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Abstract 
Steady multiphase flow in two-dimensional (2D) porous media has not been established 
without the continuous fluctuation in pore occupancy. Cox (2019) proves the ability of liquid 
to bridge a gas-filled pore throat that is narrow and deeply etched, allowing liquid and gas to 
flow simultaneously. In this investigation, a pore network study was done to discuss the 
feasibility of steady two-phase flow given the possibility of liquid bridging. Hypothetical 
percolating gas networks near the percolation threshold were made using Excel and MATLAB 
to highlight how each established phase can progress through a 2D square lattice. The 
percolating network describes the gas phase after it has established continuous flow through 
a water saturated medium. It was found that flow for both phases is easiest near the 
percolation threshold, where water progresses through a set of isolated clusters and gas has 
one major cluster that spans the entire lattice. It is predicted that liquid bridging is most 
problematic near or in the primary gas backbone due to lamellae mobilization. For a larger 
lattice, it was found that there is more distance between the primary gas backbone and the 
main water path. In contrast, the possibility of lamellae division occurring due to pressure 
differences within the lattice is highlighted.  

Preface 
This report is written for researchers studying microfluidic behavior in porous media to bridge 
the knowledge of microscopic multiphase flow to their behavior through a pore network. Pre-
requisite knowledge of percolation theory, foam generation mechanisms and basic 
programming is recommended. This research focuses on determining the feasibility of 
multiphase flow in 2D porous media. This is done by highlighting possible flow paths for two 
phases in a percolating square network and discusses the problematic scenarios that can arise 
within this network.   
 
Furthermore, I would like to show my gratitude to Prof. W.R. Rossen for his support and 
supervision throughout the course of this investigation.  
 
Delft, 15 January 2020, 
Jorijn Holstvoogd 
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1. Introduction 
Microfluidics refers to the behavior and the manipulation of fluids that are constrained to a 
small geometric pore space of a microfluidic device (Fallahi et al., 2019). This device can 
consist of a two-dimensional (2D) network etched into a glass or silicon chip. In this 
constrained geometry, as in geological pore networks, capillary action governs mass 
transport. Understanding microfluidic behavior can help us manipulate it to represent a wide 
range of modern-day applications (Lifton, 2016). These applications include enhanced oil 
recovery, which is the focus setting of this study.   
 
In microfluidics, the pore space governs how fluids flow across a given network through 
capillary interactions. Therefore, the geometry of the individual pores and the connectivity of 
the network is of essence in understanding how a fluid can penetrate a pore space. 
Conventional microfluidic devices use 2D networks of pores. In a 2D network, percolation 
theory says that two phases cannot both form long connected pathways for flow; flow is 
possible only if the phases alternate occupancy of pores or pore connections (pore throats) 
(Larson et al., 1981). Alternating occupancy of pore throats is called snap-off (Rossen, 1996), 
and leads to the creation of foam. If simultaneous flow without fluctuating pore occupancy is 
not possible, then demonstration of foam generation by snap-off in microfluidic devices 
(Kovscek et al., 2007) is not a convincing proof of the mechanism for geological porous media. 
 
Foam can be an important tool in enhanced oil recovery, as the physical properties of the 
foam can shape and alter the flow in porous media. Often a reservoir can be heterogeneous, 
having various layers differing in permeability, which can obstruct flow for enhanced oil 
recovery. Gas injected for enhanced oil recovery can remove the remaining oil out of a 
reservoir where gas sweeps (Lake et al., 2014). However, the sweep efficiency is often poor 
as a result of the reservoir heterogeneity, viscous instability and gravity override. Foam 
generation in the reservoir can directly fight the causes of the poor sweep efficiency and 
improve oil recovery as it controls the gas mobility (Lake et al., 2014). In heterogeneous 
formations, the foam restricts and reduces mobility in the more-permeable layers to divert 
the flow to lower-permeability layers. Viscous instability is reduced by the viscous foam that 
reduces gas mobility. By increasing viscous pressure gradient, foam can also help fight gravity 
override, where the less-dense fluid flows above of a denser fluid (Rossen & Duijn, 2004) 
(Shan & Rossen, 2004). 
 
Microfluidic devices are not strictly 2D networks. If the etching is deep and pore throats 
narrow, liquid can bridge across the top and bottom of a throat while gas flows through the 
middle of the throat (Cox, 2019). If shown to apply generally, this mechanism re-establishes 
the possibility of simultaneous two-phase flow in these networks without fluctuating pore 
occupancy and the relevance of microfluidics to studies of foam generation. 
 
The premise of this study comes from a larger project on steady multiphase flow across a 
microfluidic network. This project is divided into two parts: 1. the capillary and geometrical 
conditions for bridging and 2. multiphase flow across a hypothetical 2D network of a porous 
medium made possible by liquid bridging. This study will focus on the second part of the larger 
project. Specifically, this thesis addresses the question: What are the geometric conditions of 
a network that allow steady multiphase flow (without fluctuating pore occupancy) given the 
possibility of liquid bridging?  
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In addition, it also addresses the following questions. For a 2D percolating network, for what 
occupation threshold is gaseous flow possible? How does water flow in the presence of gas 
flow? What are the lamellae-generation mechanisms that are expected?  
 
This report will start with a brief overview of the necessary concepts needed for the rest of 
the investigation. Then, the applied methods are discussed and lastly the results are 
explained, and conclusions are made. 
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2. Theory 
2.1 Percolation Theory 
2.1.1 Percolation Theory in Reservoir Geology 
Porous media are difficult to define in nature due to the geological uncertainty. This geological 
uncertainty is due to our lack of knowledge of the precise structure and morphology of the 
subsurface. Reservoir geologists therefore use several methods to understand the flow of 
water and hydrocarbons in the subsurface on a macro- and microscopic scale. One of those 
methods is percolation theory, which aims to describe the morphology and transport through 
randomly disordered porous media by statistical means (Hunt et al., 2014). Thus, percolation 
theory is a branch of statistical physics, a model of connectivity that can be applied to describe 
a porous medium in a certain representative elementary volume (King & Masihi, 2019). By 
understanding a part of the reservoir on a small scale, other properties can be estimated to 
describe the general flow through an aquifer or oil reservoir. It is important to realize that this 
theory relies on the assumption that flow through the reservoir is dominated by the 
continuity and connectivity of the network of connected clusters of open pores (pores 
occupied by a given phase) in the sedimentary rock. Understanding the representative 
elementary volume is key to describe the connected flow paths (King & Masihi, 2019). 
However, the focus of this investigation is a microscopic porous media in a 2D setting, to 
forecast the reservoir performance of multiphase flow. 
 
2.1.2 The Basics of Percolation Theory 
Percolation across a network depends on the occupation threshold of the system and the 
bond probability for sites (pore junctions, i.e. pore bodies), and bonds (pore connections, i.e. 
pore throats) (King & Masihi, 2019). The occupation threshold is the threshold at which a site 
or bond can be occupied by a given phase. The bond probability is the likelihood that a space 
is either “open” or “closed”. An “open” site or bond is one that has a bond probability greater 
than the occupation threshold and therefore could be invaded by the nonwetting phase. A 
“closed” site or bond is one with a bond probability below the occupation threshold, and 
could not be invaded. If a site is open, we then consider the probability of flow, whether it is 
connected to an infinite network of open bonds and sites that could conduct flow over large 
distances. 
 
Percolation theory analyzes the size of the connected clusters through the occupation 
threshold by statistical means. The size of the clusters is directly proportional to the increase 
of the occupation threshold until the percolation threshold, where the percolating system 
includes at least one large cluster that spans the whole system from one side to the other 
(Selyakov & Kadet, 1996). The dimensionality and the network type of the infinite or finite-
sized system changes the percolation threshold at which the cluster will span across the entire 
system. In this report we consider the percolation threshold to be defined by the system and 
has a value of 0.5, while the occupation threshold is a value altered to investigate percolation.  
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2.1.3 Variants of Percolation 
As previously mentioned, percolation is 
dependent on the dimension and geometry 
of the medium. There are two methods of 
percolation: site and bond percolation. The 
simplest form of percolation is site 
percolation, where in an infinite lattice of 
sites every location can either be “open” or 
“closed” based on a randomly assigned 
probability and the occupation threshold. 
Similarly, it is also possible to arrange in 
bonds instead of sites. Bond percolation can thus also describe a microscopic pore space 
where grains (pillars) are not participating in the flow of the system and the system is made 
out of pore throats and bodies. Understanding the type of percolation that could arise for the 
wetting and non-wetting phase is important in modelling the possible flow paths.  
 
2.1.4 Bond Probability and Pore Throat Size 
The bond probability, pi, of a pore throat is related to the size of the throats (Selyakov & 
Kadet, 1996) for a certain pore space distribution through the capillary pressure, which 
determines the ability of nonwetting phase to enter the throat. The larger the pore throat 
radius, the larger the bond probability becomes for gas to occupy that throat. This 
investigation assumes a given bond probability distribution for a certain microscopic pore-
size distribution. More generally, it can be said that the bond probability for a throat pi is 
related to the pore throat radius, ri: 

𝑝" = 𝑓(𝑟") 
 
In particular, pi increases as ri increases. This is important to note as this will influence the 
behavior for the flow of the wetting and non-wetting phase. This study, however, is not 
concerned with the details of the above equation. 
 
The value of the bond probability is described by a uniform distribution function between 0 
and 1. For each case we define an occupation threshold p, such that all throats with pi > p can 
be penetrated by gas. 
 
2.1.5 Randomness of Percolation 
Percolation is by nature a random statistical analysis (King & Masihi, 2019). Due to its random 
nature, it is possible to produce systems unable to conduct flow at all. It is possible, especially 
for high occupation threshold, that there are several large clusters that do not connect to one 
another by which the lattice is unable to produce a flow path for gas.  
 
2.2 The Pore Space 
2.2.1 Time Frame 
In this investigation, we assume the pore space is initially saturated with water and the gas 
has already invaded the pore space to the point where the gas phase is continuous. Thus, the 
gas will have filled every pore body and throat that is accessible and the water will drain from 
these pores.  
 

Figures 1&2: Site percolation (black=open sites, 
grey=closed sites) and bond percolation 
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2.2.2 Geometry of the Lattice 
As mentioned, the geometry of the lattice is important for the flow and 
percolation of the system. We consider a square lattice in 2 dimensions 
where the width of the pore throats is a function of the bond probability. 
The square lattice is a system where a set of pillars are located in a 
rectangular array restricting the flow of both gas and water. The 
coordination number for all pore bodies in this network is four; that is, each 
pore body is connected to four pore throats. While the coordination 
number is key, the rectangular shape of the pore bodies and throats used 
for illustration here is not important to the analysis below. 
 
Arrays of 16 by 16 pore bodies are considered, as well as 32 by 32 pore bodies.  
 
To investigate continuous flow, the lattice has wrap-around boundary conditions at the edges 
of the lattice. If flow is directed to the edge on the right, it can continue its flow on the left 
side of the lattice. Likewise, if flow is directed to the bottom, it continues on the top.  
 
After percolation the lattice will consist of the three major components,  

• Isolated clusters: Open pores that are not occupied by gas because gas does not reach 
them. 

• Primary gas backbone: A network of pores which conducts the most flow. This 
network includes additional flow paths in the vicinity of the minimum gas path. The 
minimum gas path represents the shortest path between opposite boundaries. 

• Non-primary gas backbone: A network of pores which does not or barely conduct 
moving gas. This includes the part of the gas backbone that is not the primary gas 
backbone as well as the dangling ends.   

 
2.2.3 Isolated Clusters 
Isolated clusters are areas in the network that are not connected 
to the conducting cluster of the network. Considering that the 
investigation focuses on the time frame just after the gas has 
established continuous flow, the isolated clusters should not be 
filled with gas, but rather with water and thus should be removed 
later on in the investigation where possible. Since the wrap-
around boundary condition applies, the isolated clusters could be 
located on the edge of the lattice, where they don’t connect on 
the other side of the lattice. After removing these clusters, the 
water occupies more pore space, which can be used for an easier 
water flow path across the lattice. In Figure 4, the isolated clusters 
are highlighted in orange.  
 

Figure 4: Pore space with 
isolated clusters (orange) 

Figure 3: 
square lattice 
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2.2.4 Primary and Non-Primary Gas Backbone 
The conducting gas backbone is defined as the network in which 
flowing gas is found. With a larger interconnected pore space 
network, more pore space will contribute to the flow. However, in 
this investigation, we focus on flow near the threshold and quantify 
the resistance of gas flow. Therefore, for simplicity, we define flow 
in the vicinity of the minimum-length gas path as the primary gas 
backbone. The primary gas backbone is established to allow for a 
calculation of the resistance, which is very difficult to do for the 
entire gas backbone. It is possible that some loops are located near 
the primary gas backbone and do conduct flow, but we assume that 
this is not as significant as the flow in the primary gas backbone. 
Since these loops do not conduct most of the moving gas, each loop 
would have roughly the same pressure as the pores where they 
connect to the primary gas backbone.  
 
Dangling ends are stagnant bodies of gas which do not contribute 
to the flow from one side to another. They only have one 
connection to the backbone, where their pressure is the same as 
the last pore that is connected to the primary gas backbone. 
 
For simplicity, all the open pores in the network that are not part 
of the primary conducting gas backbone are labelled as the non-
primary gas backbone. This includes part of the conducting gas 
backbone that is not part of the primary conducting gas backbone 
and the dangling ends.  
 
Note that the non-primary and primary gas backbone should not be confused with the terms 
dangling ends and conducting gas backbone from literature by King and Masihi (2019). In this 
literature the gas backbone is defined as the primary and non-primary gas backbones without 
dangling ends.  
 
2.3 Flow 
For both the water and gas flow paths, continuous flow is only established when each phase 
is able to flow across the lattice. In the primary gas backbone, the path connects to the same 
pore throat connected through the other side because of the wrap-around boundary 
condition. Thus, each respective phase has one inlet and one outlet. By doing so, we can 
approximately evaluate the feasibility of flow of both phases. We assume that both phases 
have a uniform pressure gradient across the lattice.  
 
2.3.1 Gas Flow 
As mentioned previously the gas will enter every accessible pore throat as a function of p, the 
occupation threshold. As noted, if, for a given throat, pi > p, it is open.  If this throat is 
connected to the primary and non-primary gas backbone, the adjacent pore bodies on either 
side will also conduct the flow of gas. Isolated clusters in the network are not filled with gas, 
as gas never entered these clusters to begin with. Furthermore, since the pore bodies are 

Figure 5: Pore space with 
highlighted primary gas 
backbone (light green) 
and non-primary gas 

backbone (dark green) 

Figure 6: All non-primary 
pores (dark green) are 

dangling ends  
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comparatively much larger than the pore throats, we assume for simplicity that all of the 
resistance to gas flow is in the pore throats. 
 
The non-wetting phase percolates as a bond-percolation process since pore occupancy is 
controlled by the throats. The bonds are the pore throats, and this can be used to model the 
simplest flow path across the lattice.   
 
2.3.2 Water Flow 
Before invasion, the lattice was already saturated with water and, thus, after invasion, all the 
pores that are not filled by gas, contain water. Since pores are etched with uniform depth and 
vertical walls, water, as wetting phase, continues to occupy the corner regions where pillars 
meet the upper and lower surfaces of the network (see examples in Figures 9 and 10 below). 
Water flow across the network is possible if water in these corner regions can interconnect.  
However, to deduce a general flow path across the lattice the water must cross gas-filled pore 
bodies. The water can then flow between pore throats through a number of different ways: 

• R1: A bent movement where the liquid flow path 
makes a 90-degree turn around a pillar. During 
this movement, water flows around a gas-filled 
pore body. In accordance with liquid bridging, 
the water will progress along the corners at the 
ceiling and floor of the pore body filled with gas.  

• R2: A movement where the liquid flows along a 
pillar between throats on either side of the 
pillar. By doing so, the liquid must travel along 
two pore bodies and one pore throat filled with 
gas.  

• Rb: Liquid bridging in the pore throats of the 
network with simultaneous gas flow. It is 
assumed that the likelihood that the liquid can 
bridge is greater in narrowest gas-occupied pore 
throats of the network. In terms of the 
percolation network this narrowest pore 
throat is one that has the smallest probability 
pi above the occupation threshold p.  

 
Due to the existence of isolated clusters, which are to be removed, water can find an easier 
path through the lattice since pores that already contain liquid barely contribute to the overall 
resistance of the flow path. We assume that the resistance in corner flow illustrated above is 
much larger than that through water-filled pores and throats. Thus, if the flow path advances 
through a pore space already saturated with liquid, no resistance is assigned there.  
 
Since the connectivity of a water flow path through the lattice is not a function simply of 
bonds or connected sites, the water flow cannot be described using site or bond percolation. 
However, since the water can progress across the lattice between throats, using the 
movements described above, a path can be established by observing several lattices. By doing 
so, remarks can be made on the viability of water flow across an arbitrary lattice with a given 
occupation threshold.  

Figure 7: R1 Liquid flow 
path (blue) with 

adjacent gas 
movement (green 

dotted line) 

Figure 8: R2 Liquid flow 
path (blue) with 

adjacent gas 
movement (green 

dotted line) 

Figures 9&10: Liquid bridges (Rb) of 
double channel morphology in red (Cox, 

2019) 



 12 

 
There are two major assumptions made when deducing the water flow path: 

1. The path with the least amount of liquid bridges is preferred. 
2. Only the smallest possible pore throats are utilized for liquid bridging. 

 
2.4 Capillary Mechanisms 
2.4.1 Lamella-generation Mechanisms 
Foam in porous media is defined by the formation of lamellae, surfactant-stabilized water 
films between bubbles, which in essence define the boundary of the bubbles which make up 
the foam. A lamella usually takes on a thickness of 30 nm to 100 nm. Ransohoff & Radke 
(1988) describe the three different lamella-generation mechanisms in porous media through 
their study of foam in glass bead packs: 

a) “Leave-behind” is a mechanism in which the non-wetting gas phase invades the liquid-
saturated pore space and stabilizes liquid films and lenses in the pore throats between 
gas-occupied pore bodies. By this method of invasion, the gas forms pathways and 
thereby forms several boundaries in adjacent pore throats. The foam formed by this 
mechanism, however, is very weak in absence of a surfactant to strengthen the liquid 
films. Ransohoff & Radke (1998) explain that in a homogenous bead pack, this lamellae 
creation mechanism was found to be dominating below a critical velocity. The gas 
percolates through the porous medium in several adjacent pathways in the 
interconnected pore space. The two gas fronts are not required to occupy the adjacent 
pores simultaneously. One front can arrive later should capillary pressures rise. It is 
important to note that this mechanism leaves at least one continuous gas pathway for 
flow. A major consequence as a result of this mechanism as a whole is that the gas 
relative permeability of the porous media decreases due to the large number of 
pathways that have dead-ends or block other pathways. The large number of dead-
ends formed can later be used in lamellae mobilization.  

 
 

 
b) “Snap-off” is a mechanism in which a gas-

bubble penetrates a pore throat (which 
restricts flow), and later a collar of liquid 
blocks the pore throat. The resulting liquid 
lens can later be thinned down to a lamella. 
This mechanism relies on the temporal 
variation in capillary pressure. To enter and fill 
the pore throat, the capillary pressure must 

Figure 11: Leave behind mechanism resulting from gas invasion. Based on Rossen (1996). 

Figure 12: Schematic of Roof snap-off, 
one of several mechanisms of snap-off 

Based on Ransohoff & Radke (1998)  
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first rise to a value at least equal to the capillary entry pressure and then fall to the 
capillary pressure at which snap-off occurs. Depending on the geometry of the pores, 
this means that the capillary pressure has to fall to about half of the capillary entry 
pressure of the pore throat. The difference in the capillary pressure forces the 
wetting-phase to grow a collar of water in the vicinity of the pore throat and snap-off 
the throat. The fall in capillary pressure which triggers snap-off for steady flow in 
homogenous porous media can be explained by any of eight ways (Rossen, 2008), 
three of which are as follows (Ransohoff & Radke, 1988):  

a. The mobilized lamellae alter the pressure drop between gas bubbles, causing 
capillary pressure to fluctuate as foam advances (Rossen, 1990).  

b. The pressure inside the bubbles is nearly uniform because they are inviscid, 
while the liquid pressure is reflected by the general flow field and shifting 
shape of the existing lamellae. Thus, the capillary pressure at the upstream end 
of long bubbles is much lower than at the downstream (front).  

c. As the gas penetrates the pore throat into the liquid-filled wide pore body, 
liquid clearing from the pore body can move back into the throat to cause 
snap-off. This was discovered by Roof et al. (1970) in their study of oil-trapping 
in a water-filled porous medium. The premise of this phenomenon depends on 
the ratio of pore throat to pore body diameters, which allows for water to 
advance along the pore wall to snap-off the gas bubble at the pore neck. 
Crucial to the mechanism is that the downstream pore body must be filled with 
liquid. This mechanism does not apply one the downstream pore is occupied 
with gas. 

 
 
 

c) The third and final lamellae generation 
mechanism is lamella division. This 
mechanism requires mobilizing a lamella to 
produce more lamellae. However, unlike with 
the first two mechanisms, some type of 
lamella creation must have occurred to begin 
the process of the lamella division. This 
mechanism creates more lamellae by 
mobilizing a lamella through a branching 
point (Rossen, 1996). At the branching point, 
the lamella can flow into two or more 
channels; in the process the lamella is split 

Figure 13: Conditions for Roof snap-off illustrated. Based on Rossen (2003) 

Figure 14: Schematic of lamella division. 
In this case, lamella division occurs 

during initial drainage. It can also occur 
after drainage. Based on Ransohoff & 

Radke (1998) 
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into two, one for each channel. If there is only one downstream channel, or other 
throats are already occupied by liquid, no lamella division occurs. This mechanism 
depends crucially on having a large enough pressure gradient to start the movement 
of the stationary lamella to the division point.  

 
2.4.2 Stabilized Liquid Bridging and Snap-Off 
To determine a stable flow of simultaneous water and gas, we assume that liquid bridging is 
possible so that water can flow without the phenomenon of snap-off across gas-filled pores. 
The capillary pressure conditions for snap-off are already extensively researched; however 
the conditions for stabilized liquid or capillary bridging for a 2D curved slit are not well known. 
The following paragraphs summarize some results from the literature on bridging. 
 
In this study, the term liquid bridging is defined differently from most literature studies, such 
as Broesch & Frechette (2012), Ahmadlouydarab et al. (2015), Moura et al. (2019) and 
Kusumaatmaja & Lipowsky (2010). In those studies, it is defined as water bridging between 
two parallel plates. Our definition of liquid bridging is that the liquid connects at the roof or 
floor of a pore throat. The liquid "bridging" as defined by much of the literature would lead 
to snap-off in our network by completely blocking the pore throat and not allowing 
simultaneous gas flow. The liquid bridging we refer to in this study is shown in Figures 9 and 
10, where the liquid flow is shown in red. Through this method, the liquid and gas flow can 
coexist without obstructing gas flow. The first part of the larger study (Cox, 2019) focuses on 
liquid bridging on a smaller scale rather than an entire network. 
 
As mentioned, this part of the research focusses on the connectivity and feasibility of multi-
phase flow in a 2D pore network given that liquid bridging can happen at a microscopic scale. 
Moura et al. (2019) analyzed the connectivity of a pore network made out of glass beads in 
which the water invades the air-filled pore space driven by gravity. By doing so, they analyzed 
how liquid bridges behave across its flow path. These liquid bridges are not located across 
gas-filled pores and connect between the roof and floor of the pore throats. This is what we 
consider snap-off. While the system we consider is driven by a given flow velocity and not by 
gravity, and the liquid morphology differs, remarks are only made about the advancements 
of liquid bridging in a connecting pore space and the global connectivity of the system. Given 
that the morphology of the porous medium is favorable for liquid bridging, the water 
connectivity in the pore space relies heavenly on liquid bridging. Furthermore, if snap-off 
occurs, it crucially impacts the flow of gas. According to Moura et al., at a certain point in 
time, liquid bridges that are located closer to the inlet are older than those located further 
along the flow path. Thus, in principle, those liquid bridges have more time to reach a 
condition favorable for snap-off over bridging. In contrast, in our study we assume a quasi-
static process and equal capillary pressure throughout the network. This is of more 
importance in a larger system, where snap-off events earlier in the network have catastrophic 
implications on the advancement of gas and thereby restriction of the water flow. Moura et 
al. (2019) confirms this and mentions that in their experiment, a small number of snap-off 
events obstructed large clusters of the connecting water flow. While we define snap-off as 
obstructing gas flow, Moura et al. (2019) defines snap-off as the breaking of liquid films in the 
pore throats directly obstructing the water flow. They concluded that water transport 
happens through a connected secondary network of liquid bridges and films. The interruption 
and rupture of a single entity of this network can regionally disconnect large sections of the 
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system. Therefore, the stability of liquid bridging plays a large global role in the connectivity 
and conductivity of the system. Additionally, this study concluded that liquid in trapped 
regions can be mobilized by liquid bridging and this should be considered when simulating 
water flow in porous media. While this study offers insights on the connectivity that liquid 
bridging brings to the system, directional flow phenomena where both phases have a velocity 
gradient through the network cannot be explained.  
 
For our study, it is also important to consider the consequences of a fluctuating flow 
throughout the lattice. Ahmadlouydarab et al. (2015) studied the effects of a fluctuating flow 
in respect to the stability of liquid bridging between two parallel plates. Although this liquid 
morphology leads to snap-off in our investigation and is not the same as we are considering 
in this report, it can impose consequences of unsteady flow. While it was mentioned that the 
stability depends on the wettability of the plates, it was found that for a large externally 
driven frequency, the bridges remain stable. This case then approaches a stationary setting. 
Only when the external flow has a very short frequency does the liquid bridge rupture and or 
detach. It was found that stable flow for significant frequencies was a result of less 
deformation due to rapid changes in flow direction as well as motion in the contact lines of 
the substrate. The minimum critical frequency depends on the geometry of the system and 
fluid properties such as viscosity. In respect to the liquid flow across the hypothetical 
percolating network, a failure of one bridge could possibly induce a fluctuating flow velocity 
below the critical frequency and destabilize liquid bridges further along the flow path.  
 
Valencia et al. (2001) analyzed a liquid 
morphology close to that of what we are 
considering with wetting layers on the top 
and bottom of the lyophobic substrate. 
They show that for a small volume, the 
liquid channel takes the shape of a 
cylindrical segment. However, if the volume 
per unit length is increased to a value 
greater than (P/8)L2, where L is the width of 
the liquid channel, the channel has a variable 
cross section along the segment. The largest 
part of this variable cross-section can be labeled as a ‘bulge’ which extends into the channel 
as flat sleeves on either side of the bulge. They concluded that for a small volume of two liquid 
channels with a symmetrical configuration and similar cross-section, the channels are stable. 
While for a larger volume of two channels with bulges, the channels are unstable. In this 
study, they considered a stationary case and did not consider a gas-driven velocity gradient 
which could possibly interact with the bulges. However, this highlights the importance of a 
steady small volume and the instability that may arise with larger volumes and unsteady flow.  
 
The steady multiphase flow across the 2D medium relies on the feasibility of liquid bridging 
without instabilities formed by deformations due to variable volume flow.  Ahmadlouydarab 
et al. (2015) and Valencia et al. (2001) both highlight the importance of steady flow rates in 
maintaining the stability of liquid bridges. While Moura et al. (2019) states the essence of 
stable liquid bridging on the connectivity and implications on the general water flow.  

Figure 15: Symmetrical liquid channels, Asymmetric 
liquid channel with unequal volumes. The bottom 

channel forms a bulge. (Valencia et al. ,2001) 
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2.5 Conductivity of Multiphase Flow 
2.5.1 Conductivity 
In this investigation, the conductivity of the gas and water is estimated. Given a constant flow 
velocity of both phases, the conductivity is a measure of the sum of the resistances in the flow 
paths. For the gas, this is easier to quantify as the resistances of the pore throats or bonds are 
assumed to be the same, for simplicity. While in reality this is not the case given a pore-size 
distribution, the resistance of every pore throat is assumed to equal to one. The conductivity 
for gas can be modelled using an analogy to electrical conductivity where the total resistance 
can be comprised of resistances in series and in parallel using the following formulae; 

Series:	R0 = R1 + R3    (1)  
Parallel:	R0 = (R1

71 + R371)71  (2) 
Using these formulae for the gas path across a system (the "primary gas backbone" in our 
terminology) the conductivity is calculated using the following formula; 

Conductivity: C = ( 1
∑B
)   (3) 

Where R here represents the resistance of one throat. The conductivity of the water is not 
easily quantifiable since we do not know the resistances of the segments R1, R2, and Rb 
illustrated in Figures 7 to 10, pending the conclusions of the parallel study of surface 
configurations and stability of bridges. Since the flow path of water is so constricted in all 
three of these configurations, we can say that the resistances are large. Therefore, to estimate 
how easily water flows across the lattice, we will count the number and types of these 
resistances. As noted above, we neglect the resistance in flow through water-filled pores 
compared to R1, R2 and Rb. The conductivity of water is estimated in a similar manner as the 
gas. The higher the sum of the present resistances, the lower the conductivity of the 
percolating lattice. 
 
Note that the calculated conductivity is based on the primary gas backbone. In reality, the 
entire gas backbone (primary and non-primary gas backbone without the dangling ends) 
conduct flow reducing the total resistance and resulting in higher conductivities.  
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3. Methodology 
The aim of the investigation is to highlight several flow paths for the wetting and non-wetting 
phase in percolating systems with a variable occupation threshold. To create these 
percolating pore networks, Microsoft Excel and MATLAB were utilized.  
 
3.1 Excel Method 
A 16 by 16 pore space was established using pore pillars, throats and bodies. The pore pillars 
were simply left blank. The pore throats’ bond probability pi was defined by the random 
function: 

Rand(	) 
 

This function returns a random value between 0 and 1 from a uniformly distribution. All the 
pi values in the network were then subtracted by the occupation threshold, p. If this value 
was negative, it was corrected to zero and thus it is a closed pore throat. This was done by 
the following if statement: 

If(p" > p; p" − p; 0) 
 

The pore bodies were defined as a small value, 0.001, if one of the adjacent pore throats are 
open, using the following if statement: 

If(sum(values	of	adjacent	pore	throats) > 0; 0.001; 0) 
 

At the edge of the system, the wrap-around boundary condition is considered by including 
throats on the other side of the lattice when determining if the pore body is open.  
 
At this point the system is defined, and every cell with a value above zero is an open pore 
body or throat. If the pore is 0, it is closed and filled with liquid. If the cell contains a blank, it 
is a pore pillar. Then, these conditions were visualized utilizing color-coding rules, to define 
pore pillars, closed and open pores as textured grey, grey and black colors, respectively. The 
percolating network can now be visually observed and analyzed. 
 
Since at this point, the lattice still contains several clusters of isolated gas pores, these are 
visually assessed and removed by changing the value of the cell from an arbitrary bond 
probability to zero.  
 
For a given occupation threshold, the shortest gas path is assessed visually in all possible 
directions (top to bottom, left to right). The same is done with the water path. For the gas 
path, the sum of the resistances is calculated for a flow in the primary gas backbone and the 
conductivity is determined.  
 
For the water, the minimum flow path is deduced much like the gas path. However, if the 
liquid has to bridge a gas-filled pore throat, the gas-occupied throat with the smallest 
(nonzero) value of (pi-p) is determined. This throat is among the narrowest entered by gas, 
which makes it most likely to sustain stable liquid bridging. By summing the resistances of the 
individual liquid segments (including those illustrated by Figures 6 and 7 above), the most 
likely flow path can be assessed. This path is one which is that with the fewest segments R1 
and R2 and liquid bridges.  
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This process is repeated for an occupation threshold range of 0.48-0.52 as well as for a larger 
lattice of 32 by 32 pores with an occupation threshold range of 0.49-0.51.  
 
3.2 MATLAB Method 
Two MATLAB scripts were written to describe the minimum gas path for a given percolating 
system and describe the randomness of percolating systems by a large set of iterative 
calculations. Unfortunately, these scripts are unable to devise the minimum water path, as 
they are unable to remove isolated clusters since the algorithms cannot deduce if a section is 
part of the largest cluster in the network. However, since gas percolates as bond percolation, 
the system can be defined in a series of nodes and bonds which are the pore bodies and 
throats respectively. Dijkstra’s shortest-path algorithm (Kirk, 2006) is utilized to find the 
shortest path for a given percolating network. In this algorithm, the nodes have defined 
coordinates, and bonds are defined by connections between nodes. By defining open-pore 
throats as bonds between nodes, connections can be established. Four different types of 
nodes have to be defined: left to right inner nodes, top to bottom inner nodes, left boundary 
condition and the top boundary condition. For flow in the horizontal direction, it was said that 
only the connections of the inner and top boundary nodes are relevant. Likewise, for flow in 
the vertical direction, only connections of the inner and left boundary nodes are considered.  
 
Finally, in the first script, the shortest flowing path for occupation thresholds ranging 0.45 to 
0.55 was illustrated along with their original lattice form. 5 iterations were made for each 
occupation threshold. The results of the first script can be found in appendix C and the script 
itself in appendix D. The gas path in the vertical direction is shown in blue, while the gas path 
in horizontal direction is highlighted in red. If a boundary condition is used, there will be a 
straight line across the lattice.  
 
The second script determines how many times an arbitrary lattice displays gas conductivity 
for a hundred iterations for every occupation threshold ranging from 0.40 to 0.60. Four 
different quantities were calculated for each occupation threshold: 

• The number of flowing systems if there is any flow 
• The number of flowing systems in the horizontal direction 
• The number of flowing systems in the vertical direction 
• The number of flowing systems with horizontal and vertical flow 

This script can be found in appendix E.  
 
3.3 Excel Method vs MATLAB Method 
While both methods can be utilized to make conclusions about a 2D percolating network, 
each method has its advantages and disadvantages. The Excel method easily defines and 
displays the percolating network, which can be edited to remove any isolated clusters and to 
highlight the gas and water flow paths. However, the lattices chosen always have flowing gas 
paths in at least one direction, which by the nature of percolation is not always the case. The 
MATLAB method can define the percolation network for a large variety of occupation 
thresholds and iterations. By doing so, the scripts can objectively show the nature of 
percolating systems for a large number of iterations. However, since they are unable to 
recognize if an arbitrary pore is part of the largest presented cluster, they cannot remove the 
isolated clusters. These isolated clusters are of essence in describing the water flow across 
the lattice. 



 19 

 
When deducing the conductivities of the water and gas pathways, Excel can quantify the 
amount of individual liquid movement segments and calculate the gas resistance to flow by 
resistances in parallel. The MATLAB method however, is unable to assess which pathways are 
significant enough to contribute to flow and calculate the resistance in parallel.  
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4. Results 
4.1 Excel pore space 16x16 statistics 
4.1.1 Gas Conductivity 
For nine lattices with occupation threshold ranging from 0.48 to 0.52, the gas conductivities 
were calculated. The first five lattices ranging from 0.48 to 0.50 have flow occurring in both 
directions (vertical and horizontal). However, only the conductivity of the most conductive 
primary gas backbone of the two directions for each lattice was shown below in Figure 16. 

 

The total resistance of the primary gas backbone can be lower than a single direct minimum 
path across the lattice due to flow diverting into several side streams. Note that according to 
formula 2, the resistances of sections of the primary gas backbone can be modeled by 
resistance in parallel. The likelihood that the primary gas backbone can divert into several 
parallel streams is higher when the network is more connected with a lower occupation 
threshold. 
 
While there is a general trend of a decrease in conductivity with an increase in occupation 
threshold, the nature of percolation remains random. As a result, even some lattices with a 
low occupation threshold display a reduced conductivity such as the lattice with occupation 
threshold 0.490.  
 
4.1.2 Water Conductivity 
For the water flow paths, we can’t deduce the conductivity as the resistances of the different 
types of water flow have not been concluded. Therefore, only the amount of times the three 
different movements were present in a given flow path was determined. As mentioned, these 
flow paths were made with the assumption that the most ideal flow path is one that is the 
shortest and has the least number of liquid bridges. Using liquid movements, R1 and R2, the 
section of the path that doesn’t require bridging can be modelled. The sum of R1 and R2 and 
the number of liquid bridges (Rb) was determined and shown in Figure 17. 

Figure 16: Gas conductivities for occupation threshold ranging 0.48-0.52 for a 16x16 lattice 
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As expected, an increase in the occupation threshold results in a flow path with less overall 
resistance for water. This can be concluded from the two receding trendlines. Most likely this 
is due to the decrease in connectivity of the percolating network of the gas phase and increase 
in the size and number of isolated clusters, in which the water can advance through without 
significant resistance. Since the conductivity is inversely proportional to the sum of the 
resistances, the conductivity of the water phases increases with increasing occupation 
threshold.  
 
It was stated that liquid bridging was most feasible in pore throats that are among the 
smallest in the network (Cox, 2019). Thus, the smallest pore throats were chosen for liquid 
bridging. The size of the pore throats inhibiting liquid bridges are based on how much they 
exceed the occupation threshold as illustrated in Figure 18. 

 

In general, a liquid pathway can cross a gas-filled pore that is relatively small compared to the 
largest pore throat in the network. However, given that the liquid prefers flow through the 
fewest bridges, it is in some cases impossible to find the narrowest pore throat. The lattices 
with occupation threshold 0.5 and 0.51 display this behavior, where their respective flow 

Figure 17: Elements in water resistance for occupation threshold ranging 0.48-0.52 for a 16x16 lattice 

Figure 18: Size of pore throats with liquid bridging for occupation threshold ranging 0.48-0.52 for a 16x16 
lattice 
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paths have to cross a pore throat that is quite significant. For a more direct path, the liquid is 
forced to bridge in more locations given that a small pore throat is in the proximity of this 
most direct path.  
 
4.2 Excel pore space 32x32 statistics 
4.2.1 Gas Conductivity 
Likewise, for the larger pore space of 32 by 32 pores, the gas conductivities across the lattice 
were calculated. This lattice is four times the size of the smaller lattice. The conductivities 
were calculated for three different lattices with occupation threshold ranging from 0.49 to 
0.51. These occupation thresholds were chosen to analyze conductivities near the percolation 
threshold.  

 

Alike the smaller lattice, the conductivity tends to decrease with increasing occupation 
threshold. The first two lattices with occupation threshold 0.49 and 0.5 have flow in both 
directions while the final lattice of occupation threshold 0.51 has only flow in one direction. 
This is the same pattern observed in the smaller lattices and thus this trend is independent of 
the size of the lattice.  
 
4.2.2 Water Conductivity 

 

Figure 19: Gas conductivities for occupation threshold ranging 0.49-0.51 for a 32x32 lattice 

Figure 20: Gas conductivities for occupation threshold ranging 0.49-0.51 for a 32x32 lattice 
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Since the pathways to cross the lattice are twice as large than the smaller lattice, the water 
path requires more water movements. Also, the trend of more conducting pathways of water 
flow with a higher occupation threshold found in Figure 17 still holds in Figure 20. This is again 
concluded by the receding trendline of the resistances of liquid movements.  

 

While the size of the lattice is increased, the probable path the liquid takes is not any more 
favorable than in the smaller lattice. This is because the liquid pathway already aims to flow 
across the smallest possible pore throat for bridging.  
 
What is noticeable from Figure 21 and also visible in Figure 18, is the decrease in required 
liquid bridging with lattices of greater occupation threshold.  
 
4.3 MATLAB Results 
The main purpose of utilizing a MATLAB script was to study gas percolation and the 
randomicity of percolation as a function of the occupation threshold. Results of occupation 
threshold ranging from 0.45 to 0.55 are shown in appendix C. The red paths display the 
horizontal gas flow and the blue paths show the vertical gas flow.  

 

The most noticeable distinction from the Excel method is that not every lattice before or at 
p=0.5 shows gas percolating in both directions. Some lattices such as the first lattice in Figure 
22 do not percolate in any direction. This can be problematic if you consider only one inlet 
and outlet. Alike the results found by using the Excel method for highlighting flow paths, the 
likelihood that gas percolates in any direction decreases with a higher occupation threshold. 
To validate this, the quantity of percolating systems was calculated for a hundred iterations 
for occupation threshold ranging from 0.40 to 0.60 in Figure 23.  

Figure 21: Size of pore throats with liquid bridging for occupation threshold ranging 0.49-0.51 for a 32x32 
lattice 

 

Figure 22: Bond percolation of gas flow for p:0.5 of a 16x16 lattice 
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As expected, the quantity of flowing systems decreases sharply just before the percolation 
threshold of 0.5. At this percolation threshold, the number of flowing systems that conduct 
flow in at least one direction is just above half of the iterated systems. This shows that 
percolation for only one inlet and one outlet is restricted. The quantity for which flow is 
guaranteed in both directions for the percolation threshold is just above 30% of all flowing 
systems. Only at occupation threshold of 0.415, was flow in at least one direction guaranteed. 
For none of the chosen occupation thresholds is flow guaranteed in both directions.  
 
At the percolation threshold of 0.5, statistically more than half of the bonds in the network 
are open allowing the flow of gas. However, in some systems, the global connectivity is 
determined by only a few bonds connecting several smaller clusters to the main cluster. 
Increasing the occupation threshold decreases the statistical chance of a global connected 
network. This can explain the decrease in flowing systems in Figure 23. 
 
The average resistance of the minimum gas path was also calculated. This is not to be 
confused with the primary gas backbone, as this is only considering the shortest path and not 
small loops found in the primary gas backbone that also conduct flow.  

Figure 23: Number of flowing systems for 100 iterations of p:0.40-0.60 of a 16x16 lattice 
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As observed in Figure 24, the resistance of the minimum gas path increases roughly until 
p:0.53. After which the average resistance starts alternating around a value of 27. In actuality 
considering that the primary gas backbone is larger with higher connectivity, the average 
resistance of the gas path will be much lower for lower occupation thresholds. While at higher 
occupational thresholds, the primary gas backbone should conform to the minimum gas path 
due to reduced connectivity.  
 
4.4 Flow Observations 
4.4.1 Gas Flow Trend 
The most noticeable trend shown by varying the 
occupation threshold is the connectivity of the 
pores which conduct gas flow. In other words, 
the size of the primary gas backbone decreases 
by increasing the occupation threshold. At a low 
occupation threshold, the network is more 
connected by which the gas flow can be divided 
into several flow paths near the minimum gas 
path. As observed in Figures 25 and 26, the size 
of the primary gas backbone highlighted in light 
green is significantly larger at lower occupation thresholds. This has consequences for the 
liquid flow since the larger the primary gas backbone, and the more space it takes up in the 
network, the less pores can be utilized for stable liquid flow.  
 
As stated in literature (King & Masihi, 2019) the percolation threshold is the occupation 
threshold at which one cluster arises across the network. This cluster spans in all directions 
thus allowing for a system where gas can be injected into any direction and the gas can flow 
across the network. The same was observed in this small scale pore network where gas was 
able to flow across the network in both directions (North to South, West to East) for the 
percolation threshold. However due to the restricted flow conditions with one inlet and one 
outlet on opposite sides of the lattice, the gas cannot always find a path across the lattice (see 
Figure 23). When the occupation threshold exceeds the percolation threshold, in most cases 
observed by the Excel method, gas could only flow in one direction. This can be problematic 
in cases where you cannot directly observe the network, and the gas inlet is in the direction 

Figure 25 and 26: Flow for p:0.48 and p:0.52 of 
a 16x16 lattice 

Figure 24: Average resistance of minimum gas path for p:0.40-0.60 for a 16x16 lattice 
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in which gas cannot flow. To ensure more gas flow, more outlets should be considered with 
a lattice that is at or below the percolation threshold.  
 
Due to the lack of connectivity with a higher occupation threshold, it was often found that 
the gas takes a less direct and more tortuous path to reach the outlet. This is shown in Figure 
26.  
 
4.4.2 Water Flow Trend 
As mentioned, the water flow across the lattice depends on the quantity, size and direction 
of the isolated clusters. These isolated clusters already occupy water and thus only require a 
driven velocity gradient to mobilize the water. The size and quantity of isolated cluster 
generally increases, the higher the occupation threshold and the less connected the network 
becomes. However, the direction of the isolated cluster, whether its longer in a certain 
direction, cannot be described as a function of the occupation threshold and remains random. 
For this reason and the randomicity of percolation in the network, is it difficult to quantify 
linear behavior of the water conductivity as a function of the occupation threshold.  
 
While creating the liquid flow path, we assumed that the liquid prefers the least amount of 
liquid bridges given that these liquid bridges take place in the smallest pore throats among 
the network. The consequence of this, is that the liquid path can be very tortuous. It could be 
that the liquid prefers a more direct path across the network with more liquid bridging.  
 
4.4.3 Water and Gas Flow 
While gas connectivity prefers a lower occupation threshold, water connectivity prefers the 
opposite. Therefore in order for both phases to find respective flow paths, flow is most ideal 
near the percolation threshold.  
 
4.4.4 Problematic Flow Scenarios 
In most cases, the liquid and gas will flow parallel 
across the lattice, where the liquid sometimes 
has to bridge a gas-filled pore throat of a 
dangling end. In the smaller pore space of 16 by 
16 pores, the liquid and gas pathways were 
mostly found in close proximity to one another, 
especially for lower occupation thresholds. This 
is not the case with the larger pore space of 32 
by 32 pores in which there is space between the 
gas and liquid pathways. In the vicinity of the 
primary gas backbone, it is more likely that the pores in the non-primary gas backbone, do 
have flowing gas. This space can be important in the stability of steady multiphase flow.  
 
 
 
 
 
 

Figure 27: Flow for p: 
0.485 of a 16x16 

lattice 

Figure 28: Flow for p: 
0.490 of a 32x32 

lattice 
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Water flow where the liquid has to bridge a gas-filled 
pore that is part of the primary conducting gas 
backbone, can be problematic if one of the bridges fails. 
If it does fail and snap-off occurs, the newly made 
lamella can be directly mobilized by the gas and water 
gradient driven through the system. As a result, more 
lamellae can be created by recurring snap-off of the 
liquid bridges and lamella division by the mobilized 
lamella.  

 
4.4.5 Additional Water Flow Paths 
If the assumption that water will flow through the 
least amount of liquid bridges is false, the most 
likely route will be a more direct pathway and 
shorter path across the lattice. In Figure 30, two 
pathways are shown. Pathway 1 has fewer bridges 
and is less direct than pathway 2. However, 
pathway 2 has a more direct path and has bridges 
of very small size. This path is further away from 
the primary conducting backbone of gas and only 
transverses across dangling ends in the two liquid 
bridges.  
 
4.5 Observed Lamellae Generation Mechanisms  
4.5.1 Leave Behind 
Since we are considering that the gas has already established continuous flow across the 
medium, lamellae surrounding dangling ends can be formed by leave behind.  
 
4.5.2 Lamella Division 
Dangling ends can also form ideal conditions for lamella division. If a liquid-occupied pore 
throat separates two dangling ends, one can compute the pressure difference across the 
throat. This pressure difference is crucial to lamella creation and lamella division (Rossen & 
Gauglitz, 1990) (Rossen, 1996). In Figure 5, dangling ends span across most of the lattice and 
due to the wrap conditions of such lattice, several dangling ends of different regional 
pressures can be located relatively close to one another. This is also seen in Figure 6 where 
two sets of dangling ends are separated by one thin lamella.  
 
  

Figure 29: Crossflow of liquid and gas 
paths for p: 0.490 of a 16x16 lattice 

Figure 30: Optional water pathways across 
the small network of p:0.485 
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5. Conclusions 
The results of this study show that for a given percolating network near the percolation 
threshold, multiphase flow is heavily dependent on the feasibility of stable liquid bridging 
across gas-filled pore throats. Using percolation theory to form a connecting lattice, the 
connectivity of water and gas is most ideal near the percolation threshold. While gas flow is 
easier with a lower occupation threshold, water flow generally prefers a higher occupation 
threshold where there is a reduced connectivity of gas pathways. The water flow is difficult 
to describe as a function of the occupation threshold since the water flow can dependent on 
the size, direction and quantity of isolated clusters formed by the percolating lattice in which 
water can move freely without resistance. However, regardless of how many isolated clusters 
are in a lattice at the percolation threshold, the water is likely to have to bridge a gas-filled 
pore throat.  
 
Since liquid bridging is most favorable near the smallest possible pore throat along the water 
path, the water path took less direct forms of flow to cross the lattice and satisfy the assumed 
conditions (Cox, 2019). If this was not the case and the water flow took a more direct path, 
more liquid bridges are required.  
 
To ensure steady multiphase flow without fluctuating pore occupancy, stable liquid bridging 
is required. Liquid bridging can be most problematic near the primary gas backbone. The 
primary conducting gas backbone decreases with size when the occupation threshold 
increases. The variable flowing gas velocity and pressure gradient in the primary backbone 
make for ideal conditions for lamella division once snap-off occurs (Rossen & Gauglitz, 1990). 
To ensure stability, the pore throats in the non-primary gas backbone that don’t conduct gas 
flow, should be used for liquid bridging. When the percolating system is of a large size, it was 
observed that the primary gas backbone and the water path are located further from one 
another, allowing the water to flow in more ideal conditions.  
 
Multiphase flow is also more feasible when more outlets are considered. In this investigation, 
we consider only one inlet and one outlet for each respective phase (based on the primary 
gas backbone and the water flow path). When more gas outlets are considered, the chance 
that the gas flows across the lattice is more likely as near the percolation threshold, one large 
cluster spans the system in all directions (King & Masihi, 2019). This was observed in the 
lattices at the percolation threshold in appendix A and B. 
 
In the observed lattices, leave-behind was found as a product of the gas infiltrating the 
saturated pore space and stagnating as dangling ends. The surrounding lamellae can be 
explained by leave-behind. Furthermore, the lattices show ideal conditions for lamellae 
mobilization as lamella separated by dangling ends of different pressures, can be mobilized if 
the minimum pressure difference can be reached (Rossen & Gauglitz, 1990). This would 
ultimately be problematic in establishing multiphase flow.  
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6. Discussion 
6.1 Modeling of the Gas and Water Paths 
The condition for gas flow for the defined systems is limiting as shown by Figure 23 by the 
number of outlets and the position of the chosen outlet. If there are more outlets present is, 
there is a higher chance that gas flow will occur near the percolation threshold as at this 
threshold, one large cluster spans the entire system.  
 
For each water flow, only a single path was devised with the given assumptions. If more 
pathways are highlighted with a different set of governing assumptions, several water flow 
paths can be weighed against one another.  
 
6.2 Further Research and Considerations 
6.2.1 Feasibility of Liquid Bridges 
The possibility of multiphase flow in a 2D percolating network is dependent on the assumed 
feasibility of liquid bridges. However, in order to support the conclusions made, the validity 
of liquid bridges for the following settings requires confirmation: 

• Liquid bridging across the primary gas backbone for variable flow rates of liquid and 
gas 

• Liquid bridging across the non-primary gas backbone in presence of slow-moving and 
stagnated gas 

• Consecutive liquid bridging of variable size 
 
6.2.2 Volume Progression Through Liquid Bridges 
Since we assume that the pressure gradient for both phases is constant and that the system 
is in steady state, we do not consider how the volume exactly advances through several liquid 
bridges. If we were to consider fluctuating flow rates throughout the lattice, variable capillary 
pressures have implications on the advancement of liquid volume across the lattice. Valencia 
et al. (2001) and Ahmadlouydarab et al. (2008) both state the importance of maintaining a 
constant flow rate in the stability of liquid bridging in a stationary case. Therefore, liquid 
accumulation should be avoided. The liquid volume that progresses through a large pore 
throat cannot always be accommodated by one of a significantly smaller size later in its path. 
If too much liquid volume is to cross a very narrow pore throat, the throat can be blocked by 
accumulated liquid and snap-off might occur. Therefore, it is likely that several liquid bridges 
might have to be utilized to transfer the same amount of liquid and maintain steady state. 
The two liquid bridges of path 2 in Figure 30 show this by first having a relative wide pore 
throat inhibiting the first liquid bridge followed by a much narrower pore throat for the 
second liquid bridge. There is an increased risk that accumulation happens at the second 
liquid bridge, which is not in line with the condition that is steady state. This is a consideration 
to keep in mind when considering a realistic system in unsteady state and variable pressure 
differences within the system.   
 
6.2.3 Lamella Division Across Dangling Ends 
The feasibility of multiphase flow relies on avoiding the formation of foam by any of the 
lamellae-generative mechanisms. Therefore, lamella division occurring near lamellae 
between consecutive dangling ends of different pressures can be problematic. The 
occurrence of this happening should be identified.  
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Appendices 
Appendix A – Excel Results: Pore Space 16 x 16 

p Original lattice without 
isolated clusters 

West to east flow 
 

North to south flow 

0.480 

   
0.485 

   
0.490 

   
0.495 

   
0.500 

   
0.505 
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0.510 

   
0.515 

   
0.520 

   
Note: Only the ends of the primary gas backbones are labeled.  
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Appendix B – Excel Results: Pore Space 32 x 32 
p 

0.49 0.50 0.51 
Original lattice without isolated clusters 

   
West to east flow 

   
North to south flow 

   
Note: Only the ends of the primary gas backbones are labeled.  
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Appendix C – MATLAB Results: Bond Percolation and Lattice for p:0.45-0.55 
p Bond percolation and lattice 

0.45 

 
0.46 

 
0.47 
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Appendix D – MATLAB Script: Bond Percolation and Lattice for p:0.45-0.55 
%% Parameters 
L=32; %for 16x16 pore space 
O=5; %#of iterations 
Pbeg=0.45; %Beginning value occupation threshold 
PI=0.01; %Steps of occupation threshold 
Pend=0.55; %End value occupation threshold 
  
%% Simplifications for later 
L1=L/2; 
PS=L*L/4; 
L2=L*L; 
PG=round(((Pend-Pbeg)./PI)+1); 
Pc=Pbeg:PI:Pend; 
MDF=ones(O,PG); 
  
%% For Loop Iterations and P 
for P=Pbeg:PI:Pend 
str = sprintf('Pc = %f', P); 
Q=round((P-Pbeg)/PI)+1; 
figure;  
for o=1:O 
     
%% Making of the Percolation Lattice 
U=rand(L,L); 
  
%% Bond Percolation Lattice 
  
A=U; 
A(2:2:end,2:2:end)=0; 
A(1:2:end,1:2:end)=0; 
for i=2:2:L 
       A(1:2:L-1,i)=A(1:2:L-1,i)-P; 
end 
for i=1:2:L-1 
    A(2:2:L,i)=A(2:2:L,i)-P; 
end 
A(A<=0)=0; 
A(1:2:end,1:2:end)=0; 
No=length(nonzeros(A(A>0))); 
Lno=No*2; 
S1=zeros(1,Lno); 
T1=zeros(1,Lno); 
S2=zeros(1,Lno); 
T2=zeros(1,Lno); 
S3=zeros(1,Lno); 
T3=zeros(1,Lno); 
S4=zeros(1,Lno); 
T4=zeros(1,Lno); 
for i=2:2:L  
   for j=2:2:L 
       A(i,j)=(j/2)+((i-2)/2)*(L/2); 
   end  
end 
  
%inner nodes top-bot 
for k=(3:2:L-1) 
    for l=(2:2:L)  
        m1=(k+l-4)+((k-3)/2)*L; 
        m2=(k+l-3)+((k-3)/2)*L; 
        if A(k,l)>0 
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            S1(1,m1)=A(k-1,l); 
            S1(1,m2)=A(k+1,l); 
            T1(1,m1)=A(k+1,l); 
            T1(1,m2)=A(k-1,l); 
        end 
    end 
end 
S1( :, ~any(S1,1) ) = []; 
T1( :, ~any(T1,1) ) = []; 
  
%inner nodes left-right 
for m=(2:2:L) 
    for n=(3:2:L-1) 
        m3=(m+n-4)+((m-2)/2)*L; 
        m4=(m+n-3)+((m-2)/2)*L; 
        if A(m,n)>0 
            S2(1,m3)=A(m,n-1); 
            S2(1,m4)=A(m,n+1); 
            T2(1,m3)=A(m,n+1); 
            T2(1,m4)=A(m,n-1); 
        end 
    end 
end 
S2( :, ~any(S2,1) ) = []; 
T2( :, ~any(T2,1) ) = []; 
  
%Top boundary conditions 
for q=(2:2:L) 
        m5=q-1; 
        m6=q; 
        if A(1,q)>0 
            S3(1,m5)=A(2,q); 
            S3(1,m6)=A(L,q); 
            T3(1,m5)=A(L,q); 
            T3(1,m6)=A(2,q); 
        end 
end 
S3( :, ~any(S3,1) ) = []; 
T3( :, ~any(T3,1) ) = []; 
  
%Left boundary conditions 
for r=(2:2:L) 
        m7=r-1; 
        m8=r; 
        if A(r,1)>0 
            S4(1,m7)=A(r,2); 
            S4(1,m8)=A(r,L); 
            T4(1,m7)=A(r,L); 
            T4(1,m8)=A(r,2); 
        end 
end 
S4( :, ~any(S4,1) ) = []; 
T4( :, ~any(T4,1) ) = []; 
  
S=[S1,S2]; 
T=[T1,T2]; 
SLR=[S1,S2,S3]; 
TLR=[T1,T2,T3]; 
STB=[S1,S2,S4]; 
TTB=[T1,T2,T4]; 
  
%% System Coordinates & Nodes and Segments Definition 
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NoNodes =1:PS; 
X=[(0:15), (0:15), (0:15), (0:15), (0:15), (0:15), (0:15), (0:15), 
(0:15), (0:15), (0:15), (0:15), (0:15), (0:15), (0:15), (0:15)]; 
Y=[15*ones(1,16), 14*ones(1,16), 13*ones(1,16), 12*ones(1,16), 
11*ones(1,16), 10*ones(1,16), 9*ones(1,16), 8*ones(1,16), 7*ones(1,16), 
6*ones(1,16), 5*ones(1,16), 4*ones(1,16), 3*ones(1,16), 2*ones(1,16), 
ones(1,16), zeros(1,16)]; 
nodes = [NoNodes; X ; Y]';   
segments = [(1:numel(S)) ; S ; T]';   
segmentsLR = [(1:numel(SLR)) ; SLR ; TLR]'; 
segmentsTB = [(1:numel(STB)) ; STB ; TTB]'; 
  
%% Calculating Shortest Path and Plotting 
subplot(2,O,o); sgtitle(str); plot(nodes(:,2), nodes(:,3),'k.'); hold on; 
   for s = 1:numel(S) 
            
plot(nodes(segments(s,2:3)',2),nodes(segments(s,2:3)',3),'k'); 
   end 
    
   %Left to Right Condition 
   Nbeg1=zeros(1,(L/2)); 
   Nend1=zeros(1,(L/2)); 
   for z=2:2:L 
       if A(z,1)>0 
           Nbeg1(z/2)=A(z,2); 
           Nend1(z/2)=Nbeg1(z/2)+(L/2)-1; 
       end 
   end 
   Nbeg1( :, ~any(Nbeg1,1) ) = []; 
   Nend1( :, ~any(Nend1,1) ) = []; 
    
   d1=[zeros(1,length(Nbeg1))]'; 
   for y=1:1:length(Nbeg1) 
    [d1(y), gh] = dijkstra(nodes, segmentsLR, Nbeg1(y), Nend1(y)); 
     for dd=1:length(gh)-1 
       if abs((gh(dd+1)-gh(dd)))==15 
           d1(y)=d1(y)-14; 
       end 
       if abs((gh(dd+1)-gh(dd)))==240 
           d1(y)=d1(y)-14; 
       end 
     end 
   end    
   [minpath,b] = min(d1(d1>15)); 
    [d2, p2] = dijkstra(nodes, segmentsLR, Nbeg1(b), Nend1(b)); 
   minpath(~isfinite(minpath))=0; 
    for n2 = 2:length(p2) 
        plot(nodes(p2(n2-1:n2),2),nodes(p2(n2-1:n2),3),'r-
.','linewidth',2); 
    end 
   
   %Top to Bottom Condition 
   Nbeg2=zeros(1,(L/2)); 
   Nend2=zeros(1,(L/2)); 
   for z=2:2:L 
       if A(1,z)>0 
           Nbeg2(z/2)=A(2,z); 
           Nend2(z/2)=(L*L/4)-((L/2)-Nbeg2(z/2)); 
       end 
   end 
   Nbeg2( :, ~any(Nbeg2,1) ) = []; 
   Nend2( :, ~any(Nend2,1) ) = []; 
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   d3=[zeros(1,length(Nbeg2))]'; 
   for g=1:1:length(Nbeg2) 
    [d3(g), p] = dijkstra(nodes, segmentsTB, Nbeg2(g), Nend2(g)); 
   for aa=1:length(p)-1 
       if abs((p(aa+1)-p(aa)))==15 
           d3(g)=d3(g)-14; 
       end 
       if abs((p(aa+1)-p(aa)))==240 
           d3(g)=d3(g)-14; 
       end 
     end 
   end 
  [minpath2,a] = min(d3); 
    [d4, p3] = dijkstra(nodes, segmentsTB, Nbeg2(a), Nend2(a)); 
   minpath2(~isfinite(minpath2))=0; 
    for n3 = 2:length(p3) 
        plot(nodes(p3(n3-1:n3),2),nodes(p3(n3-1:n3),3),'b-
.','linewidth',2); 
    end 
    hold off; 
    
%% MD Calculation 
MD=[minpath;minpath2] ;  
  
if MD==[0;0] 
    MDF(o,Q)=0; 
else 
    MDF(o,Q)= min(MD); 
end 
     
%% Imagesc 
U(2:2:end,2:2:end)=0; 
U(1:2:end,1:2:end)=0; 
for i=2:2:L 
       U(1:2:L-1,i)=U(1:2:L-1,i)-P; 
end 
for i=1:2:L-1 
    U(2:2:L,i)=U(2:2:L,i)-P; 
end 
U(U<=0)=0; 
U(1:2:end,1:2:end)=0; 
  
%Pore Bodies 
f = ones(3); %filter 
U2 = [U(:,:),U(:,1);U(1,:),0]; 
U3 = conv2(U2,f,'same'); 
    for j=2:2:L  
        for k=2:2:L; 
            U(j,k) = U3(j,k);  
            if U(j,k)>0; 
                U(j,k)=0.1; 
            end 
        end 
    end 
     
%Pore Pillars 
U(1:2:end,1:2:end)=1; 
  
for v=1:L 
    for d=1:L 



 42 

        if U(v,d)>0 && U(v,d)<1 
            U(v,d)=0.5; 
        end 
    end 
end 
  
%Colors & Graph 
Black = [0 0 0]; %Open Pores  
Gray  = [0.7 0.7 0.7]; %Closed Pores 
White = [1 1 1]; %Pillars 
My_Map = [Gray; Black; White]; 
colormap(My_Map); caxis([0 0.5]); subplot(2,O,O+o); imagesc(U) 
end 
end 
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Appendix E – MATLAB Script: Percolation Statistics for p:0.40-0.60 
%% Parameters 
L=32; %for 16x16 pore space 
O=100; %#of iterations 
Pbeg=0.40; %Beginning value occupation threshold 
PI=0.01; %Steps of occupation threshold 
Pend=0.60; %End value occupation threshold 
  
%% Simplifications for later 
L1=L/2; 
PS=L*L/4; 
L2=L*L; 
PG=round(((Pend-Pbeg)./PI)+1); 
PGMin=2*PG; 
Pc=Pbeg:PI:Pend; 
MDF=ones(O,PG); 
MDTBRL=ones(O,PGMin); 
MDFF=ones(O,PG); 
  
%% For Loop Iterations and P 
for P=Pbeg:PI:Pend 
Q=round((P-Pbeg)/PI)+1; 
for o=1:O 
     
%% Making of the Percolating Lattice 
A=rand(L,L); 
  
%% Bond Percolating Lattice 
A(2:2:end,2:2:end)=0; 
A(1:2:end,1:2:end)=0; 
for i=2:2:L 
       A(1:2:L-1,i)=A(1:2:L-1,i)-P; 
end 
for i=1:2:L-1 
    A(2:2:L,i)=A(2:2:L,i)-P; 
end 
A(A<=0)=0; 
A(1:2:end,1:2:end)=0; 
No=length(nonzeros(A(A>0))); 
Lno=No*2; 
S1=zeros(1,Lno); 
T1=zeros(1,Lno); 
S2=zeros(1,Lno); 
T2=zeros(1,Lno); 
S3=zeros(1,Lno); 
T3=zeros(1,Lno); 
S4=zeros(1,Lno); 
T4=zeros(1,Lno); 
for i=2:2:L  
   for j=2:2:L 
       A(i,j)=(j/2)+((i-2)/2)*(L/2); 
   end  
end 
  
%inner nodes top-bot 
for k=(3:2:L-1) 
    for l=(2:2:L)  
        m1=(k+l-4)+((k-3)/2)*L; 
        m2=(k+l-3)+((k-3)/2)*L; 
        if A(k,l)>0 
            S1(1,m1)=A(k-1,l); 



 44 

            S1(1,m2)=A(k+1,l); 
            T1(1,m1)=A(k+1,l); 
            T1(1,m2)=A(k-1,l); 
        end 
    end 
end 
S1( :, ~any(S1,1) ) = []; 
T1( :, ~any(T1,1) ) = []; 
  
%inner nodes left-right 
for m=(2:2:L) 
    for n=(3:2:L-1) 
        m3=(m+n-4)+((m-2)/2)*L; 
        m4=(m+n-3)+((m-2)/2)*L; 
        if A(m,n)>0 
            S2(1,m3)=A(m,n-1); 
            S2(1,m4)=A(m,n+1); 
            T2(1,m3)=A(m,n+1); 
            T2(1,m4)=A(m,n-1); 
        end 
    end 
end 
S2( :, ~any(S2,1) ) = []; 
T2( :, ~any(T2,1) ) = []; 
  
for q=(2:2:L) 
        m5=q-1; 
        m6=q; 
        if A(1,q)>0 %Top boundary conditions 
            S3(1,m5)=A(2,q); 
            S3(1,m6)=A(L,q); 
            T3(1,m5)=A(L,q); 
            T3(1,m6)=A(2,q); 
        end 
        if A(q,1)>0 %Left boundary conditions 
            S4(1,m5)=A(q,2); 
            S4(1,m6)=A(q,L); 
            T4(1,m5)=A(q,L); 
            T4(1,m6)=A(q,2); 
        end 
end 
S3( :, ~any(S3,1) ) = []; 
T3( :, ~any(T3,1) ) = []; 
S4( :, ~any(S4,1) ) = []; 
T4( :, ~any(T4,1) ) = []; 
  
S=[S1,S2]; 
T=[T1,T2]; 
SLR=[S1,S2,S3]; 
TLR=[T1,T2,T3]; 
STB=[S1,S2,S4]; 
TTB=[T1,T2,T4]; 
  
%% System Coordinates & Nodes and Segments Definition 
NoNodes =1:PS; 
X=[(0:15), (0:15), (0:15), (0:15), (0:15), (0:15), (0:15), (0:15), 
(0:15), (0:15), (0:15), (0:15), (0:15), (0:15), (0:15), (0:15)]; 
Y=[15*ones(1,16), 14*ones(1,16), 13*ones(1,16), 12*ones(1,16), 
11*ones(1,16), 10*ones(1,16), 9*ones(1,16), 8*ones(1,16), 7*ones(1,16), 
6*ones(1,16), 5*ones(1,16), 4*ones(1,16), 3*ones(1,16), 2*ones(1,16), 
ones(1,16), zeros(1,16)]; 
nodes = [NoNodes; X ; Y]';   
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segments = [(1:numel(S)) ; S ; T]';   
segmentsLR = [(1:numel(SLR)) ; SLR ; TLR]'; 
segmentsTB = [(1:numel(STB)) ; STB ; TTB]'; 
  
%% Calculating Shortest Path and Plotting    
   %Left to Right Condition 
   Nbeg1=zeros(1,(L/2)); 
   Nend1=zeros(1,(L/2)); 
   for z=2:2:L 
       if A(z,1)>0 
           Nbeg1(z/2)=A(z,2); 
           Nend1(z/2)=Nbeg1(z/2)+(L/2)-1; 
       end 
   end 
   Nbeg1( :, ~any(Nbeg1,1) ) = []; 
   Nend1( :, ~any(Nend1,1) ) = []; 
    
   d1=[zeros(1,length(Nbeg1))]'; 
   for y=1:1:length(Nbeg1) 
    [d1(y), gh] = dijkstra(nodes, segmentsLR, Nbeg1(y), Nend1(y)); 
     for dd=1:length(gh)-1 
       if abs((gh(dd+1)-gh(dd)))==15 
           d1(y)=d1(y)-14; 
       end 
       if abs((gh(dd+1)-gh(dd)))==240 
           d1(y)=d1(y)-14; 
       end 
     end 
   end    
   [minpath,b] = min(d1(d1>15)); 
    [d2, p2] = dijkstra(nodes, segmentsLR, Nbeg1(b), Nend1(b)); 
   minpath(~isfinite(minpath))=0; 
  
   
   %Top to Bottom Condition 
   Nbeg2=zeros(1,(L/2)); 
   Nend2=zeros(1,(L/2)); 
   for z=2:2:L 
       if A(1,z)>0 
           Nbeg2(z/2)=A(2,z); 
           Nend2(z/2)=(L*L/4)-((L/2)-Nbeg2(z/2)); 
       end 
   end 
   Nbeg2( :, ~any(Nbeg2,1) ) = []; 
   Nend2( :, ~any(Nend2,1) ) = []; 
    
   d3=[zeros(1,length(Nbeg2))]'; 
   for g=1:1:length(Nbeg2) 
    [d3(g), p] = dijkstra(nodes, segmentsTB, Nbeg2(g), Nend2(g)); 
   for aa=1:length(p)-1 
       if abs((p(aa+1)-p(aa)))==15 
           d3(g)=d3(g)-14; 
       end 
       if abs((p(aa+1)-p(aa)))==240 
           d3(g)=d3(g)-14; 
       end 
     end 
   end 
%    d3(~isfinite(d3))=0; 
   [minpath2,a] = min(d3); 
    [d4, p3] = dijkstra(nodes, segmentsTB, Nbeg2(a), Nend2(a)); 
   minpath2(~isfinite(minpath2))=0; 
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%% MD Calculation 
MD=[minpath;minpath2]; 
Q1=2*Q-1; 
Q2=2*Q; 
MDTBRL(o,Q1)=minpath; 
MDTBRL(o,Q2)=minpath2; 
  
if MD==[0;0] 
    MDF(o,Q)=0; 
elseif MD(1,1)==0 && MD(2,1)>0 
    MDF(o,Q)= MD(2,1); 
elseif MD(2,1)==0 && MD(1,1)>0 
    MDF(o,Q)= MD(1,1); 
elseif MD(1,1)>0 && MD(2,1)>0 
    MDF(o,Q)= min(MD); 
end 
  
if minpath>0 && minpath2>0 
    MDFF(o,Q)=1; 
else 
    MDFF(o,Q)=0; 
end 
  
end %Number of Iterations O 
end %Occupation threshold P 
  
%% Statistics 
  
MinDistance=ones(1,PG); 
NumberFlow=ones(1,PG); 
NumberLRFlow=ones(1,PG); 
NumberTBFlow=ones(1,PG); 
NumberBothFlow=ones(1,PG); 
  
for h = 1:PG 
  MinDistance(h) = mean(MDF((MDF(:, h) ~= 0), h)); 
  NumberFlow(h)=nnz(MDF(:,h)>0); 
  Q3 = 2*h-1; 
      NumberLRFlow(h)=nnz(MDTBRL(:,Q3)>0); 
  Q4 = 2*h; 
      NumberTBFlow(h)=nnz(MDTBRL(:,Q4)>0); 
  NumberBothFlow(h)=nnz(MDFF(:,h)>0); 
end 
  
%% Plot Statistics   
figure;  
subplot (1,2,1); plot(Pc,MinDistance);  
title('Flow top-bot, left-right');  
xlabel('Occupation threshold');  
ylabel('Minimum Distance'); 
  
subplot (1,2,2);  
plot(Pc,NumberFlow); hold on;  
plot(Pc, NumberLRFlow);  
plot(Pc, NumberTBFlow);  
plot(Pc, NumberBothFlow);  
legend('No. of Flowing Systems', 'Horizontal Flow', 'Vertical Flow', 
'Horizontal And Vertical Flow') 
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str2 = sprintf('Number of flowing systems out of 100 Iterations'); 
title('Number of flowing systems'); xlabel('Occupation threshold'); 
ylabel(str2); 
str = sprintf('Percolating Systems');  
sgtitle(str); 
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Appendix F – MATLAB Script: Dijkstra’s Shortest Path Algorithm 
function [dist,path] = dijkstra(nodes,segments,start_id,finish_id) 
%DIJKSTRA Calculates the shortest distance and path between points on a 
map 
%   using Dijkstra's Shortest Path Algorithm 
%  
% [DIST, PATH] = DIJKSTRA(NODES, SEGMENTS, SID, FID) 
%   Calculates the shortest distance and path between start and finish 
nodes SID and FID 
%  
% [DIST, PATH] = DIJKSTRA(NODES, SEGMENTS, SID) 
%   Calculates the shortest distances and paths from the starting node 
SID to all 
%     other nodes in the map 
%  
% Note: 
%     DIJKSTRA is set up so that an example is created if no inputs are 
provided, 
%       but ignores the example and just processes the inputs if they are 
given. 
%  
% Inputs: 
%     NODES should be an Nx3 or Nx4 matrix with the format [ID X Y] or 
[ID X Y Z] 
%       where ID is an integer, and X, Y, Z are cartesian position 
coordinates) 
%     SEGMENTS should be an Mx3 matrix with the format [ID N1 N2] 
%       where ID is an integer, and N1, N2 correspond to node IDs from 
NODES list 
%       such that there is an [undirected] edge/segment between node N1 
and node N2 
%     SID should be an integer in the node ID list corresponding with the 
starting node 
%     FID (optional) should be an integer in the node ID list 
corresponding with the finish 
%  
% Outputs: 
%     DIST is the shortest Euclidean distance 
%       If FID was specified, DIST will be a 1x1 double representing the 
shortest 
%         Euclidean distance between SID and FID along the map segments. 
DIST will have 
%         a value of INF if there are no segments connecting SID and FID. 
%       If FID was not specified, DIST will be a 1xN vector representing 
the shortest 
%         Euclidean distance between SID and all other nodes on the map. 
DIST will have 
%         a value of INF for any nodes that cannot be reached along 
segments of the map. 
%     PATH is a list of nodes containing the shortest route 
%       If FID was specified, PATH will be a 1xP vector of node IDs from 
SID to FID. 
%         NAN will be returned if there are no segments connecting SID to 
FID. 
%       If FID was not specified, PATH will be a 1xN cell of vectors 
representing the 
%         shortest route from SID to all other nodes on the map. PATH 
will have a value 
%         of NAN for any nodes that cannot be reached along the segments 
of the map. 
%  
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if (nargin < 3) % SETUP 
    num_nodes = 40; L = 100; max_seg_length = 30; ids = (1:num_nodes)'; 
    nodes = [ids L*rand(num_nodes,2)]; % create random nodes 
    h = figure; plot(nodes(:,2),nodes(:,3),'k.') % plot the nodes 
    text(nodes(num_nodes,2),nodes(num_nodes,3),... 
        [' ' num2str(ids(num_nodes))],'Color','b','FontWeight','b') 
    hold on 
    num_segs = 0; segments = zeros(num_nodes*(num_nodes-1)/2,3); 
    for i = 1:num_nodes-1 % create edges between some of the nodes 
        text(nodes(i,2),nodes(i,3),[' ' 
num2str(ids(i))],'Color','b','FontWeight','b') 
        for j = i+1:num_nodes 
            d = sqrt(sum((nodes(i,2:3) - nodes(j,2:3)).^2)); 
            if and(d < max_seg_length,rand < 0.6) 
                plot([nodes(i,2) nodes(j,2)],[nodes(i,3) nodes(j,3)],'k.-
') 
                % add this link to the segments list 
                num_segs = num_segs + 1; 
                segments(num_segs,:) = [num_segs nodes(i,1) nodes(j,1)]; 
            end 
        end 
    end 
    segments(num_segs+1:num_nodes*(num_nodes-1)/2,:) = []; 
    axis([0 L 0 L]) 
    % Calculate Shortest Path Using Dijkstra's Algorithm 
    % Get random starting/ending nodes,compute the shortest distance and 
path. 
    start_id = ceil(num_nodes*rand); disp(['start id = ' 
num2str(start_id)]); 
    finish_id = ceil(num_nodes*rand); disp(['finish id = ' 
num2str(finish_id)]); 
    [distance,path] = dijkstra(nodes,segments,start_id,finish_id); 
    disp(['distance = ' num2str(distance)]); disp(['path = [' 
num2str(path) ']']); 
    % If a Shortest Path exists,Plot it on the Map. 
    figure(h) 
    for k = 2:length(path) 
        m = find(nodes(:,1) == path(k-1)); 
        n = find(nodes(:,1) == path(k)); 
        plot([nodes(m,2) nodes(n,2)],[nodes(m,3) nodes(n,3)],'ro-
','LineWidth',2); 
    end 
    title(['Shortest Distance from ' num2str(start_id) ' to ' ... 
        num2str(finish_id) ' = ' num2str(distance)]) 
    hold off 
     
else %-------------------------------------------------------------------
------- 
    % MAIN FUNCTION - DIJKSTRA'S ALGORITHM 
     
    % initializations 
    node_ids = nodes(:,1); 
    [num_map_pts,cols] = size(nodes); 
    table = sparse(num_map_pts,2); 
    shortest_distance = Inf(num_map_pts,1); 
    settled = zeros(num_map_pts,1); 
    path = num2cell(NaN(num_map_pts,1)); 
    col = 2; 
    pidx = find(start_id == node_ids); 
    shortest_distance(pidx) = 0; 
    table(pidx,col) = 0; 
    settled(pidx) = 1; 
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    path(pidx) = {start_id}; 
    if (nargin < 4) % compute shortest path for all nodes 
        while_cmd = 'sum(~settled) > 0'; 
    else % terminate algorithm early 
        while_cmd = 'settled(zz) == 0'; 
        zz = find(finish_id == node_ids); 
    end 
    while eval(while_cmd) 
        % update the table 
        table(:,col-1) = table(:,col); 
        table(pidx,col) = 0; 
        % find neighboring nodes in the segments list 
        neighbor_ids = [segments(node_ids(pidx) == segments(:,2),3); 
            segments(node_ids(pidx) == segments(:,3),2)]; 
        % calculate the distances to the neighboring nodes and keep track 
of the paths 
        for k = 1:length(neighbor_ids) 
            cidx = find(neighbor_ids(k) == node_ids); 
            if ~settled(cidx) 
                d = sqrt(sum((nodes(pidx,2:cols) - 
nodes(cidx,2:cols)).^2)); 
                if (table(cidx,col-1) == 0) || ... 
                        (table(cidx,col-1) > (table(pidx,col-1) + d)) 
                    table(cidx,col) = table(pidx,col-1) + d; 
                    tmp_path = path(pidx); 
                    path(cidx) = {[tmp_path{1} neighbor_ids(k)]}; 
                else 
                    table(cidx,col) = table(cidx,col-1); 
                end 
            end 
        end 
        % find the minimum non-zero value in the table and save it 
        nidx = find(table(:,col)); 
        ndx = find(table(nidx,col) == min(table(nidx,col))); 
        if isempty(ndx) 
            break 
        else 
            pidx = nidx(ndx(1)); 
            shortest_distance(pidx) = table(pidx,col); 
            settled(pidx) = 1; 
        end 
    end 
    if (nargin < 4) % return the distance and path arrays for all of the 
nodes 
        dist = shortest_distance'; 
        path = path'; 
    else % return the distance and path for the ending node 
        dist = shortest_distance(zz); 
        path = path(zz); 
        path = path{1}; 
    end 
end 

 
 


