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Abstract
An asymptotic homogenization model considering wave dispersion in composites is investigated. In this approach, the effect
of the microstructure through heterogeneity-induced wave dispersion is characterised by an acceleration gradient term scaled
by a “dispersion tensor”. This dispersion tensor is computed within a statistically equivalent representative volume element
(RVE). One-dimensional and two-dimensional elastic wave propagation problems are studied. It is found that the dispersive
multiscale model shows a considerable improvement over the non-dispersive model in capturing the dynamic response of
heterogeneous materials. To test the existence of an RVE for a realistic microstructure for unidirectional fiber-reinforced
composites, a statistics study is performed to calculate the homogenized properties with increasing microstructure size. It is
found that the convergence of the dispersion tensor is sensitive to the spatial distribution pattern. A calibration study on a
composite microstructure with realistic spatial distribution shows that convergence is found although only with a relatively
large micromodel.

Keywords Composites · Wave dispersion · Homogenization · RVE · Spatial distribution

1 Introduction

The heterogeneity of the microstructure of composite mate-
rials causes dispersion in wave propagation associated with
dynamic loading. This dispersion phenomenon, also referred
to as micro-inertia, is a result of local motion of the
microstructure driven bymultiple wave reflections and trans-
missions occurring at the interfaces between the constituents.
Correct evaluation or tuning of the dispersion properties of
composites can be important for engineering applications,
for instance impact-resistant components or devices where
composites are subject to high-rate loading [1–5] or meta-
materials with microstructures designed to show particular
effective behavior [6–8].
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Computational modelling of composites subjected to
stress-wave loading typically involves three length scales,
i.e. the size of the macroscopic structure, the characteristic
stress wave length and the length scale of the microstructure
(in fiber-reinforced composites related to the fiber diameter)
[8,9]. The macroscopic length scale can be much larger than
the microstructural length scale. In the case where the stress
wave length is also much larger than the typical microstruc-
tural size, there is no significant transient effect within the
microstructure and micro-inertia is negligible [8]. Therefore,
the overall dynamic response can be solely described by
averaging density and moduli. However, for a stress wave
which is only few times larger than themicrostructural length
scale, the dispersion becomes evident and averaging proper-
ties are not sufficient to describe the dynamic response [8].
In order to account for the dispersion phenomenon, mul-
tiple models have been introduced. One type of model is
the gradient elasticity model with high-order spatial deriva-
tives of strains, stresses and/or accelerations as reviewed
by Askes and Aifantis [10]. However, identification of the
length-scale parameters of this method, especially in a multi-
dimensional context, is not totally clear. Besides, Willis’
elastodynamics homogenization model derives an effective
constitutive relation which introduces non-classical coupling
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between effective stress and effective velocity and coupling
between effective momentum and effective strain [11–14].
Recent development of generalized homogenization models
enrich the macroscale displacement with additional general-
ized degrees of freedom of Bloch modes following the lines
of Willis’ model, see Sridhar et al. [15]. These methods are
suitable for linear elastic (layered) periodic materials while
an extension to materials with random microstructure is not
always straightforward.

An alternative type of method which provides a more
flexible framework (e.g. consideration of complex random
microstructure ormaterial nonlinearity) is representative vol-
ume element (RVE) based multiscale approaches. Initiated
by Hill [16], the RVE can be defined as a characteristic sam-
ple of heterogeneous material that should be large enough to
contain sufficient composite micro-heterogeneities in order
to be representative, however it should be much smaller than
themacroscopic structure size. Several definitions of an RVE
are introduced in literature, as reviewed by Gitman et al.
[17]. Generally, a micromodel can be considered represen-
tative if further increase of its size of RVE does not lead to
changes in the homogenized properties. Typically, statistics
studies using numerical computations are used to evaluate
the homogenized physical properties (e.g. elastic properties,
thermo-conductivity) or effective response (e.g. the effective
stress) of a range of micromodels with increasing size, for
instance in [17–24]. It should be noted that the size of anRVE
depends on the specific investigated morphological (e.g. vol-
ume fraction) or physical properties (e.g. thermal or elastic)
[18,20].

Multiscale methods assume multiple (at least two) spa-
tial and (or) temporal scales [25,26]. In multiscale models
finer-scale problems are considered in a (statistically equiva-
lent) representative volume element (RVE) and information
of the finer-scale is hierarchically passed into a coarser
scale by bridging laws. Based on a multiscale virtual power
principle [25] as a notion of a generalized Hill-Mandel
lemma, Pham et al. [8] and Roca et al. [27] developed
computational homogenization schemes in which the tran-
sient dynamics equations are resolved at macroscopic and
microscopic scale. Asymptotic homogenization with higher-
order (or first-order) expansions was proposed in [28–30] to
capture wave dispersion and attenuation within viscoelastic
composites. Fish et al. [31] introduced a general purpose
asymptotic homogenization scheme in which the micro-
inertia is resolved by introducing a eigenstrain term and
is valid for nonlinear heterogeneous material. This method
was further investigated by Karamnejad and Sluys [32] for
impact-induced crack propagation within a heterogeneous
medium. The aforementioned methods have shown certain
capabilities in capturing wave dispersion for strictly periodic
heterogeneous structures with simple microstructures where
the RVE can be clearly defined as a unit cell. However, in a

realistic compositematerial, themicrostructure has a random
nature. Therefore, the question of RVE existence needs to be
answered before multiscale methods can be employed.

In this paper, a dispersive multiscale model based on
asymptotic homogenization is reviewed and the existence
of an RVE for this method for unidirectional fiber-reinforced
composites is investigated. This paper is organized as fol-
lows: in Sect. 2, the dispersive model based on asymptotic
homogenization technique is introduced.The accuracyof this
numerical method for 1D and 2D elastic wave propagation
is demonstrated in Sect. 3. In Sect. 4, a statistics study is
performed to investigate if an RVE exists for this homog-
enization approach for realistic fiber reinforce composite
microstructures. In Sect. 5, a batch of calibrated numerical
samples based on experimentally determined spatial distri-
bution pattern is tested for the convergence of homogenized
properties.

2 Dispersive homogenizationmodel

In this section, the asymptotic homogenization model origi-
nated from Fish et al. [31] and later explored by Karamnejad
and Sluys [32] is described. This method allows for a decou-
pling of the equation of motion into a two-scale formulation.
The effect of microscopic dispersion is quantified by a so-
called “dispersion tensor”,which is related to the acceleration
influence function of the microstructure. The acceleration
influence functions for microstructures with one and multi-
ple inclusions are demonstrated as examples.

2.1 Two-scale formulation

Considering a composite structure that is in dynamic equi-
librium with prescribed displacements and stress boundary
conditions and given the initial conditions for displacement
and velocity (see Fig. 1a), the linear momentum equation
reads

∂σ
ζ
i j

∂xζ
j

= ρζ üζ
i , in �ζ (1)

with boundary conditions

uζ
i (x, t) = uζ

i (x, t) on ∂�uζ (2)

σ
ζ
i j (x, t)nζ

j (x) = tζi (x, t) on ∂�tζ (3)

at the boundary surface ∂�ζ = ∂�uζ ∪ ∂�tζ and initial
displacement and velocity conditions

uζ
i (x, 0) = u0i (x) (4)

u̇ζ
i (x, 0) = v0i (x) (5)
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Fig. 1 Problem statement. a
Original composite problem; b
equivalent two-scale problem
statement Ωζ
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where σ ζ , ρζ , uζ and nζ are stress, density, displacement
and surface outward normal, respectively. The superscript
ζ denotes that quantities are defined within the composite
domain. For simplicity, a linear elastic material law is con-
sidered herein, namely

σ
ζ
i j (x, t) = Sζ

i jkl(x)ε
ζ
kl(x, t) (6)

where εζ is strain and Sζ is the elastic stiffness tensor which
is for two-phase (i.e. inclusion and matrix) composites a
piece-wise constant function of spatial coordinates. Exten-
sion to nonlinear material behavior can be done by using
the instantaneous stiffness tensor as elaborated in Fish et
al. [31]. Perfect bonding between inclusion and matrix is
considered here while decohesion can be possibly included
through the eigendeformation concept [33] or a cohesive
crack formulation [34]. A relevant study on dispersive mul-
tiscale formulation with consideration of material damage is
introduced by Karamnejad and Sluys [32].

2.1.1 Asymptotic expansions

In the asymptotic expansion approach, two spatial coordinate
systems are introduced, macro-scale coordinates x defined in
the macroscopic homogeneous domain � and micro-scale
coordinates y in an RVE domain � with heterogeneous
microstructures, see Fig. 1b. The y coordinate is related to
the x coordinate by y = x/ζ with 0 < ζ � 1. Any physi-
cal field variable, for example, the displacement field u, is a
function of spatial coordinate x, y and also the physical time
t . These physical fields are assumed to be y-periodic in RVE
domain�, namely f (x, y) = f (x, y+klR) in which vector
lR = [l1, l2]T represents the basic period of the microstruc-
ture (in 2D), l1 and l2 are the lengths of RVE along the two
directions and k is a 2×2 diagonal matrix with integer com-
ponents. The choice for periodic boundary conditions for the

microscopic field ismotivated by superior convergence prop-
erties that have been demonstrated by Kanit et al. [18] and
Fish [35] among others. Following Fish et al. [31], we can
represent this function by an asymptotic expansion around a
point x in powers of ζ , namely,

uζ (x, t) = u(0)(x, t) + ζu(1)(x, y, t) + O(ζ 2) (7)

in which the first term on the right hand side represents a
macro-scale component while the second term represents a
micro-scale component. By applying the two-scale spatial

derivative rule ∂(·)ζ
∂xζ

i

= ∂(·)
∂xi

+ 1
ζ

∂(·)
∂ yi

, the strain canbe expressed

as

ε
ζ
i j (x, t) ≡ uζ

(i,xζ
j )

(x, t)

= εmi j (x, y, t) + O(ζ )

= u(0)
(i,x j )

(x, t) + u(1)
(i,y j )

(x, y, t) + O(ζ ) (8)

where εmi j is the micro-scale strain and (·)(i,x j ) = 1
2

(
∂(·)i
∂x j

+ ∂(·) j
∂xi

)
means the symmetric gradient of a function with

respect to coordinate x. The stress is expanded as

σ
ζ
i j (x, t) = σm

i j (x, y, t) + O(ζ )

= σ
(0)
i j (x, t) + σ

(1)
i j (x, y, t) + O(ζ ) (9)

where σm
i j is the micro-scale stress and the micro-scale per-

turbation stress σ
(1)
i j satisfies

〈σ (1)
i j (x, y, t)〉 = 0 (10)

where 〈(·)〉 = 1
|�|

∫
�
(·)d� is the volumetric average of (·)

within the domain �.
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The inertia is given as the following expansion

ρζ üζ
i (x, y, t) = ρ(0)ü(0)

i (x, t) + ζρ(1)ü(1)
i (x, y, t) + O(ζ 2)

= ρ(0)ü(0)
i (x, t) + ζρ(0)hsti (x, y, t)ε̈(0)

st (x, t) + O(ζ 2)

(11)

where hsti (x, y, t) is the so-called acceleration influence

function which satisfies ρ(1)ü(1)
i = ρ(0)hsti ε̈

(0)
st and hsti (x, y,

t) is a y-periodic function satisfying the normalization con-
dition

〈hsti (x, y, t)〉 = 0 (12)

2.1.2 Weak form

The weak form of Eq. (1) reads

∫

�ζ

ω
ζ
i, jσ

ζ
i j d�ζ +

∫

�ζ

ω
ζ
i ρ

ζ üζ
i d�ζ =

∫

∂�tζ
ω

ζ
i t

ζ
i d
ζ

(13)

in which the test function ω
ζ
i ∈ W ζ = {ωζ

i ∈ C0(�ζ ),

ω
ζ
i = 0 on ∂�uζ }. Integration of the two-scale functions

over the composite domain and its boundary is carried out as

∫

�ζ

(·)d�ζ = lim
ζ→0

∫

�

〈·〉�d� and
∫

∂�ζ

(·)d
ζ =
∫

∂�

(·)d


(14)

The test function is expanded as

ω
ζ
i (x, t) = ω

(0)
i (x, t) + ζω

(1)
i (x, y, t) + O(ζ 2)

= ω
(0)
i (x, t) + ζhkli (x, y, t)ω(0)

(k,xl )
(x, t) + O(ζ 2)

(15)

where the relation ω
(1)
i (x, y, t) = hkli (x, y, t)ω(0)

(k,xl )
(x, t) is

introduced.
By applying the two-scale integration scheme Eq. (14) to

Eq. (13) and using Eqs. (9), (10), (11), (12) and (15) and
neglecting higher-order terms, it can be found that

∫

�

ω
(0)
(i,x j )

[
σ

(0)
i j + ζ 2Di jst ε̈

(0)
st

]
d�

+
∫

�

ω
(0)
i ρ(0)ü(0)

i d�

+
∫

�

〈ω(1)
(i,y j )

σm
i j 〉�d� =

∫

∂�t
ω

(0)
i t i d
 (16)

where ω
(0)
i ∈ W (0) = {ω(0)

i ∈ C0(�), ω
(0)
i = 0 on ∂�u}

and ω
(1)
i ∈ W� = {ω(1)

i ∈ C0(�), 〈ω(1)
i 〉� = 0, ω(1)

i = 0
on ∂�u} and the dispersion tensor DM is introduced as

DM
i jst = ζ 2Di jst (x, t) = ρ(0)〈 hi jp ( y, t)hstp ( y, t) 〉� (17)

where (·)M denotes the macro-scale quantity. Therefore, the
weak form for the two scales can be derived as

∫

�

ω
(0)
(i,x j )

[
σ

(0)
i j + ζ 2Di jst ε̈

(0)
st

]
d� +

∫

�

ω
(0)
i ρ(0)ü(0)

i d�

=
∫

∂�t
ω

(0)
i t i d
 (macro-scale) (18)

1

|�|
∫

�

ω
(1)
(i,y j )

σm
i j d� = 0 (micro-scale) (19)

The solution of these weak forms is found with separate
finite element schemes for the two scales. Details about the
extraction of the macro-scale stiffness SMi jkl are explained in
“Appendix A” and the solution of the micro-scale problem is
illustrated in the next section.

2.1.3 Micro-scale problem

It can be observed fromEq. (19) that themicro-scale problem
is treated as a “quasi-dynamic” formulation following Fish et
al. [31]. Considering that Sζ

i jkl(x) = Smi jkl( y) and leaving out
the first order remnants in Eqs. (8) and (9), the constitutive
relation Eq. (6) can be rewritten as

σm
i j (x, y, t) = Smi jkl( y)ε

m
kl(x, y, t) (20)

The micro-scale strain εmkl(x, y, t) is divided into two parts:

one is caused by themacro-scale strain u(0)
(i,x j )

(x, t); the other
one is driven by the macro-scale acceleration gradient. The
micro-scale strain, from Eq. (8), is expressed as

εmkl(x, y, t) = u(0)
(k,xl )

(x, t) + u(1)
(k,yl )

(x, y, t)

= u(0)
(k,xl )

(x, t) + Hst
(k,yl )

(x, y, t)u(0)
(s,xt )

(x, t)︸ ︷︷ ︸
macro-scale strain related terms

+ ρ( y)
ρ(0)

f (0)
kl (x, t) + hst(k,yl )(x, y, t) f (0)

st (x, t)
︸ ︷︷ ︸

macro-scale acceleration gradient related terms

(21)

where Hst
k is a displacement influence function satisfying

y-periodicity and 〈Hst
k 〉� = 0, and f (0)

kl (x, t) is a macro-
scopic quantity proportional to the macro-scale acceleration
gradient so that f (0)

kl ≡ 0 in the absence ofmacro-scale accel-
eration gradient. It is to be noted that in Eq. (21) the first of
the macro-scale strain related terms corresponds to a uni-
form strain on the microstructure while the second term is a
fluctuation contribution to keep the microstructure to be in
self-balanced state. Similarly, the first term of macro-scale
acceleration gradient related parts in Eq. (21) represents a
uniform acceleration gradient over the microstructure while
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the second terms refers to a fluctuation contribution to keep
the microstructure in equilibrium under the excitation of a
macroscopic acceleration gradient.

Substituting Eqs. (20) and (21) into Eq. (19) leads to

∫

�

ω
(1)
(i,y j )

[
Smi jkl ( y)

(
Iklst + Hst

(k, yl )( y, t)
)
u(0)

(s,xt )
(x, t)

]
d�

+
∫

�

ω
(1)
(i,y j )

[
Smi jkl ( y)

(
ρ( y)
ρ(0)

Iklst + hst(k, yl )( y, t)
)

f (0)
st (x, t)

]
d� = 0

(22)

where Iklst = δksδlt and δks is the Kronecker delta tensor.
Considering the arbitrariness of u(0)

(s,xt )
and f (0)

st , Eq. (22) can
be split into two separate equations

∫

�

ω
(1)
(i,y j )

[
Smi jkl( y)

(
Iklst + Hst

(k, yl )( y, t)
)]

d� = 0 (23)

and

∫

�

ω
(1)
(i,y j )

[
Smi jkl( y)

(
ρ( y)
ρ(0)

Iklst + hst(k, yl )( y, t)
)]

d� = 0

(24)

Of these, the second one is solved for the acceleration influ-
ence function hstk with finite elements over the micro-scale
domain. Details about the solution procedures of Eq. (24) are
given in “Appendix B”. By use of Eq. (17), hstk gives the dis-
persion tensor which is used in the macro-scale weak form,
i.e. Eq. (18).

2.2 Acceleration influence functions

The effect of inertia in the micro-scale is considered by
an eigenstrain [36] and therefore only the solution of a
typical quasi-static balance problem is needed. As it is
pointed out in Fish et al. [31], it is possible to get a closed
form solution of the micro-scale balance Eq. (19) in the
case of a 1D composite bar with two different phases of
material with elastic material constants of E1, ρ1 and E2,
ρ2.

For a microstructure with one circular inclusion, the six
acceleration influence functions are plotted in figure 2. The
elasticmodulus, Poisson’s ratio,mass density of the inclusion
and matrix are Ei = 200GPa, νi = 0.2, ρi = 10,000 kg/m3

and Em = 2GPa, νm = 0.2, ρm = 4000 kg/m3. The volume
fraction of the inclusion is 60% and its diameter is 5 µm.
From Eq. (21), it is known that the acceleration influence
functions hmn

k can be interpreted as the first-ordermicrostruc-
tural correction to the eigendeformation field as triggered
by the macro-scale acceleration gradient. For instance, the
negative gradient of h111 along y1-direction in the domain
occupied by the stiff inclusion implies that the true accel-
eration induced strain in the inclusion is smaller than that

in the matrix domain. For a microstructure with 25 × 25
randomlypositioned inclusionswhile keeping the other prop-
erties unchanged, the influence function h11k (k = 1, 2) is
plotted in Fig. 3. Some observations can be made: (1) the
gradient h11(1,y1) in the inclusions phase is still negative and
has similar magnitude among all the inclusions, and (2) both
h111 and h112 show regions where peaks are higher and regions
where peaks are lower as a consequence of the mesostruc-
ture.

2.3 Properties of dispersion tensor

The magnitude of the dispersion tensor depends on sev-
eral characteristics of the microstructure. (i) The contrast
of material properties between the constituents. In terms
of a one-dimensional two-phase composite bar, if the wave
impedance is the same for the two phases, the dispersion ten-
sor is null [31]. This is consistent with the fact that when the
wave impedance is the same, wave dispersion due to mate-
rial heterogeneity is not present. To investigate the influence
of material contrast on the dispersion tensor, the dispersion
tensor is computed for a single microstructure with 15 × 15
fibers and a fiber volume fraction of 60%. The Young’s mod-
ulus and density of the inclusion are varied proportionally
as Ei = cEm and ρi = cρm for c ∈ [2, 4, 9, 16, 30],
respectively, with the Poisson’s ratio unchanged. The six
independent components of the dispersion tensor DM

i jkl , nor-
malized with respect to the values of the sample with the
lowest property contrast, DM

i jkl(c = 2), for the five cases
are shown in Fig. 4a. It can be seen that the magnitude
of all six components are increasing with larger properties
contrast, which means that the expected dispersion effect
should be larger for a higher contrast composite. (ii) The
diameter of inclusions. Similarly, the dispersion tensor is
computed for five cases with the same material properties
and microstructure with 15 × 15 inclusions but with differ-
ent inclusion diameter, di ∈ [0.005, 0.025, 0.1, 0.25, 0.5]
mm. The variation of DM

1111 as function of di is plotted in
Fig. 4b along with a quadratic fit. It can be observed that the
relation between DM

1111 and di can be described very well as
a quadratic relation and the same was found for the other
components of the dispersion tensor. This quadratic rela-
tion can also be found in the closed-form solution of the
dispersion tensor for a one-dimensional two-phase compos-
ite bar given in [31]. This means that for larger inclusions,
the influence of dispersion is larger. To ensure a mesh-
independent solution of DM

1111, five different mesh sizes
of the case with the fiber diameter di = 0.25 mm are
solved, with the number of elements ranging from 22,624
to 288,800. It is shown in Fig. 4c that after the mesh size
has reached the medium size, the dispersion tensor compo-
nent DM

1111 has reached converged values. Therefore, this
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geometry
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Fig. 2 Acceleration influence function hmn
k for a one inclusion microstructure (the enclosed subfigure shows the studied microstructure)

mesh size is adopted for the study described in Sects. 4
and 5.

3 Comparison with direct numerical
simulation

In this section, elastic wave propagation in a periodic com-
posite medium is simulated to investigate the performance of
the introduced dispersive homogenization model in compar-
ison with direct numerical simulation (DNS). Two cases are

considered, one with a one-dimensional microstructure and
one with a two-dimensional microstructure.

3.1 1D elastic wave propagation

Elastic wave propagation in a periodic two-phase composite
bar is studied similar to Karamnejad and Sluys [32]. Geom-
etry and properties are such that wave propagation is purely
one-dimensional. The material properties of the two phases
are E1 = 200GPa, ρ1 = 10,000 kg/m3, ν1 = 0 and E2 =
2GPa, ρ1 = 4000 kg/m3, ν2 = 0. The wave impedance con-
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Fig. 3 Influence function h111
and h112 for a 25 × 25 inclusions
microstructure (the enclosed
subfigure shows the studied
microstructure)

h111 (

y2 (μm)

y1 (

h112 (

y2 (

y1 (

geometry

μm)

μm)

μm)

μm)

μm)

trast between the two phases is E1ρ1/E2ρ2 = 250. The left
end of the bar is fixed. Two types of loading are considered.
Firstly, a incoming harmonic wave is imposed on the right
end of the bar so that the horizontal displacement u(t) on the
right edge satisfies u(t) = A0 sin(2π f t)H( 1

2 f − t) in which
A0 = 0.025mm represents themagnitude, f = 50,000Hz is
the wave frequency and H(·) is the Heaviside step function.
The bar consists of 100 repeating unit cells for a total length
of 500 mm as shown in Fig. 5. Four numerical models are
considered: two single-scale models, namely the fine hetero-
geneous model (DNS) and the fine model with homogenized
properties, and two multiscale models, namely the coarse
non-dispersive model and the coarse dispersive model. The
two fine models consist of 4500 quadrilateral elements. For
the onewith homogenizedproperties, the elasticmodulus and
density of the two phases are prescribed to be the homoge-
nized values, i.e. EM = 4.926 GPa and ρM = 7600 kg/m3,
respectively. This model therefore neglects wave reflec-

tion and transmission at material interfaces. By contrast,
the heterogeneous DNS model considers the heterogene-
ity of the composite bar and is therefore considered as the
reference exact solution of this problem. The two coarse
multiscale models use 500 quadrilateral elements with one
Gauss-integration point corresponding to a unit cell domain.
Homogenized elastic properties are used and the analysis is
performed with and without dispersion tensor. The main dis-
persion tensor component DM

1111 for this simple microstruc-
ture can be obtained by a closed-form solution following Fish
et al. [31]. The dispersion tensor is evaluated numerically as

DM =
⎡
⎣
0.0095 0 0

0 0 0
0 0 0.0095

⎤
⎦ MPa · ms2 (25)

It is shown in Karamnejad and Sluys [32] and Fish et al.
[31] that the ratio between macroscopic wave length lM and
the unit cell size lm determines the extent of dispersion. If lM
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Fig. 4 Properties of dispersion
tensor. a Normalized dispersion
tensor components; b dispersion
tensor component DM

1111 versus
diameter of inclusion; c mesh
density influence of DM

1111 (the
dashed line shows the converged
mesh size)
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is more than five times larger than lm , the dispersive effect
can be neglected. The dispersive model shows considerably
better accuracy than the non-dispersive model within the first
pass frequency band1. In this case, the wave length is calcu-
lated by lM = √

EM (ρM )−1/ f = 16.1 mm, while the unit
cell size lm = 5 mm. Therefore, the ratio lm/lM = 0.3106
in this case, which corresponds to a shorter wave length than
Karamanejad and Sluys [32]. The displacement field along
the bar is plotted for four typical time instants in Fig. 6. It
can be seen in the DNS reference solution that the input sinu-
soidal pulse is not maintained during the propagation and
there exists significant amplitude decay. The resultant dis-
placement field shows sharp kinks representing high velocity
gradients. This flutter characteristic is mainly due to the
high wave impedance contrast between the two phases of
the structure, which causes wave reflection. The result of
the fine homogenized model shows a well maintained profile
although with a small amount of leading oscillation related
to the discretization. A comparison between the DNS model
and fine homogenized model shows that dispersion is indeed

1 According to Andrianov et al. [37], a periodic elastic composite
behaves like a discrete wave filter. A discrete pass frequency band and
stop frequency band structure is formed. Whenever the wave frequency
is within the stop frequency band, its magnitude is exponentially atten-
uated such that the wave is not able to propagate. Only when the wave
frequency iswithin the pass frequency bands, propagation is admissible.

significant for the studied wave length. The solution from the
coarse non-dispersive model shows very strong oscillations
due to numerical dispersion effects caused by a coarse mesh
and the match with the DNS model solution is poor. The
coarse dispersive model shows a relatively smooth response.
This is because for the dispersive model there is no phys-
ical interface in the macro-scale model, so the wave can
not “feel” the interface. Nevertheless, there exists reason-
ably good agreement between the dispersive solution and the
DNS model solution before wave reflection at the left edge
(a-c) and after reflection (d) although the dispersive model
predicts a stronger decay of magnitude for the oscillation at
the rear of the wave. A higher order homogenization scheme
could result in a higher accuracy butwithmore computational
costs, see for instance [38].

Secondly, loading which mimics an impact-induced load-
ing pulse is considered, to demonstrate the capability of the
introduced dispersive numerical model for impact problems.
The problem setting is the same as described in Fig. 5 except
that the horizontal displacement on the right edge is pre-
scribed as

u(t) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

V
2T t

2, t ≤ T
VT
2 + A · (t − T ), T < t ≤ 2T

2VT − A
2T (3T − t)2, 2T < t ≤ 3T

2VT , t > 3T

(26)
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Fig. 5 Harmonic wave
propagating in a periodic bar
consisted of 100 unit cells. The
microstructure of the unit cell is
demonstrated
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(b) t = 0.3 ms
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(c) t = 0.5 ms
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(d) t = 0.9 ms

Fig. 6 Plots of displacement field at different time for DNS-heterogeneous, DNS-homogeneous, dispersivemultiscale and non-dispersivemultiscale
model

in which V and T are constants. This corresponds to a trape-
zoidal velocity pulse shown in Fig. 7. Two load periods are
considered for this type of loading: (1) T = 0.01 ms and
(2) T = 0.001 ms with the same V = 5.0 m/s. The dis-
placement field for two typical time instants along the bar
for four models, i.e. the fine heterogeneous model (DNS),
the fine homogenized model, the coarse non-dispersive mul-
tiscale model and the coarse dispersive multiscale model, is

t

u̇(t)

V

T 2T 3T

Fig. 7 Loading pulse of velocity u̇(t) applied at the right edge of the
bar
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(b) t = 0.4 ms

Fig. 8 Plots of displacement field at different time instants for loading pulse with T = 0.01ms

0 100 200 300 400 500
-2

0

2

4

6

8

10

12

14
10 -3

x-coordinate (mm)

D
is
pl
ac
em

en
t(
m
m
)

Fine heterogeneous (DNS)
Fine homogenized
Coarse non-dispersive
Coarse dispersive (proposed)

(a) t = 0.09 ms

0 100 200 300 400 500
-2

0

2

4

6

8

10

12

14
10 -3

x-coordinate (mm)

D
is
pl
ac
em

en
t(
m
m
)

(b) t = 0.2 ms

Fig. 9 Plots of displacement field at different time instants for loading pulse with T = 0.001ms

plotted in Figs. 8 and 9 for the two loading periods. It can
be found that dispersion is significant in both cases as the
DNS solution is different from the fine homogenized model
solution. The second case with shorter time duration shows
more evident dispersion. For both cases, the coarse dispersive
model shows a better agreement with the DNS model than
the non-dispersive model. From the examples of a harmonic
loading and a trapezoidal loading, it is concluded that the dis-
persive multiscale model offers considerable improvements
over the non-dispersive model for 1D elastic wave propaga-
tion problems. The dispersive multiscale model allows for

capturing dispersion with a discretization at macroscale that
is coarser than the microstructural resolution.

3.2 Two-dimensional wave propagation

Next, elastic wave propagation in a material with a two
dimensional microstructure subjected to an incoming sinu-
soidal wave is considered. The geometry consists of 100
repeating microstructures with a total length of 57.04 mm.
There are two phases of materials, circular inclusions with
a diameter of 0.5 mm and a surrounding matrix. The top
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Fig. 10 The DNS model mesh
(501,170 linear triangular
elements)

unit cell

100 repeating cells

Fig. 11 The multiscale model
(500 linear quadrilateral
elements)

edge and bottom edge of the structure are fixed in vertical
direction, which together with plane-strain conditions mim-
ics the state for materials in the middle region along the
thickness direction for a plate impact test [39]. The horizontal
displacement u1 of the incoming wave at the right edge sat-
isfies u1 = A0 sin(2π f t)H( 1

2 f − t) with A0 = 0.025 mm
and f = 400 KHz with constrained vertical displacement
u2 = 0. The elastic properties of inclusion and matrix are
the Young’s modulus Ei = 200 GPa, Em = 2 GPa, density
ρi = 10,000 kg/m3, ρm = 4000 kg/m3, and the Pois-
son’s ratio νi = 0.2, νm = 0.33. The volume fraction
of inclusions Vi is 60%. Similar to Sect. 3.1, four numer-
ical models are considered: the fine heterogeneous model
(DNS), the fine model with homogenized properties, the
coarse non-dispersive multiscale model and the coarse dis-
persive multiscale model. The fine models are discretized
with 501,170 linear triangular elements (see Fig. 10). For
the homogenized one, the material properties of the com-
plete domain are prescribed to be the homogenized values of
each phase. By contrast, the DNS model keeps the different
properties of each phase and therefore the dispersion caused
by material heterogeneity is naturally included. The coarse
models are discretized with 500 linear quadrilateral elements
at the macro-scale while each Gauss integration point corre-
sponding to a micro-scale problem solved within a unit cell
domain as shown in Fig. 11. The coarse non-dispersivemodel
neglects the contribution of dispersion at the macro-scale
while the dispersive model adds the dispersion tensor contri-
bution to capture the dispersion effect. TheRVE for this struc-
ture is clearly identified as the unit cell. The dispersion tensor
is found using the procedures illustrated in “Appendix B” as:

DM =
⎡
⎣

1.529e − 4 1.770e − 5 − 2.762e − 8
1.770e − 5 1.529e − 4 − 1.499e − 8

− 2.762e − 8 − 1.499e − 8 9.953e − 5

⎤
⎦ MPa · ms2

(27)

The averaged horizontal displacement u(x), i.e. the volu-
metric average of horizontal displacement within a constant
distance ls , along the bar for two time instants is plotted
in Fig. 12. In this study, ls is equal to 1/500 of the total
length of the bar. According to the reference DNS solution,
the input sinusoidal wave does not maintain its profile dur-
ing the propagation and it breaks into several pulses with
obvious magnitude decay. The profile also shows signifi-
cant oscillations caused by reflections at material interfaces.
The magnitude decay of the DNS model exhibits a more
gradual process than the 1D wave propagation problem con-
sidered in Sect. 3.1. This is due to the two-dimensional nature
of the microstructure. The coarse dispersive model captures
the magnitude of the wave well although it predicts a more
smooth wave profile. The computational time per time step
for the dispersive multiscale model is around 0.04 seconds
while for the DNS model around 2.5 seconds is needed on
the same system (a PCwith a 16 GB of memory and 3.5 GHz
Intel Xeon CPU).

4 RVE existence study

In the previous section, the accuracy of the introduced dis-
persive model has been validated for periodic composite
structures in which an RVE can be clearly defined as the
building unit cell. However, for engineering materials such
as fiber reinforced composites, the assumption of a peri-
odic microstructure is not representative. Spatial variations
in the fiber distribution can affect the material response.
The existence of an RVE for this multiscale approach
needs to be assured before the dispersive multiscale model
can be applied to simulate realistic composites with ran-
dom microstructure. The definition of an RVE prescribes
that the size should be sufficiently large such that fur-
ther increase of the size does not lead to change in the
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(a) t = 0.014 ms (b) t = 0.04 ms

Fig. 12 plots of displacement field at different time

(a) (b) (c)

Fig. 13 Processes for generation of numerical samples with periodic
boundary condition. a Initial configuration of a particle system (red
arrows show a typical initial velocity field of particles and black arrows
shows the diminishing motion); b intermediate configuration (dashed

box shows the undiminished reference body, red particles with arrows
denoting themoving direction demonstrate the effect of periodic bound-
ary condition); c final configuration: a numerical sample of composite
microstructure. (Color figure online)

homogenized properties (or effective response). Therefore,
the homogenized quantities, i.e. the dispersion tensor and
the stiffness tensor, of random microstructures with dif-
ferent sizes are calculated in this study. It is noted that
with reference to undirectional fiber-reinforced composites
circular inclusions are considered here while non-circular
inclusions, for instance, ellipses with different aspect ratio,
can be considered for other materials, following Li et al.
[40]. In this section, the numerical tool used to gener-
ate random microstructures is firstly described, followed
by a study of the spatial distribution features of gener-
ated numerical samples. Finally, convergence of the dis-
persion tensor and stiffness tensor for realistic composite
microstructure with respect to micromodel dimensions are
presented.

4.1 Generation of randommicrostructure with DEM

Following van der Meer [41], a Discrete Element Method
(DEM) solver called HADES, developed by Stroeven [42],
is used to generate numerical samples of randommicrostruc-
tures. DEM allows for generation of high packing density
of granular samples, as the final configuration is a result of
stochastic initial conditions andparticle-to-particle collisions
under external environment force and boundary conditions.

The process for generating a two-dimensional numerical
sample with desired packing density Vi is described as fol-
lows (see Fig. 13): A large box-shaped reference body is
created initially, which contains a predefined number of Ni

circular particles with either a given constant diameter Di or
a given diameter distribution curve f (Di ). The initial posi-
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tions of the particles are randomperturbations of horizontally
and vertically aligned locations. The initial velocity of any
particle is prescribed to be the same in the horizontal and ver-
tical direction but with a randomly assigned magnitude and
sign for each particle. The reference body is gradually dimin-
ishing with the same velocity in the horizontal and vertical
direction (see Fig. 13a). Periodic boundary conditions are
applied to the reference body to avoid any wall effect [17].
This means that during the simulation whenever a moving
particle is crossing the edge (or corner) of the diminishing
reference body, it reappears in the corresponding edge (or
corner) during the DEM simulation (see Fig. 13b). The col-
lision between particles are treated with the Hertz contact
law [42]. The inter-particle contact can introduce energy dis-
sipation characterized by contact damping. In the case that
damping coefficients are non-zero, continuous energy loss
due to contact results in a clustering effect on the resulting
particle system. It will be demonstrated in Sect. 4.2 that this
phenomenon can be clearly demonstratedwith the spatial dis-
tribution pattern of the particle system. A minimum contact
distance parameter dmin is enforced so that any two particles
can not be closer than this value, following the same hard-
core model concept as in [43–46]. It can be expected that
decreasing the size of the reference body has the effect of
increasing the volume fraction of particles. The simulation
stops when the reference body has decreased such that the
desired packing density, i.e. volume fraction, is reached (see
Fig. 13c). After this, a mesh is generated with GMSH [47]
for the inclusions and the matrix.

4.2 Spatial point distribution analysis

For the random microstructure of composites reinforced
with long fibers, the inclusions can be considered as dis-
crete circular objects dispersed into a continuum matrix in
a two-dimensional domain. The spatial positioning of these
inclusions is stochastic for realistic composites due to the
manufacturing processes and conditions. By treating the cen-
ter of each inclusion as one point, statistical spatial point
pattern analysis can be applied to characterize themicrostruc-
ture. As it is commented in Bailey and Gatrell [48], the basic
interest in analysing the spatial point process is inwhether the
observed events exhibit any systematic pattern, as opposed
to being distributed randomly in space. Possibilities for these
patterns are classified as first order or second order effects.
First order effects relate to variation in the mean value of the
process in space representing a global trend in the distribu-
tion of inclusions. Second order effects result from the spatial
dependence in the process, representing a local effect. This
can be described by the probability density function of the
nearest neighbour distances and Ripley’s K function [48].

In this study, numerical samples of composite microstruc-
tures generated by HADES are first evaluated for their

(a) (b)

Fig. 14 A representative sample of a batch A and b batch B

spatial distribution pattern. By introducing the contact damp-
ing within the DEM solver, the inter-particle (inclusion)
distances become smaller, representing local effects. To
demonstrate the influence of contact damping, two batches of
numerical samples are considered, one with nonzero contact
damping (batch A) and the other with zero contact damp-
ing (batch B). The probability density function of the nearest
neighbour distances and Ripley’s K function are evaluated
for these two batches of samples.

4.2.1 Nearest neighbour distances

The nearest neighbour distance (NND)measures the shortest
inter-inclusion interaction. The N th (N = 1, 2, . . .) nearest
neighbour distance is the distance between a randomly cho-
sen inclusion and its N th closest neighbour in the studied
domain [48]. It is assumed that the studied numerical sample
is in some sense representative of any region from a real-
istic composite microstructures. Therefore, it is needed to
determine at which size the NND distribution function has
converged. Eight different sizes are considered, by varying
the number of inclusions per sample Ni with values among
[5 × 5, 10 × 10, 15 × 15, 20 × 20, 25 × 25, 30 × 30, 35 ×
35, 40 × 40]. By increasing the number of inclusions while
keeping the volume fraction unchanged, the total volume
of the micromodel is also changed. For a given size, 100
random numerical samples are generated to ensure the repre-
sentativeness of possible spatial distributions. Representative
numerical samples of batch A and B are shown in Fig. 14.
The diameter of the inclusions Di is kept as a fixed value of
5 µm and their volume fraction Vi is 60%. The minimum
contact distance dmin is set to be 0.18 µm.

In Fig. 15a, the probability density of the 1st NND at dif-
ferent distances corresponding to different sample sizes for
batch A is shown. The value of the probability density at a
distance h represents the “chance” of the 1st NND for an
inclusion to be h. A detailed view of the probability density
of the 1st NND at two typical distances for different sample
sizes is plotted in Fig. 15b. It is noted that in order to elimi-
nate the influence of the sample boundary on the probability

123



92 Computational Mechanics (2020) 65:79–98

Fig. 15 a The 1st NND for
different sample sizes; b 1st
NND at two distances for
different sample sizes

5 5.2 5.4 5.6 5.8 6
0

2

4

6

8

10

12
Ni = 102

202

352

Distance h (μm)
Pr
ob
ab
ili
ty

de
ns
ity

(μ
m

−
1
)

(a)

52102152 202 252 302 352 402
0

2

4

6

8

10

12

h = 5.24 μm

5.30 μm

Number of inclusions Ni

Pr
ob
ab
ili
ty

de
ns
ity

(μ
m

−
1
)

(b)

5 5.2 5.4 5.6 5.8 6 6.2
0

2

4

6

8

10

12
Batch A (1st NND)
Batch B (1st NND)
Batch A (2nd NND)
Batch B (2nd NND)

Distance h (μm)

Pr
ob
ab
ili
ty

de
ns
ity

(
m

−
1
)

μ

Fig. 16 The probability density function of the 1st and 2nd NND for
sample batch A and sample batch B (35 × 35 inclusions)

density function of the 1st NND for a given numerical sam-
ple (e.g. Fig. 13c), a toroidal correction is applied. It assumes
that the top and left of the sample domain is connected to the
bottom and right, respectively, as if the sample domain is a
torus [49,50]. It can be found from Fig. 15 that as the size
of sample increases, the mean value of the 1st NND den-
sity function gradually converges and the standard deviation
decreases. When the sample has 35 × 35 inclusions, the 1st
NND function represents a size-independent function for this
batch of samples. The same holds for the numerical samples
of batch B. With this converged size, the probability density
function of the 1st and 2nd NND for batch A and batch B are
evaluated, with themean value and standard deviation shown
in Fig. 16. It can be found that the largest probability of 1st
NND occurs around 5.21 µm for both batch A and batch B,
however, batch A has a larger peak value than batch B. The
2nd NND shows the largest probability around 5.24 µm for
batch A while the largest probability for batch B occurs at
around 5.38 µm. Again, the peak value of batch A is larger
than batch B. These observations show that the spatial dis-
tribution of inclusions of batch A is more clustered than that
of batch B, which is a result of the contact damping included
for batch A.

4.2.2 Ripley’s K function

The nearest neighbour distance considers the point pattern on
the smallest scale. Information on larger scales is considered
by Ripley’s K function [48]. The K function is the ratio
between the expected number of inclusions within a circle
of radius h of an arbitrary inclusion and the mean number
of inclusions per unit area. A direct estimate of K (h) from a
numerical sample is given by [48]

K (h) = A

N 2
i

∑
i

∑
j 
=i

Ih(di j ≤ h)

wi j
(28)

in which A is the area of the sample, Ni is the total number of
inclusions,di j is the distance between inclusion i and j , Ih(x)
is an indicator function which has a value of 1 if the condi-
tion x is true otherwise 0, andwi j is a weighting function for
edge correction following Zangenberg and Brøndsted [50].
A homogeneous point process with no spatial dependence is
the Poisson process with K = πh2 [48]. The mean value and
standard deviation of the K function for batch A and B are
plotted in Fig. 17 along with the Poisson solution. The stan-
dard deviations for the two batches are both very small. The
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Fig. 17 The calculated K function at different distances h
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Fig. 18 The dispersion tensor for sample a batch A and b batch B

mean value of the K functions for the two batches are very
close to each other and both approach the Poisson distribution
for larger length scales. It is concluded that the first and sec-
ond NND provides a good indicator to distinguish between
different fiber distributions, while Ripley’s K function is less
informative.

4.3 Convergence of dispersion tensor

The influence ofmicromodel size on the dispersion tensor for
the two batches is investigated to examine the convergence
of the dispersion tensor. With the methodology mentioned
in Sect. 2, the dispersion tensor can be solved using finite
element models. The material properties for inclusions are
prescribed as the Young’s modulus Ei = 74 GPa, Poisson’s
ratioμi = 0.2, densityρi = 2500kg/m3 and thematrix prop-
erties are Young’s modulus Em = 3.76 GPa, Poisson’s ratio
μm = 0.3, density ρm = 1200 kg/m3. There are six indepen-
dent components for the dispersion tensor due to symmetry.
Fig. 18 shows the mean value and standard deviation of the
individual components of the dispersion tensor for the numer-
ical samples of batch A and batch B. Again, 100 realizations
of the fiber distribution are solved for each batch and each
Ni .

There are several similar observations for the two batches.
Themean and standard deviation of D

M
1111 and D

M
2222 are very

close to each other, which means that no directional bias is
created with either the numerical samples or the dispersive
multiscale formulation. The mean values of the cross terms
of D

M
1112 and D

M
2212 are calculated to be very close to zero, as

expected for a transversely isotropic material. However, cer-
tain different findings can be made for the two batches. It is
seen that the mean value of the six independent components
of the dispersion tensor for batchA is gradually approaching a
constant value after Ni becomes larger than 202 with decreas-

ing standard deviations. For batch B, the mean value of the
dispersion tensor components shows the trend of converging
to a constant value after Ni becomes larger than 302 with the
standard deviations tend to decrease as well. The converged
values of the dispersion tensor for these two batches seem to
be different, which can be possibly due to different spatial
distribution patterns. The dispersion tensor converges with a
very large size for both these two batches, although for batch
A the convergence rate is slightly faster.

4.4 Convergence of stiffness tensor

The influence of the numerical micromodel size on the
stiffness tensor for the two batches is investigated to also
examine convergence of the homogenized stiffness tensor.
The stiffness matrix is obtained by using the numerical
scheme explained in “Appendix A”. Plane-strain conditions
are assumed herein. The calculatedmean and standard devia-
tion of the stiffness tensor is shown in Fig. 19. It can be found
that for both these two batches, the standard deviation values
for the stiffness tensor are small comparedwith themean val-
ues. The mean values already converge for relatively small
micromodel size. The calculated mean values of the stiffness
tensor for batch A and batch B in matrix notation are:

S
M(A) =

⎡
⎣

15548.2 5302.1 −3.99049
5302.1 15573.9 −0.949295

−3.99049 −0.949295 5125.54

⎤
⎦ ,

S
M(B) =

⎡
⎣

15221.1 5184.62 −4.87758
5184.62 15214.1 2.89584

−4.87758 2.89584 5015.75

⎤
⎦ (29)

To verify the results, the isotropy of SM is checked. It is
known that for isotropic material under plane strain condi-
tion, the stiffness matrix is
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Fig. 19 Stiffness tensor for a batch A and b batch B. Enclosed subplots show the zoomed-in view of stiffness component SM1111

SM =

⎡
⎢⎢⎣
SM1111 SM1122 SM1112

SM2211 SM2222 SM2212

SM1211 SM1222 SM1212

⎤
⎥⎥⎦

= E

(1 + ν)(1 − 2ν)

⎡
⎣
1 − ν ν 0

ν 1 − ν 0
0 0 1−2ν

2

⎤
⎦ (30)

where E is the Young’s modulus and ν is the Pois-
son’s ratio. Therefore, an isotropic law should satisfy that
2SM1212/(S

M
1111 − SM1122) is equal to one. An error measure-

ment εS is introduced as

εS =
∣∣∣∣∣

2SM1212
(SM1111 − SM1122)

− 1

∣∣∣∣∣ × 100% (31)

According to Eqs. (29) and (31), the errors for batch A and
batch B are calculated to be 0.0486% and 0.0496%, respec-
tively. This shows that the calculated stiffness is very close
to theoretical values. As it is seen in Eq. (29), the difference
between any component of the calculated stiffness tensor for
these two batches is less than 2%, which means that the stiff-
ness tensor is not sensitive to the considered differences in
spatial distribution of the microstructure.

5 Experimental calibration

It is demonstrated in Sect. 4 that the convergence per-
formance of the dispersion tensor depends on the spatial
distribution pattern of the inclusions. Therefore, realistic
microstructures should be studied to evaluate the appropriate-
ness of thismethod to be applied in real composite structures.
With image-analysis techniques, spatial distribution patterns
can be extracted from snapshots of real composites (see e.g.

Czabaj et al. [51]). Computational approaches can thereafter
be used to generate random numerical samples according to
the experimentally determined spatial patterns.

In this study, numerical samples are generated with the
DEM solver HADES for the microstructure of a CFRP com-
posite, HTA/6376, with a fiber volume fraction of 59.2%
[52,53]. First, the DEM settings are calibrated to match
experimentally observed NNDs. Then, the RVE existence
study from the previous section is repeated with these set-
tings. For the calibration the number of fibers is fixed at
1296 (= 362) in line with the experimental observations
on 1300 fibers. The adopted RVE size is large enough to
consider the spatial distribution in the numerical samples as
representative based on the observation in Fig. 15. A fiber
diameter distribution function is predefined according to the
experimentally determined size distribution (see Fig. 20).
The contact parameters, i.e. damping and minimum distance
dmin of the DEM simulation are tuned such that the spa-
tial distribution pattern of generated numerical samples can
match the experimentally-determined patterns. Herein, 100
numerical samples are generated with the DEM solver. The
mean value and standard deviation of the actual fiber diam-
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Fig. 20 Size distribution of fiber diameter
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eter distributions used in the DEM simulations are shown
in Fig. 20 along with the experimental quantification to ver-
ify that the input distribution is recovered. The calculated
mean and standard deviation of the probability density func-
tion of the 1st NND for the calibrated numerical samples are
demonstrated in Fig. 21 along with the experimental result
and two reference solutions from other numerically gener-
ated fiber distributions by Yang et al. [43] and Ismail et al.
[54]. It is seen that the probability density function of the
1st NND for the generated numerical samples has a good
match with the experimental measurements. A considerably
better agreement is found for the current study than for the
two reference solutions. The mean and standard deviation
of the probability density function of the 2nd NND for the
numerical samples and the reference solutions are shown in
Fig. 22.Again, the result for the generated numerical samples
matches well with the experiment measurements. A higher
agreement is found for this study than Yang et al. [43] while
the solution from Ismail et al. [54] also shows a good match.
It is therefore validated that the generated numerical samples
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Fig. 22 The probability density function of 2nd NND
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Fig. 23 Convergence study of calibrated sample

are sufficiently representative for the real microstructure of
the CFRP composite, following the criterion proposed by Liu
and Ghoshal [55].

A convergence study on the dispersion tensor is performed
next by increasing the size of samples with the same DEM
solver settings as the calibrated numerical samples. Again,
eight different sizes are considered, and for every size 100
random numerical samples are generated and solved for the
dispersion tensor with the FEM model. The influence of the
micromodel size on the six independent components of the
dispersion tensor is plotted in Fig. 23. The standard devia-
tion of all six components shows a decreasing trend as the
number of fibers N f is larger than 400 and the mean values
converge to representative values. This means that for this
specific compositematerial the dispersion tensor components
converge although convergence is still relatively slow when
compared with the stiffness tensor components as shown
in Fig. 19 or the elasto/plastic response of composites as
reported in [41].

6 Conclusion

In this paper, amultiscalemodel is introduced to capturewave
dispersion in composites. By using asymptotic homogeniza-
tion, it is found that the dispersion effect can be characterized
by a dispersion tensor, the magnitude of which is dependent
on the material property contrast of inclusion/matrix and
the size of the inclusion. The dispersive multiscale model
is applied to simulate elastic wave propagation problems in
a bar with one-dimensional and two-dimension microstruc-
tures. Comparison with a DNS model shows that the disper-
sive multiscale model has a significantly improved accuracy,
compared with non-dispersive homogenized models. To test
if anRVEcanbe defined for realistic compositeswith random
microstructures, the dispersion tensor and stiffness tensor are
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computed for random numerical samples at different sizes. It
is found that the convergence performance of the dispersion
tensor is considerably slower than that of the stiffness tensor
and that the convergence depends on the spatial distribution
pattern. Finally, a batch of calibrated numerical samples of
CFRP composites is tested for the convergence of the disper-
sion tensor. It is argued that careful definition of microstruc-
ture geometries is required to achieve representativeness.
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Appendix A

The solution of Eq. (18) follows a standard FEM formulation
with the precomputation of the dispersion tensor via the pro-
cedures in Sect. 2.1.3. The stiffness matrix is needed for the
calculation of themacro-scale stress σ

(0)
i j . This is obtained by

a standard computational-homogenization scheme following
Karamnejad and Sluys [32]. Periodicity is assumed for the
boundary edges and a prescribed displacement is applied to
three controlling nodes (see Fig. 24) according to

ui = H̃iε
M , i = 1, 2, 4 (32)

where εM is the macro-scale strain and

H̃i =

⎡
⎢⎢⎣

yi1 0

0 yi2
yi2
2

yi1
2

⎤
⎥⎥⎦ (33)

1 2

4 3

ΓB

ΓT

ΓL ΓR

Fig. 24 Periodicity of RVE. Two periodicity pairs of edges: 
L and

R ; 
T and 
B

After solving the incremental form of system equation
Kδu = δ f , the stiffness matrix SM is obtained by

SM = [
H̃1 H̃2 H̃4

] (
K pp − K p f (K f f )

−1K f p

) ⎡
⎣
H̃1

H̃2

H̃4

⎤
⎦

(34)

in which subscript p denotes the degrees of freedom of the
three controlling nodes and subscript f represents the other
free nodes.

Appendix B

To solve Eq. (24), the influence function hmn
k

(mn = 11, 22, 12) is treated as nodal variable. Inmatrix nota-
tion, standardFEMformulationwith hmn := (hmn

1 , hmn
2 )T =

Nh
mn

and ω = Nω are introduced where N is the shape
function matrix and h

mn
, ω contain the nodal values of

the acceleration influence function and test function, respec-
tively. Equation (24) is further simplified by using the FEM
formulation as

∫

�

(
(Lω)T σmn + (Lω)T Fmn

)
d�

= ωT
∫

�

(
BT σmn + BT Fmn

)
d� = 0 (35)

where

Lω =
⎡
⎢⎣

∂
∂ y1

0

0 ∂
∂ y2

∂
∂ y2

∂
∂ y1

⎤
⎥⎦

[
ω1

ω2

]
=

⎡
⎣

ω(1,1)

ω(2,2)

2ω(1,2)

⎤
⎦

σmn =
⎡
⎣

σmn
11

σmn
22

σmn
12

⎤
⎦ =

⎡
⎣
S1111 S1122 S1112
S2211 S2222 S2212
S1211 S1222 S1212

⎤
⎦

⎡
⎢⎣

hmn
(1,1)

hmn
(2,2)

2hmn
(1,2)

⎤
⎥⎦

Fmn =
⎡
⎣
Fmn
11

Fmn
22

Fmn
12

⎤
⎦ = ρ( y)

ρ(0)

⎡
⎣
S11mn

S22mn

S12mn

⎤
⎦

in which the matrix B = LN .
The constraint equation Eq. (12) is rewritten as

〈
hmn
k

〉
�

=
〈
Nh

mn
〉
�

= 〈N〉� h
mn = ch

mn = 0 (36)

in which the cofficient matrix c = 〈N〉�. Equation (36) can
then be treated as a constraint for the linear system of equa-
tions given by Eq. (35). The y−periodicity condition of hmn

k
can be enforced directly by periodicity constraints on corre-
sponding edges of the RVE (see Fig. 24).
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