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A B S T R A C T

The operation of a community energy storage system (CESS) is challenging due to the volatility of photovoltaic
distributed generation, electricity consumption, and energy prices. Selecting the optimal CESS setpoints during
the day is a sequential decision problem under uncertainty, which can be solved using dynamic learning
methods. This paper proposes a reinforcement learning (RL) technique based on temporal difference learning
with eligibility traces (ET). It aims to minimize the day-ahead energy costs while maintaining the technical
limits at the grid coupling point. The performance of the RL is compared against an oracle based on a
deterministic mixed-integer second-order constraint program (MISOCP). The use of ET boosts the RL agent
learning rate for the CESS operation problem. The ET effectively assigns credit to the action sequences that
bring the CESS to a high state of charge before the peak prices, reducing the training time. The case study
shows that the proposed method learns to operate the CESS effectively and ten times faster than common RL
algorithms applied to energy systems such as Tabular Q-learning and Fitted-Q. Also, the RL agent operates the
CESS 94% near the optimal, reducing the energy costs for the end-user up to 12%.
1. Introduction and related work

A community energy storage system (CESS) is a mid-size battery
within the 100 kWh–10 MWh range, connected to the distribution
network installed near the residential areas. CESS promises to generate
collective socio-economic benefits such as offering ancillary services
for the system operator, reducing energy bills, and generating revenue
offering demand flexibility in a scenario of dynamic prices during the
day [1]. The optimal operation of a CESS is a challenging problem due
to dynamic prices and the stochastic nature of the multiple variables
influencing the state of the distribution network during the day. The
grid inherently brings technical constraints for the operation of the
CESS, e.g., networks with high photo-voltaic (PV) penetration may
present over-voltage problems at noon, impeding the battery from
selling energy. On the other hand, the battery might not fully charge
because of a potential undervoltage even in the presence of low prices.

A range of techniques has been applied to the CESS operation
under uncertainty. The first approach is to find the set-points of the
battery, solving the problem using robust convex optimization [2] and
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stochastic mixed-integer linear programming (MILP) [3] methods over
a finite time horizon. Additionally, the optimization can be combined
with a rolling window as a model predictive control (MPC), whose
stochastic variables are predicted individually [4]. A second approach
is to cast the problem as a Markov decision process (MDP) and use
dynamic programming (DP) techniques studied in [5,6], to optimize
operational cost for residence with storage coupled with a PV system.
When the complexity of the MDP problem is high, e.g., the number of
stochastic variables and control decisions increases, adaptive dynamic
programming (ADP) can be used to find computationally feasible sub-
optimal solutions [7]. In line with the category dynamic methods, the
third approach is the use of model-free RL techniques, which have been
applied in different domains for power systems [8,9]. As opposed to the
DP approach, RL does not require an explicit model for the stochastic
transition dynamics of the MDP in order to find a solution. Instead, RL
is able to find one solution while interacting with the system. Usually,
optimization approaches focus on creating models and approximations
to make the problem tractable and suitable for commercial convex
vailable online 16 July 2022
378-7796/© 2022 The Authors. Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.epsr.2022.108515
Received 3 October 2021; Received in revised form 14 April 2022; Accepted 2 July
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

2022

http://www.elsevier.com/locate/epsr
http://www.elsevier.com/locate/epsr
mailto:e.m.salazar.duque@tue.nl
https://doi.org/10.1016/j.epsr.2022.108515
https://doi.org/10.1016/j.epsr.2022.108515
http://crossmark.crossref.org/dialog/?doi=10.1016/j.epsr.2022.108515&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Electric Power Systems Research 212 (2022) 108515E.M.S. Duque et al.
programming solvers. For RL techniques, the task burden lies in the
correct algorithm selection, state representation, and hyper-parameter
tuning to obtain an optimal result. RL has the disadvantage of sampling
inefficiency, requiring a significant amount of interaction trials with
the MDP to learn a control policy. Nevertheless, it can be powerful
when being used jointly with complex simulators that include non-
linearities as a digital twin [10], since it can potentially find an optimal
operational solution by interaction.

Studies related to the operation of CESS using RL approaches
typically focus on reducing energy costs, neglecting network con-
straints [11,12], e.g., voltage violations. Alternatively, the battery is
used only to provide solutions for technical problems on the network,
e.g., voltage regulation, congestion management, without considering
the energy costs for the end-user [13]. This work focuses on both
sides, reducing users’ energy costs while maintaining the distribution
network’s technical limits. Recent research of RL in energy systems
has been concentrated on the use of deep neural networks, possibly
inspired by the achievements of deep reinforcement learning (DRL)
in other fields [14]. DRL has a problem of instability and brittleness
due to algorithmic hyper-parameter selection and implementation de-
tails which significantly affect the algorithm’s performance on specific
tasks [15], making the tuning processes a challenge. On the other hand,
RL techniques with simpler linear function approximators (FA) that
have stronger mathematical guarantees of convergence, have not been
widely explored in power systems problems [16]. In other research
fields, RL algorithms with linear FA have been empirically tested and
shown to be equally powerful in domains that DRL was thought to be
the best approach [17].

The contribution in this paper are the following:

• We propose a linear temporal difference (TD) RL technique with
eligibility traces for the day-ahead operation of a CESS in distribu-
tion systems. The optimal policy generalizes common stochastic
variables that affect grid operation, i.e., load consumption and PV
generation.

• Analysis of the selection process of the hyper-parameters of the RL
algorithm in the context of CESS operation. The proposed method
has a more straightforward tuning process than RL methods which
use non-linear function approximators, e.g., neural networks, an
ensemble of regression trees.

The solutions of our RL model are compared against the opti-
mal operation using an mixed-integer second-order cone programming
(MISOCP) formulation [2], which serves as an oracle with perfect
information. Additionally, this work pursues a more fundamental view
of common RL techniques used in battery control in the energy do-
main [16], stating the major differences and pointing clearly that RL
eligibility traces are a strong candidate for the CESS operation problem,
making learning more efficient and robust. To the best of the authors’
knowledge, the use of RL with eligibility traces and linear FA on the
CESS operation problem has not been explored in the literature before.

The paper is organized as follows. Section 2 describes the proposed
approach to the CESS operation using RL. Section 3 defines the CESS
operation problem as an MDP. Section 4 explains the solution of the
MDP using RL, highlighting the advantages of eligibility traces on the
CESS operation. Section 5 shows the case study and results of the
proposed approach. Finally, Section 6 summarizes and concludes.

2. CESS operation with RL approach

The main advantage of using a control agent based on RL is that,
from its perspective, the model representing distribution network can
be seen as a black box process with unknown dynamics. Inside the black
box, the power grid can be a complex non-linear model, and the RL
algorithm finds an optimal solution based on just interactions with the
system. This enables to use of RL with a digital twin, which emulates
2

Fig. 1. RL agent learns to control a CESS under a digital twin network grid simulator,
which uses actual historical data and current topology status of the grid. The learned
policy 𝜋∗(⋅) is deployed in real life for the next-day operation.

detailed real grid operation assisted by previous consumption, genera-
tion, meteorological and price databases. Fig. 1 shows the operational
framework for the RL-based controller, which is training the RL agent at
the end of the day, learning a control policy for the CESS, and deploy
it for operation for the next day. The policy function 𝜋(⋅) maps each
state (𝑠) e.g., active power of the load, energy prices, voltage at the
point of connection; to actions (𝑎), i.e., power set-points of the battery.
The digital twin serves as an emulator of real-life responses for different
CESS set-points in a safe simulation environment. The policy relies on a
small set of variables, describing the state of the system based on local
measurements. The learned policy allows operating the CESS within
grid’s technical limits.

The RL approach generalizes the set-point solutions for the CESS
under uncertain load values for the next day, without requiring to
compute the solutions for each time step as it would happen in an MPC.
The MPC rolling horizon for the CESS control could be formulated as
a MILP problem solved for every time step 𝑡, and its solution would
generate a control action sequence over the battery {𝑎𝑜,… , 𝑎𝑘,… , 𝑎𝑇 }
for the next 𝑇 periods, assuming a perfect forecast of stochastic vari-
ables, which is not realistic. On the other hand, policies in RL are more
general than control sequences in the case of stochastic uncertainty;
they can result in improved revenue because the choice of the control
actions incorporate knowledge of the state 𝑠𝑡, which improves the
generalization of optimal action over multiple possible states [18].

The day-ahead energy price is assumed to be known in advance, and
the irradiance profile is assumed to be given by a prediction algorithm
including an error to consider the variability of PV generation sources.

3. CESS operation as a Markov Decision Process

The operation of a CESS can be formalized as an MDP [19], which
is described by a tuple ⟨ ,, 𝑝, 𝑟, 𝛾⟩, where  is the set of states; and
 is the set of possible actions that the agent can perform on the
CESS, both taken in discrete time steps 𝑡 = 0, 1, 2,… . The function
𝑝 ≐ 𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡) is a transition probability to the state 𝑠𝑡+1 when the
action 𝑎𝑡 ∈  is taken in the state 𝑠𝑡; the reward 𝑟 ≐ 𝑟(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1) ↦ R
is the expected reward that the agent obtains for transitioning from
state 𝑠𝑡 to 𝑠𝑡+1 when the action 𝑎𝑡 is executed. Finally, 𝛾 ∈ (0, 1] is
a discount factor which modulates the relevance of future rewards in
time. The main objective of solving an MDP is to find an optimal policy
function that maps each state to actions, i.e., 𝜋∗(𝑠𝑡) ↦ 𝑎𝑡, leading to
the maximum possible reward of the process. The MDP for the CESS
operation problem is defined as follows:

3.1. State

The state is defined by the information available at the point of
connection (POC) of the CESS in the grid, and it is composed by
the tuple: active, reactive power of the load, voltage, battery state of
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Fig. 2. Example plot of the Voltage penalty 𝐶𝑣, with parameters 𝛽0 = 1425, 𝛽1 = 1500,
𝛽2 = 1575, 𝑣𝑚𝑖𝑛 = 0.95 and 𝑣𝑚𝑎𝑥 = 1.05. Values of voltage magnitudes outside technical
limits at POC results in additional costs for the agent.

charge (SOC), global irradiance, and a time step of the day, denoted
respectively as:

𝑠𝑡 = ⟨𝑃D
𝑡 , 𝑄

D
𝑡 , 𝑉𝑡, 𝑆𝑂𝐶𝑡, 𝑄

irr
𝑡 , 𝑡⟩, (1)

All variables are considered stochastic and continuous. Note that the
price is not considered in the tuple as it is deterministic, assumed to be
known, and the time-series profile does not change during the learning
process of the policy for the next day of CESS operation.

3.2. Action

The action space  is the possible discrete battery’s active power
set-points 𝑢𝑖 at step 𝑡, i.e., 𝑎𝑡 = 𝑢𝑖,𝑡 = 𝑃 ess

𝑡 . The set of possible actions
is discretized in order to use an RL critic-only algorithm (discussed in
Section 4). The action set is defined as  ∶= {𝑢𝑖 ∣ 𝑢𝑖 ∈ [−𝑃 ess

𝑚𝑖𝑛, 𝑃
ess
𝑚𝑎𝑥], 𝑖 =

1,… , 𝑁}, where 𝑃 ess
𝑚𝑖𝑛 and 𝑃 ess

𝑚𝑎𝑥 are the minimum and maximum power
rate output of the CESS’s inverter. It is convenient to have an sym-
metric range of power levels, positive and negative values available
to charge/discharge, and one option to set the battery on idle mode.
Therefore, 𝑁 is an odd integer number for active power levels, and the
action space starts from 𝑢1 = −𝑃 ess

𝑚𝑖𝑛 and subsequent values 𝑢𝑖+1 = 𝑢𝑖 +
(𝑃 ess
𝑚𝑎𝑥 − 𝑃

ess
𝑚𝑖𝑛)∕(𝑁 − 1).

In practice, the actions affecting the battery’s stored energy depend
on the current SOC, e.g., charging actions when the battery is full
will take no effect. The action space can be reduced by blinding those
actions that do not affect the battery state, making the learning more ef-
ficient. Therefore, we determine a subset of valid actions that the agent
can choose based on the current state, ̃(𝑠𝑡) ⊆  dependent on the
battery SOC, defined as ̃ ∶= {𝑢𝑖 ∣ 𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑢𝑖𝛥𝑡 + 𝑆𝑂𝐶𝑡 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥}.

3.3. Reward

The reward function is composed by two components. First, a cost
term 𝐶𝑒(⋅) for the energy from/to the grid, and the second term, 𝐶𝑣(⋅),
is a penalization for voltage magnitudes outside the technical limits,
defined as

𝑟𝑡(𝑠𝑡) = −[𝐶𝑣(𝑠𝑡) + 𝐶𝑒(𝑠𝑡)]. (2)

The reward function’s negative sign is that the RL is defined as
maximizing reward, which is equivalent to minimizing the costs. Specif-
ically, each of the reward components is

𝐶𝑒 = 𝜉𝑡𝑃
net
𝑡 𝛥𝑡, (3)

𝐶𝑣 =

⎧

⎪

⎨

⎪

⎩

𝛽0 − 𝛽1𝑣𝑡 if 𝑣𝑡 ≤ 𝑣𝑚𝑖𝑛
−𝛽2 + 𝛽1𝑣𝑡 if 𝑣𝑡 ≥ 𝑣𝑚𝑎𝑥
0 otherwise.

(4)

On which 𝜉𝑡 is the energy price, the net load is defined as 𝑃 net
𝑡 =

𝑃D − (𝑃 PV + 𝑃 ess), 𝑃 PV is PV generation at the POC. The parameters
3

𝑡 𝑡 𝑡 𝑡 e
𝛽0, 𝛽1, 𝛽2 create a penalty function for the voltage technical limits at
the POC of the battery (Fig. 2). The dead band between 𝑣𝑚𝑖𝑛 and 𝑣𝑚𝑎𝑥
allows the agent to focus on minimizing energy cost once the voltage
values are within the voltage limits.

The slope 𝛽1 controls the severity of the voltage penalty. The pa-
ameters 𝛽0 and 𝛽2 depend on the voltage technical limits, and they
re calculated as 𝛽0 = 𝛽1𝑣𝑚𝑖𝑛 and 𝛽2 = 𝛽1𝑣𝑚𝑎𝑥. The value of 𝛽1 is
uned by trial and error, but as a general guideline, its value should
e high enough so the cost function 𝐶𝑣 overcomes the cost of energy
𝑒 at any time 𝑡 if there is a voltage violation. Otherwise, the agent
ould learn a policy that reduces energy costs while violating technical
imits. Additionally, the linear barrier function of 𝐶𝑣 provides a smooth
orrective signal for the agent, which is trained via gradient descent
Section 4).

.4. Environment

The RL agent training process is data-intensive, and multiple
pisodes (daily scenarios) for learning 𝜋∗(⋅) should be performed. This
reates a computational bottleneck for RL techniques in simulators
or network grid dynamics. We selected an efficient AC power flow
or radial distribution networks [20] to decrease simulation time. The
ower flow solutions provide us the transition function 𝑓 (⋅) for the
oltage at the POC, i.e., 𝑉𝑡+1 = 𝑓 (𝑃D

𝑡+1, 𝑄
D
𝑡+1, 𝑃

ess
𝑡 ), as a response from

he network grid when the set-points action 𝑎𝑡 for the CESS is executed.
he transition function defining the dynamics of the CESS is

OC𝑡+1 = SOC𝑡 −
𝛥𝑡
EC

𝑃 ess
𝑡 , (5)

where EC is the energy capacity in kilowatt-hour, and 𝛥𝑡 is the time
nterval in hours. Additionally, the PV generation at each step 𝑡 is
efined by 𝑃 PV

𝑡 = 𝑘𝑄irr
𝑡 , which is directly proportional to the solar

lobal irradiance 𝑄irr
𝑡 , and 𝑘 is a factor proportional to the installed

V capacity. The prediction error over the global irradiance variable is
irr
𝑡 .

It should be mentioned that environment’s complexity can be in-
reased, including a detailed battery model e.g., efficiency curves,
emperature, degradation, or generative models for load consump-
ion [21]. However, since one of the objectives in this work is assessing
he performance of the RL model, then the battery dynamics need to
e simplified for the MISCOP model.

.5. Naive charging policy

In this paper, we assume exact knowledge of day-ahead price. One
an develop a simple but effective naive rule-based policy to charge
hen the current price is below the average price for the day (𝜉) and
ischarge when it is above.

�̃�(𝑠𝑡) =

⎧

⎪

⎨

⎪

⎩

𝑃 ess
𝑚𝑎𝑥 if (𝜉𝑡 < 𝜉) ∧ (𝑆𝑂𝐶𝑡 < 𝑆𝑂𝐶𝑚𝑎𝑥),
𝑃 ess
𝑚𝑖𝑛 if (𝜉𝑡 ≥ 𝜉) ∧ (𝑆𝑂𝐶𝑡 > 𝑆𝑂𝐶𝑚𝑖𝑛),

0 otherwise.
(6)

his policy only charges based on SOC and energy price data in the
urrent time step. It only considers the maximum profit for the user
eglecting the grid constraints, which could be the case of a private
ser.

. Temporal difference learning and eligibility traces (𝝀)

The purpose of this subsection is to highlight the main differences
etween the critic-only RL techniques used in this paper, i.e., Tabular
-learning, Fitted-Q iteration (FQI), and True-Online Sarsa(𝜆). The first

wo methods are commonly used in energy management systems [8].
ere we emphasize the latter RL technique’s advantage, which uses

ligibility traces on the CESS operation problem.
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𝑞

𝑞

The reward collected from each time step onwards is called return,
defined as:

𝐺𝑡 ≐ 𝑅𝑡+1 + 𝛾𝐺𝑡+1
= 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 +…+ 𝛾𝑇−1𝑅𝑡+𝑇−1, (7)

which is the discounted sum of stochastic reward variable 𝑅 observed
after the time 𝑡. Variable 𝑇 denotes the time step at the end of the
episode (decision horizon).

The action-value function 𝑞𝜋 (𝑆𝑡, 𝐴𝑡) ↦ R is the expected return given
that action 𝑎𝑡 is taken in the state 𝑠𝑡 and following the policy 𝜋(⋅) after
that. Meaning that it quantifies how rewarding an action is for a specific
state. The action-value function [22] can be expanded recursively based
on the following state as:

𝑞𝜋 (𝑠, 𝑎) ≐ E𝜋 [𝐺𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] (8)
= E𝜋 [𝑅𝑡+1 + 𝛾𝑞𝜋 (𝑆𝑡+1, 𝐴𝑡+1)|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎].

Bellman’s principle of optimality states that the optimal action-value
function and optimal policy for an MDP has the recursive solution as

𝑞𝜋∗ (𝑠, 𝑎) = E𝜋 [𝑅𝑡+1 (9)
+ 𝛾 max

𝑎𝑡+1∈
𝑞∗𝜋 (𝑆𝑡+1, 𝑎𝑡+1)|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎].

The solution of (9) can be obtained by using a TD algorithm known
as Q-learning [23], which solves the following update rule iteratively
as follows:

̂𝑘+1(𝑆𝑡, 𝐴𝑡) = 𝑞𝑘(𝑆𝑡, 𝐴𝑡) (10)
+ 𝛼[𝑅𝑡+1 + 𝛾 max

𝑎𝑡+1∈
𝑞𝑘(𝑆𝑡+1, 𝑎𝑡+1) − 𝑞𝑘(𝑆𝑡, 𝐴𝑡)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝛿𝑡∶ TD Error

],

where 𝑞(⋅) is a tabular representation of function 𝑞𝜋 (𝑠, 𝑎) in (9). This
table is built by combining all the states and possible actions in the
MDP, and 𝛼 ∈ (0, 1] is a learning rate. In problems where the state space
is continuous, a typical approach is to coarsely discretize the state space
and apply the update (10) iteratively until the temporal difference error
(TD) converges, i.e., 𝛿𝑡 → 0. Other approaches have been proposed
to also solve (9) for continuous states spaces, replacing the tabular
representation of 𝑞(⋅) for different types of non-linear FA such as an
ensemble of regression trees (FQI) [24] or neural networks (Neural
Fitted-Q) [25] as a form of iterative supervised learning problems using
updates in batches of experiences, e.g., sets of transitions tuples.

The RL techniques based on action-value methods (i.e., critic-only
methods) use the learned action-value function as a surrogate for the
policy. Therefore, for the optimal value function 𝑞𝜋∗ (⋅), the policy is
simply:

𝜋∗(𝑠) ≐ argmax
𝑎∈

𝑞∗𝜋 (𝑠, 𝑎). (11)

The maximization of (11) can be computationally expensive or in-
tractable if the action space is continuous. Therefore, the most straight-
forward approach is to discretize the action space in a set of possible
values, as defined in Section 3.2.

Another approach to solve the MDP using action-value functions is
to set up the problem as an error-minimization problem [26]

(𝜃) ≐ 1
2
∑

𝑠𝑖∈
𝑑𝜋 (𝑠𝑖)(𝑞𝜋 (𝑠𝑡, 𝑎𝑡) − 𝑞(𝑠, 𝑎,𝜽))2, (12)

where 𝑑𝜋 (𝑠𝑖) is the stationary probability distribution of the states while
following the policy 𝜋(⋅), and 𝑞(𝑠, 𝑎,𝜽) is parametrized function by
𝜽. The problem in (12) can be solved using gradient descent while
sampling from the stationary distribution, where the updates of the
parameter 𝜽 follows

𝜽𝑡+1 = 𝜽𝑡 + 𝛼(𝑞𝜋 (𝑆𝑡, 𝐴𝑡) − 𝑞(𝑠, 𝑎,𝜽𝑡))∇𝑞(𝑠, 𝑎,𝜽𝑡) (13a)

= 𝜽 + 𝛼(𝑈 − 𝑞(𝑠, 𝑎,𝜽 ))∇𝑞(𝑠, 𝑎,𝜽 ) (13b)
4

𝑡 𝑡 𝑡 𝑡 𝑞
Fig. 3. (a) Multi-step update target: parameter 𝜆 weights each experience trajectory
during training, making the learning more efficient. Adapted from [29]. (b) Example
of the soft generalization in 2-D using tile coding. Three tiles are activate for a state
visit depicted by an 𝑋. (c) Illustration of eligibility trace decay when the same state
is visited during a training episode.

The actual function 𝑞𝜋 (𝑆𝑡, 𝐴𝑡) is unknown and it is replaced by a
target estimate 𝑈𝑡 in (13b). Different types of targets can be used: (i)
Monte-Carlo update target, 𝑈𝑡 = 𝐺𝑇 where 𝐺𝑇 is the total reward at
the end of the episode, which is unbiased but shows large variance
and slow convergence in practice. (ii) One-step update target, 𝑈𝑡 =
𝑅𝑡+1 + 𝛾 max𝑎𝑡+1∈ 𝑞𝑘(𝑆𝑡+1, 𝑎𝑡+1,𝜽𝑡), which is the target function used in
techniques that use non-linear FA of 𝑞(⋅,𝜽) such as DQN [14], Boltz-
mann Machines [27], where the parameter 𝜽 is computed via stochastic
gradient descent. (iii) Multi-step update target (𝜆-return) [28], 𝑈𝑡 = 𝐺𝜆𝑡 ,
which is the proposed target to use in this paper is defined as

𝐺𝜆𝑡 ≐ (1 − 𝜆)
𝑇−𝑡−1
∑

𝑛=1
𝜆𝑛−1𝐺(𝑛)

𝑡 + 𝜆𝑇−𝑡−1𝐺𝑡 (14)

𝐺(𝑛)
𝑡 ≐

𝑛
∑

𝑘=1
𝛾𝑘−1𝑅𝑡+𝑘 + 𝛾𝑛𝑞(𝑠𝑡+𝑛, 𝑎𝑡+1,𝜽𝑡+𝑛−1). (15)

The intuition of this target is shown in Fig. 3(a). Parameter 𝜆 ∈ [0, 1]
works as a weighted average for multiple trajectory paths experienced
during training. In the extreme values of its interval, when 𝜆 = 1,
expression (14) reduces to target option (i), and when 𝜆 = 0 it becomes
option (ii). It is crucial to notice that the methods: Tabular Q-learning in
(10), FQI that solves the problem in (9), and DQN that solves (13a)
using option (ii) have a similar update in the way that only uses
the return and information from the current step, and next transition
⟨𝑠𝑡, 𝑎𝑡, 𝑟𝑡+1, 𝑠𝑡+1, 𝑎𝑡+1⟩, i.e., 1-step return in Fig. 3(a). On the other hand,
the multi-step update covers the spectrum from one-step to Monte-Carlo
(𝑛-steps) via the parameter 𝜆. This makes it more effective in learning,
especially for processes that intrinsically carry an internal state [30],
such as the SOC.

The CESS operation is inherently a delayed reward problem, mean-
ing that for an optimal operation, the RL agent should perform CESS
charging actions earlier, buying energy at low peak prices (negative
reward) preparing the battery for being in a good state i.e., high SOC
before peak prices. This allows the CESS to sell back energy the grid
(high reward). Eligibility traces assigns the credit to all the charging
actions which lead to a high SOC before the peak price effectively, using
parameter 𝜆. The effective credit assignment reduces the training time
considerably. The case of study brings further discussion on this matter.

The multi-step return has a convergence guarantee [26], when
̂𝜋 (⋅,𝜽) is modeled using a linear FA of the form

̂(𝑠, 𝑎,𝜽) = 𝜽⊺𝜙(𝑠, 𝑎) ∈ R𝑑 , (16)
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Algorithm 1: True online Sarsa(𝜆) for CESS operation
1: Input parameters: Step size 𝛼 > 0, trace decay 𝜆 ∈ [0, 1]
2: Initialize: 𝜽0 ∈ R𝑑 (e.g., 𝜽0 = 𝟎)
3: repeat
4: Initialize 𝑠0 from the environment
5: Choose 𝑎0 ∼ 𝜋(⋅|𝑠0)
6: 𝒆−1 ← 𝟎
7: 𝝍0 ← 𝝓(𝑠0, 𝑎0)
8: 𝑞−1 ← 𝟎
9: 𝑡 = 0

10: repeat
11: Take action 𝑎𝑡 on environment, observe 𝑟𝑡, 𝑠𝑡+1
12: Choose 𝑎𝑡+1 ∼ 𝜋(⋅|𝑠𝑡+1) or near greedily
13: 𝝍 𝑡+1 ← 𝝓(𝑠𝑡+1, 𝑎𝑡+1)
4: ⊳ (if 𝑠𝑡+1 it Terminal, 𝝍 𝑡+1 ← 𝟎)

15: 𝑞𝑡 ← 𝜽⊺𝑡𝝍 𝑡
16: 𝑞𝑡+1 ← 𝜽⊺𝑡𝝍 𝑡+1
17: 𝛿𝑡 ← 𝑟𝑡 + 𝛾𝑞𝑡+1 − 𝑞𝑡
18: 𝒆𝑡 ← 𝛾𝜆𝒆𝑡−1 + (1 − 𝛼𝛾𝜆𝒆⊺𝑡−1𝝍 𝑡)𝝍 𝑡
19: 𝜽𝑡+1 ← 𝜽𝑡 + 𝛼(𝛿𝑡 + 𝑞𝑡 − 𝑞𝑡−1)𝒆𝑡 − 𝛼(𝑞𝑡 − 𝑞𝑡−1)𝝍 𝑡
20: 𝑞𝑡−1 ← 𝑞𝑡+1
21: 𝜓𝑡 ← 𝜓𝑡+1
22: 𝑎𝑡 ← 𝑎𝑡+1
23: 𝑡 ← 𝑡 + 1
24: until 𝑠𝑡+1 is Terminal state
25: until finish the total number of episodes

where the base feature function 𝜙(𝑠, 𝑎) can have multiple represen-
tations such as radial basis functions, Fourier series, polynomial and
binary representations (BR) [29]. We used the BR version named tile
coding with displacement vectors [31] shown in Fig. 3(b). It provides a
computationally efficient soft generalization between states, using tiles
represented by a binary vector of dimension 𝑑, in which elements of the
vector are set to 1 when the value of a state lies in the specific set of
tiles. True-Online Sarsa(𝜆) (TOS(𝜆)) [28], shown in Algorithm 1, uses
he 𝐺𝜆𝑡 target. It computes the update for 𝜽𝑡 for each step on-line during

the interaction with the environment, reducing training time. This can
be done with the aid of the vector 𝒆, i.e., line 6 and 18 in Algorithm 1,

hich is the eligibility trace. This vector works as a short-term memory
ector, which parallels its update with the parameter vector 𝜽. Fig. 3(c)
hows an example of one eligibility trace which keeps propagating the
eward to a state in a decaying fashion during the training process.

.1. Optimal energy dispatch model (oracle)

An optimization model for the CESS dispatch is formulated as a
ISOCP problem [32], which allows us to use commercial solvers

or convex programming [33] to find a solution for the battery set-
oints during the day. The detailed base model can be found in [34],
ummarized and modified as:

min
∑

𝑡∈𝛺𝑇

𝜉𝑡𝛥𝑡PD𝑡 − (PPV𝑡 + Pess
𝑡 ) (17)

.t. 𝒈(𝒙) ⪰ 𝒚 (18)
∑

∈||

𝛷𝑖,𝑡𝑢𝑖,𝑡 = 𝑃 𝑒𝑠𝑠𝑡 ,
∑

𝑖∈||

𝛷𝑖,𝑡 = 1, (19)

𝑖,𝑡 ∈ {0, 1}, ∀𝑡 ∈ 𝛺T, 𝑢𝑖 ∈ 

here the objective function is to minimize energy cost (17) for the
ime horizon defined by set 𝛺𝑇 . Grid constraints and battery dynam-
cs are represented by second-order inequalities (18). CESS set-points
re discretized in (19) to have the same power values between RL,
escribed in Section 3.2, and the MISOCP model. It should be reminded
hat this optimization model has a perfect prediction of the realization
f stochastic variables.
5

Fig. 4. Modified IEEE-34 Node bus test system with distributed PV generation. CESS
placed in the longest feeder path as it is the worst-case scenario for grid’s undervoltage
problem.

Table 1
Summary — parameters for RL models and CESS.

RL algorithms

𝛾 = 0.995
𝛼 = [0.025, 0.05,… , 0.175]
𝜆 = [0.9, 0.8,… , 0.1]
Batch size (FQI) = [10, 100,… , 10000]

Reward 𝛽0 = 1425, 𝛽1 = 1500, 𝛽2 = 1575

CESS
𝑁 = 7, SOC𝑚𝑖𝑛 = 0.0, SOC𝑚𝑎𝑥 = 1.0

𝑃 ess
𝑚𝑖𝑛 = −150 [kW], 𝑃 ess

𝑚𝑎𝑥 = 150 [kW]

EC = [300, 375, 500, 750, 1500, 2250, 3000] [kWh]

PV gen. 𝑘 =  ∼ [0.1 − 0.25], 𝜎irr = 5%

Voltage limits 𝑣𝑚𝑎𝑥 = 1.05, 𝑣𝑚𝑖𝑛 = 0.95

5. Case study

Tests are conducted in the 34-node IEEE test system shown in
Fig. 4. The training data are Dutch market day-ahead prices and load
measurements from 3 weeks before the day for CESS control, which
a distribution network operator provides. The global solar irradiance
comes from actual meteorological information adding normally dis-
tributed error with a 5% standard deviation. The parameters for the
different tests and algorithms are summarized in Table 1. Here one
episode is 24 h (𝑇 = 24). The number of tiles is set to 20 for each
one of the stochastic variables.

5.1. Performance of RL algorithms

The RL agent training curves for one day of operation for different
RL algorithms are shown in Fig. 5(a). The number of episodes to
achieve a near-optimal performance of Tabular Q-learning (TQL) is ten
times higher than TOS(𝜆). FQI shows a faster convergence in contrast to
TOS(𝜆). Nevertheless, FQI is not close to the MISCOP solution, whereas
TOS(𝜆) achieves near-optimal performance. The FQI agent learns how
to stay between voltage limits in the grid, but it cannot optimize the
energy costs for the day. TQL agent requires more iterations to be close
to the optimal. The variance in the curve for the TQL agent is because
the table has poor generalization due to the coarse discretization of
state variables. Fig. 5(b) shows a specific case where SOC = 0.5 at the
beginning of the day. The FQI agent sells the energy in the morning
and sets the CESS on idle the rest of the day. This happens because
action selection with the argmax(⋅) operator in (11) and the non-linear
FA exacerbates the problem of a myopic one-step return. The FQI agent
is biased to select the selling action for the next training episodes most
of the time, locking the learning in a non-optimal solution. Increasing
the exploration could solve the problem for FQI but requires additional
techniques and more interaction episodes with the simulator. TOS(𝜆)
is capable of selecting the correct action sequence to achieve high
rewards.
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Fig. 5. Comparison of RL techniques learning curves for one day of operation. In this
case, CESS has an EC = 500 [kWh]. Two different cases of SOC at the beginning of
the day. (a) Case with SOC = 0 (b) Case with SOC = 0.5.

Actions that charge the CESS inflict a negative reward on the agent,
as buying is penalized using (3). Nevertheless, those actions are neces-
sary to increase the SOC to sell the energy at peak times (usually in the
afternoon) and get a high positive reward. TD(0) techniques, i.e., FQI,
TQL, only one state is associated with the high reward, e.g., CESS with
high SOC in the afternoon, but it does not propagate the reward to
all those state–actions that incurred the high SOC at the afternoon.
TD(0) techniques require more iterations to backpropagate the reward.
Hence, the longer training times for TQL. On the other hand, TD(𝜆)
techniques, i.e., TOS(𝜆) uses the parameter 𝜆 helps to assign correct
updates for the action-values for the states that helped to get a high
SOC in the afternoon, e.g., all charging action since the early morning,
helping the policy on selecting the charging from the first hours in the
day, increasing the effectiveness on the speed of learning with fewer
samples.

5.2. Hyperparameters analysis for True online Sarsa(𝜆)

A parameter sweep of 𝜆 and 𝛼 for a battery capacity EC = 500 kWh
are shown in Fig. 6(a) and (b). TOS(𝜆) has an optimal combination with
𝛼 = 0.1 and 𝜆 = 0.7. This shows that assigning a weighting average
over different trajectories (𝜆 = 0.7) boosts the learning rate for the RL
agent. Fig. 6(c) shows the optimal parameters for different EC values
and constant inverter output power. The EC directly affects the selection
of 𝜆 but not on 𝛼. Parameter 𝜆 is inversely proportional to the EC. This
is expected because, in the case of a small EC, the CESS can cycle more
times for a day, creating more than one peak of high rewards. High
parameter 𝜆 means that the reward of latter peaks can be propagated
back to the state–action values related to the morning. High EC has
lower cycling, requiring smaller 𝜆 to propagate the rewards effectively
to previous state–action values.

The optimal combination of parameters is analyzed against a non-
optimal in Fig. 7. The reward of Eq. (2) is showed in subplot (a). The
components of the reward on expression (3)– are shown in subplots (b)
and (c), respectively. The non-optimal combination of parameters leads
to longer training times. Also, it shows higher variability on the 𝛿 error,
6

𝑡

Fig. 6. Parameter sweep for Algorithm 1 for each combination of 𝛼 and 𝜆 shown in
Table 1. Results reported are the mean averaged reward for the first 1000 episodes for
50 independent runs. (a) Parameter sweep viewed as function of learning rate 𝛼. (b)
Same parameter sweep viewed as function of decay rate 𝜆. (c) Optimal 𝛼 and 𝜆 values
for repeated sweeps as function of the battery size.

Fig. 7. Learning comparison between two sets of parameters of TOS(𝜆) for one day of
operation. (a) Reward function in (2). (b) Energy cost 𝐶𝑒(⋅). (c) Voltage penalty 𝐶𝑣(⋅).
Shadow areas represents one standard deviation for 50 independent runs.

represented by the shadowed areas. Interestingly, the agent learns first
to stay between voltage limits before reducing the energy costs, which
can be seen in a steep descent in subplot (c).

5.3. CESS continuous operation and cumulative costs

The proposed method was tested for a week of operation, and the
time series results are shown in Fig. 8. The MISOCP optimal operation
for the CESS output power 𝑃 ess

𝑡 and SOC𝑡 is shown in subplot (b). The
response of our proposed model in (c) shows an agreement with the
optimal solution. Nevertheless, the RL algorithm shows some bouncing
response on the inverter’s output power, attributed to variable uncer-
tainties and FA error. The grid without a battery is operating close to an
undervoltage problem, and the naive policy violates the grid’s technical
limits because it only considers energy prices for its policy. However, it
reasonably captures the actions of the optimal battery setpoints. Fig. 9
shows the cumulative energy costs for a week. In optimal conditions,
the end-users have an energy cost reduction of 12.7% compared to the
case with no battery. The naive policy is 1.1% above the optimal costs,
but it has voltage violations. The proposed method is 6% above the
optimal. The 4.9% of cost difference between the naive and TOS(𝜆)
policies is the trade-off between energy cost reduction and staying
within the grid’s technical limit.

6. Conclusion

This paper proposed an RL control agent based on temporal differ-
ence learning with eligibility traces for CESS operation. The agent is
trained to learn an operation policy in a simulated scenario, with his-
torical consumption data, next-day-ahead prices, and solar irradiance
forecast. The trained policy is then deployed for the next-day operation.
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Fig. 8. CESS operation for a week with different methods. (a) Load consumption,
olar irradiance, and energy prices at POC. CESS active power set points and SOC
or: (b) MISOCP-Oracle, (c) TOS(𝜆), and (d) Naive charging policy. Subplot (e) show
he voltages for the different solutions at POC.

Fig. 9. Cumulative costs for a CESS of 𝐸𝐶 = 500 [kWh] operating for a week with
ifferent controller methods.

he agent can minimize the end user’s energy costs and stay within
he MV networks grid’s technical limits, using sensor data at the POC.
opular RL algorithms used in energy applications, namely FQI and
abular Q-learning, are analyzed in contrast to True Online Sarsa(𝜆).

The latter shows that ET brings a faster learning rate for the RL agent.
ET effectively assigns credit to the actions that lead to a high SOC
before the energy price peaks to sell the stored energy at high prices.
This leads to fewer training interactions with the simulator to obtain
an optimal result.

The future research is to explore the ET for more data-efficient RL
methods such as LSTD and LSPI, and analyze improvements for CESS
7
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