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Abstract
It is common practice to use the well-known concept of the minimal detectable bias (MDB) to assess the performance of
statistical testing procedures.However, such procedures are usually applied to a null and a set ofmultiple alternative hypotheses
with the aim of selecting the most likely one. Therefore, in the DIA method for the detection, identification and adaptation
of model misspecifications, rejection of the null hypothesis is followed by identification of the potential source of the model
misspecification. With identification included, the MDBs do not truly reflect the capability of the testing procedure and
should therefore be replaced by the minimal identifiable bias (MIB). In this contribution, we analyse the MDB and the MIB,
highlight their differences, and describe their impact on the nonlinear DIA-estimator of the model parameters. As the DIA-
estimator inherits all the probabilistic properties of the testing procedure, the differences in theMDB andMIB propagationwill
also reveal the different consequences a detection-only approach has versus a detection+identification approach. Numerical
algorithms are presented for computing the MDB and the MIB and also their effect on the DIA-estimator. These algorithms
are then applied to a number of examples so as to analyse and illustrate the different concepts.

Keywords Detection-Identification-Adaptation (DIA) · Statistical testing · Minimal detectable bias (MDB) · Minimal
identifiable bias (MIB) · DIA-estimator

1 Introduction

Empirical data are often collected to make statistical infer-
ences about a certain phenomenon. In doing so, a set of
candidate observational models are considered that could
potentially describe the observed phenomenon. An infer-
ence procedure will then often involve, on the basis of the
collected data, selecting the most likely model among the
hypothesized ones through a testing procedure, and estimat-
ing theunknownparameters of interest basedon the identified
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model. This combined estimation and testing process is cap-
tured in the DIA-method for the detection, identification
and adaptation of model misspecifications (Teunissen 2018).
Although the method was initially developed for geodetic
quality control (Baarda 1968; Teunissen 1985), it also found
successful applications in other fields, including navigational
integrity (Teunissen 1990; Gillissen and Elema 1996; Yang
et al. 2014), deformation analysis and structural health mon-
itoring (Verhoef and De Heus 1995; Yavaşoğlu et al. 2018;
Durdag et al. 2018; Lehmann and Lösler 2017; Nowel 2020),
andGNSS integritymonitoring (Jonkman andDe Jong 2000;
Kuusniemi et al. 2004;Hewitson andWang 2006;Khodaban-
deh and Teunissen 2016).

For a proper probabilistic evaluation, it is crucial that all
uncertainties of detection, identification and adaptation are
accounted for when describing the quality of the finally pro-
duced output. In the Detection step, the validity of the null
hypothesis (working model)H0 is checked. IfH0 is rejected
in the detection step, the Identification step is taken so as to
select the most likely alternative hypothesis among the can-
didate ones. The Adaptation step is then followed to correct
earlier H0-based inferences according to the decision made
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in the identification step. Therefore, in the DIA procedure,
estimation of the unknown parameters is always affected by
the outcome of testing of the considered hypotheses through
detection and identification steps. As the finally produced
DIA-estimatorwill then have inherited all uncertainties stem-
ming from both estimation and testing, it is its probability
density function (PDF) that should form the basis of any
qualitative analysis (Teunissen 2018).

In this contribution, we study the multi-hypothesis testing
performance of the detection and identification steps using
the concepts of the minimal detectable bias (MDB) (Baarda
1967, 1968) and the minimal identifiable bias (MIB) (Teu-
nissen 2018), respectively. The former is a diagnostic tool for
measuring the ability of the testing procedure to detect mis-
specifications of the model, while the latter is a diagnostic
tool for measuring the ability of the testing procedure to cor-
rectly identifymisspecifications of themodel. The difference
between the MDB and the MIB has already been studied for
outlier detection and identification in (Imparato et al. 2019;
Zaminpardaz and Teunissen 2019). In this contribution, we
analyse and demonstrate the difference between the MDB
and the MIB for higher-dimensional biases, whereby for
identification all test statistics are transformed to have a com-
mon distribution so as to take their differences in degrees of
freedom into account. Furthermore, we show how the MDB-
andMIB-sizedbias get propagated into theDIA-estimator for
detection-only and detection+identification testing regimes,
respectively. Next to the provided theory, we also provide
computational procedures on how to compute the MDB, the
MIB and their propagation into the mean of the nonlinear
DIA-estimator.

This contribution is structured as follows. A brief review
of the DIA method is provided in Sect. 2. We specify the null
and alternative hypotheses and discuss the implementation
of the testing and estimation schemes of the DIA method
using a canonical model formulation and a partitioning of
misclosure space. The testing decisions and their probabil-
ities are discussed, leading to the DIA-estimator, for which
the statistical distribution and mean are then provided. It is
thereby highlighted that the DIA-estimator is always biased
under the alternative hypotheses, and we show how its bias
can be numerically evaluated.

In Sect. 3, we specify the detection test, discuss its MDB
and provide a numerical algorithm for the MDB compu-
tation. In Sect. 4, we formulate the identification test for
the general situation where the alternative hypotheses are
of multiple dimensions and different from each other. The
corresponding MIB together with a numerical algorithm for
its computation are then provided and discussed. Section5
provides, by means of a number of examples, an analy-
sis of the MDBs and the MIBs, their differences and their
impact on the DIA-estimator. To emphasize the difference
between the concepts of the MDB and the MIB, we hereby

discriminate between two testing schemes: (1) Detection-
only and (2) Detection+Identification. In the detection-only
case, the MDB shows the minimal size of biases that lead to
the rejection ofH0, and thus to an unavailability of a param-
eter solution. To avoid such unavailability, one can include
identification at the expense of a larger risk. In the detec-
tion+identification case, the MIB shows the minimal size
of biases that can be identified. It is highlighted that using
MDB to infer the identifiability of alternative hypotheses is
dangerous as it could lead to misleading conclusions on the
testing performance. Finally, a summary with conclusions is
provided in Sect. 6.

We use the following notation: E(·) and D(·) denote the
expectation and dispersion operator, respectively. The space
of all n-dimensional vectors with real entries is denoted as
R
n , while the zero-centred sphere S

n−1 ⊂ R
n contains the

unit n-vectors from origin. Random vectors are indicated by
use of the underlined symbol ‘·’. Thus, y ∈ R

m is a random
vector, while y is not. The squared weighted norm of a vec-
tor, with respect to a positive-definite matrix Q, is defined as
‖·‖2Q = (·)T Q−1(·).H is reserved for statistical hypotheses,
P for regions partitioning the misclosure space,N (y, Q) for
the normal distribution with mean y and variance matrix Q,
and χ2(r , λ2) for the Chi-square distribution with r degrees
of freedom and the non-centrality parameter λ2. The cumula-
tive distribution function (CDF) of the distribution ∗ is shown
by CDF∗(·). P(·) denotes the probability of the occurrence of
the event within parentheses. The symbol

H∼ should be read
as ‘distributed as . . . under H’. The superscripts T and −1

are used to denote the transpose and the inverse of a matrix,
respectively.

2 An overview of the DIAmethod

In this section, we provide a brief overview of the DIA
method and describe its testing and estimation elements.
As our point of departure, we first formulate the null- and
alternative hypotheses, where we restrict our attention to the
linear model with normally distributed observables, which
is commonly used in different applications. Under the null
hypothesis H0, the random vector of observables y ∈ R

m is
assumed to be normally distributed as

H0 : y ∼ N
(
Ax , Qyy

)
(1)

where its mean is linearly parameterized in the unknown
parameters x ∈ R

n through the known full-rank design
matrix A ∈ R

m×n , and its dispersion is modelled by the
positive-definite variance matrix Qyy ∈ R

m×m . The best lin-
ear unbiased estimator (BLUE) of x based on (1) is given as

x̂0 = A+ y (2)
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in which A+ = (AT Q−1
yy A)−1AT Q−1

yy is the BLUE-inverse
of A.

When modelling y through (1), different types of mis-
specifications could be expected, including E(y) �= Ax ,
D(y) �= Qyy , and y not following a normal distribution.
Here, we assume that a misspecification is restricted to an
underparametrization of the mean of y (Teunissen 2017).
Hence, the alternative hypothesis Hi takes the form

Hi : y ∼ N (Ax + Cibi︸︷︷︸
byi

, Qyy) (3)

for some vector byi = Cibi ∈ R
m \ {0} such that [A Ci ] ∈

R
m×(n+qi ) is a known matrix of full rank and bi ∈ R

qi is
an unknown bias vector. The BLUE of x based on (3) is not
given by (2), but instead by

x̂ i = Ā+
i y (4)

where Ā+
i = ( ĀT

i Q
−1
yy Āi )

−1 ĀT
i Q

−1
yy is the BLUE-inverse

of Āi = P⊥
Ci
A, with P⊥

Ci
= Im − PCi and PCi =

Ci (CT
i Q−1

yy Ci )
−1CT

i Q−1
yy being the orthogonal projector that

projects onto the range space of Ci . As, in practice, there are
several different sources that canmake the observables’mean
deviate from the H0-model, multiple alternative hypotheses
usually need to be considered to capture the corresponding
deviations. For example when modelling GNSS data, one
may need to take into account pseudorange outliers, carrier-
phase cycle slips and non-negligible atmospheric delays. In
the following, we assume that there are k ≥ 1 alternative
hypotheses of the form of (3).

Having specified the null and alternative hypotheses, the
DIA procedure is carried out using a sample of observables
y as follows (Baarda 1968; Teunissen 1985):

• Detection: The assumed null hypothesisH0 undergoes a
validity check for the observed data, without the need of
having to consider a particular set of alternative hypothe-
ses. If H0 is decided to be valid, x̂0 is provided as the
estimator of x .

• Identification: In case H0 is decided to be invalid in the
detection step, a search is carried out among the specified
alternatives Hi (i = 1, . . . , k) to pinpoint the discrep-
ancy between H0 and the observed data. In doing so,
two decisions can be made. Either one of the alternative
hypotheses, sayHi , is confidently identified, or none can
be identified as such in which case an ‘undecided’ deci-
sion is made.

• Adaptation: IfHi is confidently identified, it takes the role
of the new null hypothesis, and thus x̂ i is provided as the
estimator of x . However, in case the ‘undecided’ decision
is made, then the solution for x is declared ‘unavailable’.

2.1 Implementation of the DIAmethod

Let B ∈ R
m×r , with r = m−n the redundancy underH0, be

a basis matrix of the null space of AT , i.e. AT B = 0 and rank
(B) = r . The random vector of observables y can be brought
in canonical form using one-to-one Tienstra-transformation
T = [A+T

, BT ]T ∈ R
m×m as (Tienstra 1956; Teunissen

2018)

T y =
[
x̂0
t

]

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

H0∼ N
([

x
0

]
,

[
Qx̂0 x̂0 0
0 Qtt

])

Hi∼ N
([

x + bx̂0,i
bti

]
,

[
Qx̂0 x̂0 0
0 Qtt

]) (5)

where t ∈ R
r is the vector of misclosures, and

bx̂0,i = A+byi , Qx̂0 x̂0 = (AT Q−1
yy A)−1

bti = BT byi , Qtt = BT Qyy B
(6)

As t has a known PDF under H0, which is the PDF of
N (0, Qtt ), and is independent of x̂0, any statistical testing
procedure is driven by the misclosure vector and its known
PDF underH0. Therefore, it is the component bti of byi that
is testable. The component bx̂0,i of byi however is influential
as it is directly absorbed by the parameter vector (Baarda
1967, 1968; Teunissen 2006).

As shown by Teunissen (2018), any testing procedure can
be translated into a partitioning of the misclosure space R

r .
Let Pi ⊂ R

r (i = 0, 1, . . . , k, k + 1) be a partitioning of the
misclosure space, i.e.

⋃k+1
i=0 Pi = R

r and Pi ∩ P j = ∅ for
i �= j . The testing procedure implied by the above detection
and identification steps is then defined as

‘select Hi ’ if and only if t ∈ Pi for i = 0, 1 . . . , k
‘undecided’ if and only if t ∈ Pk+1

(7)

where Pk+1 is the undecided region for which the solution
for x is declared ‘unavailable’. This undecided region could
be due to weak discrimination between some of the hypothe-
ses, unconvincing selectionor accommodating the alternative
hypotheses that may have been missed. In addition, the mis-
closure vector establishes the following link between BLUEs
of x under H0 and Hi (i = 1, . . . , k)

x̂ i = x̂0 − Li t (8)

with

Li = A+CiC
+
ti , (9)

in which C+
ti = (CT

ti Q
−1
t t Cti )

−1CT
ti Q

−1
t t and Cti = BTCi .

Therefore, implementation of the three DIA steps requires
nonzero redundancy under H0, i.e. r = m − n �= 0, so that
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Fig. 1 An overview of testing decisions, driven by the misclosure vector t , under null and alternative hypotheses (cf. 7)

misclosures can be formed. Note, in single-redundancy case
r = 1, that P1 = . . . = Pk = R

r \ (P0 ∪ Pk+1), implying
that the alternative hypotheses are not distinguishable from
one another, and thus identification would not be possible.

Note that the condition Pi ∩ P j = ∅ for i �= j is con-
sidered for the interior points of the distinct regions Pi ’s
(i = 0, 1, . . . , k, k + 1). These regions are allowed to have
common boundaries since we assume the probability of t
lying on one of the boundaries to be zero. We also note,
although in (7), statistical testing is formulated in the mis-
closure vector t , that one can equally well work with the
least-squares residual vector ê0 = y − Ax̂0. By using the

relation t = BT ê0, there is no explicit need of having to
compute t as testing can be expressed directly in ê0 (Teunis-
sen 2006).

2.2 Testing decisions

As (7) shows, the testing decisions are driven by the out-
come of the misclosure vector t . Under each hypothesis Hi

(i = 0, 1, . . . , k), the outcome of t can lead to k + 2 dif-
ferent decisions out of which only one is correct, i.e. when
t ∈ Pi . With k + 1 hypotheses Hi ’s (i = 0, 1, . . . , k), one
can define different statistical events including correct accep-
tance (CA), false alarm (FA), missed detection (MD), correct
detection (CD), correct identification (CI), wrong identifica-
tion (WI) andundecided (UD).Thedefinitions of these events
together with their links are illustrated in Fig. 1. In this figure,
the events under alternative hypotheses are given an identi-
fying index, as they differ from alternative to alternative. In
addition, the contributions of different alternative hypothe-
ses to the events of false alarm and wrong identification are
distinguished by means of an extra index.

Given the translational property of the PDF of t under the
null and alternative hypotheses (cf. 5), the probabilities of

the events in Fig. 1 can be computed based on the misclosure
PDF under H0, denoted by ft (τ |H0), as shown in Table 1.
These probabilities satisfy

PFA + PCA = 1
PCDi (bi ) + PMDi (bi ) = 1
PCIi (bi ) + PWIi (bi ) + PUDi (bi ) = PCDi (bi )

(10)

The probability of false alarm PFA is usually set a priori
by the user. To evaluate the probabilities under Hi , one
needs to set the unknown bias bi . Here, it is important to
note the difference between the probabilities of correct detec-
tion and correct identification, i.e. PCDi ≥ PCIi . These two
probabilities would be identical if there is only one alterna-
tive hypothesis, say Hi , and no undecided region since then
Pi = R

r \P0. Similar to the CD- andCI-probability, we have
the concepts of the minimal detectable bias (MDB) (Baarda
1968) and the minimal identifiable bias (MIB) (Teunissen
2018). In the following sections, we highlight the difference
between the MDB (PCDi ) and the MIB (PCIi ).

2.3 DIA-estimator

Once testing is exercised in accordance with (7), the solu-
tion for x is either given by x̂ i if Hi is selected or declared
‘unavailable’ if an ‘undecided’ decision ismadeby the testing
regime. The choice of an estimator for x is thus driven by the
testing procedure implying that testing and estimation should
not be treated separately. The concept of the DIA-estimator
which captures thewhole estimation-testing schemewas first
introduced in (Teunissen 2018). Let ϑ = FT x ∈ R

p contain
linear functions of x which are of interest, then ϑ̂ i = FT x̂i is
the BLUE of ϑ under the Hi -model (i = 0, 1, . . . , k). With
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Table 1 Probability of the
occurrence of the events in Fig. 1

Under Probability of event ‘∗’ ∗ P

H0 P∗ = P(t ∈ P|H0)

=∫
P ft (τ |H0) dτ

FA R
r \ P0

CA P0

UD0 Pk+1

Hi �=0 P∗(bi ) = P(t ∈ P|Hi )

=∫
P ft (τ − Cti bi |H0) dτ

CDi R
r \ P0

MDi P0

UDi Pk+1

CIi Pi

WIi
⋃k

j=1; j �=i P j

(7), the DIA-estimator of ϑ is defined as

ϑ̃ =

⎧
⎪⎨

⎪⎩

k∑

i=0

ϑ̂ i pi (t) if t /∈ Pk+1

unavailable if t ∈ Pk+1

(11)

with pi (t) being the indicator function of region Pi , i.e.
pi (t) = 1 for t ∈ Pi and pi (t) = 0 otherwise. These indi-
cator functions are nonlinear functions of t , thus making the
DIA-estimator a nonlinear estimator of the unknown param-
eters.

2.3.1 Evaluation of the DIA-estimator

As no solution is provided for ϑ when t ∈ Pk+1, numerical
evaluation of its DIA-estimator needs to be done conditioned
on t /∈ Pk+1, i.e. one needs to consider

ϑ̄ = ϑ̃ |t /∈ Pk+1 (12)

In casePk+1 = ∅, then ϑ̄ would become identical to ϑ̃ . With
L0 = 0, the PDF of ϑ̄ is given by (Teunissen 2018)

fϑ̄ (θ |Hi ) =
k∑

j=0

∫

P j

f
ϑ̂0

(θ + FT L j τ |Hi ) ft |t /∈Pk+1 (τ |t /∈ Pk+1,Hi ) dτ

(13)

where f
ϑ̂0

(θ |Hi ) denotes the PDF of ϑ̂0 under Hi , while
ft |t /∈Pk+1(τ |t /∈ Pk+1,Hi ) shows the conditional PDF of t
under Hi conditioned on (t /∈ Pk+1) which reads as

ft |t /∈Pk+1(τ |t /∈ Pk+1,Hi ) = (1 − pk+1(τ )) ft (τ |Hi )

P(t /∈ Pk+1|Hi )

(14)

In the next sections, we study the mean of ϑ̄ and its
response to the MDB- and MIB-sized biases under alterna-

tive hypotheses, inspired by the concept of Baarda’s external
reliability (Baarda 1968; Teunissen 2006). With the PDF in
(13), the mean of ϑ̄ under Hi is given by

E(ϑ̄ |Hi ) = E(ϑ̂0|Hi ) −
k∑

j=1

FT L jE(t p j (t)|t /∈ Pk+1,Hi )

= ϑ + bϑ̄i

(15)

with

bϑ̄i
= FT A+b̄yi

b̄yi = Cibi −
k∑

j=1

C jC
+
t j E(t p j (t)|t /∈ Pk+1,Hi )

(16)

The result (15) shows that ϑ̄ is biased under Hi by bϑ̄i
. If

ϑ̄ is a vector, one can simplify the analysis by working with
the (weighted) length of its bias, e.g.

λϑ̄i
= ‖E(ϑ̄ − ϑ |Hi )‖Q

ϑ̂0 ϑ̂0
= ‖bϑ̄i

‖Q
ϑ̂0 ϑ̂0

(17)

with Q
ϑ̂0ϑ̂0

= FT Qx̂0 x̂0F the variance matrix of ϑ̂0.

2.3.2 Computation of �#̄i

The DIA-estimator bias bϑ̄i
is a function of the conditional

expectations E(t p j (t)|t /∈Pk+1,Hi ) for j = 1, . . . , k which,
given (14), can be written as

E(t p j (t)|t /∈ Pk+1,Hi ) = E(t p j (t)|Hi )

P(t /∈ Pk+1|Hi )
(18)

The numerator and the denominator on the right-hand side of
the above equation are multivariate integrals of the functions
τ ft (τ |Hi ) and ft (τ |Hi ) over the complex regions P j and
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R
r \ Pk+1, respectively. Therefore, bϑ̄i

and thus λϑ̄i
need to

be computed by means of numerical simulation. We make
use of the fact that a probability can always be written as
an expectation, and an expectation can be approximated by
taking the average of a sufficient number of samples from the
distribution, determined by the requirements of the applica-
tion at hand. Let F(t) ∈ R

l be a (vector) function of t , and
�t = {t ∈ R

r |F(t) ∈ �} for an arbitrary � ⊂ R
l . Then, we

have

P(F(t) ∈ �|Hi ) = P(t ∈ �t |Hi )

= ∫
�t

ft (τ |Hi ) dτ

= ∫
Rr p�t

(τ ) ft (τ |Hi ) dτ

= E(p�t
(t)|Hi )

(19)

where p�t
(τ ) is the indicator function of �t . Using (19),

with F(t) = t and �t = � = R
r\Pk+1, the probability

P(t /∈ Pk+1|Hi ) can be written as

P(t /∈ Pk+1|Hi ) = 1 − E(pk+1(t)|Hi ) (20)

thus allowing the denominator of (18) to be written in terms
of an expectation.

The procedure of finding an approximation of λϑ̄i
given

bi under Hi goes as follows.

– Generate N independent samples t (1), . . . , t (N ) from the
distribution ft (τ |H0), the PDF of N (0, Qtt ), by repeat-
ing the following simulation steps N times:

• Use a random number generator to simulate a sample
u(s) ∈ R

r from the multivariate standard normal dis-
tribution N (0, Ir ), with Ir the r × r identity matrix;

• Use the Cholesky-factor GT of the Cholesky
-factorization Qtt = GTG, to transform u(s) to
GT u(s), which now can be considered to be a sample
from N (0, Qtt ), i.e. t (s) = GT u(s).

– Shift t (s) (s = 1, . . . , N ) to

t̃ (s)i = t (s) + Cti bi (21)

to get the samples from the distribution ft (τ |Hi ).
– Compute an approximation of E(t p j (t)|t /∈ Pk+1,Hi )

for j = 1, . . . , k as

Ê(t p j (t)|t /∈ Pk+1,Hi ) = Ê(t p j (t)|Hi )

1 − Ê(pk+1(t)|Hi )
(22)

with the approximations

Ê(t p j (t)|Hi ) =
∑N

s=1 t̃
(s)
i p j

(
t̃ (s)i

)

N

Ê(pk+1(t)|Hi ) =
∑N

s=1 pk+1

(
t̃ (s)i

)

N

(23)

– Compute an approximation of b̄yi (cf. 16) as

ˆ̄byi = Cibi −
k∑

j=1

C jC
+
t j Ê(t p j (t)|t /∈ Pk+1,Hi ) (24)

– Compute an approximation of b̄ϑ̄i
(cf. 16) as

ˆ̄bϑ̄i
= FT A+ ˆ̄byi (25)

– An approximation of λϑ̄i
(cf. 17) is given by

λ̂ϑ̄i
= ‖b̂ϑ̄i

‖Q
ϑ̂0 ϑ̂0

(26)

3 Detection test and its performance

Acommonly used detection test to check the validity ofH0 is
the overall model test (Baarda 1968; Teunissen 2006), which
accepts H0 if t lies in

P0 =
{
t ∈ R

r

∣∣∣∣ ‖t‖2Qtt
≤ χ2

1−PFA
(r , 0)

}
(27)

where χ2
1−PFA

(r , 0) is the (1 − PFA) quantile of the central
Chi-square distribution with r degrees of freedom. Using
(27), one in fact compares the test statistic ‖t‖2Qtt

against the

critical value χ2
1−PFA

(r , 0) to decide whether H0 is valid or
not. This testing process would be a Uniformly Most Pow-
erful Invariant (UMPI) detector test in case of dealing with a
single alternative hypothesis (Arnold 1981; Teunissen 2006;
Lehmann and Voß-Böhme 2017).

3.1 Minimal detectable bias (MDB)

The concept of the MDB was introduced in (Baarda 1967,
1968) as a diagnostic tool for measuring the ability of the
testing procedure to detect misspecifications of the model.
The MDB, for each alternative hypothesis Hi , is defined as
the smallest size of bi that can be detected given a certain
CD- and FA-probability. With (27) and Table 1, the CD-
probability of Hi is given by

PCDi (bi ) = P
(

‖t‖2Qtt
> χ2

1−PFA(r , 0)

∣
∣∣∣Hi

)
(28)
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where, according to (5),

‖t‖2Qtt

Hi∼ χ2(r , λ2i ), with λ2i = ‖Cti bi‖2Qtt
(29)

One can compute the value of the non-centrality parame-
ter λ2i = λ2(PFA,D, r) from the Chi-square distribution
for a given model redundancy r , CD-probability D and FA-
probability PFA. If bi ∈ R is a scalar, then Cti takes the form
of a vector cti ∈ R

r , and the MDB is given by (Baarda 1968;
Teunissen 2006)

bi ∈ R : |bi,MDB| = λ(PFA,D, r)

‖cti ‖Qtt

(30)

which for a given set of {PFA,D, r}, depends on ‖cti ‖Qtt .
For the higher-dimensional casewhen bi ∈ R

qi>1 is a vec-
tor instead of a scalar, a similar expression can be obtained.
Let the bias vector be parametrized, in terms of its magnitude
‖bi‖ and its unit direction vector d, as bi = ‖bi‖ d. Then, the
MDB along the direction d ∈ S

qi−1 is given by (Teunissen
2006)

bi ∈ R
qi>1 : ‖bi,MDB(d)‖ = λ(PFA,D, r)

‖Cti d‖Qtt

; d ∈ S
qi−1

(31)

If the unit vector d sweeps the surface of the unit sphere
S
qi−1, an ellipsoidal region is obtained ofwhich the boundary

defines the MDBs in different directions. The shape and the
orientation of this ellipsoidal region is governed by the vari-
ance matrix of the estimated bias Qb̂i b̂i

= (CT
ti Q

−1
t t Cti )

−1,
and its size is determined byλ(PFA,D, r) (Zaminpardaz et al.
2015; Zaminpardaz 2016).

The MDB concept expresses the sensitivity of the detec-
tion step of the testing procedure. One can compare the
MDBs of different alternative hypotheses for a given set of
{PFA,D, r}, which provides information on how sensitive is
the rejection ofH0 for theHi -biases the size of their MDBs.
The smaller the MDB is, the more sensitive is the rejection
of H0.

3.2 Computation of theMDBs

The computation of the MDBs using (30) and (31) requires
the computation of λ (PFA,D, r), i.e. the square root of the
non-centrality parameter, which can be approximated using
non-central Chi-square distribution tables, see e.g. (Haynam
et al. 1982; Costa et al. 2010). Alternatively, onemay take the
following simulation-based approach to compute the MDB
of an alternative hypothesis. Using (19), with F(t) = t and

�t = � = R
r\P0, the CD-probability PCDi (bi ) can be writ-

ten as

PCDi (bi ) = 1 − E(p0(t)|Hi ) (32)

The procedure of finding an approximation of the MDB cor-
responding with Hi for a given CD-probability of D can be
summarized in the following steps.

– Generate N independent samples t (1), . . . , t (N ) from the
distribution ft (τ |H0) as discussed in Sect. 2.3.

– For a range of bias magnitudes b ∈ B ⊂ R
+, shift t (s)

(s = 1, . . . , N ) to

t̃ (s)i (b) = t (s) + Cti b if bi ∈ R

t̃ (s)i (b) = t (s) + Cti d b if bi ∈ R
qi>1 (33)

to get the samples from the distribution ft (τ |Hi ).
– For each b, compute an approximation of the CD-
probability as

P̂CDi (b) = 1 −
∑N

s=1 p0
(
t̃ (s)i (b)

)

N
(34)

– An approximation of the MDB of Hi is given by

M̂DBi = argmin
b∈B

∣∣∣∣P̂CDi (b) − D
∣∣∣∣ (35)

The closeness of (35) to the MDB of Hi depends on the
number of samples N and how B is formed. These can be
determined by the requirements of the application at hand.

4 Identification test and its performance

The identification test, applied following the rejection ofH0,
can be defined in different ways, e.g. using likelihood-ratio-
based test statistics (Teunissen 2006) or information criteria
(Akaike 1974; Schwarz 1978). Here, we use one from the
former category where the test statistic (Teunissen 2006)

T i = t T Q−1
t t Cti

(
CT
ti Q

−1
t t Cti

)−1
CT
ti Q

−1
t t t (36)

is formed for all the alternative hypothesesHi (i = 1, . . . , k).
The above test statistic can also be formulated in the least-
squares residual vectors of theH0-model, denoted by ê0, and
theHi -model, denoted by êi , as

T i = ‖ê0‖2Qyy
− ‖êi‖2Qyy

(37)
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Assuming that all the alternative hypotheses are of the same
dimension, i.e. q1 = . . . = qk = q, (37) suggests that select-
ing the one with the largest realization of T i (i = 1, . . . , k),
results in selecting the best-fitting model among all the con-
sidered alternatives (Teunissen 2017). This is however not the
case when the alternative hypotheses have varying dimen-

sions. As T i
H0∼ χ2(qi , 0) and thus E(T i |H0) = qi , the

realizations of the test statistic T i tend to get larger for larger
qi .

To take the different dimensions of alternative hypotheses
into account, we transform all T i ’s so that they have the same
distribution under H0, and then compare the transformed
test statistics (Teunissen 2017). The Chi-square test statistic
T i can be transformed to a test-statistic with the uniform
distribution on the interval [0, 1] (Robert et al. 1999) under
H0 as follows

S i = CDFχ2(qi ,0)
(
T i

)
(38)

which is the probability under H0 of obtaining an outcome
of the test statistic T i equal to or less extreme than what was
actually observed. Note, S i is one minus the p-value of the
test statistic T i (Lehmann and Lösler 2016). Therefore, ifH0

is rejected in the detection step, i.e. t /∈ P0, the identification
test selectsHi if t lies in

Pi =
{
t ∈ R

r \ P0

∣
∣∣∣ Si = max

j∈{1,...,k} S j

}
, i = 1, . . . , k

(39)

with Si the realization of S i corresponding with the realiza-
tion t of t . In case q1 = . . . = qk = q, as S i is an increasing
function of T i , Pi would remain invariant if Si is replaced
with Ti in (39).

To understand how using (39) penalizes the acceptance of
models with larger number of parameters, i.e. larger qi ’s,
one can for example consider Fisher’s approximation of
CDFχ2(qi ,0) (Ti ) which is given by (Fisher 1928; Brown
1974)

CDFχ2(qi ,0) (Ti ) ≈ CDFN (0,1)

(√
2Ti − √

2qi − 1
)

(40)

As a CDF is an increasing function of its argument, (40)
implies that Si is larger for models with a better fit to
data (larger Ti ), but adds a penalty term for models with
larger number of parameters (larger qi ). Therefore, select-
ing the alternative hypothesis corresponding with the largest
Si indicates a balance between model fit and the number of
parameters.

It is easy to verify that the regions (27) and (39) cover the
whole misclosure space. Any t ∈ R

r\P0 produces a vector
of k realizations Si (i = 1, . . . , k) combining (36) and (38).

For any such t there is a region Pi in which it lies for some
i ∈ {1, . . . , k}, thus ⋃k

i=0 Pi = R
r . This also implies that

the undecided region is empty, i.e.Pk+1 = ∅. The undecided
regionwouldhowever enter if, for instance, themaximumtest
statistic (38) would further undergo a significance evaluation
upon which if turned out not to be significant enough, then
the undecided decision is made. In order for the regions (27)
and (39) to form a partitioning of the misclosure space, they
further need to be mutually disjoint, i.e. Pi ∩P j = ∅ for any
i �= j . As Pi �=0’s are defined in R

r \P0, they are all disjoint
from P0. For the mutual disjointness of Pi �=0’s, we have the
following result.

Lemma 1 Consider the regions in (39). For any i �= j ,
(i) when qi �= q j , then Pi ∩ P j = ∅ always holds true;
(ii) when qi = q j , then Pi ∩ P j = ∅ if and only if

C⊥T

ti Ct j �= 0 (41)

with C⊥
ti a basis matrix of the null space of CT

ti .

Proof See ‘Appendix’. ��
An overview of the DIA-method with the regions (27) and
(39) defining the testing procedure is given in Fig. 2.

4.1 Minimal identifiable bias (MIB)

As the last equality in (10) shows, a high CD-probability
PCDi (bi ) does not necessarily imply a high CI-probability
PCIi (bi ) unless we have the special case of only a single alter-
native hypothesis with no undecided decision being made.
Therefore, in case of multiple hypotheses, theMDB does not
provide information about correct identification. To assess
the sensitivity of the identification step, one can analyse the
MIBs of the alternative hypotheses. The MIB of the alterna-
tive hypothesis Hi is defined as the smallest size of bi that
can be identified given a certain CI-probability (Teunissen
2018). Note, to evaluate the performance of the identifica-
tion test, that use has also been made of minimal separable
bias (MSB) proposed by (Förstner 1983). The MSB of an
alternative hypothesis Hi with respect to the alternative H j

is the smallest size of bi that leads to the wrong identification
ofH j given a certain value ofWIi, j (Yang et al. 2013, 2021).

The MIB for a given CI-probability I depends on the
probability mass of the PDF of t underHi overPi (see Table
1). This probability mass is driven by the shape and size of
Pi , magnitude of E

(
t |Hi

)
and its orientation with respect

to the borders of Pi . Note, if bi ∈ R
qi>1 is a vector, then,

a given CI-probability yields different MIBs along different
directions inR

qi . In this case, a pre-set CI-probability defines
a region in R

qi the boundary of which defines the MIBs in
different directions. TheMIBofHi for a givenCI-probability
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Fig. 2 An overview of the DIA method when the undecided region is
empty. The right panel shows an example partitioning of the misclosure
space R

2 with three alternative hypotheses, i.e. k = 3. The coloured

scatter plot shows samples of t under H1 for some b1. The samples
leading to the same testing decision are given the same colour

I is denoted by |bi,MIB| if bi ∈ R, and ‖bi,MIB(d)‖ along the
unit direction d ∈ S

qi−1 if bi ∈ R
qi>1. Therefore, we have

bi ∈ R : PCIi (|bi,MIB|) = I (42)

bi ∈ R
qi>1 : PCIi (‖bi,MIB(d)‖d) = I; d ∈ S

qi−1 (43)

4.2 Computation of theMIBs

TheMIB corresponding withHi can be found from inverting
the bottom equality in Table 1 with P = Pi . This inversion
is, however, not trivial as PCIi (bi ) is an r -fold integral over
the complex region Pi . One can take resort to the numerical
evaluation technique explained in Sect. 3.2. Using (19), with
F(t) = t and �t = � = Pi , the CI-probability PCIi (bi ) can
be written as

PCIi (bi ) = E
(
pi (t)|Hi

)
(44)

We now use the above equality, to find an approximation of
the MIB corresponding with Hi for a given CI-probability
of I.

– Generate N independent samples t (1), . . . , t (N ) from the
distribution ft (τ |H0) as discussed in Sect. 2.3.

– For a range of bias magnitudes b ∈ B ⊂ R
+, shift t (s)

(s = 1, . . . , N ) to

t̃ (s)i (b) = t (s) + Cti b if bi ∈ R

t̃ (s)i (b) = t (s) + Cti d b if bi ∈ R
qi>1 (45)

to get the samples from the distribution ft (τ |Hi ).
– For each b, compute an approximation of the CI-
probability as

P̂CIi (b) =
∑N

s=1 pi
(
t̃ (s)i (b)

)

N
(46)

– An approximation of the MIB of Hi is given by

M̂I Bi = argmin
b∈B

∣∣
∣∣P̂CI i (b) − I

∣∣
∣∣ (47)
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Similar to the MDB computation, whether (47) provides a
close enough approximation to the MIB of Hi is dependent
on the number of samples N and how B is formed.

5 MDBs, MIBs and their propagation into the
DIA-estimator

As for a given bias bi , the CD-probability exceeds the CI-
probability, i.e. PCDi (bi ) ≥ PCIi (bi ), then for equal CD- and
CI-probability, we have

bi ∈ R : |bi,MIB| ≥ |bi,MDB|
bi ∈ R

qi>1 : ‖bi,MIB(d)‖ ≥ ‖bi,MDB(d)‖ for any d ∈ S
qi−1

(48)

In this section, by means of a number of examples, we anal-
yse the MDBs and the MIBs, illustrate their differences and
evaluate their impact on the DIA-estimator.

We note that the vector of misclosures t is not uniquely
defined. This, however, does not affect the outcome of the
detection test in Sect. 3 and the identification test in Sect. 4
as both the detector ‖t‖2Qtt

and the test statistic S i remain
invariant for any linear one-to-one transformation of the mis-
closure vector. Therefore, instead of t , one can for instance
also work with

t̄ = G−T t

⎧
⎨

⎩

H0∼ N (0, Ir )
Hi∼ N (G−TCti bi , Ir )

(49)

with the Cholesky-factor GT of the Cholesky-factorization
Qtt = GTG. The advantage of using t̄ over t lies in the ease of
visualizing certain effects due to the identity-variance matrix
of t̄ (Zaminpardaz and Teunissen 2019).

In the following, instead of t , we work with t̄ . The parti-
tioning corresponding with t̄ is characterized through

P0 =
{
t̄ ∈ R

r

∣∣∣
∣ ‖t̄‖2 ≤ χ2

1−PFA
(r , 0)

}

P i =
{
t̄ ∈ R

r \ P0

∣∣
∣∣ S i = max

j∈{1,...,k}S j

} (50)

where

S i = CDFχ2(0,qi )(T i ); T i =
∥∥∥C̄T

ti t̄
∥∥∥
2

C̄T
ti
C̄ti

; C̄ti = G−TCti

(51)

Therefore, P0 contains t̄’s inside and on a zero-centred

sphere with the radius of
√

χ2
1−PFA

(r , 0). Note, in our exam-

ples, we work with alternative hypotheses of the same
dimension, i.e. q1 = . . . = qk = q. Therefore, the regions

Loop
 1 Loop 2

BM1 BM2

Fig. 3 A levelling network, consisting of two loops, running through
three points with two of them being benchmarks (black triangles). In
each levelling loop, there are two instrument set-ups between one of
the benchmarks and the unknown point. The blue curves indicate the
observed height differences. The arrow on each blue curve indicates the
direction of the observed height difference

P i �=0 in (50) can equivalently be formed by replacingS i with
T i .

5.1 Levelling network: detection only

To determine the height of a point, denoted by x ∈ R,
two levelling loops are designed between the point and
two different benchmarks, i.e. BM1 and BM2, as shown
in Fig. 3. In each levelling loop, we assume two instru-
ment set-ups. Let �hi ∈ R

2 (i = 1, 2) contain the height
difference measurements collected between BMi and the
unknown point. We then define y = [hT1 , hT2 ]T ∈ R

4 with

hi = �hi + [hBMi ,−hBMi ]T and hBMi the known height
of BMi . Under the null hypothesis H0, the observations
are assumed to be bias-free, whereas under the alternative
hypotheses Hi (i = 1, 2), it is assumed that the observation
pair �hi , and thus hi , are biased by bi ∈ R

2 (i = 1, 2).
Assuming that the observations are uncorrelated and equally
precise with the same standard deviation σ , the null and alter-
native hypotheses are formulated as:

H0 : E(y) = (
e2 ⊗ e⊥

2

)
x, D(y) = σ 2 I4

Hi : E(y) =
(
e2 ⊗ e⊥

2

)

︸ ︷︷ ︸
A

x +
(
u2i ⊗ I2

)

︸ ︷︷ ︸
Ci

bi , D(y) = σ 2 I4

(52)

where ⊗ shows the Kronecker product (Henderson et al.
1983), e∗ ∈ R

∗ the vector of ones, e⊥
2 = [1, −1]T is orthog-

onal to e2, I∗ ∈ R
∗×∗ the identity matrix, and u2i ∈ R

2 the
canonical unit vector having one as its i th element and zeros
otherwise. UnderH0, there are r = 4−1 = 3 redundancies;
the two levelling loops contribute a redundancy of 2, while
the third redundancy comes fromhaving a second benchmark
available.

Let us assume that testing is restricted to detection only
where one aims to check the validity of H0. In this case,
P1 = R

r\P0 becomes the undecided region for which no
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parameter solution is provided. The DIA-estimator of x is
then given by (11) setting k = 0 and FT = 1, i.e.

x̃ =
{
x̂0 if t̄ ∈ P0

unavailable if t̄ /∈ P0
(53)

Evaluation of the DIA-estimator would only be possible if
H0 gets accepted, i.e. t̄ ∈ P0, upon which one needs to
consider

x̄ = x̃ |t̄ ∈ P0 = x̂0 (54)

where use has been made of the independence of x̂0 and t̄
(cf. 5).

TheMDB under each alternative hypothesisHi (i = 1, 2)
shows the minimal size of Hi -bias that leads to rejection of
H0 with a probability D, thus declaring x̃ unavailable. For
both H1 and H2 in (52), bi (i = 1, 2) is a 2-vector, i.e.
bi = [bi,1, bi,2]T , and thus their MDBs can be computed
using (31) as

‖bi,MDB(d)‖ = 2σλ(PFA,D, r)
√
2 + (dT e2)2

; d ∈ S; i = 1, 2 (55)

If the unit vector d sweeps the boundary of the unit circle, an
ellipse is obtainedwhich defines theMDBs in different direc-
tions. Figure4 [top] shows the MDB-to-noise ratio ellipse,
i.e. ‖bi,MDB(d)‖/σ , assuming PFA = 0.1 and D = 0.8. The
smallest MDB is obtained when d is parallel to e2, while
the largest MDB is obtained when d is parallel to e⊥

2 . This
can be understood by the contribution of Hi -biases to the
misclosure vector. An Hi -bias parallel to e⊥

2 means that the
height-difference measurements in Loop i are biased by the
same amount but in opposite directions. The biases in the two
height-difference measurements will then cancel out each
other when adding up the measurements to form the the mis-
closure of the corresponding levelling loop, hence not being
sensed by that misclosure. On the other hand, an Hi -bias
parallel to e2 means that both of the height-difference mea-
surements in Loop i are biased by the same amount and in
the same direction. These biases will propagate into the mis-
closure of the corresponding levelling loop, affecting it by
twice the individual observation biases.

In case the Hi -bias goes unnoticed and H0 is incorrectly
accepted, theDIA-estimator generated by (54), i.e. x̂0, would
be biased. The influence of the undetected Hi -MDB along
the direction d ∈ S on x̂0 can be described by the influential

Fig. 4 [Top]MDB-to-noise ratio ellipse for testing the validity ofH0 in
(52) using (27), given PFA = 0.1 andD = 0.8. [Bottom] The influential
BNR (56) as a function of the top MDB-to-noise ratio ellipse

bias-to-noise ratio (BNR)

λx̂0,i (d) = |E(x̂0 − x |Hi )|
σx̂0

=
∣∣dT e⊥

2

∣∣

2
· ‖bi,MDB(d)‖

σ

=
∣∣dT e⊥

2

∣∣
√
2 + (dT e2)2

· λ(PFA,D, r)

(56)

which is a measure of the external reliability (Baarda 1968;
Teunissen 2006). The larger the influential BNR λx̂0,i (d), the
more significant an Hi -bias of MDB-size is for estimation
of the unknown height. The above influential BNR is shown
in Fig. 4 [bottom] as a function of the MDB-to-noise ratio
ellipse in Fig. 4 [top]. The influential bias, for a given set of
{PFA,D, r}, is zero when d is parallel to e2, while reaches its
maximum when d is parallel to e⊥

2 . Each of the four height-
difference measurements in (52) yields a solution for x . As
all these measurements are equally precise, the BLUE of x is
nothing else but the average of the each of the four individual
solutions.When the height-differencemeasurements in Loop
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Fig. 5 Partitioning of the misclosure space R
3 corresponding with t̄

(49) using (50). The grey sphere shows the boundary of P0 with PFA =
0.1, while the orthogonal blue and purple planes separate P1 from P2

i are biased by the same amount and in the same directions (d
parallel to e2), the biases in the two height-difference mea-
surements will then cancel out each other when averaging
out the individual solutions, hence not influencing the BLUE
of x .

5.2 Levelling network: detection+identification

We now consider, for the levelling network in (52), a test-
ing procedure consisting of both detection and identification
steps using (50). It can easily be verified that C̄⊥T

t1 C̄t2 �= 0,

which according to Lemma 1 means that the regions P0, P1

and P2 cover the whole misclosure space R
3, implying that

the undecided region is empty. Figure5 shows the partition-
ing of the misclosure spaceR

3 induced by these regions. The
grey sphere shows the boundary of P0 choosing PFA = 0.1.
The regions P1 and P2 are separated from each other by the
following two planes:

τ̄ T

(
C̄⊥
t1

‖C̄⊥
t1 ‖ ± C̄⊥

t2

‖C̄⊥
t2 ‖

)

= 0; τ̄ ∈ R
3 (57)

As the above planes are the locus of the points with both S1

and S2 (cf. 51) being the maximum of {S1,S2}, the plane
equations are obtainedby equatingS1 andS2. The twoplanes
are orthogonal to each other implying thatP1 andP2 are the
same in shape and size. This indeedmakes sense asH1-biases
andH2-biasesmake the same contributions to themisclosure
vector. Therefore, in addition to their MDBs, their MIBs are
also the same along any d ∈ S.
MDB versus MIB. The MDB- and MIB-to-noise ratio curves
for Hi (i = 1, 2) are illustrated in Fig.6 for different values

of D = I, assuming PFA = 0.1. In each panel, in agreement
with (48), the MIB curve, in blue, encompasses the MDB
curve, in black. The MDB and the MIB are very close to
each other along the direction of e2, i.e. when the height-
difference measurements in Loop i are biased by the same
amount and in the same direction, which can be explained
as follows. A bias vector bi parallel to e2 makes E(t̄ |Hi )

bisect the normals of the orthogonal planes in (57). In this
case, E(t̄ |Hi ) lies at its farthest position from the two planar
borders of P1 and P2, meaning that most of the probability
mass of the PDF of t̄ that lies outside P0 falls into the region
P i , see Fig. 7. As a result, PCDi (bi ) and PCIi (bi ) are very
close to each other for a given bias along e2, or alternatively
the MDB and the MIB are very close to each other along e2
for a pre-set D = I. The difference between the MDB and
the MIB increases when the bias direction deviates from e2
towards e⊥

2 .
TheH1-bias andH2-bias of the same size affect the mis-

closure vector in the exact same way if b1 and b2 are parallel
to e⊥

2 , i.e. when the height-difference measurements in Loop
i = 1, 2 are biased by the same amount but in opposite direc-
tions. In this case, none of the loop misclosures would sense
the bias, and the third misclosure, formed by having a sec-
ond benchmark, senses the same magnitude of the individual
measurement bias. Therefore, upon the rejection of H0, the
probability of identifying H1 is the same as that of H2, i.e.
PCIi (bi ) = 0.5PCDi (bi ), if bi is parallel to e

⊥
2 (i = 1, 2). This

indicates that the CI-probability of Hi cannot reach above
0.5, which explains the bands around the direction of e⊥

2 in
Fig. 6 when I ≥ 0.5.
Propagation of the MDB–MIB into the DIA-estimator. With
the testing procedure in (50), the DIA-estimator of the
unknown height is given by

x̄ = x̂0 p̄0(t̄) + x̂1 p̄1(t̄) + x̂2 p̄2(t̄) (58)

with p̄i (t̄) being the indicator function of region P i . As was
stated in the previous subsection, x̂0 is the average of the
four solutions obtained from the individual height-difference
measurements. The estimators x̂ i �=0 are obtained by exclud-
ing the pair of measurements in Loop i .

Figure8 [top] shows λx̄i (cf. 17) as a function of MIB-
to-noise ratio for a given CI-probability of I = 0.8. It is
observed that λx̄i = 0, i.e. x̄ is unbiased, when the height-
difference measurements in Loop i are biased by the same
amount and in the same directions (bi parallel to e2). This can
be explained as follows. Let bi = γ e2 for some γ ∈ R. It can
be easily verified that A+Cibi = 0, and, as C̄ti bi bisects the
normals of the planar borders in Fig. 5, that the probability
mass of the PDF ft̄ (τ̄ |Hi ) in all the regions P0, P1 and P2

is symmetric with respect to C̄ti bi . In this case, E(t̄ p̄ j (t̄)|Hi )

will be parallel to C̄ti bi , i.e. E(t̄ p̄ j (t)|Hi ) = β C̄ti bi for some

β ∈ R, and thus C̄+
t j E(t̄ p̄ j (t)|Hi ) = −0.5β(e⊥

2 e
⊥T

2 )bi = 0.
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MDB
MIB

Fig. 6 MDB- andMIB-to-noise ratio curves for testing the hypotheses in (52) using (50), given PFA = 0.1. The panels from left to right correspond
to equal CD- and CI probabilities D = I = 0.4, 0.6, 0.8 and 0.99, respectively

Fig. 7 Probability mass of the PDF of t̄ under H1 (black sphere) over
the partitioning regions for a bias of b1 = 2σ e2

Therefore, if bi is parallel to e2, then A+b̄yi = 0, implying
that x̄ is unbiased under Hi . The DIA-estimator becomes
biased when bi is not parallel to e2, with the amount of bias
increasing when the direction of bi changes from e2 towards
e⊥
2 .
The bottom panel in Fig. 8 compares the propagation of

the MDBs and the MIBs to the detection-only and detec-
tion+identification DIA-estimators as a function of the bias
orientation for D = I = 0.8, respectively. With identifica-
tion being included in the testing procedure, the bias-effect
in the DIA-estimator can become much larger depending on
the bias orientation. However, one should note, with detec-
tion only, that there will be ‘unavailability’, which is not
the case when both detection and identification are applied.
In fact, if the detection-only and detection+identification
cases have the same settings for the false-alarm, i.e. the

MDB
MIB

Fig. 8 [Top] MDB- (in black) and MIB-to-noise ratio (in blue) curves
for testing the hypotheses in (52) using (50), given PFA = 0.1 and
D = I = 0.8. The red curve shows λx̄i (cf. 17) for (58) as a function
of the MIB-to-noise ratio curve. [Bottom] The graphs of λx̄i for the
detection-only and detection+identification case as a function of the
orientation of the top MDBs and the MIBs, respectively

same P0, then under a particular alternative hypothesis, the
times that H0 is correctly rejected (i.e. times of unavail-
ability with the detection-only case under this alternative
hypothesis) are the times that identification is done for the
detection+identification case.
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5.3 GNSS single-point positioning

Let a GNSS receiver track single-frequency pseudorange
(code) measurements of m = ∑s

i=1 mi satellites belonging
to s constellations. The corresponding linearized single-point
positioning (SPP) model based on these code observations
will then include n = 3 + s unknowns including three
receiver coordinate increments and s receiver clock errors.

Let y =
[
yT
1

. . . yT
s

]T ∈ R
m with y

i
∈ R

mi containing the

code observables from the i th constellation. Assuming that
all the code observations are uncorrelated and of the same
precision σ , y can be modelled under H0 as

H0 : E(y) =
⎡

⎢
⎣

G1 em1
...

. . .

Gs ems

⎤

⎥
⎦ x, D(y) = σ 2 Im

(59)

where Gi ∈ R
mi×3 contains the satellite-to-receiver unit

direction vectors as its rows, and x ∈ R
3+s the receiver

North-East-Up coordinate increments and the receiver clock
errors for the s constellations.

As alternative hypotheses, we will restrict our attention
to those describing outliers in individual observations and
assume that only one observation at a time is affected by an
outlier. In that case there are as many alternative hypothe-
ses as there are observations, i.e. k = m. The observational
model under Hi (i = 1, . . . ,m) is then given by

Hi : E(y) =
⎡

⎢
⎣

G1 em1
...

. . .

Gs ems

⎤

⎥
⎦ x + ci bi ,

D(y) = σ 2 Im (60)

with ci ∈ R
m the canonical unit vector having one as its i th

element and zeros otherwise, andbi ∈ R the unknownoutlier.
Our testing procedure to test the hypotheses in (59) and (60)
involves both detection and identification steps as specified
by the partitioning regions (50). Note, since the alternatives
in (60) are one-dimensional, that P i �=0 can equivalently be
formulated in Baarda’s w-test statistic (Baarda 1967; Teu-
nissen 2006) as

P i =
{
t̄ ∈ R

r \ P0

∣∣
∣∣ |wi | = max

j∈{1,...,k}|w j |
}

(61)

where

wi = c̄Ti t̄, c̄i = 1

‖c̄ti ‖
c̄ti , c̄ti = G−T cti , cti = BT ci (62)

with c̄i a unit vector showing the direction of E(t̄ |Hi ) =
bi‖c̄ti ‖c̄i . P i �=0 includes all t̄’s outside the sphere P0 which,
among c̄ j ’s for j = 1, . . . ,m, make the smallest angle with
c̄i . The border between two adjacent regionsP i �=0 andP j �=0

is then the bisector of the angle formed by the corresponding
unit vectors c̄i and c̄ j . The cosine of this angle gives the cor-
relation coefficient between wi and w j (Förstner 1983). The
larger the correlation coefficient, the closer the two vectors
c̄i and c̄ j would be to the border between P i �=0 and P j �=0.

Example 1 The skyplot in Fig. 9 [left] shows the geometry of
GPS satellites as viewed from Melbourne at an epoch on 13
November 2021,with a cut-off elevation of 10◦. The satellites
have been labelled with their PRN as well as the index of
the alternative hypothesis capturing the outlier in their code
observation. With six GPS satellites, two misclosures can be
formedunderH0 in (59), i.e. r = 2. Figure9 [right] shows the
partitioning of the misclosure space R

2 corresponding with
t̄ (cf. 49), assuming PFA = 0.1 and σ = 30cm. In addition to
the partitioning regions P0 and P i (i = 1, . . . , 6), the unit
vectors c̄i in (62) are also illustrated.

In Fig. 10 [top], the solid and the dashed curves, respec-
tively, show the MDB- and the MIB-to-noise ratio as a
function of the pre-set CD- and CI-probabilities. The graphs
associated with different alternative hypotheses are distin-
guished using different colours. The signature of the MDB
of an alternative hypothesis is generally different from its
MIB. This is due to the fact that the MDB of Hi for a given
CD-probability is driven only by ‖c̄ti ‖ (cf. 30), while itsMIB
is in addition driven by P i and the orientation of c̄i , i.e. the
orientation of E(t̄ |Hi ), w.r.t. the straight borders of P i . The
larger the norm ‖c̄ti ‖ is, the smaller both the MDB and the
MIB. Also, the MIB gets smaller if the region P i gets wider
and/or the vector c̄i gets closer to the bisector line of the
angle between the two straight borders of P i , see (Zamin-
pardaz and Teunissen (2019), Lemma 2). The latter happens
when there are small correlations among thew-test statistics.
The difference between the factors contributing to the MDB
and the MIB can be well-understood by the following two
examples:

– H1 versus H4: The MDB graphs of these hypotheses
are close to each other which is due to the proximity
of ‖c̄t4‖ ≈ 0.35/σ to ‖c̄t1‖ ≈ 0.37/σ . However, P1

is wider compared to P4. Also c̄1 lies almost halfway
between the straight borders of P1, while c̄4 is close to
one of the straight borders of P4. These make the MIB
graphs ofH4 andH1 dramatically differ from each other.

– H1 versusH2: Despite the MDB ofH1 being larger than
that ofH2, the MIB ofH1 is smaller than that ofH2. The
former results from ‖c̄t1‖ ≈ 0.37/σ being smaller than
‖c̄t2‖ ≈ 0.49/σ . Looking at the right panel of Fig. 9, we
note thatP2 has smaller area compared toP1. In addition,
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Fig. 9 [Left] Skyplot view of the receiver-satellite geometry. The six blue circles denote the skyplot position of the satellites. [Right] Partitioning of
the misclosure space R

2 formed by P0 and P i , for i = 1, . . . , 6, (cf. 50), for the hypotheses in (59) and (60), assuming PFA = 0.1 and σ = 30cm

while c̄1 lies almost halfway between the straight borders
of P1, c̄2 is close to one of the straight borders of P2.
These make the MIB graph of H1 being lower than that
of H2.

Figure10 [middle] shows the graphs of the difference
between the MDB- and the MIB-to-noise ratio, as a function
of the pre-set probability for different alternative hypothe-
ses. Depending on the alternative hypothesis and the pre-set
probability, the MIB can be significantly larger than the
MDB. For example, under H4, the MIB-MDB difference
at D = I = 0.95 is as big as |b4,MIB| − |b4,MDB| ≈ 48σ .
Therefore, using MDB to infer the identifiability of alterna-
tive hypotheses could provide amisleading description of the
testing performance.

Figure10 [bottom] illustrates the impact of theMDB- and
theMIB-sized biases, under different alternative hypotheses,
on the detection-only and detection+identification DIA-
estimators of the receiver coordinates ϑ = [I3, 0]x , by
showing the scalar λϑ̄i

(cf. 17) as a function of the corre-
sponding probability. We note that the dashed curves in this
figure show almost the same signature; they first increase
and then decrease to zero. TheCI-probability approaches one
when the probability mass of ft̄ (τ̄ |Hi ) in the regions P j �=i

approaches zero. In this case, we have E(t̄ p̄ j (t̄)|Hi ) → 0 and
E(t̄ p̄i (t̄)|Hi ) → c̄ti bi , resulting in b̄yi → 0 (cf. 16), which
explains the close-to-zero value of λϑ̄i

when I is close to
one. At a given CI-probability I, among the six alternative
hypotheses,λϑ̄i

reaches largest values underH2 andH4. This
is also consistent with the MIB graphs of these hypotheses
in Fig. 10 [top] which lie on top of those of the other alterna-

tives. The solid curves in Fig. 10 [bottom] show an increasing
behaviour as a function of CD-probability. This is due to the
fact that the amount of bias in ϑ̂0 is an increasing function
of the MDB and the MDB is an increasing function of the
pre-set CD-probability. ��

Example 2 The purpose of this example is to illustrate that
one always should be diligent when including alternative
hypotheses in the testing process. In this example, we show
what happens to the testing performance and the quality of
the DIA-estimator when the set of alternative hypotheses
increases. Let us assume that outliers in the code observations
of three high-elevation satellites in Example 1, i.e. G12, G6
and G2, do not occur. In that case, instead of six alternative
hypotheses, there would be k = 3 modelling code outliers of
the other three satellites. The partitioning of the misclosure
space is then formed by four regions as shown in Fig. 11.
With fewer alternative hypotheses, the regions correspond-
ing withH2 andH3 get larger compared to their counterparts
in Fig. 9, thus leading to higher correct identification prob-
abilities for these hypotheses. Figure12 presents the same
type of information as Fig. 10 but for the testing procedure
illustrated in Fig. 11. Comparing the panels of Fig. 12 with
those in Fig. 10, we note a reduction in the MIB-to-noise
ratio ofH2 andH3. As a result, the detection+identification
DIA-estimator gets less biased for MIB-sized biases in the
observations under H2 and H3. ��

Example 3 Figure13 [top] shows the geometry of GPS and
Galileo satellites as viewed from Melbourne at an epoch on
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Fig. 10 [Top] Graphs of the MDB-to-noise ratio (solid lines) and the
MIB-to-noise (dashed lines) of different alternative hypotheses as a
function of pre-set CD- and CI-probabilities. The results correspond to
the hypotheses in (59) and (60), and themisclosure space partitioning in
Fig. 9. [Middle] The difference between the solid curves and the dashed
curves of the same colour in the top panel. [Bottom] The graphs of λϑ̄i
as a function of the CD-probability (solid lines) and the CI-probability
(dashed lines) for the detection-only and detetion+identification case,
respectively

13November 2021, with a cut-off elevation of 10◦. The satel-
lites have been labelled with their PRN aswell as the index of
the alternative hypothesis capturing the outlier in their code
observation. The redundancy of the SPP model underH0 for
this dual-system geometry is r = 20−3−2 = 15. The mid-
dle panel shows the difference between the MDB- and the
MIB-to-noise ratio, as a function of the pre-set probability
for different alternative hypotheses. Despite Example 1, this
MDB–MIB difference is not very significant. Furthermore,
as the bottom panel shows, the amount of measurement error
that gets propagated into the DIA-estimator of the receiver
coordinates is much less than the previous example. ��

Fig. 11 Partitioning of the misclosure space R
2 formed by P0 and P i ,

for i = 1, 2, 3, (cf. 50), for the hypotheses in (59) and (60), assuming
PFA = 0.1 and σ = 30cm

6 Summary and concluding remarks

In this contribution, we studied the multi-hypotheses per-
formance of the detection and identification steps in the
DIA method, and the impact they have on the produced
DIA-estimator. It was emphasized that while the detection
capability is assessed using the well-known concept of the
minimal detectable bias (MDB), use should be made of the
minimal identifiable bias (MIB) when it comes to the testing
identification performance.

The testing and estimation elements of the DIA method
were discussed using a canonical model formulation of
the null hypothesis and a partitioning of misclosure space.
Through this partitioning, we discriminated between differ-
ent statistical events including correct detection (CD) and
correct identification (CI). The probability of the occurrence
of the former indicates the sensitivity of the detection step
whereas that of the latter indicates the sensitivity of the
identification step. By inverting the CD- and CI-probability
integrals, the testing sensitivity analysis can be done by
means of the MDBs and MIBs in observation space.

In the detection step, we used the overall model test. For
the identification test, we formulated a test statistic taking
into account varying dimensions of the alternative hypothe-
ses. We presented the numerical algorithms for computing
the corresponding MDBs and MIBs, and also their propa-
gation into the nonlinear DIA-estimator. These algorithms
were then applied to a number of examples so as to illus-
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Fig. 12 [Top] Graphs of the MDB-to-noise ratio (solid lines) and the
MIB-to-noise (dashed lines) of different alternative hypotheses as a
function of pre-set CD- and CI-probabilities. The results correspond to
the hypotheses in (59) and (60) for k = 3, and the misclosure space par-
titioning in Fig. 11. [Middle] The difference between the solid curves
and the dashed curves of the same colour in the top panel. [Bottom]
The graphs of λϑ̄i

as a function of the CD-probability (solid lines)
and the CI-probability (dashed lines) for the detection-only and detec-
tion+identification case, respectively

trate and analyse the difference between detection-only and
detection+identification.

Thefirst examplewas a simple levellingnetwork forwhich
we applied two testing schemes: (1) detection-only and (2)
detection+identification. It was shown that depending on the
alternative hypothesis and the bias direction, the MDB and
the MIB could be significantly different from each other.
Thus, using MDB to infer the identifiability of alternative
hypotheses could provide amisleadingdescriptionof the test-
ing performance. It was further demonstrated that with the
detection+identification testing procedure, the bias-effect in
the DIA-estimator can become much larger compared to the
detection-only case. However, one should note, with detec-
tion only, that there will be ‘unavailability’, which is not the
case when both detection and identification are applied.
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Fig. 13 [Top] Skyplot view of the satellite geometries. The blue circles
denote the skyplot position of the satellites. [Middle] The difference
between the MDB-to-noise ratio and the MIB-to-noise (dashed lines)
of different alternative hypotheses as a function of pre-set CD- and CI-
probabilities. The results correspond to the hypotheses in (59) and (60),
assuming σ = 30cm and PFA = 0.1. [Bottom] The graphs of λϑ̄i

as
a function of the CD-probability (solid lines) and the CI-probability
(dashed lines) for the detection-only and detetion+identification case,
respectively

Our analysis was further continued for GNSS single-point
positioning examples when outlier detection+identification
is applied. It was demonstrated that the signature of a
pseudorange-MDBis generally different fromapseudorange-
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MIB. For example, while two different alternatives have
very close MDB values, their MIBs can significantly dif-
fer from each other. It was thereby also highlighted that
reducing the number of alternative hypotheses would lead to
smaller MIBs. This emphasizes that due diligence is needed
when including alternative hypotheses in the testing process.
Finally, in this study, our numerical examples were given
considering alternative hypotheses of the same dimension.
An MDB–MIB analysis as a function of the dimension of
alternative hypothesis is the topic of future works.
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Appendix

Proof of Lemma 1 (i) Let us assume that Pi ∩ P j �= ∅ for
i �= j . Then, for some t ∈ R

r/P0, we have

CDFχ2(0,qi )

(
‖PCti

t‖2Qtt

)
= CDFχ2(0,q j )

(
‖PCt j

t‖2Qtt

)

(63)

with PCti
= Cti (C

T
ti Q

−1
t t Cti )

−1CT
ti Q

−1
t t being the orthogonal

projector that projects onto the range space of Cti . We now
show that the probability of t satisfying (63) is zero. Let us
define the continuous random vectors/variables

t i = PCti
t, zi = CDFχ2(0,qi )

(
‖t i‖2Qtt

)

t j = PCt j
t, z j = CDFχ2(0,q j )

(
‖t j‖2Qtt

) (64)

Since qi �= q j , then CDFχ2(0,qi )(·) and CDFχ2(0,q j )
(·) are

the same only if their input is zero. Therefore, zi = z j when
t i = t j = 0. As PCti

�= PCt j
, then t i j = t i − t j is a

continuous random vector, and thus we have P(t i j = 0) = 0,
implying that P(zi = z j ) = 0. Therefor, the probability of
t satisfying (63) is zero, meaning that Pi ∩ P j = ∅ for any
i �= j with qi �= q j .

(ii) ‘if’ part: Let us assume that Pi ∩ P j �= ∅ for i �= j .
Then, as qi = q j , for some t ∈ R

r/P0, we have

‖PCti
t‖2Qtt

= ‖PCt j
t‖2Qtt

(65)

fromwhich two conclusions can bemade: 1) (PCti
−PCt j

)t =
0; 2) PCti

= PCt j
. With t i j = (PCti

− PCt j
)t being a con-

tinuous random vector, we have P(t i j = 0) = 0, meaning
that the probability of the occurrence of the former conclu-
sion is zero. Also, the latter conclusion contradicts our earlier
assumption of C⊥T

ti Ct j �= 0. Therefore, Pi ∩P j = ∅ for any
i �= j with qi = q j .

‘only if’ part: Let us assume that C⊥T

ti Ct j = 0, i.e. PCti
=

PCt j
, for i �= j . Then, given (36) and (38), we have Si = S j

for any t ∈ R
r . This reveals that Pi = P j which contradicts

our earlier assumption ofPi ∩P j = ∅. Therefore,C⊥T

ti Ct j �=
0 for any i �= j with qi = q j . ��
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