shuttle they
came with can act as a reference or when the units are to discover a cave, the engineers can take care
of the reference point by placing at least 3 Bluetooth modules.

Pros Cons
Trial and Error No data transfer required Information input dependent on movement

Independent of surroundings No exact direction or location calculation
Needs to adapt to changing orientation

Time Based No data transfer required Inaccurate due to moving of measured units
Independent of surroundings Inaccurate due to own movement

Information input dependent on movement
Internal Direct location calculation At least 2 extra range sensors needed
Reference Independent of surroundings Sensor spread and thus accuracy limited

Data transfer grows exponentially with swarm
Radar Independent of surroundings Moving parts

Indirect location calculation
Interruption data transfer
Data transfer grows exponentially with swarm

External Direct location calculation External reference required
Reference Data transfer constant

Table 9.1: Comparing the different methods on location estimation
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The use of Kernel Density Estimation provides the possibility to give units a direction in such way that
they don’t wander too far from the swarm. The units will be directed from dense areas to open areas
and vice versa when certain density limits are exceeded. Using the external reference, the movement
parameters will be as follows:

Behavioural mode Anti collision
Variables 𝑉 Fixed

𝑀 Forward
𝑅 0
𝜃 input based
𝜃 input based

Limits between modes 𝑓 < 𝐿

Behavioural mode Anti separation
𝑉 Fixed
𝑀 Forward
𝑅 Fixed
𝜃 Input based
𝜃 Input based

Limits between modes 𝑓 > 𝐿
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Conclusion

After a literature study the conclusion about the definition of a swarm is:

”A swarm is a large number of homogenous, unsophisticated agents that interact locally
among themselves and their environment, without any central control or management to
yield a global behaviour to emerge.”

[1, p. 25]

Out of this definition we made up the requirements for the swarm. The most important requirements
are:

• The individual units may not make physical contact

• The maximum distance of separation between the individual units is fixed

• The path of the individual units may not be pre-defined

The sensor choice is made by the requirements and the idea to build a physical swarm. A BLE 113
is a module based on RF communication. This module is chosen for ranging the distance between
different units. A disadvantage is that it is not possible to see obstacles. To avoid obstacles the advise
would be to use ultra-soon sensors. The BLE 113 is besides of measuring the distances, also suitable
for translating data between the modules. For now we can’t say in what way it will be used but
an expectation is that it will be influence the effectivity of the swarming behaviour. By using virtual
simulations different algorithms are tested to find out which is suitable for the physical swarm. The goal
for this algorithm is discover as much area as possible. Looking at the individual way the best options
are the RARD, FARD and RAFD methods. These methods have potentially the highest rate of area
discovering for an individual unit. A swarm of these individuals need a algorithm to avoid collisions and
keep the group together. This algorithm is based on the characteristics of our sensors. The efficiency
of the swarm algorithm depends on the area which is covered twice. The less area covered twice the
better the efficiency. The location estimation is a way to achieve a better efficiency. Some ways to
design the location estimation algorithm are approximation direction and exact location. The exact
location is in favourite because of the algorithm is less complicated and the distribution of units in the
area is better.

10.1. concept 1
The design choices made for the creation of the global behaviour from a bottom up perspective are
contained in the following table:
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Behavioural mode Anti collision
Variables 𝑉 Fixed

𝑀 Forward
𝑅 0
𝜃 Random (uniform) between 90 + 𝑎𝑟𝑐𝑡𝑎𝑛( ⋅ ) and 180 degrees
𝜃 Random (ber(0.5))

Limits between modes 𝑓 < 𝐿

Behavioural mode Independent
Variables 𝑉 Fixed

𝑀 Forward
𝑅 𝑅
𝜃 Random (uniform, 0-180 degrees)
𝜃 Random (ber(0.5))

Limits between modes 𝑓 𝐿 -𝐿

Behavioural mode Anti separation
Variables 𝑉 Fixed

𝑀 Forward
𝑅 0
𝜃 180 degrees
𝜃 Fixed/Random (ber(0.5))

Limits between modes 𝑓 > 𝐿

10.1.1. Discussion
Implementation of the above mentioned design choices in a (model of a) physical swarm will have to
proof if this chosen path is the way to approach the problem. The risk is in the focus on the individual
(pairs of) agents, where the interactions with more than one agent are left out. The global behaviour
that will emerge is not certain and likely needs multiple iterations in order to fine-tune. It could even
fail as a whole. However, it made it possible to make design choices leading to an unsophisticated
behaviour.
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10.2. Concept 2
From a top down approach, regarding the behaviour of the entire swarm, it seems preferable to average
the density of the group of agents. This sthrives to equal the spacing between the agents. In this way,
the agents have a ’natural’ tendency t to prevent collisions. In addition, since for the functioning of
this concept a single agent has to know the place of other agents with reference to itself. Knowing
this, the agents can make the choice of the turning angle input based, turning away from a collision or
towards an other agent as they leave eachother. The design choices look as follows in this manner:

Behavioural mode Anti collision
Variables 𝑉 Fixed

𝑀 Forward
𝑅 0
𝜃 input based
𝜃 input based

Limits between modes 𝑓 < 𝐿

Behavioural mode Independent
Variables 𝑉 Fixed

𝑀 Forward
𝑅 𝑅
𝜃 Random (uniform, 0-180 degrees)
𝜃 Random (ber(0.5))

Limits between modes 𝑓 𝐿 ,𝐿

Behavioural mode Anti separation
𝑉 Fixed
𝑀 Forward
𝑅 Fixed
𝜃 Input based
𝜃 Input based

Limits between modes 𝑓 > 𝐿

10.2.1. Discussion
As with concept 1, the concept has to be implemented in a (model of a) physical swarm in order to
verify the expected result. The major setback in this approach is the large amount of processing power
needed. The swarm will likely have a more predictable behaviour though, than concept one.





A
Using the BLE Module

A.1. Connecting
The setup uses UART to make the MCU (T-Minus PCB) communicate with the BLE module. To do this
we need to connect signal and power wires. The MCU can deliver either 5V or 3.3V. To make it deliver
3.3V the 0 Ohm resistance needs to be removed from the PCB so it becomes an infinite resistance.
Then using the data-sheet found in [15, p. 32-34], a 3.3V pin and a ground are connected to the
supply pins of the BLE module. See [16] for the pins. Both AVDD and DVDD of BLE modules need to
be connected but this specific BLE module has these two internally connected. This means two wires
to power the device on one of the supply pairs is sufficient. Next up is the UART connection. In the
original programs of J. Rowberg he makes use of the SoftwareSerial library which allows users to assign
any pin on the MCU to be RX or TX. This works in theory, but not in practice at the moment. When the
signals coming from the MCU using SoftwareSerial are analyzed, they appear to have lost their start
bit. For this reason we use a second hardware serial on the MCU: serial 3. [15, p. 33]

Figure A.1: T-Minus boards connected to BLE modules

To connect the RX/TX of the BLE module the pins need to be defined within the firmware. Pin P0.4
is used as TX and P0.5 as RX. [17] Flow Control pins do not have to be assigned yet. Now there are four
cables going from MCU to the module as can be seen in the photo. Here extra cables are seemingly
connected for extra physical stability, but they have no function.
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A.2. Firmware
Firmware consists of a combination of files. In this case:

• gatt.xml

• hardware.xml

• project.bgproj

• script.bgs (optional BGScript application source code)

• cdc.xml (optional usb descriptor file, not used with BLE113)

• config.xml (optional application configuration file)

The first three are essential for the functioning of the module. The other three are not. The script
file (bluegiga-script; bgs) is used to run a program on the BLE module itself. The language is relatively
easy and well documented in [18] and [19]. The module can do a lot on its own and for example
decide what to advertise or send. Or it can run a script which sends every message received through
UART to another specific or non-specific module. In this setup the BLE module requires no script. All
commands are executed on the MCU and the results are being send to the module. Therefore the
firmware on the module only consists of the first three files given by the list above.

A.2.1. Gatt.xml
In this file there are two things defined: services and characteristics. Services define a group of
characteristics used for something. Take the first service:

<service uuid=”1800”>
<description>Generic Access Profile</description>
<characteristic uuid=”2a00”>
<properties read=”true” const=”true” />
<value>Zebro Control 115200</value>
</characteristic>
</service>

This service is used to group all characteristics that define the device. This service is a standard one
and therefor has a UUID of only 4 characters (16 bit). A non-standard UUID will have 32 characters
(128 bit) and needs to be randomly generated by the user. On the site [20] there’s a complete list of
standard UUIDs.

This service is not good for much, but is mandatory! It enables advertising a device name which
needs to be done when GAP (generic access profile) is used. In practice this is almost always the case
and that’s why it’s mandatory. Other services and characteristics can be defined by the user. For this
consult [21].

One last thing: this file differs for master and slave on only one point. The difference lays within the
Cable Replacement Service. After the UUID of the master there’s ’advertise=true’. If this is absolutely
necessary is yet unclear.

A.2.2. Hardware.xml
This file is very important and its contents are described very well in [22]. Only the USART command
will be discussed because [22] describes all other commands very well. The USART command has two
attributes that need special attention: ’channel’ and ’alternate’.

Channel can be either 0 or 1 and Alternate 1 or 2. This results in four combinations. And it’s no
coincidence that there are four possible ways of connecting the BLE module via UART shown in table
A.1.

When channel 1, alternate 1 is chosen this must be declared within the USART command. RTS and
CTS are pins used for flow control and not in use at the moment. This means flow control needs to be
disabled with the ’flow=false’ statement. This has one consequence: only packet-mode can be used.
Because packet mode is used, a length byte at the beginning of a string of bits needs to be added.
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Channel Alternate RX TX RTS CTS
0 1 P0_2 P0_3 P0_5 P0_4
0 2 P1_4 P1_5 P1_3 P1_2
1 1 P0_5 P0_4 P0_3 P0_2 (Selected)
1 2 P1_7 P1_6 P1_5 P1_4

Table A.1: UART pin assignment table

A.2.3. Config.xml
This file is optional. [22] Describes what is possible with config.xml. This project uses the following
command to ensure maximum throughput.

<config>
<manual_confirm />
<throughput optimize=”performance” />
</config>

A.2.4. Project.bgproj
This file is also well documented in [22]. This file starts a compiler which outputs a hex-file. This
file is then flashed onto the BLE module. To flash firmware onto the module the development kit
with Bluetooth Smart Software and SDK v1.3.1 are needed. The documentation [20] will help where
needed.

The firmware is downloaded onto the module with the help of the development kit from Bluegiga.
Connect the development kit to the pc and the module to the kit as shown in the picture.

Figure A.2: Bluegiga Development Board connected to BLE module

Press the ’reset debugger’ button to check the connection. If the LED turns red put the debugger
switch from ’module’ to ’output’ and press the button again.
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A.3. Software
When programming with BGScript all commands are already defined. This is not the case when code
is run on an external MCU. Because of this the library from Bluegiga adapted by Jeff Rowberg is used.
This library ensures that every command is translated into correct packets which the BLE module can
read. For example:

ble_cmd_system_hello => [ 04 00 00 00 01 ]
(The first number is the length byte)

This library makes programming on a separate MCU as easy as programming in BGScript. To ’install’
this library, put the three files in the same folder as the software file. (In this case an Arduino file.)
The files are: BGLib.cpp, BGLib.h and BGLibConfig.h. They were made as any other Arduino library, so
no changes are necessary.

A.4. Swarming Zebro Software v1.7
This project enables the master to send numbers 1-9 to the slave and make it turn on the corresponding
LED. The code speaks for itself, but there are a few fundamental things that are important. First the
master needs to scan for other modules and if present, discover these modules. When a module is
discovered the scan_response event is triggered. Within this event a connect_direct statement is
placed to connect to the discovered module. When the connection is made the connection_status
event is triggered. This is conformation that connecting was successful. For the slave we only need to
put the module in discoverable mode via gap_set_mode. Now a value must be changed on the slave
within the GATT file. This can be done with the attclient_attribute_write statement from
the master. When the write is successful the slave creates an attributes_value event. This event
shows a value was changed. Within this event a write_response needs to be send confirmation back
to the master to let it know the write was successful. All of the above ensure steady communication.

A.5. Used materials
• Ble module designed by Elpasys

• Modified Arduino-like pcb by T-Minus (ATMega 2560)

• Bluegiga Development Kit

• Farnell-componenten: order number

– 20 core ribbon cable: 1207757

– RECEPTACLE, IDC, S/RELIEF, 2.54MM, 20WAY: 1103920

– RECEPTACLE, IDC, 1.27MM, 20WAY: 2289785

– CONNECTOR, RECEPTACLE, IDC, 1.27MM, 6WAY: 1865334
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V-Rep & Matlab

B.1. Introduction
As can be read in 1.5.2, the project started of with creating a model in V-Rep [23]. V-Rep is a robot
simulation environment in which it is possible to simulate all kinds of robots. In this project is used to
simulate the behaviour of the units. In this project a model is derived from the tutorial robot ’BubbleRob’
which has very basic controls:

• Distance sensor

• Motor on right wheel

• Motor on left wheel

The big advantage of V-rep, is that it can be linked to third party programs as Matlab. This enabled
us to design a algorithm for the units in Matlab and check the results in V-Rep.

B.2. Linking V-Rep with Matlab
It is quite hard to link V-rep with Matlab. There are several .dll files needed and there are several
settings that need to be set.

The files required for linking Matlab with V-rep:

• remoteApi32bit.dll

• remoteApi64bit.dll

• remoteApiProto.m

• remApi.m

These original files can be found in the V-rep directory on your Hard Disk. In order to make the
simulation run on all computers (32bit, 64bit, Mac), the remApi.m is adjusted together with the names
of the .dll files. It is possible to receive the adjusted files by contacting one of the authors.

Furthermore, it is important to get the settings right. For this project the following settings were
used, as described in the V-Rep help file:
IP adress 127.0.0.1
Port 19997
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B.3. Running algorithms in Matlab
The simulation is controlled by two different Matlab files:

• Main.m

• A controller (i.e. RARD.m)

The Main.m file sets up the link with V-rep. It also clears everything, sets some parameters and
prepares Matlab and V-Rep for the oncoming simulation. In the end Main.m calls for the controller.
This controller can be interchanged. Development of a controller is an ongoing process. In the example
in figure B.1 you can see the behaviour of a very basic swarm:

Units drive straight until they detect something. When they detect something, they drive backwards
while turning a fixed angle.

(a) Starting position (b) Position after 41 seconds

Figure B.1: V-Rep model at starting position and after 41 seconds

Later in the project this controller is used to implement Multi Dimensional Scaling. This controller
can be found in C.2.



C
Matlab files

C.1. Main.m
This file starts the connection between V-rep and MATLAB. After the connection is established the
simulation will be started with the chosen controller.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Main.m %
3 % v2.0 10-11-2014 %
4 % Bachelor Eind Project %
5 % %
6 % Stijn Seuren / Floris Rouwen %
7 % Marcel Ceelen / Cees van der Geer %
8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
9 %{
10 USE OF MATRIXES
11 Handles Matrix
12 Used to store all the robot handles in 1 matrix . Rows from left to right :
13 [S LM RM]
14 Error Matrix
15 Used to store all the error values , returned by V rep . These values are
16 checked regularly throughout the file to make sure model runs fine and
17 can be used for debugging . Rows from left to right :
18 [SHandle LMHandle RMHandle SValue LMValue RMValue Heading Reverse ]
19 %}
20

21

22 %% Clean Matlab
23 clc
24 clear all
25 close all
26 disp(’Program started’) ;
27 disp(’Matlab cleared’) ;
28

29 %% Settings for the connection and simulation
30 % Connection settings
31 ip = ’127.0.0.1’ ; % Localhost
32 port = 19997; % Choose port, below 19997 are preferred for server

services starting at V-REP start-up
33

34 % Simulation settings
35 t = 100; % Simulation time [s]
36 v = 5; % Initial speed
37

38 % Matlab settings
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39 pause on
40 hold on
41

42 % Controller settings
43 detobjrange = 0.25; %Detection object range
44 detgoalrange = 0.5 ; %Detection goal range
45 dbtime = 3; %Drive back time [s]
46 longdrive = 10e7 ;
47

48 % Initial settings
49 stop = 0;
50

51

52 %% Connect to V-rep using API key
53 vrep=remApi ;
54 vrep .simxFinish( 1) ; % Close all opened connections
55 clientID=vrep .simxStart(ip ,port ,true ,true ,5000 ,5) ; % Initiate connection with V-

rep
56 if (clientID> 1)
57 disp(’Connected to remote API server’) ;
58 vrep .simxAddStatusbarMessage(clientID ,’Matlab connected to V-rep’ ,vrep .

simx_opmode_oneshot) ;
59 else
60 disp(’Failed connecting to remote API server’) ;
61 end
62

63 %% Simulation Code
64

65

66 if (clientID> 1)
67 [res ,objs]=vrep .simxGetObjects(clientID ,vrep .sim_object_proximitysensor_type ,

vrep .simx_opmode_oneshot_wait) ;
68 if (res==vrep .simx_return_ok)
69 fprintf(’Number of robots in the scene: %d\n’ ,length(objs) ) ;
70 units = length(objs) ;
71 else
72 fprintf(’Remote API function call returned with error code: %d\n’ ,res) ;
73 end
74

75 % Form matrices
76 speed = ones(units , 2 ) *v*3.1415;
77 % speed(1,:)= 0;
78 error = zeros(units , 9 ) ;
79 handle = zeros(units , 3 ) ;
80 distance = zeros(units ,units) ;
81 Robotinfo = zeros(units,(10+units) ) ;
82

83

84 % Receive handles
85 disp(’Receiving handles..’)
86 for i=1:units ;
87 [error(i , 1 ) ,handle(i , 1 ) ] = vrep .simxGetObjectHandle(clientID , [’

remoteApiControlledBubbleRobSensingNose#’ ,num2str(i) ] , vrep .
simx_opmode_oneshot_wait) ;

88 [error(i , 2 ) ,handle(i , 2 ) ] = vrep .simxGetObjectHandle(clientID , [’
remoteApiControlledBubbleRobLeftMotor#’ ,num2str(i) ] , vrep .
simx_opmode_oneshot_wait) ;

89 [error(i , 3 ) ,handle(i , 3 ) ] = vrep .simxGetObjectHandle(clientID , [’
remoteApiControlledBubbleRobRightMotor#’ ,num2str(i) ] , vrep .
simx_opmode_oneshot_wait) ;
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90 [error(i , 5 ) ]= vrep .simxSetJointTargetVelocity(clientID ,handle(i , 2 ) , speed(i , 1 )
, vrep .simx_opmode_oneshot) ;

91 [error(i , 6 ) ]= vrep .simxSetJointTargetVelocity(clientID ,handle(i , 3 ) , speed(i , 2 )
, vrep .simx_opmode_oneshot) ;

92 end
93 if any(error ( : ) )<= (vrep .simx_return_ok+1) % Error debug
94 disp(’All handles received’)
95

96 else
97 disp(’Failed to load all handles’) ;
98 disp ( [’Sensor handle error: ’ ,mat2str(error ( : , 1 ) ) ] )
99 disp ( [’Left motor handle error: ’ ,mat2str(error ( : , 2 ) ) ] )
100 disp ( [’Right motor handle error: ’ ,mat2str(error ( : , 3 ) ) ] )
101 stop = 1;
102 end
103

104 % Set Goal to find
105 [Goalerror ,Goal] = vrep .simxGetObjectHandle(clientID ,’Goal’ , vrep .

simx_opmode_oneshot_wait) ;
106

107 vrep .simxStartSimulation(clientID ,vrep .simx_opmode_oneshot) ; % Start
simulation

108 disp(’Simulation started’) ;
109 testtime = datenum(clock + [0 , 0 , 0 , 0 , 0 , t ] ) ;
110

111 %FARD %Fixed Angle, Random Distance
112 %RAFD %Random Angle, Fixed Distance
113 RARD %Random Angle, Random Distance
114 %Zebrocontrollerv2 % Start the Zebrocontroller
115

116 axis([ 4 4 4 4])
117 text(location ( : , 1 ) +0.1 ,location ( : , 2 ) ,strsplit(num2str (1 :units) ) ) %Add numbers

to graph
118

119 % [bandwidth,density,X,Y]=kde2d(location,128);
120 % contour3(X,Y,density,50), hold on
121 % plot(location(:,1),location(:,2),’r.’,’MarkerSize’,8)
122

123

124 vrep .simxPauseSimulation(clientID ,vrep .simx_opmode_oneshot) ; %Stop simulation
125 disp(’Simulation ended’) ;
126 end
127

128

129 %% Closing down
130 vrep .simxAddStatusbarMessage(clientID ,’Matlab closes connection’ ,vrep .

simx_opmode_oneshot) ;
131 vrep .simxFinish(clientID) ; %Close connection with V-rep
132 vrep .delete ( ) ; % Unload the library
133 pause off
134 disp(’Program ended’) ;
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C.2. RARD.m
This is the RARD controller.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Zebro.m %
3 % v1.0 23-09-2014 %
4 % Bachelor Eind Project %
5 % %
6 % Stijn Seuren / Floris Rouwen %
7 % Marcel Ceelen / Cees van der Geer %
8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
9

10 % This m-file contains de controller for the individual Zebro’s. It can be
11 % run multiple times by Matlab to control multiple zebro’s in one V-rep
12 % scene.
13 %%
14

15 % Create reference
16 [reterr , ~, ~, retFloats , ~]= vrep .simxGetObjectGroupData(clientID ,vrep .

sim_object_proximitysensor_type , 9 ,vrep .simx_opmode_oneshot_wait) ;
17 error (1 :units , 7 ) = reterr ;
18 movement = vec2mat(retFloats , 6 ) ;
19 position = movement (1 :units , 1 : 3 ) ;
20 orientation = movement (1 :units , 4 : 6 ) ;
21

22 for i=1:units
23 for j=1:units
24 distance(i ,j) = pdist ( [position(i , 1 : 3 ) ;position(j , 1 : 3 ) ] ,’euclidean’) ;
25 end
26 end
27 MDS = squareform(distance) ;
28 location_ref = cmdscale(MDS) ;
29 %location_ref = location_ref(:,1:2);
30 tic
31

32 %%
33 while (vrep .simxGetConnectionId(clientID)> 1) && (stop == 0) && (now < testtime)
34 A = rand*45; %Random degrees
35 D = 2; %Random distance driven [s]
36

37 [reterr , ~, retInts , retFloats , ~]= vrep .simxGetObjectGroupData(clientID ,vrep .
sim_object_proximitysensor_type ,13 ,vrep .simx_opmode_oneshot_wait) ;

38 error (1 :units , 4 ) = reterr ;
39 detection = double(vec2mat(retInts , 2 ) ) ;
40 detectedpoint = vec2mat(retFloats , 6 ) ;
41 detdistance = sqrt(sum(detectedpoint (1 :units , 1 : 3 ) .^2 ,2) ) ; %Calculate

distance to detected object
42

43 [reterr , ~, ~, retFloats , ~]= vrep .simxGetObjectGroupData(clientID ,vrep .
sim_object_proximitysensor_type , 9 ,vrep .simx_opmode_oneshot_wait) ;

44 error (1 :units , 7 ) = reterr ;
45 movement = vec2mat(retFloats , 6 ) ;
46 position = movement (1 :units , 1 : 3 ) ;
47 orientation = movement (1 :units , 4 : 6 ) ;
48

49 for i=1:units
50 for j=1:units
51 distance(i ,j) = pdist ( [position(i , 1 : 3 ) ;position(j , 1 : 3 ) ] ,’euclidean’) ;
52 end
53 end
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54 orientation = 360 ( (radtodeg(orientation ( : , 2 ) ) .*sign(orientation ( : , 1 ) ) )
+90) ;

55 robotnumber = (1:units) ’ ;
56 spacer = zeros(units , 3 ) ;
57

58 %Robotinfo= [ 1 2 3-4 5 6-7 8-9-10 10:
units];

59 Robotinfo = [robotnumber ,orientation ,detection ,detdistance ,speed ,spacer ,
distance ] ;

60 % MDS = squareform(distance);
61 % location = cmdscale(MDS,2);
62 % [d,location] = procrustes(location_ref,location,’Reflection’,true,’Scaling’,

false);
63 % plot(location(:,1),location(:,2),’.’)
64 % location_ref = location;
65

66 for i=1:units ;
67 if (error(i , 4 )<= vrep .simx_return_novalue_flag) % Proximity sensor read

successful
68

69

70 % % CASE: Driven long in a straight direction
71 % if (now < longdrive)
72 % speed(i,1) = 0.5*3.1415;
73 % speed(i,2) = -0.5*3.1415;
74 % [error(i,5)]= vrep.simxSetJointTargetVelocity(clientID,handle(i

,2), speed(i,1), vrep.simx_opmode_oneshot);
75 % [error(i,6)]= vrep.simxSetJointTargetVelocity(clientID,handle(i

,3), speed(i,2), vrep.simx_opmode_oneshot);
76 % if [error(i,5) error(i,6)] > vrep.simx_return_novalue_flag %

Error debug
77 % disp(’Failed in setting velocities’)
78 % disp([’Left motor handle speed error: ’,num2str(error(i,5))

])
79 % disp([’Right motor handle speed error: ’,num2str(error(i,6))

])
80 % stop = 1;
81 % end
82 % longdrive = 10e7;
83 % error(i,9)=1;
84 % disp(’long’)
85 %
86 % CASE: Robot detects an object, other than the Goal
87 if (Robotinfo(i , 5 ) < detobjrange) && (Robotinfo(i , 5 ) > 1e 30) &&

Robotinfo(i , 3 ) && error(i , 8 )==0
88 speed(i , 1 ) = 0.5*3.1415;
89 speed(i , 2 ) = 0.5*3.1415;
90 [error(i , 5 ) ]= vrep .simxSetJointTargetVelocity(clientID ,handle(i , 2 )

, speed(i , 1 ) , vrep .simx_opmode_oneshot) ;
91 [error(i , 6 ) ]= vrep .simxSetJointTargetVelocity(clientID ,handle(i , 3 )

, speed(i , 2 ) , vrep .simx_opmode_oneshot) ;
92 if [error(i , 5 ) error(i , 6 ) ] > vrep .simx_return_novalue_flag %

Error debug
93 disp(’Failed in setting velocities’)
94 disp ( [’Left motor handle speed error: ’ ,num2str(error(i , 5 ) ) ] )
95 disp ( [’Right motor handle speed error: ’ ,num2str(error(i , 6 ) ) ] )
96 stop = 1;
97 end
98 error(i , 8 ) = Robotinfo(i , 2 )+ A ; %Starting angle
99 if error(i , 8 )>= 360
100 error(i , 8 )=error(i , 8 ) 360;
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101 end
102 error(i , 9 ) = 1;
103

104 % CASE: After evading object
105 elseif (Robotinfo(i , 5 ) > detobjrange) && (error(i , 9 )==1) && (Robotinfo

(i , 2 ) >= error(i , 8 ) )
106 speed(i , 1 ) = 3.1415;
107 speed(i , 2 ) = 3.1415;
108 [error(i , 5 ) ]= vrep .simxSetJointTargetVelocity(clientID ,handle(i , 2 )

, speed(i , 1 ) , vrep .simx_opmode_oneshot) ;
109 [error(i , 6 ) ]= vrep .simxSetJointTargetVelocity(clientID ,handle(i , 3 )

, speed(i , 2 ) , vrep .simx_opmode_oneshot) ;
110 if [error(i , 5 ) error(i , 6 ) ] > vrep .simx_return_novalue_flag %

Error debug
111 disp(’Failed in setting velocities’)
112 disp ( [’Left motor handle speed error: ’ ,num2str(error(i , 5 ) ) ] )
113 disp ( [’Right motor handle speed error: ’ ,num2str(error(i , 6 ) ) ] )
114 stop = 1;
115 end
116 error(i , 8 ) = 0;
117 error(i , 9 ) = 0;
118 longdrive = datenum(clock + [0 , 0 , 0 , 0 , 0 , D ] ) ;
119

120 % CASE: Goal found
121 elseif (Robotinfo(i , 5 ) < detgoalrange) && (Robotinfo(i , 5 ) > 1e 30) &&

(Robotinfo(i , 4 ) == Goal) && Robotinfo(i , 3 )
122 vrep .simxAddStatusbarMessage(clientID ,’Goal found!’ ,vrep .

simx_opmode_oneshot) ;
123 disp(’Goal found!’)
124 speed(i , 1 ) = 0;
125 speed(i , 2 ) = 0;
126 toc
127 vrep .simxPauseSimulation(clientID ,vrep .simx_opmode_oneshot)
128 stop = 1;
129 end
130

131 else
132 disp(’Proximity read failed!’)
133 disp ( [’Proximity error: ’ ,num2str(error(i , 4 ) ) ] )
134 stop = 1;
135 end
136 end
137 end
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E
Meetings

In this appendix, the minutes of the different meetings can be found. The minutes are ordered chrono-
logically and in Dutch.

E.1. Meeting 02-09-2014
Aanwezig:
Groep + Chris

Gepraat over plan van aanpak en doelstellingen. Deze doelstellingen zijn:

1. Randomly walk around the room

2. Randomly walk around the room without collisions between Zebros

3. Randomly walk around the room in a swarming group without collisions between Zebros

4. (Randomly) Walk around the room in a swarming group without collisions between Zebros while
having for example synchronized movement or walking in a figure V.

To Do’s:

Stijn

• V-rep uitzoeken.

• Cees helpen met Matlab voor uitlezen coördinaten en communicatie met Zebro en wellicht V-rep.

• Mailtje over bonding-activiteit

Marcel

• Regelen afspraak met Sjoerd Tijmons voor vrijdag 05-09-2014.

• Regelen afspraak met Marnix voor maandag 08-09-2014 13:00.

• Regelen met Lopes dat het project ingezonden wordt + opgeven studienummers bij de course
via deze link:
http://threeme.collector-survey.tudelft.nl/nq.cfm?q=77CB2358-6B75-442A-91BA-E858B3250A30

• Met Floris verdiepen in Linux op Zebro met hulp van Marnix. Op 08-09-2014.

Floris

• Verdiepen in swarming behavior.

• Met Marcel verdiepen in Linux op Zebro met hulp van Marnix. Op 08-09-2014.
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Cees

• Planning maken.

• Opzet van het verslag maken.

• Samen met Stijn verdiepen in Matlab.

E.2. Meeting 08-09-2014
Aanwezig:
Groep + Marnix van der Heide

Marnix kwam langs om uit te leggen hoe de communicatie tussen de Zebro en een ander device
werkt. Deze communicatie verloopt via Wifi. In de Zebro zit een Beaglebone (Linux Computer) die
via een dongel via een router voor het Zebro project verbinding maakt. Er kan dan met een andere
pc, tablet of telefoon op de localhost van de Beaglebone ingelogd worden om de bewegingen van de
Zebro aan te sturen.

Het advies dat Marnix gaf is om zo min mogelijk met de Zebro zelf te doen. Het is een buggy
en instabiel systeem en kan ons project benadelen. Hij gaf het advies om met kleine bordjes als T-
minus aan de slag te gaan en proberen onze doelen daarmee te bereiken voordat we het een en ander
proberen te implementeren in Zebro. Wanneer alles op een klein bordje werkt kunnen we ons zorgen
gaan maken over de aansturing van de Zebro. De focus ligt namelijk op het ontwikkelen van autonoom
gedrag en niet op het opnieuw ontwerpen van de Zebro.

E.2.1. Losse aantekeningen
In browser ip intypen om in de Zebro in te loggen: IP= 192.168.1.7 ∶ 81 of 192.168.1.8 ∶ 81. Wacht-
woord: 𝑧𝑒𝑏𝑟𝑜𝑙𝑖𝑔ℎ𝑡

In een soort commandcenter van een linuxpc kun je de mappenstructuur van de Beaglebone
uitlezen.

Typ dan:
𝑠𝑠ℎ𝑟𝑜𝑜𝑡@192.168.1.8 (of 192.168.1.7) verschilt dus per IP adres. (ssh=secure shell)
Wachtwoord: zebrolight

Als je dan de opdracht ./𝑍𝑒𝑏𝑟𝑜𝐿𝑖𝑔ℎ𝑡 ingeeft kom je in de structuur van de Zebro-map terecht en
kun je zien in hoeverre de opdrachten die gegeven worden doorkomen.

De Zebro wordt aangestuurd door zogenaamde ’websockets’. Dit zijn poorten die uitgelezen wor-
den door de beaglebone. De website die op de beaglebone draait geeft de aansturingen door via
deze websockets (Marnix zou deze webcode doorsturen, ter referentie voor ons). Matlab kan ook de
aansturing via deze websockets verzorgen. Frankain, de man die aan de grote zebro op 3ME werkt,
weet hier heel veel over. Frankain heeft ook code geschreven om een matlab server op te zetten
waarmee de websockets aangestuurd kunnen worden, dat stuurt Marnix ook door. Uiteindelijk kan de
aansturing ook via UARD plaatsvinden (een verbinding die op veel controleboards zit, zowel arduino
als beaglebone) wanneer de bluetooth geïnstalleerd wordt. De websockets zijn dan niet meer nodig.



Glossary

BLE Bluetooth Low Energy.

CCW Counterclockwise.

CW Clockwise.

FARD Fixed angle, random distance.

KDE Kernel Density Estimation.

LoA List of Assumptions.

LoR List of Requirements.

MDS Multi Dimensional Scaling.

POI Point of Interest, i.e. a charging station.

RAFD Random angle, fixed distance.

RARD Random angle, random distance.

RSSI Received Signal Strength Indication.

SI Swarm Intelligence.

Unit General term for an agent. Could be a Zebro.

V-Rep Virtual Robot Experimentation Platform.
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Nomenclature

𝜆 Wavelength

𝜃 The turning angle for a single turn

𝜃 The turning direction: clockwise or counterclockwise

𝐴 Area covered by a unit from start of operations until a specific moment in time

𝐴 Area covered by charging station

𝐴 The total area of the search space

𝑐 Speed of light [ / ]

𝐷 Distance between sender and receiver

𝑑 Distance [m]

𝐷 Maximum distance of separation

𝐷 The distance an agent travels (in a straight line)

𝐷 The total distance travelled by an agent

𝐸 Total energy used per agent from start of operations until a specific moment in time

𝐸 The total amount of energy used by an agent

𝑓 Frequency for Bluetooth 4.0 [Hz]

𝐿 The energy level of a unit

𝑀 The moving direction: still, forward of backwards

𝑛 The number of agents

𝑛 Constant value that describes accounts for all noise

𝑃 , Received signal strength at 1 meter distance [dBm]

𝑃 (𝑑) Received RSSI at certain distance [dBm]

𝑃 Received power at the receiver

𝑃 Transmitted RSS [dBm]

𝑅 The radius of the perimeter around a charging station in which it can be detected

𝑅 The ’detectionradius’ or ’the field of view’ around an agent

𝑅 The turning radius

𝑇 The maximum amount of time in which a charging station has to be found

𝑉 Speed of a unit [m/s]

𝑋 Zero mean Gaussian distributed random variable with standard deviation 𝜎, accounts for the
random effect of shadowing.
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