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a b s t r a c t

Thanks to their modularity and their capacity to adapt to different contexts, hybrid microgrids are a
promising solution to decrease greenhouse gas emissions worldwide. To properly assess their impact in
different settings at country or cross-country level, microgrids must be designed for each particular
situation, which leads to computationally intractable problems. To tackle this issue, a methodology is
proposed to create surrogate models using machine learning techniques and a database of microgrids.
The selected regression model is based on Gaussian Processes and allows to drastically decrease the
computation time relative to the optimal deployment of the technology. The results indicate that the
proposed methodology can accurately predict key optimization variables for the design of the microgrid
system. The regression models are especially well suited to estimate the net present cost and the lev-
elized cost of electricity (R2 ¼ 0.99 and 0.98). Their accuracy is lower when predicting internal system
variables such as installed capacities of PV and batteries (R2 ¼ 0.92 and 0.86). A least-cost path towards
100% electrification coverage for the Bolivian lowlands mid-size communities is finally computed,
demonstrating the usability and computational efficiency of the proposed framework.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

A total of 197 countries have collectively pledged commitments
to limit global warming to well below 2 �C above pre-industrial
levels by the end of the 21st century [1]. This will require re-
ductions in greenhouse gas (GHG) emissions across all sectors, and
primarily in the energy sector [2]. Decarbonizing the energy sector
is, however, a complex task, due to the intricate relation between
generation, transmission, storage and distribution at country or
cross-country levels. Furthermore, in several contexts worldwide,
decabonization strategies face the additional challenge of simul-
taneously meeting plans to extend access to electricity to rural
areas which are currently unelectrified. In such cases, planning for
ated and Sustainable Energy

alderrama).
the energy transition is made more complex by the need to identify
at the same time the best strategy for extending electricity access,
deciding between stand-alone PV home systems, isolated or grid-
connected microgrids and direct extension of the national grid.

Energy systems optimization models are typically adopted to
support policy decisions in this direction, and their usage under-
went a rapid increase in the past years [3]. However, as noted by
Pfenninger et al. [4], several research gaps need to be addressed for
energy modelling to provide effective support to meet global ob-
jectives. A key issue is the high complexity required by accurate and
comprehensive representations of future energy systems, com-
bined with the need to ensure computational tractability. Such
trade-off between technical detail and computational tractability
particularly emerges when evaluating multiple smaller-scale sys-
tems, such as micro-grids or stand-alone PV systems, within the
broader picture of a country-wide power system. From the pool of
available mitigation technologies, hybrid microgrids, either con-
nected or disconnected to the main grid, offer an alternative to

mailto:slbalderrama@doct.uliege.be
http://crossmark.crossref.org/dialog/?doi=10.1016/j.energy.2021.121108&domain=pdf
www.sciencedirect.com/science/journal/03605442
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reduce GHG by harnessing locally-available renewable resources.
This, in addition to their modularity and capacity to adapt to a
specific context [5], makes them a key technology for the energy
transition. Yet, despite their multiple advantages, their exact role is
still to be clearly assessed and quantified. In the framework of rural
electrification, their cost-competitiveness against PV home systems
or grid-extension depends on a range of factors, such as the degree
of energy access to be achieved, population density, local grid
characteristics and local resources availability [6]. Different tools
have been developed to determine, for a given country, the optimal
mix of technologies to achieve full electrification, deciding between
PV home systems, microgrids and grid extension. Such tools typi-
cally combine geospatial data and power system modelling to find
the least-cost technology solutions to achieve universal access to
electricity.

For instance, Ellman [7] developed an optimization tool (REM)
with high spatial granularity that allows to evaluate household
consumption levels based on geospatial data. The resulting model
is however computationally-expensive due to the analysis being
made at household level. OnSSET (the OpeN Source Spatial Elec-
trification Toolkit) [8] is another electrification planning tool which
finds the least-cost path to country-scale full electrification based
on a limited, easy-to-gather set of input information. More pre-
cisely, the tool estimates plausible demand figures for each location
relying on proxies such as night lights, road proximity and other GIS
data. It compares and chooses the least-cost electrification alter-
native (between standalone systems, microgrids and grid exten-
sion) for each community, based on simplified cost functions for
each category. Unlike REM, OnSSET focuses on solutions at a
community level with a strong focus on limiting the CPU times.
Cader et al. [9], in the context of the NESP project (Rural electrifi-
cation modelling in the framework of the Nigerian Energy Support
Program), developed a tool that includes the possibility to model
hybrid microgrids at hourly resolution throughout an entire year.
This approach optimizes each community individually and there-
fore leads to high computational resource usage when used for
rural electrification planning. Despite the aforementioned at-
tempts, a recent review of electrification planning tools [10] high-
lights several remaining challenges. Most of them relate to the low
number and limited representativeness of the microgrid models,
which need to be simplified for the sake of computational tracta-
bility at the level of a country-scale energy system. In addition,
current methodologies do not deal with the uncertainty in the
demand curves, costs, or other input parameters, which are very
high in remote electrification applications.

One way of improving the tractability of the problem without
compromising the model complexity is to apply machine learning
techniques (MLT) to approximate the optimization results. MLT
have been successfully used to forecast or simulate different phe-
nomena in energy systems (Mosavi et al. [11]). They can also be
used to accurately predict energy consumption, as proven by Yildiz
et al. [12]. Similarly, Gaussian processes regression (GPR) - a MLT
method - has been used to estimate the performance of various
thermal systems with a higher accuracy than physical models, and
allows to perform feature selection and outlier detection, as shown
by Quoilin & Schrouff [13]. The use of MLT in the long-term plan-
ning of microgrids has so far focused on the forecast of demand and
renewable energy time series. However, in recent years, it has also
been used to automate decision making and reduce computational
effort by creating surrogate models from the results of a high
number of optimizations. These surrogate models aim to estimate
the value of a particular optimization outcome (e.g. total cost of the
project, nominal capacities of the technologies) using the input
conditions, as shown by Perera et al. [14]. In the latter study, an
artificial neural network (ANN) surrogate model is trained to
2

calculate the net present cost (NPC), grid interaction and unmet
load fraction of an energy hub comprising various renewable en-
ergy sources, storage devices and internal combustion engines. The
surrogatemodel is then used together with a heuristic optimization
method to calculate the optimal nominal capacity of each tech-
nology. In another study [15], an ANN is trained on a database
created from an operation and planning model at a national scale.
The model takes multiple input parameters and returns the nom-
inal capacities of the technologies and other crucial operation
variables. The most promising aspect of this methodology is the
possibility to change one of the assumptions of the optimization
and obtain the new output variables with a low computational cost.
Another approach is proposed by Ciller et al. [16], inwhich a lookup
table is constructed with the optimal costs for different commu-
nities sizes, and the particular values are interpolated by the elec-
trification planning algorithm. In a previous work, Balderrama et al.
[17] showed that GPR are well suited to estimate the Levelized cost
of electricity (LCOE) for isolated microgrids in a rural context. Up to
11 hypothetical villages sizes were created based on surveys and on
a stochastic load profile generator. In total, 1100 optimizations were
performed by varying the capital costs of the different technologies,
the diesel cost, the village size and the PV energy output. Pe~na et al.
[18] applied multi-variable linear regressions to calculate the NPC
and LCOE for only diesel, PV/battery and hybrid microgrids in a
large-scale geospatial electrification planning tool (OnSSET). The
study revealed an important increase in the cost-competitiveness
of micro-grids compared to previous analyses using simplified
micro-grid sizing algorithms.

This paper builds upon the idea of training machine learning
models to predict the optimal design of microgrid systems in such a
way to support the optimal deployment of such systems at a
country level. The main contributions beyond the state of the art
can be summarized as:

1. A database of boundary conditions representative of potential
installation sites for isolated microgrids in rural areas of devel-
oping countries.

2. A standardized training methodology for surrogate models
capable of predicting the optimal microgrid design and cost as a
function of multiple boundary conditions.

3. The inclusion of technical parameters (e.g. PV and battery ca-
pacities) as explanatory variables of the predicted LCOE, while
previous works mainly focused on economic parameters.

4. A comparison of the performance of two MLT over the same
database.

5. The analysis of the optimal deployment of individually-
optimized hybrid microgrids (vs. grid extension and stand-
alone systems) at a country level.

The rest of this paper is arranged as follows: Section 2 describes
the methodology. Section 3 shows the peculiarities of the selected
case study. Section 4 presents the results and the discussion. Finally,
the conclusions are discussed in Section 5.

2. Methodology

To develop and validate surrogatemodels for energy planning in
a rural context, the studied system should first be defined. In this
work, an isolated microgrid system is considered, composed by a
PV array, a solar inverter, a battery bank, a bi-directional inverter
and a diesel Genset. The system is designed to cover the whole
electricity demand of a given community. In case of energy surplus,
the batteries can be charged by the PV array or the Genset.
Although the proposed system is relatively basic, it is important to
mention that the proposed methodology can be applied to more
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complex systems with multiple renewable sources, combustion
generators, connected or not to the main grid.

In Fig. 1, the information flows and the most important tools
implemented during this study are shown. The demand curve of
the village, the energy yield of the PV array, the fuel price, the in-
vestment costs and the techno-economic characteristics of the
components constitute one optimization instance. This set of input
variables is selected together with their plausible variation ranges
to cover a wide range of possible conditions that can be expected in
rural electrification planning. As a small summary, the input vari-
ables of the model include:

1. Changes in the variable investment cost of the different
technologies.

2. Different PV energy outputs.
3. Changes in the diesel price.
4. Different community sizes.
5. The possibility to analyse different combustion (Low heating

value, combustion efficiency) and battery technologies (depth of
discharge of the battery, Number of cycles) by changing key
technological parameters.

The sizing method is used to determine the nominal capacities
of the energy sources and different costs of the system for each
instance. The results of each optimization are the output variables
for the regression model. Using these input variables (features) and
the selected output variables (targets), the regression process is
carried out, by tuning the hyperparameters of the MLT model and
computing some numerical performance indicators. The final use of
the surrogate models its their integration into other energy models
that try to answer broader questions regarding energy planning at a
regional, national or trans-national level.
2.1. Demand generation

In order to generate the load profiles corresponding to each
instance, we rely on a stochastic bottom-up model (RAMP) [19],
following the procedure proposed in Stevanato et al. [20]. The
RAMPmodel is based on the definition of several User Classes, each
of which is associated with a set of appliances. Each appliance (e.g.
TVs, lights bulbs, phone chargers) is defined by nominal absorbed
power, total functioning time along the day, and possible time
frames of use, in addition to some further optional features. Based
on this information, which is subject to stochastic variation be-
tween pre-defined ranges to account for uncertainty and random
Fig. 1. Proposed methodology for the

3

users’ behaviour, the model allows computing the total load curve
of a village (Fig. 2). The advantage of using this approach is the
possibility to create synthetic village demand curves in a bottom-
up manner from limited information. The required data is ob-
tained through a survey within the community members, and the
identification of possible services and production actors. At this
point, a set of plausible scenarios can be generated stochastically.
Non-existing behaviours or appliances can also be introduced to
the model for future scenarios to explore the impact that future
changes of the load curves would entail on the sizing of the
microgrid.

2.2. PV energy generation

To calculate the energy output of the PV array, the total incident
radiation on the PV surface (Iglo) and the PV cell temperature (TPV)
must be estimated. Considering that field measurements of solar
potentials in rural locations across the world are rarely available,
we rely on the reanalysis of time-series at grid-level for tempera-
ture, solar direct and diffuse radiation based on global meteoro-
logical data [21,22]. Once the radiation and temperature time series
are calculated, the PV output is computed by applying a five-
parameter model from Ref. [23], as proposed in Holmgreen et al.
[24]. Equation (1) is used to calculate (TPV), from the ambient

temperature (Tamb
t ) where NOCT is the nominal operation cell

temperature and t is the time period.

TPVt ¼ Tamb
t þ NOCT � 20

800
,Iglot (1)

2.3. Sizing method

The chosen method to size the microgrids is mixed-integer
linear programming (MILP). The net present cost (NPC) is taken
as objective function (equation (2)) where Inv is the investment for
the PV, Genset and batteries, CRF is the capital recovery factor
(equation (3)), YC is the yearly operation cost, e is the discount rate
and y is the duration of the project. In order to take into account the
uncertainty associated with the demand in a rural village, an ex-
pected demand technique is applied. It consists in generating
several different demand scenarios and combining them. This is
done by multiplying the occurrence probability of each scenario
with its respective demand in each time step, as shown in equation
(4). Where Dexp

t is the expected demand for the period t, Ds,t is the
creation of the surrogate models.



Fig. 2. RAMP model logic.
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demand for the scenario s and the period t. Finally, Iocurrences is the
probability of occurrence of the scenario s. This approach allows to
deal with the uncertainty in demand without increasing the
computational time by using more resource-consuming techniques
[5]. More details on the construction of the demand time series can
be seen in section 3.2.1.

NPC ¼ Invþ YC
CRF

(2)

CRF ¼ e,ð1þ eÞy
ð1þ eÞy � 1

(3)

Dexp
t ¼

XS
s¼1

Ds;t,Ioccurrences (4)

The main advantage MILP over linear programming (LP) is its
capacity to model the Genset minimum energy output and partial
load efficiency [5]. The model also takes into account the possibility

of curtailing energy (ECurtailment
s;t ) if it is more economic than storing

it in the batteries, as shown in equation (5), where EPVs;t is the energy

from the PV array, Eges;t is the energy produced by the Genset, Ebat;chs;t

is the energy charged into the battery and Ebat;diss;t is the energy
discharged from the battery. The model is implemented in the
Python programming language, using the PYOMO library [25,26]
and GUROBI as the selected solver [27]. For a more detailed
description of the sizing model, the reader may refer to Ref. [5].

Ds;t ¼ EPVs;t þ Eges;t � Ebat;chs;t þ Ebat;diss;t þ ECurtailment
s;t (5)

To capture the economies of scale in microgrids of different
sizes, a fixed cost (for the PV is FixPV and for the battery is Fixbat) is
added to the cost function of the PV and battery systems (equation
(6)). The constant value represents all the expenses that must be
executed regardless of the size of the project, such as feasibility
studies, pre-engineering, data recollection or environmental as-
sessments. Additionally, equations (7) and (8) are added to the
model to decide whether or not a technology should be deployed
by changing the value of a binary variable (BPV/bat). If the binary
variable has the value of 0, equation (7) or 8 sets the installed ca-
pacity of the technology to 0 and in equation (6) the fixed cost
4

becomes 0. On the other hand, if the value is 1, the install capacity
can be different to 0 and it is possible to calculate the investment
cost of the technology in equation (6). InvPV/bat is the total invest-
ment cost for the considered technologies, UPV/bat is the unitary
cost, Cbat is the battery installed capacity, NPV is the number of
installed PV panels and M is a large number.

InvPV=bat ¼ FixPV,BPV þ UPV,CPV,NPV þ Fixbat,Bbat þ Ubat,Cbat

(6)

CPV,NPV � BPV,M (7)

Cbat � Bbat,M (8)
2.4. Surrogate models for energy systems

Machine learning methods are divided in classification
methods, which focus on dividing a data set in groups; and
regression methods, which aim at creating the mapping function
between one or more input variables and output variables. In our
specific case, the goal is to predict the optimal value of the different
variables that minimize the NPC for a given set of input variables. In
this work, the output variables include both the objective function
of the optimization process and some optimization variables such
as nominal capacities, lost load in the system, etc.

The machine learning regression (MLR) is applied when all the
optimizations have been run over the full range of the input space.
The overall process is shown in Fig. 3 and can be subdivided in three
main steps:

1. To ensure a random sampling of the test cases within the
database, a shuffle technique is applied: the individual optimi-
zations are first run in ascending order of the size of the com-
munity; the database is then shuffled and divided in folds for the
cross validation.

2. For each output variable a surrogate model is created using the
MLR and the relevant input variables.

3. The quality of the model is evaluated by computing numerical
indicators.



Fig. 3. The methodology implemented for the training and validation of the surrogate models.
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The first performance metrics is the mean absolute error (MAE),
defined as the mean difference between the predicted target f(x)
and the real value (y), as presented in equation (9), where N is the
number of inputs used in the MLR. The second is the coefficient of

determination (R2), computed in equation (10), where y
̄
is the

average value of the output variable. The last indicator is the root
mean square error (RMSE) and is defined in equation (11). In
addition to the ability to predict the target values inside the training
set, themodel should be able to do it outside of the sampled data. In
order to ensure this generalization ability, a K-fold cross-validation
method is selected. To that aim, the shuffled data set is divided into
K sub-sets (folds) and the training is carried out K times. Each time,
one fold is removed from the training set and is used as test set to
compute the performance metrics. The MAE, R2 and RMSE are
finally averaged over all folds and reflect the capacity of the model
to predict the output variable for an unseen sample. In this study,
different types of MLR are tested, and their hyperparameters are
tuned to improve the quality of the regression.

MAE ¼ 1
N
,
XN
i¼1

jyi � f ðxiÞj (9)

R2 ¼ 1�
PN

i¼1ðyi � f ðxiÞÞ2PN
i¼1ðyi � y

̄ Þ2
(10)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
,
XN
i¼1

ðyi � f ðxiÞÞ
vuut (11)
2.5. Electrification planning models with geographic information
systems

Reaching 100% electrical coverage in developing countries is a
hard task due to the limited electric infrastructure and long dis-
tance between main cities and rural villages, between other prob-
lems. To tackle this issue, researchers have proposed the use of
Geographic information systems and remote sensing data to search
for the least cost path to reach full energy supply [28]. From the
available pool of tools that use this approach, OnSSET was selected
because it is open-source [8], which allows an easy implementation
of new features.

The OnSSET algorithm minimizes the cost of reaching 100% of
electrical coverage in a country. To that aim, it takes into account
the extension of the main grids and off-grid solutions, as shown in
Fig. 4. In a nutshell, it first calculates the cost of diesel in each
5

community, taking in account the distance from the supply loca-
tion. Then, it calculates the LCOE of all off-grid solutions by using an
energy balance equation, the peak load and the capacity factor of
the analyzed technology. It further computes the LCOE of the grid
densification and extension, by summing the cost of extending the
low, medium and high voltages lines. The lowest-LCOE technology
is selected for each community. Finally, relevant outputs for energy
planners are computed, such as as the installed capacities or the
total investment per community.

3. Case study

Bolivia is a country located in the centre of South America, it is
one of the poorest of the Western hemisphere and it has a high
percentage of indigenous people. Bolivian population accounts for
more than 11million inhabitants, fromwhich themajority is urban.
The electrification rate has reached 88% of the total population but
is limited to 66% in rural areas (data for the year 2015). It is planned
to reach a 100% of coverage by the year 2025 [29]. The low rural
electricity coverage in Bolivia is partly due to its unfavorable ge-
ography. The presence of the Andes mountain chain divides the
country into very different climatic regions, also reflected in the
culture and behaviour of their inhabitants.

3.1. Unelectrified villages in the bolivian lowlands

From an electrification perspective, the available solutions
include the extension of the grid, the deployment of microgrids in
places with a high density of inhabitants, where themain grid is not
a viable solution, and stand-alone systems for each house in places
with scattered population [6]. Fig. 5 displays the location, popula-
tion and electrification status of all communities in Bolivia [30]. It
also shows the high and medium voltage grids: Bolivia has a main
grid that covers the central and southern regions of the country. In
addition, the North and South-East regions comprise isolated grids
serving the surrounding populations. Finally, due to the complex
geography of the country, there are also a considerable number of
villages without access to electricity. A previous study identified a
population threshold for the case of Bolivia for which micro-grids
are suitable for electrification. This population threshold includes
communities between 50 and 550 households that do not have
access to any form of electricity [18]. Communities smaller than 50
are mostly low-income and thusmay not have sufficient demand to
make microgrids economically viable or the population could be
scatter in the area of the community. Most communities with more
than 550 households beneficiate from a connection to the grid. In
total, 903 communities are identified with 50e550 households
without access to electricity in 2025. Fig. 6 shows the distribution of
these communities according to their size. Most of them comprise



Fig. 4. Taxonomy of OnSSET electrification alternatives, adapted from Ref. [18].

Fig. 5. Geospatial dataset of communities, electrification rate and existing electricity grid in Bolivia. Note that the size of the symbols used are not representative of the area. a.
Population size in each community and transmission lines in 2017. Population extrapolated from National Census 2012 [30]. b. Electrification rate and high voltage transmission
lines in 2012. Taken from Ref. [18].
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50 to 200 households, and only 8 communities count more than
400 households.

3.2. Mutable and unmutable optimization coefficients

In this work, the model parameters are divided into two sets:
unmutable and mutable. The first set contains the ones that do not
vary between the different optimizations. These are techno-
economic parameters and are defined in Table 1. The other set
can take different values in each instance and contains some
techno-economic parameters, demand and PV time series.

3.2.1. Demand time series
Forecasting demand in a rural community is a complex task, due

to the uncertainty associated with the different components of
energy consumption. This uncertainty is tackled by calculating the
6

expected demand from a set of scenarios. To this end, a series of
plausible villages configurations are proposed and simulated. Sur-
vey data is used to generate aggregated demand time series using
the open-source RAMP stochastic model, as originally proposed in
Ref. [19]. The synthetic demand time series are calculated for a
period of 1 year and were validated for the particular case of a rural
microgrid in the lowlands of Bolivia. In this work, 15 villages ar-
chetypes from a previous study [18] are used. For each archetype,
stochastic demand times series are generated and used as input to
the sizing process. Thus the optimization minimizes the NPC, and
selects the optimal set of technologies that allow covering these
demands. Each archetype describes a possible energy consumption
pattern for Bolivian villages. Fig. 7 shows the possible configuration
of these settlements:



Fig. 6. Number of households on the analyzed communities in the lowlands of Bolivia.

Table 1
Unmutable model parameters.

Parameter Unit Value

Periods in a year hours 8760
Project life time years 20
Time step hours 1
Discount rate % 12
Lost load probability % 0
Unitary battery electronic cost USD/kWh 222
Battery operation and maintenance cost % 2
Battery charge efficiency % 0.95
Battery discharge efficiency % 0.95
Battery full discharge time hours 4
Battery full charge time hours 4
PV nominal capacity W 250
PV inverter efficiency % 97
PV operation and maintenance cost % 2
Genset operation and maintenance cost % 2
Minimum genset power output % 50
Genset penalty cost for part load % 1.5
Fixed cost PV/Battery USD 15 000

Fig. 7. Construction of the expected demand.
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� The household socio-economic level is divided into two cate-
gories: Low and high income. The threshold between both is
defined by the poverty line.

� Five different villages composition are simulated: A1) 90%, A2)
80%, A3) 70%, A4) 60%, A5) 50% of low-income households.

� Regarding public services, 3 situations are considered: B1) No
public services, B2) School and B3) School plus medical center.

� All scenarios include public lighting and a church.
� The number of households in the community is varied between
50 and 550 with a step of 50.

In Fig. 8, the contributions of the different components of the
energy consumption are shown. In general, an increase in the high-
income population percentage leads to an important growth in
total demand and the peak load. This is a consequence of the higher
number of appliances owned by this segment of the population.
The share of the school and the hospital in the total energy con-
sumption decreases as the village size increases. Finally, to
construct the expected demand time series, the same probability of
occurrence is used for all scenarios.

3.2.2. PV time series
The solar energy yield is highly dependent on the location since

it is a result of the latitude, cloud cover and other climatic or
geographic characteristics in the region. For this reason, different
time series are extracted from Renewable. ninja for the coordinates
of Bolivian lowland communities [21]. The selected year is 2012 and
the tilt angle is set equal to the latitude. The conversion from solar
irradiation to power is simulated by assuming a commercial PV
model available over the whole territory (YL250P-29b) and
applying a five parameters model as implemented in Ref. [24].

3.2.3. Mutable techno-economic parameters
The challenge of providing clean, sustainable and affordable

energy to isolated communities around the world involves select-
ing the most suitable technology solutions for each situation. This
means that, depending on the context, a lead-acid battery can be
chosen over lithium-ion or a bio-gas micro-turbine over a diesel
unit. The ability to compare different solutions in a fast and reliable
way is key for practitioners around the world. In this work, it is
proposed to achieve this through surrogate models trained over a
large range of usual boundary conditions. For that purpose, the
parameters provided in Table 2 are varied, combined, and a opti-
mization is run for each selected combination. To avoid intractable
computational time, a Latin hypercube (with 150 samples) is
selected, covering the whole input space onwhich the optimization
model is run. The variation ranges of each input are detailed in
Table 2. As it is highly hazardous to perform an estimation of the
peak demand due to the high uncertainty in the energy evolution of
rural systems [31], the nominal capacity of the genset is set to a
percentage of the higher demand in the dataset. Finally, the battery
capacity/power output relationship is set to 4 h.

3.3. Machine learning regression methods

The python library scikit-learn is selected to build and train the
surrogate models [32]. It allows easily defining the optimization
problem and includes different state-of-the-art built-in algorithms,
which also allows to compare them. For this work, GPR and multi-
variable linear regression (MVLR) are chosen to showcase the ca-
pabilities of the proposed methodology.

3.3.1. Multi-variable linear regression
The MVLR is one of the simplest MLR methods to map the

function (f) estimating the output variable (y) based on a set of



Fig. 8. Demand profiles for the first days of March, Top Line: 50% of low-income households and Bottom Line: 90%. a) Demand profiles for communities of 50, 250 and 500
households. b) Dis-aggregated demand profiles for a community of 50 households. Taken from Ref. [18].

Table 2
Mutable parameters for the sizing process.

Parameter Unit Range

PV investment cost USD/kW 1000e2000
Battery investment cost USD/kWh 800e222
Depth of discharge % 0e50
Battery Cycles Cycles 1000e7000
Generator investment cost USD/kW 1000e2000
Generator efficiency % 10e40%
Lower heating value kWh/l 7e11
Fuel cost USD/l 0.18e2
Generator Nominal capacity kW 75% of the peak demand
Energy Demand kWh
PV unit energy production kWh
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input variables, or features (x). The multi-variable linear equation
can be described as follows:

f ðxÞ ¼ xu,w (12)

y ¼ f ðxÞ þ e (13)

wherew2 Rm is a vector of weights or parameters of the model. To
differentiate the observed values (y) from the predicted values
(f(x)), an error term (e), following a Gaussian distribution with zero
mean and variance s2n (equation (14)) is used.

e � Nð0; s2nÞ (14)
8

The interceptor of the linear equation can be included in w by
adding a column of 1 in the input vector x. To find the values of w
that minimizes the sum of the squared residuals, the ordinary least
squares method is applied.
3.3.2. Gaussian process regression
Gaussian process regression is a general-purpose machine

learning algorithm that can be applied to regression or classifica-
tion problems. It is constructed from a Bayesian analysis of the
standard linear model (equations (12) and (13)). The matrix that
concatenates the n sample data points is defined as X2 Rnxm and its
respective target vector is y 2 Rn. To calculate the probability
density function, the Bayesian theorem is applied:

pðwjy;XÞ ¼ pðyjX;wÞpðwÞ
pðyjXÞ (15)

In this framework, a prior probability distribution is defined
according to the previous knowledge of the system. A prior with
zero mean and a covariance matrix of Sp is used: w ~ N(0, Sp).
Finally, The predictive distribution for the estimation f* of unseen
realizations x* can be found by averaging the outputs of all possible
linear models with respect to the Gaussian posterior:

pðf*jx*;X; yÞ ¼
ð
pðf*jx*;wÞpðwjX; yÞdw (16)

The Bayesian analysis of the linear model suffers from limited
expressiveness. In order to overcome this, a projection to a higher
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dimensional space is achieved through a group of basis functions
(4(x)) applied to the inputs. When applying the Bayesian analysis to
this new formulation and using x and x’ as input vectors from two
different target sets. It is possible to define the kernel (covariance)
function:

kðx; x0Þ ¼ 4ðxÞuSp4ðx0Þ (17)

The Gaussian process is defined by its mean function (m(x)) and
kernel function. It is a collection of random variables, as shown in
equation (18). In this work, a Radial-basis function (RBF) kernel is
selected (Equation (19)) for its capacity to assign one hyper-
parameter (lengthscale) (li) to each independent variable. These
hyperparameters are optimized to maximize the marginal likeli-
hood, using the ‘L-BGFS-B’ algorithm, as implemented in Ref. [32].
This automatic relevance determination capability of the kernel
allows to adapt the sensitivity of the regression to each input
variable.

f ðxÞ ¼ GPðmðxÞ; kðx; x0ÞÞ (18)

kðxi; xjÞ ¼ exp
�
� 1
2
dðxi

�
l; xj

�
lÞ2

�
(19)

For the sake of conciseness, the above equations only briefly
describe Gaussian Processes regressions. The interested reader can
refer to Ref. [33] for a more comprehensive explanation.
3.4. Optimization process implementation

To create a database of optimal microgrid configurations, many
MILP sizing problems are solved. To this end, the algorithm shown
in Fig. 9 is proposed. Its main objective is to create and solve in-
stances for various community sizes (i.e. with a varying number of
households) and for each setting of the mutable parameters. It is
divided into a MILP creation phase, a main loop and an inner loop.
Each step is computed in the following manner:

� In the first phase, the abstract model of the optimization is
created. Then, the unmutable parameters are incorporated into
the MILP model. The mutable parameters are defined by their
lower and upper bounds.

� The main loop is run for each village size (from Nmin ¼ 50 to
Nmax ¼ 550 households, with a step of 50). In each case, a Latin
hyper-cube is initialized, defining the sampling of the other
mutable parameters.

� Inside the above loop, the demand and renewable generation
profiles are generated for each of the 150 (Noptimizations) in-
stances. All mutable parameters being set, the system is opti-
mized and the process is repeated for each element of the Latin
hypercube.
Fig. 9. Algorithm for the database creation.

4. Results and discussion

The eleven different village sizes together with the 150 elements
of the Latin hypercube result in 1650 different instances of the
problem. The termination criteria for the optimization is a gap for
the MILP problem of less than 1% or a maximum solving time of
30 min. The optimizations were performed in 175 h, with an
average resolution time of 381 s per instance on a computer with
16 GB RAM and an Intel® CoreTMi7-8850H CPU @ 2.60 GHz x 12.
The time spent to optimize all instances shows the limitations of a
per case approach, since, only in the lowlands of Bolivia, there are
more than 3000 unelectrified villages and 903 of those are between
50 and 550 households without access to energy.
9

4.1. Optimization results

A summary of the optimization results is shown in Table 3. It is
worthwhile to note that the considered search space of the techno-
economic parameters is large, leading to exploring extreme situa-
tions where some of the technologies are heavily penalized or
rewarded (Fig. 10). Taking this into account, the average NPC for all
optimization is 490 thousands of USD per village, which covers all
electricity-related expenses for 20 years. The average LCOE is



Table 3
Optimization results.

Variable Average value Max value Min value standard deviation

NPC (thousands USD) 490 1690 39 303
LCOE (USD/kWh) 0.44 1.18 0.1 0.16
PV nominal capacity (kW) 59 256 0 57
Battery nominal capacity (kWh) 186 1123 8 229
Renewable energy penetration (%) 54 99 0 35
Battery usage (%) 27 65 4 26
Energy curtailed (%) 9 36.7 0 8
CPU Time (s) 381 2185 37 573

Fig. 10. Box plot for the NPC and LCOE. The box contains the lower to the upper quartile of the data, they have a median line. The whiskers shows the range of the data and the
points consider outliers are plot separately as circles.

Fig. 11. Installed capacities in each simulated case. The values are ordered according to
renewable penetration.
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relatively high because of the penalization of the extreme cases
(where grid extension or solar home systems will most likely be
preferred to microgrids). Finally, the box plot of the LCOE (Fig. 10)
shows the importance of the economy of scale. Larger communities
are characterized by a lower LCOE.

The nominal capacities of the different technologies are con-
strained during the optimization process. As mentioned before, the
nominal capacity of the Genset is 75% of themaximumdemand and
it is always deployed to ensure a minimal quality of service. This
forces the system to install a sufficient battery capacity to cover the
peak demand. In general, it is possible to differentiate three main
system configurations:

� The first one corresponds to a high battery and PV capacity, in
which a large share of the consumption is covered by solar
generation.

� The second one consists in using the battery to reach the peak
demand and cover rapid changes in the load and in the PV
generation. It corresponds to a low battery usage (equation
(21)), and low installed battery and PV capacities.

� The last configuation corresponds to the intensive use of the
diesel generator and of batteries to cover the peaks. No PV is
installed and the renewable penetration is thus null.
10
The transition between these three groups is clearly visible in
Fig. 11: the left of the plot corresponds to the systems with high PV



Table 5
Surrogate model indicators.

NPC LCOE PV Battery

Type of MLT GPR MVLR GPR MVLR GPR MVLR GPR MVLR

r2 0.99 0.86 0.98 0.81 0.92 0.76 0.86 0.58
MAE 22 82 0.015 0.05 11 22 52 115
RMSE 36 111 0.022 0.07 16 27 85 148

S. Balderrama, F. Lombardi, N. Stevanato et al. Energy 232 (2021) 121108
and battery capacities, and therefore high renewable penetration
(equation (20)). The middle zone corresponds to limited PV ca-
pacity and the right part corresponds to the case without PV gen-
eration and zero renewable penetration.

Renewable Penetration ¼
PT

t¼1E
re
tPT

t¼1E
re
t þPT

t¼1E
ge
t

(20)

Battery Usage ¼
PT

t¼1E
bat;dis
tPT

t¼1Dt
(21)

It is finally worthwhile to note that the highest renewable
penetration reached during the optimization process is 99%. These
instances also corresponds to the highest NPC and LCOE due to the
necessity to oversize the PV and batteries. Although in those cases a
diesel generator is still installed as a back-up to ensure the system
reliability.
4.2. Surrogate models

The amount of information generated while solving each
instance is important and includes, among others, the system ar-
chitectures, the optimal component sizes, the dispatch strategy or
the cost information. To showcase the proposed methodology, only
a subset of the model outputs have been selected as dependent
variables for the surrogate models: the NPC, LCOE, battery and PV
installed capacity. These variables are deemed as the most relevant
for the purpose of the GIS analysis, but other variables could easily
be added by following the same methodology. Table 4 summarizes
the input and output variables used for the creation of the surrogate
models.

The regression results are shown in Table 5. In the case of the
NPC, a high correlation and a relatively small MAE are achieved.
Fig. 12 shows that MVLR has significant lower performance if
compared to GPR. Although it can approximate adequately values
that are close to the average NPC, its performance is inferior in the
low-NPC range. Some negative results are obtained for some cases,
which is not acceptable. The LCOE surrogate model has a similar R2

value, but presents lower variability (and thus no negative values),
which make it a more reliable indicator for the purpose of this
work. It is finally important to highlight that the highest model
errors are obtained for the extreme values (i.e. the boundaries of
the simulation space), which have a lower probability of
occurrence.

The obtained PV and battery capacities are important for energy
planning purposes since they allow to estimate the renewable en-
ergy penetration, the level of energy independence and the reli-
ability of the system. As already described in Fig. 11, they present a
step-wise nature when switching from one typical configuration to
the other. For this reason, a second RBF kernel is added to increase
Table 4
Input and output variables for the surrogate model.

Input variables Target variable

PV investment cost NPC
Battery investment cost LCOE
Max. depth of discharge PV installed capacity
Battery max. number of cycles Battery installed capacity
Generator investment cost
Generator efficiency
Lower heating value
Fuel cost
Number of households
Total unit PV generation
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the flexibility of the GPR method, as suggested by Rasmussen and
Williams [34]. The surrogate model performance however remains
lower for the PV and battery capacity than for the LCOE or the NPC
predictors, especially in the low power range. In all cases, the GPR
performed better than the MVLR to predict the dependant variable.

These results indicate that GPR is a powerful tool to predict the
NPC and the LCOE for a rural isolatedmicrogrid without the need of
a computationally intensive optimization for each specific case. On
the other hand, it exhibits lower performance when estimating the
nominal capacities of the Battery and PV systems. These effects are
further explored by means of a one-dimensional analysis: all the
techno-economic parameters are kept constant except the diesel
price. The fixed values correspond to the typical case of a Lithium-
ion battery (battery cycles of 5500, Depth of discharge of 20% and
Unitary investment cost of 550 USD/kWh), average PV price (1500
USD/kW) and typical diesel Genset characteristics (efficiency of
31%, lower heating value of 9.9 kWh/l and 1480 USD/kW of in-
vestment cost). The quantity of Households is set to 300 and the
fuel price changes from 0.18 to 2 USD/l.

As shown in Fig. 13, and in agreement with the previous results,
there is a good match between the computed NPC and LCOE points
with the GPR functions. MVLR can predict outside the search space
of the optimization process while the GPR rapidly loses its pre-
diction capacity outside the search space. The error in the predic-
tion of the installed capacities clearly appear in the 1-D analysis of
the PV capacity regression: the rapid non-linear transitions be-
tween typical system configurations are smoothed out by the GPR
surrogate models, which significantly increases the error around
these points (Fig. 13). In the figure with different households sizes,
the estimation for the PV is good as long as it does not enter in the
zone with high renewable energy penetration. The quality of the
GPR surrogate model could possibly be improved with more ob-
servations (i.e. optimizations), with a more limited number of in-
dependent variables or with a more advanced kernel functions or
regression methods. The compromise betweenmodel accuracy and
complexity is however deemed acceptable for the purpose of this
work, which, considered the scale of the analysis (country or
regional level), is only marginally affected by the smoothing of fast
individual transitions.
4.3. Surrogate models applied in OnSSET

The principal aim of this work is to propose a methodology
allowing to consider many decentralized rural electrification loca-
tions at the country level and in a computationally tractable
manner. In the particular case of Bolivian lowlands, there are 903
communities of 50e550 households without access to electricity.
Since there are multiple solutions to achieve this, a system design
has to be optimized for each of them. However, finding the
economical optimum is a demanding task from a computational
point of view: solving an optimization for each community could
last days in a computer with similar characteristics to the one used
during this work. To showcase the convenience of the methodol-
ogy, the OnSSET algorithm was modified to allow the use of sur-
rogate models based on the methodology described in this work.



Fig. 12. Predicted vs computed plots with 5-folds cross validation results.
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These surrogate models are used in place of the original fixed LCOE
hypothesis base on the peak demand and the capacity factor of the
technology. This flexibility allows to considere hybrid microgrids
tailored for the particular case of the considered community
instead of a fixed and non-optimal design. It is important to take in
account that the sizing model also optimizes the energy flows,
leading to a more accurate NPC and LCOE. This is an important
feature when analyzing energy systems with different energy
sources, as an un-optimal dispatch strategy could lead to a higher
operation cost or energy curtailment of the renewable sources [5].

To test the proposedmethodology, a base-case scenario (OnSSET
classic algorithm) using information described in Ref. [18] is
created. This scenario explores the cost of electrification for Boli-
vian communities between 50 and 550 households without access
to electricity. The selected technologies are grid extension, diesel
microgrids, PV/battery microgrids, and PV/battery home systems. A
second scenario (OnSSET Surrogate models) is created with the
addition of hybrid microgrids in the technology mix to showcase
the advantages of surrogate modeling. The most important char-
acteristics of the different technologies are shown in Table 6. Hybrid
systems have the same characteristics than the example of fix
household size (Fig. 13).

Results for both scenarios are shown in Table 7. In general, the
main technology for rural electrification is the expansion of the
grid. The classic OnSSET algorithm scenario, shows that PV/batte-
ries technologies are the most viable solutions under the circum-
stances described before. On the other hand, if hybrid microgrids
tailored for target comunnity are part of the energy mix, they
completely displace other off grid technologies as the most cost
12
effective solution. Furthermore, they reduce the number of con-
nections to the main grid because of their cost-effectiveness as
shown in Fig. 14.

It is important to note that there is no additional computational
cost to integrate the surrogate models into OnSSET, once they have
been created. The 1806 microgrids designs were performed in a
small period of time with a high degree of accuracy. If the average
time of resolution is taken as a reference, a total of 8 days would be
needed to solve all optimization problems. Compared to the orig-
inal constant LCOE approach, the proposedmethod generates more
realistic and tailored electrification options. Furthermore, surrogate
models allows to capture the optimal energy mix (PV/battery ca-
pacities, diesel genset), which can be used to evaluate the carbon
footprint of decentralized rural electrification solutions.

In general terms, for the estimation of the installed capacity, the
surrogatemodel performs significantly better on communities with
a lower number of households. As shown in Fig. 13, the ratio be-
tween the high and low PV installed capacities increases with the
number of households. This phenomenon is not well captured in
the larger communities. It is however important to note that only 8
communities have more than 300 households, which minimized
the impact of the of the prediction errors. Furthermore, the pre-
diction of the PV capacity does not impact the electrification
planning algorithm, which only considers LCOE as decision vari-
able, and which is the main objective of this work.
5. Conclusions

A methodology to derive surrogate models for energy planning



Fig. 13. Computed vs predicted values for the chosen target variables.

Table 6
Unmutable model parameters.

Parameter Unit Value

Lifetime of the grid years 30
Discount rate % 12
load moment (50 mm aluminium) kW m 9643
Power factor grid % 0.9
Grid losses % 18.3
MV max distance reach km 50
MV line cost (33 kV) USD/km 99 000
LV line cost (0.24 kV) USD/km 5000
Transformers (50 kVA) USD 3500
Max nodes per transformers nodes 300
Substation (400 kVA) USD 10 000
Substation (1000 kVA) USD 25 000
Additional conection cost to the grid/microgrid USD 125
Diesel cost USD/l 0.6
Operation and maintenance of distribution lines % 2
Grid capacity investment cost USD 1722
Grid electricity generation cost USD/kWh 0.13
Capital cost PV microgrids USD/kW 3500
Capital cost diesel microgrids USD/kW 1480
Diesel truck consumption l/hour 33.7
Diesel truck volume l 15 000
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purposes based on MLT is proposed in this paper. To accomplish
this data concerning the low-lands communities in Bolivia is used
to create plausible demand scenarios and a MILP sizing model is
used to create a database of optimal size microgrids systems under
different techno-economic conditions. MLR techniques are applied
to train and validate surrogate models to predict the outcomes of
the optimal sizing problem.
13
Throughout the 1650 different optimizations, hybrid microgrids
proved to be a cost-optimal technology in many cases. PV was part
of the optimal choice in more than 80% of the cases, evenwhen the
price of the technologywas high. This leads to a large penetration of
renewable energy, which supplies energy mainly during the day.
The batteries are mostly used to cover peaks and day/night tran-
sitions, when the Genset is not able to provide energy due to
operational constraints. The LCOE of hybrid microgrids is compet-
itive in the rural energy market in Bolivia, ranging from 0.09 to 0.16
USD/kWh which is competitive with diesel-only microgrids. This
competitiveness is achieved despite an important subsidy of diesel
in Bolivia, which caps its price to 0.18 USD/l (international diesel
markets are around 1 USD/l).

Overall, the surrogate models show a good capacity to predict
the NPC and LCOE values of the optimized system, with a high R2,
and a low MAE and RSME. PV and battery installed capacities are
less accurate because of the difficulty to replicate step-wise tran-
sitions from one typical system configuration to the other. These
transitions are smoothed out, which makes the regression model
unsuitable for the detailed sizing of a particular microgrid which is
deemed acceptable for macroscopic analyses. The main advantage
of this methodology is its adaptation capability, since it can be
applied to a wide range of technologies and the continuous varia-
tion of their installed capacity. The following conclusions and les-
sons learned can be extracted for the surrogate model creation
process:

1. Bottom-up demand profile creation is very flexible tool and
constitutes a powerful method to model not-yet electrified
communities from limited socio-economic data.



Table 7
Results for the OnSSET clasic algorithm and surrogate model scenarios.

Technologies OnSSET surrogate models OnSSET classic algorithm

Population Average LCOE (USD/kWh) Capacity (MW) Population Average LCOE (USD/kWh) Capacity (MW)

Grid 265 607 0.28 11 286 791 0.33 12
Hybrid microgrid 37 330 0.64 2.9 e e e

PV microgrid 0 0 0 9978 0.92 1.8
Diesel microgrid 0 0 0 0 0 0
PV Stand alone 0 0 0 6168 0.95 1.1
Total 302 937 e 13.9 302 937 e 14.9

Fig. 14. Technology deployment for OnSSET classic algorithm and Surrogate models scenarios.

1 https://github.com/CIE-UMSS/Surrogate_models_for_energy_planning.

S. Balderrama, F. Lombardi, N. Stevanato et al. Energy 232 (2021) 121108
2. Surrogate models are an excellent way of exploring the most
cost-efficient solutions from a set of viable technologies. This is
especially true when planning at a national scale where there
can be thousands of decentralized systems to consider
simultaneously.

3. The creation of the database is a computationally-expensive
process. Depending on the number of analyzed systems and
the detail of information needed, however individual optimi-
zations can be the best solution.

4. The energy planners must carefully choose their search space in
order to have more sample points in the values where is more
likely that the surrogate models will be used.

5. The GPR model performed significantly better than the MVLR,
which is explained by its automatic relevance determination
(ARD) kernel. The proposed comparison between regression
models however remains limited to two models and cannot be
considered as a comprehensive comparison, which would be
out of the scope of this paper.

6. To deal with the observed clusters of typical system configura-
tion, the regression could be complemented by a classification
machine learning algorithm, assigning the considered setup to a
typical configuration. This was however not tested in the pre-
sent paper and it is left for future work.

The proposed surrogate models proved to bring significant
improvement for energy planning purposes: instead of a single
14
simplistic configuration (characterized by a fixed LCOE and a rigid
microgrid design) or several sizing processes that consume
important computational resource. The new method allows to
adapt the microgrid configuration to the specific boundary condi-
tions of each community (diesel price, size, demand peculiarities,
etc.) without compromising speed or reliability once the surrogate
models have been created. Surrogate models offer an excellent
solution to explore such multidimensional optimal deployment
problems at the country level. While not all the challenges in rural
electrification planning were tackled in this work, it is certain that
surrogate models offer perspectives to further address them in
further research.

Although applied to a specific case in this study, the method-
ology is designed in a generic manner and can easily be extended to
other technologies, contexts and/or geographical areas. For the
same reason, the source code and input data are released with open
licenses. They are made freely available in a dedicated repository.1
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