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Abstract
The interpretability of an attack graph is a key prin-
ciple as it reflects the difficulty of a specialist to
take insights into attacker strategies. However, the
quantification of interpretability is considered to be
a subjective manner and complex attack graphs can
be challenging to read and interpret. In this re-
search paper, we propose a new metric for quan-
tifying the interpretability of attack graphs, aim-
ing for comparable results between attack graphs
regardless of the chosen drawing configuration or
generation method. We address the gap in exist-
ing metrics by combining elements from the the-
ory of cognitive chunks of information and user-
experience-related fields to measure interpretabil-
ity in terms of cognitive load. Our metric leverages
Gestalt principles to formalize the quantification of
interpretability based on cognitive overload. Com-
pared to a similar approach, the proposed metric
reveals a high level of similarity with the baseline,
however, qualitative analysis revealed the proposed
metric eliminates certain discrepancies with the ex-
pert’s opinion that the baseline metric presented.
Furthermore, a use case of the metric is presented
and we evaluate our metric by comparing attack
graphs generated using different methods, such as
deterministic finite automaton (S-PDFA), Markov
chain, and suffix tree. Finally, further work is pro-
posed toward the goal of completing the metric by
incorporating the remaining Gestalt principles.
Keywords: attack graphs, interpretability, cognitive load,
cybersecurity, network security

1 Introduction
Security operations centers (SOC) have a significant respon-
sibility of conducting alert investigations, primarily to en-
hance their reactive defense capabilities. To assist in their
mission, attack graphs (AG) are commonly utilized for visual
analytics and forensic analysis to represent attacker strategies.
However, when summarizing complex attacks in a network,
the corresponding AG can become hard to read and interpret
by the specialist.

The concept of interpretability is important as the purpose
of an attack graph is to provide important insights regarding
the intention of malicious parties. This is done by summariz-
ing multiple alerts, generated by Intrusion Detection Systems
(IDSes), into a more human-readable, ”interpretable” data vi-
sualization, reducing the time required by specialists to an-
alyze such incidents and facilitating the forensic analysis of
past attacks [7]. As the main goal of an attack graph is to
provide vital insights into an attack, the interpretability prob-
lem is briefly tackled within the generation phase of various
attack graph generation tools as presented in [8] and [10].

Making a clear distinction between the interpretability of
the output attack graph and the interpretability of the model
used to generate the attack graph, a metric used to quantify
the interpretability of such attack graph can be beneficial even

from the generation phase of attack graphs. By evaluating
the interpretability of the output AGs resulting from multiple
generation methods (such as using an S-PDFA: suffix-based
probabilistic deterministic finite automaton, a suffix tree, or a
Markov chain), a specialist can select the generation alterna-
tive that produces the most interpretable results for the spe-
cific task.

However, there is a lack of a metric based on which we can
quantify the interpretability of an attack graph such that we
achieve comparable results between different attack graphs.
As has been stated by [8], metrics such as AIC, BIC, and Per-
plexity yield arbitrary values when applied to models trained
with different parameters, rendering any comparison devoid
of meaningful interpretation.

Having in mind the knowledge gap presented above, the
question we address in this paper is: ”How can the inter-
pretability of attack graphs be quantified?”. As a re-
sponse, this paper is aiming to use a cognitive approach to
quantify the interpretability of an attack graph by following
the theory of cognitive chunks of information and formaliz-
ing an interpretability metric based on cognitive overload as
described by Gestalt’s Principles. Finally, we want to test our
new metric by evaluating attack graphs resulting from differ-
ent generation methods: S-PDFA, Markov chain, and suffix
tree.

This paper aims to propose a new metric, which is com-
bining elements from the theory of cognitive chunks of in-
formation with concepts from user-experience-related field to
measure the interpretability of attack graphs in the form of
cognitive load. This newly proposed metric showcased good
and comparable results according to expert’s opinion when
tested against a metric with a similar approach.

The remainder of this paper is organized as follows. Sec-
tion 2 gives an overview of related work toward the inter-
pretability of attack graphs. Section 3 describes the method-
ology used in our research. Section 4 describes the adopted
experimental setup. Section 5 provides the results of the ex-
periments. Section 6 is composed of discussions on our find-
ings. Section 7 presents our conclusion and proposed future
work.

2 Related Work
This section aims to describe previously conducted work that
helped in this paper. Section 2.1 describes the Gestalt princi-
ples as concepts used in the user experience field. Section 2.2
provides a summary of a previously proposed interpretabil-
ity quantification approach based on the theory of cognitive
chunks of information. Section 2.3 summarizes a previously
proposed metric that is proven to impact the readability of an
attack graph. Section 2.4 summarizes a previously proposed
complexity metric based on the planarity of a graph.

2.1 Gestalt Principles
The Gestalt principles, also known as the laws of perceptual
organization, are a set of principles that describe how humans
perceive and make sense of visual stimuli.

Their implementation can significantly enhance both the
visual appeal and functionality of a design, making it more
user-friendly according to [2].



The 7 Gestalt principles are:

• Similarity: similar elements are visually grouped.

• Continuity: the human eye will follow the smoothest
path.

• Closure: when confronted with an incomplete or par-
tially obscured stimulus, our minds tend to fill in the
missing information and perceive the object as a com-
plete whole.

• Proximity: how close elements are to one another

• Figure: the human mind will distinguish between the
objects it considers to be in the foreground of an image
and the background.

• Symmetry: the human mind perceives symmetrical fig-
ures as more stable and organized than asymmetrical
ones.

• Common-fate: objects that follow the same pattern are
perceived as belonging together.

2.2 FAIXID Framework
FAIXID [6] emphasizes the limited capacity of humans to
process information, with the average human being able to
process 7 ± 2 pieces of information. According to it, the
effectiveness of an explanation is dependent on the num-
ber of cognitive chunks or informational elements that the
recipient must process to comprehend it, with the addition
that ”interaction among cognitive chunks ... complicates the
explanation”[6, p.24]

E =
1

Nc
+ (1− In)

Where E = explainability, Nc = the number of cognitive
chunks, and In = interaction.

2.3 Link density-based metric
The readability of link-based representations of graphs is sig-
nificantly influenced by two main factors: the number of
nodes and the density of connections between them. [3]

To support this statement, a link-density metric was pro-
posed in [3]:

d =

√
l

n2

where n = the number of nodes and l = the number of links.
The findings demonstrate that as link density increases,

readability decreases.

2.4 Planarity-based complexity metric
By definition, a planar graph is a type of graph that can be
projected to a two-dimensional plane in such a way that its
edges intersect only at their endpoints. [5]

A planarity-based complexity metric was proposed in [5],
defined as the minimum number of edges to achieve a planar
graph, a problem also known as Maximal Planarization.

3 Methodology
All the attack graphs that will be discussed in this paper are
generated using SAGE (Intrusion alert-driven attack graph
extractor), a tool capable of condensing alerts into ”alert-
driven” attack graphs without prior knowledge about the
network.[9]

The attack graphs were generated using two datasets con-
taining intrusion alerts captured through the Collegiate Pen-
etration Testing Competition (CPTC) from the years 2018
(CPTC-2018) and 2017 (CPTC-2017).

By following the definition of interpretability presented as
explainability in the FAIXID framework [6], a variation of
this approach is proposed as a baseline for our new metric.
This variation is presented in section 3.1. Furthermore, a for-
malization of the FAIXID framework using Gestalt principles
is described in section 3.2. In section 3.3 we propose an addi-
tion to the baseline metric, constructing our newly proposed
metric, and in section 3.4 we aim to evaluate the proposed
metric against the presented baseline.

3.1 Baseline
The chosen baseline for this metric is a variation of FAIXID
that uses a pattern-based clustering algorithm to generate cog-
nitive chunks inside an attack graph and betweenness central-
ity as a measure of interdependency.

The clustering algorithm is based on the hypothesis that
popular attack patterns can be found inside an attack path due
to the methodology of attackers. The algorithm takes all pos-
sible pairs (Nodea, Nodeb) of attack nodes and computes the
probability of Nodea to be preceded by Nodeb:

P (Nodea, Nodeb) =
EdgeCount(Nodea, Nodeb)

Outgoing(Nodeb)

At the beginning of the algorithm, every node dictates its own
cognitive chunks. At every step, we find the most popular pair
of nodes (Nodea, Nodeb) in our pattern list and merge them
by merging the chunk that Nodeb is part of to the chunk of
Nodea as long as Nodea was not already merged using a
pattern of higher probability.

To represent the interdependency metric, we are using a
partial dependency analysis on key nodes that are generated
based on the betweenness centrality:

In =

∑keynodes
n

#noutgoing

(#nodes−1)·#teams

#keynodes

The above equation can be described as the average of the
connectivity between key nodes, per attacker team.

A key node inside a cluster is a node with the highest be-
tweenness centrality and the connectivity between a key code
and the rest of the cluster is calculated as the ratio between the
number of outgoing edges from the key node and the number
of non-key nodes in the cluster. This ratio is divided by the
number of attacker teams presented in the graph.

This process is applied to every cluster and the average of
interdependency inside clusters is considered as the global in-
terdependency, which is used to calculate the interpretability
of a graph.



A key difference between this metric and the traditional
FAIXID framework is the definition used for interdepen-
dency. In this variation, we are analyzing the interaction be-
tween nodes inside a cluster, while the traditional FAIXID
method is analyzing the interaction between the cognitive
chunks.

However, by examining from Table 1 the average num-
ber of clusters discovered in datasets CPTC-2018 and CPTC-
2017 by the clustering algorithm, we can observe a limited
number of clusters were created, which would result in an
overall small interdependency using the traditional FAIXID
framework.

Dataset Avg. number of clusters
CPTC-2018 2.342
CPTC-2017 2.785

Table 1: Average number of cognitive chunks discovered by the pro-
posed clustering algorithm in datasets CPTC-2018 and CPTC-2017.

3.2 Baseline generalized to Gestalt principles
By following the FAIXID framework, it can be observed that
interpretability is composed of two components that we can
formalize with respect to Gestalt’s principles: Similarity and
Connection.

The first component under discussion is quantifying the
number of cognitive chunks: 1

Nc
. We can argue this respects

the Similarity Principle as the proposed chunking mechanism
is considering the observed probability of nodes appearing
together.

The second component quantifies the interdependency of
nodes inside the graph. We can argue this respects the Con-
nection principle since we are measuring the impact of cen-
tral nodes, determined by betweenness centrality, upon other
nodes.

3.3 Continuity principle proposal
Considering the above formalization, this paper proposes the
addition of a metric following the Continuity principle: pla-
narity. As stated in [3]: ”The traditional node-link representa-
tion suffers from link overlapping”, which can lead to visual
clutter and increased complexity.

Adapting to the information above, we define planarity as:

P =
1

eremoved + 1

where eremoved is the minimum number of edges to be re-
moved from the graph to obtain a planar graph.

It can be observed the planarity is in a normalized form
between 0 and 1 since the minimum value of eremoved by
definition is 0 in the case of a planar graph. Since 0 is a
lower bound for eremoved, we have: lime→0

1
e+1 = 1

1 = 1.
Additionally, we have lime→∞

1
e+1 = 0, concluding that P ∈

[0, 1].
With the addition of planarity and considering that every

component of the metric is normalized between 0 and 1, the

new metric for interpretability proposed by this paper (in a
normalized form) is:

I =
1
Nc

+ (1− In) + P

3

Maximal planarization is an NP-hard problem, making pla-
narity unachievable as we have to test all the combinations of
edges if they describe a planar graph and take the maximum
number of edges that describes such a graph. The solution
proposed in [5] is to random sample the generated combina-
tions.

In this paper we are considering a subtractive method to
generate graphs instead of the additive method proposed in
[5], resulting in the following algorithm to calculate the pla-
narity of a graph:

• Take n from 0 to the number of edges in the graph.
• Take 1000 samples of combinations of n edges.
• Remove the one by one the sampled combinations of

edges from the graph and test the planarity.
• Stop when finding the first planar graph and the corre-

sponding n is the minimum number of edges to achieve
a planar graph.

To test the planarity of a graph we use the planarity test
implementation from the NetworkX library.[4]

Now we can formalize our hypothesis: ”The interpretabil-
ity of an attack graph is dependent on the planarity of the
graph”. The higher the planarity, the higher the interpretabil-
ity.

As stated by [3], the link density of a graph, is defined as:

d =

√
l

n2

where n = the number of nodes and l = the number of links,
is affecting proportionally the interpretability of a graph. By
proving that as planarity decreases, it increases the link den-
sity, we can, by transitivity, confirm our hypothesis. So our
new hypothesis becomes: ”The planarity of a graph decreases
with the increase of link density.”

3.4 Metric evaluation
The main problem this approach wants to solve is to generate
comparable results between attack graphs resulting from var-
ious generation strategies and environments. In this sense, we
test the rankings generated by our metric against the baseline
using as inputs the generated attack graphs from SAGE when
run against CPTC-2017 and CPTC-2018 datasets.

Kendall rank correlation coefficient [1] is proposed as the
method of comparison between the two rankings generated
for each dataset:

τ =
(P −Q)√

(P +Q+ T ) ∗ (P +Q+ U)

Where P = the number of concordant pairs, Q = the number
of discordant pairs, T = the number of ties only in the first-
ranking list, and U = the number of ties only in the second-
ranking list. It is to be observed that we are using the imple-



mentation from the SciPy python library1 for the tau-b variant
of the Kendall rank correlation to account for ties.

Other evaluation methods were considered such as Rank
Biased Overlap (RBO) [12], however, the Kendall rank corre-
lation coefficient was selected as our goal for this experiment
is to quantify the number of inversions in the two rankings,
regardless of the ranking positions of the items relative to the
rest of the items in the list. This is because, when comparing
attack graphs, we sample two graphs randomly from the list
regardless of their ranking positions.

Furthermore, for each dataset, we sample 10 discordant
pairs (pairs of attack graphs in which orders are reversed in
the ranking generated by our metric compared to the one gen-
erated by the baseline) and test whether the new ordering co-
incides with the specialist’s opinion.

The preliminary results we expect are a high similarity be-
tween the rankings generated by the proposed metric and the
baseline, with the discordant pairs being in an order that is in
concordance with specialist opinion.

4 Experimental Setup
This section presents the experimental setup adopted in this
research to consolidate and confirm the hypothesis that inter-
pretability increases with planarity-based complexity.

To test the hypothesis, we test on graphs with 3 differ-
ent node-based sizes (10 vertices, 20 vertices, 30 vertices),
and different 9 different edges-based sizes ( 10%, 20%, 30%,
40%, 50%, 60%, 70%, 80%, 90% of the maximum number
of edges possible in the graph ) for each node-based size.

The selected sizes of 10, 20, and 30 vertices can be ex-
plained by looking at the average node-count-based size of
attack graphs generated by SAGE using the datasets CPTC-
2018 and CPTC-2019 in Table 2

Dataset Avg. size Min. size Max. size
CPTC-2018 17.1 3 32
CPTC-2017 17.7 3 48

Table 2: Size represented by the number of nodes in attack graphs
generated by SAGE using CPTC-2018 and CPTC-2017 datasets.

The maximum number of edges in a directed graph is cal-
culated as:

Nredges = Nrnodes ∗ (Nrnodes − 1)

where Nrnodes = number of nodes and Nredges = number of
edges.

To mitigate any bias arising from the selected data, we de-
cided to generate random directed graphs using the following
algorithm:

• Generate a fully connected graph of the selected size

• At random eliminate edges one by one until achieving
the proposed link-density

1Kendall rank correlation coefficient from SciPy https://docs.
scipy.org/doc/scipy/reference/generated/scipy.stats.kendalltau.html

For each graph configuration, 50 samples will be gener-
ated. For each sample, we will measure planarity as defined
above.

It is expected the planarity to follow a negative trend while
the link density increases.

5 Results
This section presents the results gathered during the research.
In section 5.1 can be observed the results of the experi-
ment testing the hypothesis of interpretability increasing with
planarity-based complexity. In section 5.2 we present the re-
sults of the evaluation of the proposed metric against the pre-
sented baseline metric.

5.1 Planarity proof results
The primary goal of this experiment is to confirm or deny
the decrease in planarity in relation to the increase in link
density. For each graph node-based size, we plot the planarity
in relation to the link density. Furthermore, we are drawing
the exponential trend line in the dotted line to be easier to
follow the trend.

Figure 1: Average planarity in relation to link density in graphs with
10 nodes. The exponential trend line is visible as a blue dotted line.

From Figure 1 we can see a downward trend of planarity in
relation to the increase in link density. The minimum differ-
ence between each link density considered in the experiment
is 0.059 with no outliers or local upward trends detected.

Figure 2: Average planarity in relation to link density in graphs with
20 nodes. The exponential trend line is visible as a blue dotted line.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kendalltau.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kendalltau.html


Figure 3: Average planarity in relation to link density in graphs with
30 nodes. The exponential trend line is visible as a blue dotted line.

It can be observed from Figures 2 and 3 the trend is main-
tained with the increase of node-based graph size. This down-
ward trend can be explained by analyzing what happens to the
two metrics: link density and planarity with the increase in
the number of edges, considering the number of nodes con-
stant. By definition, we know link density increases with the
number of links presented in the attack graph. On the other
hand, the total number of edges in the graph is an upper bound
of the number of edges we can eliminate to obtain a planar
graph. This means that planarity increases while the number
of edges decreases.

5.2 Metric evaluation results

As it can be observed in Table 3, and confirming our ex-
pectancies, the values of Kendall Coefficient for both CPTC-
2018 and CPTC-2017 datasets are close to 1, showing a high
correlation between the rankings denoted by our proposed
and baseline metrics.

Dataset Kendall Coefficient
CPTC-2018 0.931
CPTC-2017 0.869

Table 3: Kendall Corelance Coefficient in datasets CPTC-2018 and
CPTC-2017.

As specified in section 3.4, for each dataset 10 samples
were taken among all the inversions. Each of the samples was
tested against the specialist’s opinion and considered ”Ac-
cepted” if according to the specialist’s opinion, the new order
dictated by our metric is valid, or ”Denied” if the new order
is either considered invalid or the pair of attack graphs are too
similar in order to create a clear order.

From Table 4 it can be concluded that the number of ac-
cepted inversions overcomes the number of denied inversions.

Dataset Accepted Inversions Denied Inversions
CPTC-2018 8 2
CPTC-2017 7 3

Table 4: Inversions sampled among the rankings generated by
the baseline and proposed metrics in CPTC-2018 and CPTC-2017
datasets.

An observation worth to be mentioned is that 100% of the
denied inversions have been denied because the pair of attack
graphs were too similar to be evaluated in this scope and 0
samples were denied as a result of a discrepancy between the
metric and the specialist’s opinion.

6 Discussion
6.1 Manual analysis on inversions
By manually analyzing two attack graphs generated by
SAGE[9] using the dataset CPTC-2018, we discover a dis-
crepancy between the expert’s opinion and the baseline met-
ric. In contradiction with the expert’s opinion, the baseline
interpretability metric shows that graph ’A’ is more inter-
pretable than graph ’B’. On the other hand, we can observe
that the newly proposed metric is expressing a bigger value
for the interpretability of graph ’A’.

• Graph A:
– Baseline interpretability: 0.303
– Baseline + continuity interpretability: 0.535

• Graph B:
– Baseline interpretability: 0.377
– Baseline + continuity interpretability: 0.418

This is a result of the difference in the planarity of the
graphs as graph ’A’ presents a planarity of 1 and graph ’B’
present a planarity of 0.5.

The distinction in planarity can be observed through the
high ratio between the number of links and the number of
vertices in the dark blue cluster in graph B’. This ratio indi-
cates a significant link density.



6.2 Use case
As a proposed use case, we use the new metric to evaluate the
interpretability of attack graphs resulting from the S-PDFA, a
Markov chain, and a suffix tree.

SAGE is based on FlexFringe [11] automaton learning
framework. To generate the attack graphs, we are running
SAGE with different parameters as follows: To use an S-
PDFA to generate the attack graphs we can use the default
parameters of SAGE. We can create a Markov chain by uti-
lizing a statistical test threshold set to an extremely low value
(or even negative). With the Markovian parameter set to 1,
performing a likelihood-ratio analysis gives rise to the forma-
tion of a Markov chain.[11] On the other hand, we can disable
all merges to obtain a suffix tree.

Calculating the interpretability of attack graphs generated
by SAGE with the proposed sets of parameters, it can be ob-
served in Table 5 that on average, attack graphs resulting from
a suffix tree are more interpretable than the ones resulting
from the S-PDFA or a Markov Chain. This is in concordance
with the expert’s opinion as in a suffix tree merges are not
allowed, thus, every attack path is separate from the rest, be-
ing easier to follow by the specialist. However, attack graphs
resulting from this method are larger in size.

Dataset S-PDFA Markov Chain Suffix Tree
CPTC-2018 0.727 0.743 0.790
CPTC-2017 0.679 0.669 0.682

Table 5: Average interpretability of attack graphs generated using
SAGE against datasets CPTC-2018 and CPTC-2017 resulting from
the S-PDFA, a Markov chain, and a suffix tree.

7 Conclusions and Future Work
In this paper, we have proposed a new metric to quantify the
interpretability of an attack graph, a variation of the FAIXID
framework that we generalized to 2 of the 7 Gestalt princi-
ples: Similarity and Connection, to which we have inserted
the Continuity principles in the form of maximum planarity.

I =
1
Nc

+ (1− In) + P

3

As shown above, the rankings denoted by the proposed and
the baseline metrics have a high level of correlation, which
can be interpreted as similar results when it comes to pairwise
comparison.

Furthermore, we have shown that, by sampling the changes
in rankings induced by our new metric in comparison to the
baseline, we can observe a big number of changes that are,
according to the expert’s opinion, valid and can be considered
an improvement from the baseline metric.

On the other hand, the question of quantifying a subjec-
tive metric such as interpretability is not closed. As presented
earlier, there are cases where our new metric fails to rank cor-
rectly and creates errors that were not in the rankings induced
by the baseline. However, according to our results, the cor-
rect changes from the baseline ranking are outnumbering the
invalid changes in the same ranking.

Since our metric takes into consideration only 3 out of the
7 Gestalt principles, we propose work on the integration of
other user-experience-related principles. The ”Closed Shape”
principle can be considered a good start as it can be used to
quantify the amount of connectivity between the node clus-
ters that we treat as cognitive chunks, information that is not
covered by our metric.

In conclusion, as far as the presented evidence goes, we
consider cognitive load as a direct way of quantifying the in-
terpretability of an attack graph, thus, we can retrieve com-
parable results between the interpretability of attack graphs
resulting from different generation methods using the metric
showcased above.

8 Responsible Research
All resources are open source and available on GitHub 2.

The reproduction and regeneration of all the attack graphs
presented in this paper are possible since SAGE is a determin-
istic algorithm, and the datasets used, CPTC-2017 and CPTC-
2018, are publicly accessible. The methodology for gener-
ating attack graphs using different approaches is detailed in
section 6.2. However, it is worth noting that in order to repli-
cate the attack graphs as depicted in this paper, it is necessary
to employ the latest version of FlexFringe, which should be
available by June 25th, 2023, due to the ongoing development
of the software.

As we are using random sampling of the combinations of
edges for the maximum planarity problem, running experi-
ments involving planarity as a metric might produce different
results than the ones presented in the paper.

The analysis was approached with a focus on minimizing
bias in the results, achieved through the establishment of ex-
plicit research objectives. Nevertheless, it is important to note
that the absence of bias cannot be fully guaranteed due to the
subjective nature of the manual analysis that was conducted.
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