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Abstract. Federated Learning (FL) systems evolve in heterogeneous
and ever-evolving environments that challenge their performance. Under
real deployments, the learning tasks of clients can also evolve with time,
which calls for the integration of methodologies such as Continual Learn-
ing (CL). To enable research reproducibility, we propose a set of experi-
mental best practices that precisely capture and emulate complex learn-
ing scenarios. To the best of our knowledge, our framework, Freddie, is
the first entirely configurable framework for Federated Continual Learn-
ing (FCL), and it can be seamlessly deployed on a large number of
machines leveraging containerization and Kubernetes. We demonstrate
the effectiveness of Freddie on two use cases, (i) large-scale concurrent
FL on CIFAR100 and (ii) heterogeneous task sequence on FCL, which
highlight unaddressed performance challenges in FCL scenarios.

Keywords: Federated Continual Learning · Resource and Data
Heterogeneity · Reproducible Research

1 Introduction

Federated Learning (FL) [14] performs distributed optimization thanks to a cen-
tral federator server that maintains a global model using model updates com-
puted by clients. It is common for data to be distributed among the clients
of an FL system in a non-independent and identically distributed (non-IID)
way. Moreover, in practice, client learning tasks also evolve over time. Continual
Learning (CL) [5] is a technique that addresses the scenario where a model is
continuously trained on evolving client tasks.

One of the key challenges in CL is catastrophic forgetting: parameters or
semantic representations learned for past tasks drift under the influence of
new tasks. Three categories of techniques address this challenge [7]. Replay
mechanisms, like Gradient Episodic Memory (GEM) [10] and Deep Generative
Replay [18], retain or generate data from earlier tasks for new task adaptation,
which allows the network to revise previously learned tasks. Regularization tech-
niques, such as Elastic Weight Consolidation (EWC) [5], penalize the divergence
of model parameters, preventing the adaptation process on new tasks from devi-
ating too far from the model learned on prior tasks. Parameter isolation methods
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use specific weights of the network for the task at hand, i.e., use a mask to freeze
the weights of other tasks [12].

Continual Learning allows a client to learn from its previous tasks if features
are repeated over time. Federated Continual Learning [21] (FCL) combines CL
and FL, enabling clients to indirectly learn from each other. Existing CL frame-
works do not take this indirect learning into account and therefore provide lim-
ited support for Federated Continual Learning.

In addition, reproducing FCL results that were obtained in deployment is
difficult. For example, experimental environments are often tightly controlled
and steady, while real-world environments are often dynamic and heterogeneous.
In addition, clients might be punctually busy processing co-located tasks. Several
FL simulation [11,17] and emulation [1,17] frameworks have been proposed, but
they cannot be easily extended to support heterogeneous data, learning tasks
and hardware platforms. In addition, frameworks that focus on enabling large-
scale FL experiments impose a significant overhead to manage the execution or
require the use of a strict pipeline. In this paper, we address the lack of a scalable
yet flexible framework for reproducible FCL experiments. Overall, we make the
following contributions:

– We identify key requirements for scientific FL and FCL emulation: ease of use,
reproducibility, support for complex workloads, and resource heterogeneity.

– We develop Freddie—a framework for Federated and distributed machine-
learning— to the best of our knowledge, the first open source1 framework that
addresses these requirements. Freddie supports small scale deployments, i.e.,
single machine simulations, and large-scale emulation over self-managed and
cloud systems using containerization and Kubernetes. Freddie enables the
emulation of both data and resource heterogeneity.

– We provide benchmarking generating methods for FCL that explore both
data and task heterogeneity across clients—realistic workloads tailored for
Federated Continual Learning systems.

2 Related Work

Federated Learning (FL). Existing FL frameworks support a fixed set of
learning tasks across clients during training. Flower [1] provides a client-server
framework that needs to be manually started on different devices. Differently,
Fate [3] focuses on providing a secure and production-ready Federated Learning
setup. Fate supports Kubernetes deployments but requires the use of its pipelines
to run experiments. Although this provides desirable security additions for pro-
duction systems, it tends less to prototyping and active research needs. Besides
research endeavors, popular deep learning platforms such as TorchX and Ten-
sorflow Federated can respectively run distributed and Federated experiments
at scale, but they lack the flexibility to use other ML libraries.

1 https://gitlab.ewi.tudelft.nl/dmls/publications/freddie.

https://gitlab.ewi.tudelft.nl/dmls/publications/freddie
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Continual Learning (CL). FACIL [13], PyCIL [22], and Pycontinual [4] pro-
vide CL frameworks and CL algorithms such as Learning without Forgetting [8],
incremental Classifier and Representation Learning [16], EWC, and GEM. Con-
tinual World [20] adds a simulation world for robotics tasks for Continual Rein-
forcement Learning. Avalanche [9] is focused on reproducible End-to-End Con-
tinual Learning. The aforementioned frameworks support CL only on a single
machine. FedWEIT [21] combines parameter isolation and regularization and
extends CL to a Federated setting. However, it does not consider the impact of
task sequences on the global model’s quality. Lastly, current FL frameworks can-
not be easily extended to support CL scenarios where the output types evolve.
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Fig. 1. Overview of Freddie. An Orchestrator and an Extractor are used for deploying
experiments and collecting data. Experiments are run as TrainJobs managed by Kube-
flow Training Operators. Within such a job, the defined job is run using a federator
and one or more clients with local data.

3 Freddie: A Framework for Reproducible FCL Research

We first provide a brief overview of system requirements addressed by Freddie.
Following, due to space limitations, we focus on Freddie’s implementation lever-
aging containerization and orchestration methods and its support for FCL.

Classical FL Parameters. The number of clients, the federators’ aggregation,
and client selection strategies must be configurable. In addition, FL-related and
common hyperparameters, such as the training epochs, learning rates, etc., must
be configurable.

Statistical Heterogeneity. As in FL, local data distributions remain highly
important, and their non-iidness should be configurable. In the context of FCL,
local distributions also limit the tasks that clients might be able to train for.
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Resource Heterogeneity. It should be possible to specify the computing
power of the clients and the federator and the characteristics (latency, through-
put) of the network links that interconnect them.

Task Definition. For FCL, the task sequence of each client can be specified
in conjunction with statistical heterogeneity. Non-IID task distributions can be
assimilated to the situation where clients learn tasks with high intra-task vari-
ance, e.g. due to different domains. In such settings, it is often unclear how
the quality of current CL methods is impacted by aggregation. Testing of a
CL task can be done in multiple ways: Task- Incremental Learning (task-IL)
assumes task IDs are present during testing, while Domain-Incremental Learn-
ing (domain-IL) [19] drops this assumption. Both methods are supported by
Freddie.

Kubernetes and Containers. To allow for experimental evaluation of FCL,
experiments should be deployable on both single and multiple systems. Freddie
leverages containerization of all FL nodes to provide flexible and scalable deploy-
ments. Figure 1 shows a high-level overview of Freddie deployed in a Kubernetes
cluster. The Orchestrator starts and manages experiments within a Kubernetes
cluster, leveraging Kubeflow’s [6] training operators. The Orchestrator provided
with experiment configurations monitors resources and schedules the execution
of the experiment. The Extractor provides storage for experiments and an access
point to retrieve logs and artifacts. federator and client nodes then execute the
Federated (Continual) Learning experiment. The federator and client provide
flexible and extensible interfaces for users to extend and use for experiments.
Freddie provides basic implementations for users to extend or adapt.

The overall flow of an FCL experiment with Freddie is as follows. After
the user submits a configuration, the Orchestrator deploys and manages the
execution within a cluster. The federator and clients are automatically config-
ured within the deployed experiment, allowing the experiment to start after all
parties come online. The communication between any two nodes in the sys-
tem is asynchronous, allowing the development of FL systems with non-blocking
federator-client interactions. Finally, the Extractor allows users to store and
retrieve experiment statistics and artifacts created by the federator or clients.
This design allows users to scale their experiments up from small-scale proto-
typing with minimal effort using Kubernetes or run experiments containerized
or locally.

Novel Support for FCL. Freddie supports the SOTA algorithms for FCL [21]
and common CL methods such as EWC and GEM. For CL, Freddie implements
Task-IL and Domain-IL [19] through sliding, expanding, and full window mech-
anisms. A sliding window restricts the output classes only to those of the task
evaluated at a time t. Expanding windows do not utilize the task IDs to make any
such restriction, so the output classes include all classes learned until that time.
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Table 1. System and hyperparameters used in ‘small’ and ‘scale’ experiments. All
experiments were run on ‘e2-standard-8’ nodes.

System Federator (F) Clients (C)

Nodes #C CPU (F/C) Memory (F/C) Strategy #Rounds (R) #C/R Model Data BS

Small 2,2,3 5,10,20 2/1 2/2G FedAvg 100 5 LeNet CIFAR10 64

Scale 4,12 25,75 2/2,6G 85 all ResNet CIFAR100

A full window does not restrict outputs based on the task and can be used in
the standard Federated Learning scenario. The added complexity of FCL allows
for workloads over the same set of tasks to produce different results. We devise
three schemes that partition tasks differently, and that can be used to evaluate
an FCL scheme over a representative set of scenarios. We discuss these three
schemes: Column, Shuffled and Balanced. Column splits the CL workload such
that all clients handle all tasks in the same order, increasing the expected catas-
trophic forgetting effect. Shuffled randomly generates task orderings in which to
learn tasks across clients, thereby relying on pseudo-randomness in conjunction
with a pre-specified seed. Balanced staggers the task ordering across clients so
that tasks are seen in consecutive rounds by different clients. This task ordering
scheme allows for evaluation in FCL with low expected short-term forgetting,
while long-term forgetting may still occur. Freddies’ provides CL data wrappers
for Federated datasets, providing a flexible way to define non-IID FCL datasets.

4 Performance Evaluation

We demonstrate some features of Freddie through experiments. For this
purpose, we use the overlapping CIFAR100 dataset. The original targets of
CIFAR100 are used to partition the data into different tasks for FCL, following
the same steps as in [21]. We first consider a FL scenario with the default ver-
sion of CIFAR100. Following we consider the overlapping CIFAR100 split into 10
separate tasks in a FCL scenario. We use the average accuracy metric following
the CL literature [2,15].

Scalability. To investigate Freddie’s emulation capability, we perform a small
and large scale experiment on a Google Kubernetes Engine (GKE) cluster to
cover possible use cases. During deployment, the pods of the federator and clients
were run on a separate node pool scaled to meet each experiment’s requirements.
We study the performance of an FL experiment emulated on a CPU-enabled
Kubernetes cluster, where multiple clients may run on a single Kubernetes node.
Parameters of the experiments are provided in Table 1.

The small experiment in Fig. 2a depicts the spread round times of clients
(scaled) and the federator, with 5 selected clients per round. The client round
duration is scaled by the number of clients (World Size WS) (|DCifar|/WS)
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Fig. 2. Client (scaled) and federator round duration with Freddie for ‘small’ (LeNet5
& CIFAR10) and ‘scale’ experiment (ResNet-18 & CIFAR100).

to account for differences in clients’ datasets as the WS increases. The outliers
in the plots originate from the first epoch run on clients, which are inherently
slower due to loading data into memory. Nevertheless, it is expected that the
scaled client duration stays relatively constant, while the result shows an increase
as the number of clients increases (from 115 to 123 s, and from 136 to 138 s).
Similarly, the federator sees a positive correlation between round duration and
WS. The number of co-scheduled clients on the same node can explain this trend,
as the networking overhead stays the same.

For the scale experiments, we provide the round time density estimate in
Fig. 2b. The client round times exhibit the same range of processing times that
were observed in the ‘small’ setting. In both settings, participating clients in
each round may run on the same node, varying from 3 to 7 clients per node. We
use similar settings in the ‘small’ configuration that involves 20 clients, where
4 nodes are used. As such, confirming that resource contingencies due to co-
scheduling will likely cause the increased client round time with 20 clients. The
different modes within the client’s round duration can be explained by imper-
fect data splits and the imbalanced assignment of the number of clients to be
co-scheduled with the federator. The federator’s density estimate shows a similar
pattern with two distinct modes. With the cluster configurations employed, i.e.,
4 and 12 nodes, it is possible for the federator to be co-scheduled on a machine
with different numbers of clients. As a result, the federator experiences a vari-
able level of resource contingency. However, an increase in the two modes is
visible as the number of clients increases, which is expected due to the increased
communication volumes.

Task-IL vs. Domain-IL. Assuming that the model can pre-condition on the
ID of the task it is currently training on, or evaluating, increases its accuracy. For
FCL, Task-Incremental Learning and Domain-Incremental Learning are imple-
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mented using the sliding and expanding window, respectively. Let us recall that
sliding windows use task IDs, contrary to expanding windows. For the overlap-
ping CIFAR100 dataset, if one assumes that the task ID is known, then the
number of output classes is restricted to only the five subclasses within that
task. Thus leading to higher average task probabilities for Task-IL scenarios.
This difference is prevalent in Fig. 3a. Under the expanding window scheme,
classification outputs one of 5T classes, where T is the number of tasks learned
until evaluation time. Therefore, the probability of classifying correctly is even
lower than in the sliding window scenario. Figure 3a shows the positive impact of
leveraging the task ID on accuracy. Using sliding-window results in higher accu-
racy than expanding-window, which sometimes has to be used because of the
application use case. Because of this difference, Freddie supports both Task-IL
and Domain-IL.

Fig. 3. Federated Continual Learning impact of task awareness and task order.

FCL Task Heterogeneity. As discussed in Sect. 3, tasks can be processed
in different orders at each client. To demonstrate the impact of different task
distributions over time, we implement the Overlapped-CIFAR100 dataset with
20 tasks that can be used for FCL [21]. The accuracy in Fig. 3b is calculated
as the average accuracy of all tasks seen until that point, resulting in expected
‘drops’ in accuracy as new tasks are introduced. Indeed, the learning curves in
Fig. 3b shows noticeable drops over time. However, different trends are visible
between workloads. The column scheme suffers more from more pronounced
catastrophic forgetting than the shuffled and balanced scheme, resulting in lower
accuracy. We observe that the column scheme results in an average 4% test
accuracy drop compared to the shuffled and partition schemes.
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5 Conclusion

We presented Freddie, the first framework for reproducible Federated Continual
Learning research, which is motivated by the increasing importance of Federated
and Continual Learning. Freddie’s deployment abilities on different platforms,
scalability with the number of clients, and support for data and task hetero-
geneity provide FL practitioners with a powerful tool. Our experimental results
showcase previously unaddressed performance issues that Federated Continual
Learning systems might face: severe catastrophic forgetting in different task het-
erogeneity settings. Freddie is open-source. Future work consists of supporting
new CL datasets, algorithms, and generative models.
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