
1

 Route programming on a mobile barn
cleaner

By

Jan Pieter Mars

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science

At the

University of technology Delft

2014

2

Committee
Daily suppervisor Responsible professor

Martijn Buijs (Lely) Dr. K.V. Hindriks

Committee members

Prof. Dr. C.M. Jonker - Full Professor, Interactive Intelligence

Dr. K.V. Hindriks - Assistant Professor, Interactive Intelligence

Dr. C.J.M. Verhoeven - Associate Professor, Microelectronics

Martijn Buijs - Manager Product Development at Lely Industries NV

3

Abstract
The ‘Lely Discovery’ is an automated mobile barn cleaner, which routes are programmed by a ‘teaching

method’. The routes are specified by a linear action sequence to be executed by the robot. Teaching a

route to the Lely Discovery requires users to execute every action first by walking the robot through the

barn.

The route teaching method is time consuming and the current interface of the teaching method is not

user-friendly. When a route requires changes for optimizing the route, the user has to re-execute all the

route actions on the robot to and from the position where he wants to change the route.

This thesis explores the implementation of a route drawing system which enables users to draw routes

on a map. This system can generate an action sequence from the drawn routes on the map. Users can

program routes 2 – 3 times faster than with the teaching method and route changes can be made in short

notice.

In this thesis the results of a user study are presented and the results of the tested routes on the robot

via a first prototype of the drawing system. Although the results are not convincing, they provide useful

leads for the design of a second prototype.

4

Table of Contents
Committee .. 2

Abstract ... 3

Table of Contents .. 4

List of figures ... 9

1 Introduction .. 12

1.1 Situation Sketch .. 12

1.2 Technical specifications Lely Discovery... 12

1.3 Route programming .. 13

1.4 Requirements for a Good Route ... 15

1.5 Interface .. 16

1.6 Research question ... 17

2 Related work ... 19

2.1 Map making .. 19

2.2 Route teaching .. 21

2.3 Route planning .. 22

2.4 Route preferences... 23

2.5 User interface .. 24

2.5.1 Gestures .. 24

2.5.2 Sketch .. 24

2.6 Route feedback ... 28

2.7 Conclusion ... 29

3 Field Research ... 30

3.1 Point learned during the field research .. 30

3.2 Conclusion ... 31

4 Improving the current system or making a new system .. 32

5 Prototype route drawer .. 33

5.1 Interface route drawer .. 33

5.2 Functionality route drawer ... 33

5.2.1 Map Maker .. 33

5.2.2 Specify Walls ... 34

5.2.3 Route Maker ... 34

5

5.2.4 Feedback system ... 37

5.3 System data flow ... 38

6 Requirements route drawer ... 41

6.1 Assumptions and requirements for the Lely Discovery .. 41

6.2 Map drawer ... 42

6.3 Route drawer .. 42

6.4 Route feedback ... 43

6.5 Action output .. 43

7 Scope route drawer .. 44

7.1 Barn layout .. 44

7.2 Lely Discovery design .. 46

7.2.1 Control points ... 47

7.3 Input for algorithm .. 48

7.3.1 Barn map ... 48

7.3.2 Route waypoints ... 48

8 Algorithm design for generating an route action sequence ... 50

8.1 Output ... 50

8.2 Search algorithms ... 50

8.3 Case based algorithms .. 51

8.4 Pseudocode ... 53

8.5 Route cases ... 54

8.6 Action sequence evaluation .. 58

8.7 Conclusion ... 62

9 Test plan .. 63

9.1 Pilot ... 63

9.2 User Study ... 63

9.2.1 Participants ... 64

9.2.2 General objective .. 64

9.2.3 Task ... 64

9.2.4 Preparation ... 64

9.2.5 Procedure .. 64

9.2.6 Instructions and questions .. 65

6

9.3 Routes from users on robot .. 65

9.3.1 General objective .. 65

9.3.2 Task ... 66

9.3.3 Preparation ... 66

9.3.4 Procedure .. 66

10 Evaluation ... 67

10.1 Background information participants ... 67

10.2 Route results ... 67

10.2.1 Route changes ... 68

10.2.2 Results ... 68

10.2.3 Route problems ... 69

10.2.4 Conclusion ... 71

10.3 Route draw and drive time ... 71

10.4 Route drawing on paper compared .. 73

10.5 Area cleaned ... 73

10.6 System usability .. 74

10.6.1 Results ... 74

10.6.2 Conclusion ... 76

10.7 Open questions ... 77

10.8 Component-Based Usability Questionnaire .. 77

10.8.1 Reliability Usability scales ... 77

10.8.2 Usability rating - Hypothesis testing Component rating ... 78

10.8.3 One-Sample t-Test .. 78

10.9 Interaction between background and results ... 79

10.9.1 Interaction between education and current system .. 80

10.9.2 Interaction between education and drawing system ... 82

10.9.3 Interaction between education, route success and draw time .. 83

10.9.4 Conclusion ... 85

11 Conclusion and recommendations ... 86

12 Future work ... 87

12.1 Adding cases.. 87

12.1.1 Learning from new cases .. 87

7

12.1.2 Opaque relations ... 88

12.2 Generate automatically routes ... 88

13 Bibliography .. 89

14 Appendix A .. 92

14.1 Requirements Lely Discovery .. 92

15 Appendix B .. 94

15.1 Usability test of route programming on the Lely Discovery ... 94

15.1.1 Introduction .. 94

15.1.2 Background ... 94

15.1.3 Part 1 Current route programming with the E-Link or Smartphone 94

15.1.4 Part 2 Instructions and questions about the new route drawing tool 96

15.1.5 Map 1 .. 101

15.1.6 Map 2 .. 102

15.1.7 Map 3 .. 103

15.1.8 Map 4 .. 104

15.1.9 Map 5 .. 105

16 Appendix C .. 106

17 Appendix D .. 109

17.1 Correlation between factors questions and results .. 109

17.2 Answers open questions current programming method ... 116

17.3 Answers open questions route drawing method ... 118

18 Appendix E .. 122

18.1 Solutions.. 122

18.2 Building global map ... 122

18.3 Building local map ... 122

18.4 Route programming .. 123

18.5 Interface .. 124

18.6 Feedback ... 125

18.7 Solution comparison ... 125

18.8 Conclusion and decision .. 129

18.9 Research computer aided route design method .. 131

18.10 Route programming with CARD tool ... 131

8

18.11 Algorithm to build the action sequence ... 131

18.12 User study ... 131

18.13 Map making and route programming by drawing .. 132

9

List of figures
Figure 1 Lely Discovery Mobile Barn Cleaner (a) on the charger (b) cleaning .. 12

Figure 2 LELY Discovery dimensions with on the left the charger .. 13

Figure 3 The E-Link manual controller for programming the routes of the Lely Discovery........................ 13

Figure 4 Route 1, clean all areas behind the cubicles each hour .. 14

Figure 5 Example actions .. 14

Figure 6 The E-Link Manual Controller menu structure ... 16

Figure 7 Turn right action options from the menu ... 17

Figure 8 An integrated framework of multiple, disparate representations of spatial knowledge. Each level

of abstraction uses its own ontology with concepts motivated by human communication about spatial

navigation (Beeson, et al., 2007, March) .. 20

Figure 9 The structure of SOM .. 21

Figure 10 Voronoi diagram ... 22

Figure 11 A high-level block diagram of the Crusher Autonomy system (Silver, Bagnell, & Stentz, 2010) 22

Figure 12 Safety grid built around every human in the environment. This depends highly on the human’s

posture. As the person feels less “threatened” when standing, the value and the range of the costs are

less important. (c) Decreasing costs attributed to the zones hidden by obstacles. The supplementary

costs discourage the robot getting too close to the obstacles and thus, prevents the robot from

appearing suddenly behind hidden places (Sisbot, Marin-Urias, Alami, & Simeon, 2007) 23

Figure 13 Learning process (Park, Bell, Kaparias, & Bogenberger, 2007) ... 24

Figure 14 Waypoints (*) are extracted at points along the path that intersect with lines in the Voronoi–

Delaunay graph (Shah & Campbell, A qualitative path planner for robot navigation using human-

provided maps, 2013) ... 25

Figure 15 Example of a two-gesture stroke modeled using a variable duration hidden Markov model,

where white nodes represent hidden (unobserved) variables, shaded nodes are observed variables, and

arrows represent conditional dependencies. In this example, the first gesture g1 has a duration of d1 = 3

strokes, and the second gesture g2 has a duration of d2 = 2 strokes. Interstroke nodes i11 , i21 , and i12

represent self-transitions on the gestures, while node i1:2 represents a transition from gesture g1 to

gesture g2. (Shah, Schneider, & Campbell, A robust sketch interface for natural robot control, 2010,

October) .. 26

Figure 16 Sketch 1 (a) A route map sketched on a PDA. (b) The corresponding digital representation

(Skubic, Blisard, Bailey, Adams, & Matsakis, 2004) .. 27

Figure 17 Force histograms. (a) the scalar resultant of forces (black arrows). Each one tends to move B in

direction. (b) The histogram of constant forces associated with (A,B), i.e., the position of A relative to B.

(c) The histogram of gravitational forces associated with (A,B) (Skubic, Blisard, Bailey, Adams, &

Matsakis, 2004) ... 27

Figure 18 Synoptic diagram showing how spatial information is extracted from the sketch (Skubic,

Blisard, Bailey, Adams, & Matsakis, 2004) .. 28

Figure 19 The collaborative control system model (Fong, Thorpe, & Baur, 2003) 28

Figure 20 Interface design .. 33

Figure 21 the robot should drive with the center point of the robot to every waypoint. 35

10

Figure 22 Path segment aligned with half the width of the robot from the wall 35

Figure 23 path segment aligned with the width of the robot minus a margin for overlap with another

route path segment .. 36

Figure 24 waypoints are horizontal and vertical aligned .. 36

Figure 25 waypoint drawn in the charger ... 36

Figure 26 example route where the route start and ends in the charger .. 37

Figure 27 feedback after calculating the route. The last parts or colored red, because the route line is

drawn to close to the wall and the corner .. 38

Figure 28 Data flow diagram ... 39

Figure 29 action types for the Lely Discovery ... 41

Figure 30 minimal distances between objects for the ideal barn .. 44

Figure 31 2 + 2 with 2 rows of cubicles on one side of the feeding path and 2 rows of cubicles on the

other side .. 45

Figure 32 4 + 4 barn with 4 rows of cubicles on one side of the feeding path and 4 rows of cubicles on

the other side (one side displayed) ... 45

Figure 33 Lely Discovery turns from the wall without getting stuck on the wall 46

Figure 34 control points used for executing the actions .. 47

Figure 35 basic structure of a rule-based reasoning system (Negnevitsky, 2005) 52

Figure 36 pseudocode for generating the route actions .. 54

Figure 37 (a) generated action sequence which needs to be evaluated, (b + c) route goes wrong in

practice (d) desired action sequence .. 58

Figure 38 complex corner in the workshop .. 68

Figure 39 Route 13 in map 1 where the robot crashed, right the simulation where the robot should end

after the move forward action for 8 cm ... 70

Figure 40 Route 11 in map 2 where the robot did not get inside the cubicle .. 70

Figure 41 Route 2 in map 4 where the robot did not get inside the cubicle .. 71

Figure 42 Interaction between computer experience and the draw time for map 4................................. 73

Figure 43 means usability questions of both systems .. 76

Figure 44 ... 79

Figure 45 Interaction between experience with programming routes on the Lely Discovery and current

system, a = Overall, I am satisfied with how easy it is to use this system, b = It was simple to use this

system, c = I am able to complete my work quickly using this system ... 81

Figure 46 Interaction between diploma and current system, a = I feel comfortable using this system, b =

The interface of this system is pleasant .. 82

Figure 47, a = It was easy to learn to use this system, b and d = I believe I became productive quickly

using this system, c = This system has all the functions and capabilities I expect it to have 83

Figure 48 a-c = Interaction between computer experience (education 1) and draw time and route

success. d = Interaction between draw time and experience with drawing tools. 84

Figure 49 Interaction between draw time and computer experience (education 1) and diploma

(education 5). .. 84

Figure 50 The CBR cycle .. 87

Figure 51 Test 1, normal route ... 106

11

Figure 52 Test 2, turn at end of alley .. 106

Figure 53 Test 3, bouncing with different angels on the walls ... 107

Figure 54 Test 4, bouncing with different angels on the walls ... 107

Figure 55 Test 5, route drawn by Mauro .. 108

Figure 56 Decision tree with possible solutions ... 128

12

1 Introduction
In this chapter Lely and one of their products, the Lely Discovery are introduced. After introducing the Lely

Discovery, the specifications of the Lely Discovery are shown and how routes can be programmed on the

Lely Discovery. Then some requirements for a good route are listed and is explained how the interface

works on the device which is used to program the routes. Finally the problematics of the current route

programming method are shown and the research question is presented.

1.1 Situation Sketch
Lely is a Dutch manufacturer of agricultural machinery based in Maassluis. This agro-technical company

mainly produces machines for the cattle industry such as lawn mowers for pastures, feeding- and milking

machines, including automatic milking- and feeding robots. One specific machine is the Lely Discovery.

The Lely Discovery is a battery-driven barn cleaner, which is able to ride and clean pre-programmed routes

automatically. The robot cleans the slatted floors of a barn to ensure that the cows can walk on a clean

and dry floor. Quick disposal of manure increases the hygiene and the well-being of milking cows, their

health and milk quality.

Figure 1 Lely Discovery Mobile Barn Cleaner (a) on the charger (b) cleaning

1.2 Technical specifications Lely Discovery
Technical specifications of the Lely Discovery from the website of Lely:

Weight (kg) 270
Empowered by 2 electric motors
Adjustable travel speed 9-18 m/min
Voltage Gel battery 12 Volt
Determination of direction Free spinning horizontal guiding wheel, gyroscope and ultrasound on the left
Floor Slatted floor with max. 3 degrees of slope
Capacity ca. 240 cows
Minimum height of cubicle floor 12.50 cm as a minimum

13

Figure 2 LELY Discovery dimensions with on the left the charger

Figure 3 The E-Link manual controller for programming the routes of the Lely Discovery

1.3 Route programming
The routes of the Lely Discovery are specified by a linear action sequence to be executed by the robot.

Every route starts and ends at a charger which loads the battery of the Lely Discovery. Every action is

specified by a distance (total turns of the wheels), angle, stopping condition like bumping into a wall, and

distance between the left side of the robot and the wall. The distance between the robot and the wall is

measured by a sonar which is able to detect walls higher than 12.5 cm.

14

Figure 4 Route 1, clean all areas behind the cubicles each hour

Teaching a route to the Lely Discovery requires the user to execute every action. He can guide the robot

with a smartphone or the E-link (see Figure 3). The technician or farmer can enter different actions which

can be selected from a menu, for example: ‘go straight forward’, ‘follow the wall’ or ‘make a curve’. Before

a route is programmed, the route can be prepared on beforehand (on a piece of paper) or by just looking

around and think about the route you want to program. When the route is conceived, it must be

programmed by letting the robot ride the whole route, while instructions are given with the E-link or the

Smartphone (see Figure 4 for an example route). Every route is built up by many actions (see Figure 5 and

Table 1).

Figure 5 Example actions

15

Table 1 explanation of each action in Figure 5

1.4 Requirements for a Good Route
When the robot drives a route, many things can occur which can cause the robot to go in the wrong

direction. Wheels might slip on the ground which can cause the direction of the robot to change and the

wrong distance being measured. There is also the problem of noise in the data coming from the sensors.

Sonar is not very precise and contains noise on the signal. The barn cleaner has to operate between cows.

Cows might block the route by walking or lying in front of the barn cleaner. This could cause the stopping

condition to be triggered too early or the sonar to obtain wrong information about the distance to the

wall. If a specific action cannot being executed successfully, completing an entire route is problematic,

because the robot has no map of his environment and hence no idea of his position. When a robot cannot

finish his route, he stops and beeps until he is brought back manually to the charger. To make a good

route and to increase the reliability of the route, Lely made the following route requirements for its

customers.

Some requirements from the manual for a good route:

- Include as many bump points against the walls as possible in all directions. If, due to slipping, the

bump point is not reached in time, the Lely Discovery continues until the bump point is reached.

This improves the reliability of the route.

- Be aware that actions like 'turn' and 'straight' may cause inaccurate results. Make sure the vehicle

cannot get stuck after making a turn or driving straight. Program a 'long action' (wall contact: 'wall

follow' or 'ultrasound') after a 'short action' (no wall contact: 'turn' or 'straight').

- When moving straight forward, the deviation in direction can be more than 10%. Take this into

account when setting up a route. If possible, include a bump point after going straight.

- If the angle between the Lely Discovery and the wall is more than 30 degrees, the angle between

the direction of the robot and the direction of the wall, you must program a 'turn' action first

before you program a 'follow wall' action.

16

- If the vehicle follows the wall or cubicle row ('wall follow' or 'ultrasound') and if there is a bend,

stop the vehicle, program a turn and go on to follow the wall.

- Try to avoid to move past the cows on the left side, they may get hurt due to the opening for the

ultrasonic sensor.

- Before starting, make sure the Lely Discovery points in the correct direction. Use the ''Straight'

option as little as possible. If it really is necessary, for example to get the Lely Discovery through

a doorway, make the distance travelled as short as possible. Once through the doorway, continue

to follow a wall left or right, or ' Ultrasound Left'. This improves the accuracy of the route that is

travelled.

- You can choose from 12 standard turns and modify the turn afterwards. Preferably do not make

sharp turns in heavy polluted areas (less power).

- Do not program Ultrasound Left when the wall is more than 2 meters away.

- The Lely Discovery must not drive more than 40% of the total time in a time path. It must spend

minimum 60% of the total time charging at the charging station.

- Make a backup each time you changed a route or time path or installed a new E-Link. Backups are

made on the E-Link.

- Program routes from different positions in the barn back to the charging station. This will enable

you to easily return the vehicle back to the charging station in case it gets lost.

- The beep can be modified separate for each route. If the beep length is set to 0, the beep is

switched too OFF. If a warning signal is given, the cows have time to move out of the way.

However, the sound may equally well disturb other cows.

- Set the speed to a lower level for parts of the route or the whole route if the cows are disturbed.

- The water tank capacity is 30 L (7.9 gal), which is enough for approximately 30 minutes of spraying.

As a result the Lely Discovery must return to the water filling station (and the charging station) for

a refill.

1.5 Interface

Figure 6 The E-Link Manual Controller menu structure

17

Route programming is done with the E-link or with a Smartphone. Route and actions can be selected from

a menu (see Figure 6 for a part of the menu structure). To program a new route, you have to select ‘route’

from the menu. When pressed on the start button, the following actions can be selected: ‘wall follow left’,

‘wall follow right’, ‘straight’, ‘turn right’, ‘turn left’, ‘ultrasound left’, ‘follow wall to charger’. If an action

is selected, a new menu opens with new options, (e.g. Figure 7). At the moment an action is selected, the

robot executes the action. When the robot goes straightforward, users must press the start/stop button

until the robot arrives at the right place for the next action. During the driving, parameters are set such

as the distance. If the robot will bump on a wall within 20 cm, the user should press on a bump button

(button 5 in Figure 3). This will cause the robot to drive slowly until it bumps on the wall, this way the

stopping condition for that action is set as bump point.

Figure 7 Turn right action options from the menu

When the routes are programmed, users can fill a timetable, in which the frequency of the routes is

specified. Some routes which might need extra cleaning can be selected to be driven more frequent.

Taking into account the feeding schedule of the cattle, on specific times the robot should not drive along

the feeding fence. During this time the robot can drive another route that for example drives along the

cubicles (resting boxes) of the cows.

1.6 Research question
This graduation project explores how technicians can create routes of the Lely Discovery in a different

way and how the current technique can be improved. It is time consuming to create a route by teaching.

To teach a route, users need to select all the route actions and let the robot directly drive the selected

action. The Lely Discovery can drive the route independently by following the learned action sequence on

a preferred time. The interface of the E-Link is not user-friendly, because the menu structure is complex

and the user has to choose between different types of actions which are difficult to understand. So the

action selection and programming is currently a time consuming and complex way for teaching the routes.

18

The same is true for changing time schemes and other preferences. From this the following research

question can be defined, how can the user friendliness and effectiveness of the route teaching for the Lely

Discovery platform be improved?

To answer the research question, research should be done on current route teaching techniques available

and how routes can be defined with other techniques. Also field research is required to find the precise

problems and difficulties in teaching the routes with the current technique.

This research will result in an overview of possible techniques and their pros and cons, a plan for a new

method of route programming and how the current method could be made better. From the selected

ideas a proof of concept will be made, which will be evaluated and tested on a test track (at Lely BV) and

on different test farms.

19

2 Related work
Prior to the field research, research is done on current techniques for programming routes on a robot, to

get insight in the field of route programming. This provides useful leads as to which solutions are possible

to improve the current route programming technique. First some research is done on making a map, then

how routes can be learned and how routes can be planned. Then some research is done on possible route

preferences, and some more advanced user interfaces are shown for programming the routes or for

sending instructions to the robot. Finally is shown how robots can ask questions about the routes if they

get lost and how feedback can be given on programmed routes.

2.1 Map making
For path planning and navigation of a mobile robot a map of the environment is required. Most of the

time a map is made by hand which contains inaccuracies in the map. An automatic construction of the

map of the environment in which the robot is navigating is one of the fundamental problems in modern

robotic systems. To accurately formulate the problem of simultaneous map building and localization of a

mobile robot, dependencies between entities in the map must be considered (Castellanos, Tardos, &

Schmidt, 1997, April).

In (Beeson, et al., 2007, March) is shown how spatial knowledge can be presented in different

representations, like local metrical, local symbolic, global symbolic and global metrical representation (see

Figure 8). The local topology of a place is a model of the topological relations between the path fragments

at that place. For the Global metrical map-building a snapshot is stored of all the local places they detect.

Then the best topological map which is consistent with the exploration is tried to find. This way a global

metrical map is built by connecting and scaling all the snapshots. The symbolic representation is used for

verbal instructions.

20

Figure 8 An integrated framework of multiple, disparate representations of spatial knowledge. Each level of abstraction uses
its own ontology with concepts motivated by human communication about spatial navigation (Beeson, et al., 2007, March)

In (Hristu-Varsakelis & Andersson, 2002) is a directed graph used to build a global map where each

landmark is stored in a node. The edge is what the robot has to do to travel from one node to the other.

The proposed map representation is most useful when distinguishable terrain features are sparsely

distributed or when most features are irrelevant to the robot’s task.

In (Yamada, 2004) a mobile robot is build which use unsupervised-learning to recognize environments

with low sensitive and local sensors. The robot does wall-following in enclosures. The action sequences

are transformed into vectors and are used as input for a Kohonen’s self-organizing maps (SOM). “SOM

clusters large dimensional input vectors by mapping them to small discrete vectors. SOM is a two-layered

network consisting of an input layer and a competitive layer (Figure 9). Any input node is linked to all

competitive nodes, and all links have weights. As an input vector is given, input nodes have values

corresponding to the input vector, and competitive nodes has values which stand for the distance

between their weights and the input vector. A winner node having the minimum distance is determined,

and weights of the winner node’s neighbor nodes are updated” (Yamada, 2004). Learning is done without

teaching. For the experiments a small robot is used in rooms with and without obstacles. Only simple

rooms where recognized but a little more complex rooms had a very low recognition rate.

21

Figure 9 The structure of SOM

2.2 Route teaching
When a human navigates to a goal, he use as perception his vision rather than the estimated position.

This because a human has a very powerful visual perception supported by much knowledge about the

environment. A robot has little knowledge of the environment and a small capacity to manage this sparse

knowledge. However a robot can measure the amount of movement precisely, for example the amount

of wheel turns. This way the robot can navigate without much knowledge about the environment in

comparison with a human (Maeyama, Ohya, & Yuta, 1996, November). To create the knowledge about

the wheel turns, the route must be learned from a human.

In (Sprunk, Tipaldi, Cherubini, & Burgard, 2013, November) a robot is trained to drive a user-thought

trajectory without using a global map of the environment. The robot uses two sensors, wheel encoders

for the wheel turns and a laser scanner for a local 2D scan of the environment. The route is learned by

driving the robot one time a specific route where the robot record the robot velocities from the wheel

encoders. From the laser scans anchor points are constructed which are also recorded. From this

information the robot can repeat the learned trajectory with millimeter accuracy.

In (Rawlinson & Jarvis, 2008) different attempts are described to direct an autonomous robot with

topological instructions where the robot has no map of the environment. During the navigation a

Generalized Voronoi Diagram (GVD) is build which can be used to transfer navigational concepts from

human to robots. A Voronoi diagram is a way of dividing space into a number of regions (see Figure 10).

For the navigation, two types of topological instructions are given to the robot. The first instruction

specified the angle at which the robot should try to depart a point relative to the direction in which it

approached. The second type of instruction gives more information about the edge which needed to be

followed without information about the angle. The second type was the preferred one. Also different

types of sensors are tested like sonar or a panoramic camera.

22

Figure 10 Voronoi diagram

In (Gat & Dorais, 1994, May) is investigated the application of conditional sequencing for robot navigation.

Conditional sequencing is mostly applied to high level-task execution. The intuition behind this approach

is that robots can navigate by following instructions similar to those that humans give to guide others to

unknown destinations. The top-level sequence would are procedures for following halls, turning around

corners, moving around obstacles, etc. The bottom procedures are simply sensorimotor control laws, laws

that with a given sensor input controls the motor, are engineered by hand.

2.3 Route planning
Route planning for a navigation is a complex task. Route planning algorithms mostly use a minimum cost

function, which calculates a route with minimum cost.

In (Silver, Bagnell, & Stentz, 2010) an offline and an online planning system is used. The offline planning

system use satellite maps or other maps for global planning and the offline part use the local sensors for

local route planning. The global map is divided into grid where every cell has a cost which is calculated by

a cost function. An example of a cost function is shown. An demonstration is given to the robot by an

expert to train the robot to interpret perceptual data to navigate autonomous. A robot was trained which

was capable to traverse over rough, complex and unstructured terrain.

Figure 11 A high-level block diagram of the Crusher Autonomy system (Silver, Bagnell, & Stentz, 2010)

In (Sisbot, Marin-Urias, Alami, & Simeon, 2007) a motion planner is shown that takes human partners into

account. The motion planner must provide safe, socially acceptable and legible paths. A safety criterion is

used which focuses on ensuring the safety of the robot and the humans by controlling the distance

23

between the two. This property aims to keep a safe distance between the robot and humans. The distance

depends on the state of the human like if he is sitting or standing. Also a visibility criterion is used. This

criterion aims to improve the human comfort during robot’s motion. A visibility grid is build around the

humans in the environment. The points before the human have a low cost but points at the back of the

human have a high cost. Also hidden zones where the human can’t see the robot have a high cost. The

path planner use a cost function where the two criterions are merged with a weight.

Figure 12 Safety grid built around every human in the environment. This depends highly on the human’s posture. As the person
feels less “threatened” when standing, the value and the range of the costs are less important. (c) Decreasing costs attributed
to the zones hidden by obstacles. The supplementary costs discourage the robot getting too close to the obstacles and thus,
prevents the robot from appearing suddenly behind hidden places (Sisbot, Marin-Urias, Alami, & Simeon, 2007)

2.4 Route preferences
In (Park, Bell, Kaparias, & Bogenberger, 2007) they incorporate user preferences into route guidance. They

use a decision tree learning algorithm to choose the best route. From the user feedback they update the

route choice model as in Figure 13. For generating the decision three they use a function which is based

on travel time, travel time reliability, travel distance, the number of turns, directness, type of roads and

familiarity.

24

Figure 13 Learning process (Park, Bell, Kaparias, & Bogenberger, 2007)

In (Wang, Huber, Papudesi, & Cook, 2003, October) they use a reinforcement learning algorithm and a

semi-Markov decision process to learn the preference from the user from the user input. If a user gives

input for example how to bring an object. The systems learns the preferred way how the object must be

brought. Problems can be inconsistent commands.

2.5 User interface
To train a robot and to give preferences for a route, an interface is needed. An interface is used to

communicate between two systems like a human and a machine. An interface can be a keyboard,

smartphone which are used to give input to the system and to give feedback from the system.

2.5.1 Gestures

In (Guo & Sharlin, 2008, April) they explore the possibility of using gestures for HRI. They use the AIBO

robot in their research which is able to response to high level commands such as walking or turning and

low-level commands such as rotate a specific joint by a certain number of degrees. They designed two

interaction techniques for manipulating an AIBO, gesture input through a Wii mote and nunchuk

interfaces and another input technique uses a keypad. The Wii mote can be categorized as a generic 3D

tangible user interface due to its ability to capture physical input and to interact with digital entities. They

performed a user study with a navigation task and a posture task. The results point out that the Wii mote

outperforming the keypad interfaces in terms of task completion time in both tasks.

2.5.2 Sketch

When a human tries to explain a route to a specific place, a sketch is a simple way to visualize it. The

sketch contains landmarks like buildings and their relative positions. A route can be drawn between the

landmarks.

25

In (Shah & Campbell, A qualitative path planner for robot navigation using human-provided maps, 2013)

they do some research in path planning from a sketch. Waypoints are defined as points along the sketched

path which intersect with the Voronoi-Delanuay graph (Figure 14). The reason that they use VD is because

it mimics how humans navigate. This method selects locations along the path which can be described to

two ‘nearby’ landmarks. The key difference of this approach with other work is that the waypoint

extracted from the VD graph not need to correspond to a narrow opening or passage between two disjoint

spaces. A sketched map is typically not an exact representation of the observed environment. In order to

maintain appropriate spatial relationships within the environment, they use an optimization algorithm

which connects each waypoint to each landmark by a virtual linear spring with a spring constant. This

spring attempts to ‘hold’ the waypoint at the same relative position as indicated on the sketched map.

Each spring affect the degree to which landmark influences the location of an estimated waypoint. It is

calculated as a function of the Euclidean distance between the sketched waypoint and a sketched

landmark and the uncertainty in the location of the landmark.

Figure 14 Waypoints (*) are extracted at points along the path that intersect with lines in the Voronoi–Delaunay graph (Shah
& Campbell, A qualitative path planner for robot navigation using human-provided maps, 2013)

In (Shah, Schneider, & Campbell, A robust sketch interface for natural robot control, 2010, October) an

architecture for controlling robots using a sketch interface is proposed. They use the variable duration

hidden Markov model (VDHMM) for handwriting recognition (Figure 15). Every sketch is composed by a

set of gestures where every gesture is made up by strokes like a circle ore a square. For classifying the

gestures they use a classifier which needs to be trained with examples. A forward tree-search is used to

find the most likely sketch by searching for the sequence of strokes. The sketched are made on a pre-

drawn map.

26

Figure 15 Example of a two-gesture stroke modeled using a variable duration hidden Markov model, where white nodes
represent hidden (unobserved) variables, shaded nodes are observed variables, and arrows represent conditional
dependencies. In this example, the first gesture g1 has a duration of d1 = 3 strokes, and the second gesture g2 has a duration of
d2 = 2 strokes. Interstroke nodes i11 , i21 , and i12 represent self-transitions on the gestures, while node i1:2 represents a
transition from gesture g1 to gesture g2. (Shah, Schneider, & Campbell, A robust sketch interface for natural robot control,
2010, October)

The sketch interface from (Skubic, Anderson, Blisard, Perzanowski, & Schultz, 2007) provides the

possibility to manage multiple robots simultaneously. The user can sketch a map of the environment and

navigation gestures to direct the robots. The user can add landmarks by sketching a closed polygon

anywhere on the screen and provides an identifier for every landmark. The user needs also to sketch the

current position of the robot with its direction. Feedback from the robot sensors can be used to detect

the present environment, which allows a user to adjust the current placement of landmarks and robot by

dragging them. The go-to commands are computed for each robot by looking at the relative position of

the robot to the landmark closest to the goal point and the relative position of the goal point to the same

landmark. These two quantities are extracted from the sketch as vectors and sent to the robot to be

recomputed according to the relative positions of the robot and the landmark in the real environment.

The location of the robot on the sketch is continue updated. This approach worked well for a small and

simple environment.

In (Skubic, Blisard, Bailey, Adams, & Matsakis, 2004) and (Chronis & Skubic, 2004, April) they use a

sketched route map for direction mobile robots (see Figure 16). They model spatial relationships with

force diagrams (see Figure 17). The relative position of a two-dimensional object A to another object B is

represented by a function FAB. The result is a force histogram which can be used to build spatial

descriptions which provide a linguistic link to the user. This description can give an “opinion” about the

position of A relative to B like right, left, above, below.

27

Figure 16 Sketch 1 (a) A route map sketched on a PDA. (b) The corresponding digital representation (Skubic, Blisard, Bailey,
Adams, & Matsakis, 2004)

Figure 17 Force histograms. (a) the scalar resultant of forces (black arrows). Each one tends to move B in direction. (b) The
histogram of constant forces associated with (A,B), i.e., the position of A relative to B. (c) The histogram of gravitational forces
associated with (A,B) (Skubic, Blisard, Bailey, Adams, & Matsakis, 2004)

From the sketch, points are extracted with a string of (x,y) coordinates. A delimiter separates the string of

coordinates for each object in the environment. For each point along the sketched route, a view of the

environment is built. For each object within the radius, a polygon is constructed using the boundary

coordinates of the object as vertices. If any of the object points lies within the sensory radius, the entire

object boundary is used as the object model. Then the histograms of forces are computed.

Besides the spatial information, movement along the sketched paths is also extracted. Here they want to

track the orientation over time and compute significant changes. After this the landmarks states are

determined like object 1 is behind the path, the movement is straight ahead. A system of fuzzy rules is

used to extract the significant landmark states which are associated with the critical path node. The

landmark states associated with the critical path nodes are used directly to generate a high-level linguistic

description of the sketched route (see Figure 18). The description is generated as a sequence of path

segments, each expressed in the form: When <landmark state> then <turn command>.

28

Figure 18 Synoptic diagram showing how spatial information is extracted from the sketch (Skubic, Blisard, Bailey, Adams, &
Matsakis, 2004)

2.6 Route feedback
Sometimes a robot get lost due to obstacles or other problems and because of the low sensory

information and safety issues the robot stops. In cases like this a user has to decide what the robot needs

to do next.

In (Fong, Thorpe, & Baur, 2003) they developed a teleoperation system model called collaborative control

(Figure 19). The human functions as a limited resource for the robot, providing information and

processing. The robot asks questions to the human in order to obtain assistance with cognition and

perception. They designed a study to examine using collaborative control in the context of remote driving.

The goals of the study were to observe how different users react to robot dialogue, to understand how

work habits develop, and to evaluate system usability. The study revealed that dialogue, especially

questions generated by the robot, is valuable for teleoperation. In particular, dialogue significantly helped

beginners understand problems encountered by the robot. The study showed also that human assistance

is a limited resource that must be carefully managed.

Figure 19 The collaborative control system model (Fong, Thorpe, & Baur, 2003)

29

2.7 Conclusion
There are a lot of techniques available for teaching a route to the robot or to learn the robot the route.

The most techniques make use of a map which is currently not available on the robot. For the new robot

a map will be available which provide an opportunity to use those new techniques which make use of a

map. When a map is used, the routes can be learned by the robot or the routes can be made more

reliable. After the field research should be decided if the techniques with a map can be used for the

Discovery.

30

3 Field Research
During the research phase a prototype of the new version of the Lely Discovery was installed by a

technician in a test barn. The old version was installed by another technician and a farmer. To find an

answer on the research question, the technician and the farmer are observed while they programme the

routes on user-friendliness and problems they encounter. In the related work different techniques for

making and using a map are discussed. To decide if those techniques are useful, the layout of the barns

are also observed.

Several questions could be asked about the difficulties and problems the technicians and the farmer

encountered with programming the routes. Also could be observed how those barns are built to see how

difficult it would be to make a map of those two barns. Installing the prototype on a test barn took the

whole day an installing the Lely Discovery in a barn took several hours. In the following paragraph the

points learned during the research are listed.

3.1 Point learned during the field research
User-friendliness

- Little changes in the actions are time consuming, before an action can be changed, the robot

needs to be driven to the action to change it. The reason for this is that a change in one action

can affect the rest of the route. When the action is changed, the other actions or new actions

needs to be executed to drive the robot back to the charger. When this is done, the route needs

to be tested if it works correct now. This is done by starting the route and return to the robot

when the robot finished the route in the charger.

- If you want to copy actions to a new route from the charger to a specific point, you get a list of

actions from a route with only the name of the action. It is difficult to see which route actions

need to be copied, this because there is no visualization of the actions.

- The most difficult part for the farmer during the route programming with the service engineer

was to press the right button. It was difficult for him to understand the difference between the

buttons and their function. One reason for this problem is that the function for some buttons is

inconsistent between different menus.

Problems

- It is time consuming to drive the robot back to the charger when the robot got stuck somewhere.

- The opinion of the service engineer was that it was better to make the robot a few hundred euro

more expensive so that he could program al the routes. This because some farmers make for

example routes where the robot drives to close to the beginning of a wall with an ‘L’ corner, this

can cause the robot to drives against the wall (the bottom of the ‘L’) while the robot should follow

the left side of the ‘L’ from the bottom to the top. Problems like this can cause the robot to get a

lot of times stuck. When this is the case, the farmer need to bring the robot back to the charger

for almost every day or several times a day. This will decrease the satisfaction and the motivation

to go on with the robot.

31

- It was for the farmer difficult to know when he could start wall following with ultrasound. He also

forgot every time to choose the right value for the distance between the wall and the robot.

Map

- More information from the sensors during the programming could be useful. This to get more

insight in what the robot sees. The information from the sensors is already displayed during the

execution of the actions when the action are programmed.

- A map can be useful to see which areas are cleaned by the routes.

- All the corners in both barns where corners of 90 or 270 degrees.

- The test barn has one path of almost 100 meter and it took more than 5 minutes to walk from the

beginning to the end of the path with the robot.

Other points

- Time schedule could be more intelligent. If the robot is not enough charged while he need to drive

a route, the route will be skipped.

- It took more than ten minutes to make a time schedule while the technician only wanted to ride

one route every hour.

- Worldwide there are different Lely centers who sell the Lely products. Depending on the policy of

the Lely center, the tester or the farmer programs all the routes. In the case of Lely Center Venray

they install the charger and show how a route needs to be programmed, then the service engineer

helped the farmer to program one route. The rest of the routes needed to be programmed by the

farmer. The reason to choose for the option to let the farmer program the routes are the costs.

When the farmer programs the routes, the robot can be sold at a considerably lower cost (several

hundred euros).

3.2 Conclusion
From the field research can be concluded that the current route programming method works good for

the technician. The user-friendliness of the current method is not very high, but this is not a problem for

the technician because he needs to work with it every week. It took the users a lot of time to program

one route and it was for a new user difficult to learn to program a route. Changing one action is time

consuming, the user need to drive the robot to the specific action and then drive the robot back with

the programmed actions. The layout of the two barns was very simple and could easily be drawn on

paper.

32

4 Improving the current system or making a new system
The research question was “How can the user friendliness and effectiveness of the route teaching for the

Lely Discovery platform be improved?”. In Appendix E a lot of possible solutions are discussed. In the field

research is found that the main problem with the current route programming method is the time needed

to program a route and making route modifications. The interface for the current route programming

method is also not user-friendly, but technicians use the system every day so they learn to use it.

From the fact that the new version of the Lely Discovery will use a map and the layout of the most barns

is simple, a decision is made to develop a totally new programming method for the Lely Discovery. A map

offers possibilities to make a route without teaching the route. When users can generate a route with the

map on the computer, users can possibly save a lot of time.

With the current route programming method an action sequence is generated. The action sequence is the

input for the robot. The route programming method which will be developed should also generate an

action sequence with the same action types as the current route programming method.

Users should still decide how the robot drives his rounds and they should be able to make different

routes in the same barn. This to disturb the cows as less as possible (e.g. the farmer prefers the robot to

drive in one alley always in one direction).

In the next chapter a prototype is shown of a route drawer, the requirements and the scope of the route

drawer is shown. Then is explained how an action sequence can be generated from the input. A test

plan is made for the prototype and the results are evaluated.

33

5 Prototype route drawer
To program the routes with a drawing tool, a prototype should be build where users can build a map,

draw routes and generate route actions. In this section the interface design is showed and the

functionality of the system.

5.1 Interface route drawer
The Interface is designed in such a way that users can easily step between the modules. In Figure 20 you

can see on the top different tabs to step between the modules. This is done to separate all the information

between the steps and to get a clean system output on the screen (see the center of Figure 20). On the

bottom of the screen the buttons for the selected module are displayed.

Figure 20 Interface design

5.2 Functionality route drawer
The system is for the users separated into four modules. In this section the functionality for every module

is described.

5.2.1 Map Maker

The map maker is used to draw and modify the map of the barn. In Table 2 the functionality of the buttons

can be found and how users can interact with help of the mouse.

Table 2

Button / mouse interaction Functionality

Draw Wall When users click on the button draw wall, they can click in the map to
draw a new wall

34

Draw charger When users have clicked on the button draw charger, they can click in
the map to draw a new charger

Draw ruler When users click on the button draw ruler, they can click in the map to
draw a new ruler

Move points Users can click on a point which is already drawn on the map, and drag
it to another position. Users can also use the arrows on the keyboard to
move a selected point

Move charger Users can move a charger to a wall. The charger will connect to the
closest point on the wall next to it.

Delete Points Every point on the map can be deleted when selected by pressing the
delete button on the keyboard

Export Map The button export map will export the map to an xml-file where after
the user can save it to the hard disk.

Import Map Users can import a map from on xml file. When pressed on the import
map button, they can select the file.

Change field-size Users can change the height and width of the map in meters.

5.2.2 Specify Walls

With the specify walls module, users are able to define how the robot can use every wall. In Table 3 the

functionality of this module is shown.

Table 3

Button / mouse interaction Functionality

Bump on wall When the bump on wall option is enabled, users can click on every wall
to select or deselect if the wall is usable for bumping

Ultrasound on wall When the ultrasound on wall option is enabled, users can click on
every wall to select or deselect if the wall is usable for ultrasound

Wall follow When the wall follow option is enabled, users can click on every wall to
select or deselect if the wall is usable for wall following

5.2.3 Route Maker

With the route maker users can draw routes on the map. In Table 4 the functionality of this module is

listed.

Table 4

Button / mouse interaction Functionality

Add route When users have clicked on the button add route, they can click in the
map to draw a new route

Move point Users can move a selected route point by dragging

Route on/off Users can set a route on and off with a checkbox. When set off, the
route is not displayed on the screen, and not included in the action
export

Import map and routes Users can import a map and routes from xml

Export map and routes Users can export the map and the routes to xml

35

Export actions Users can export the generated actions to an xml which can be used by
the robot

The route maker supports users to draw route segments with a distance half of the width of the robot

from the wall, so that the robot can drive with the center of the robot to a waypoint (e.g. Figure 21). When

waypoints are drawn before a wall as the last waypoint in Figure 22, also with a distance of the width of

the robot, the robot should drive to the wall and if possible bump. The distance between the center point

and the front is larger than the half of the width of the robot. So when an obstacle is in front, the robot

cannot drive with the center of the robot to the waypoint. If this is the case, the robot will drive to the

wall and bump if possible. The waypoint is still placed with half of the width of the robot from the wall in

the front to simplify the drawing.

Figure 21 the robot should drive with the center point of the robot to every waypoint.

Figure 22 Path segment aligned with half the width of the robot from the wall

In order to overlap the routes for optimal cleaning, the route maker supports users to draw lines parallel

to another path segment with the width of the robot minus some margin (see Figure 23).

36

Figure 23 path segment aligned with the width of the robot minus a margin for overlap with another route path segment

The tool also helps users to align route segment by aligning the waypoints horizontal and vertical, which

is shown by a black reference line (see Figure 24).

Figure 24 waypoints are horizontal and vertical aligned

The route should start and end in a charger, in Figure 25 a reference line is shown that the waypoint starts

or ends in the charger. See Figure 26 for an example of a route which is drawn in the route maker.

Figure 25 waypoint drawn in the charger

37

Figure 26 example route where the route start and ends in the charger

5.2.4 Feedback system

In Table 5 the functionality for the feedback system is described. Users can interact with the generated

actions and change the actions. They can also see if the actions are calculated correclty by coloring the

route line. The route line is green if it is calculated succefully, orange if it could be optimized by changing

the route and red if it could not be calcualted (see Figure 27). Users can also play a visualization where

the robot excecutes the actions. This can help users to decide if the route could work in practice.

Table 5

Button / mouse interaction Functionality

Area cleaned When hovered over a box area cleaned, the area that gets cleaned by
the routes is displayed by a green color in the map

Action details Users can select a route line to display the action details of that route
segment

Change actions Users can click on the action details to change the values

38

Figure 27 feedback after calculating the route. The last parts or colored red, because the route line is drawn to close to the
wall and the corner

5.3 System data flow
In this section the data flow of the system is described on the basis of a data flow diagram which can be

found in Figure 28.

39

Figure 28 Data flow diagram

Web browser
The interface can be opened with the web browser. Users can interact with the system with help of the

web browser.

Map maker
With the map maker, users can make a map by generating and modifying objects.

Specify walls
Users can specify for every wall if it is usable for bumping, ultrasound, and wall following by the robot.

Route maker
With the route maker, users can make different routes. The route maker helps users to place route points

on logical places.

Feedback
The feedback module will give users feedback on all the created routes and the generated actions. Here

users can also modify the generated actions.

Calculation module
The calculation module exist of a lot of basic and complex mathematically formulas, for example to

calculate distances to objects from different position from the robot.

Generate robot knowledge

40

This module generates the knowledge for a specific location and robot orientation. Here all the knowledge

about for example the closest obstacles in specific directions is calculated with help of the calculation

module.

Generate actions
This module generate the actions for every route. This is done by first generating the robot knowledge on

the start location with the orientation of the robot. Then a decision is made for the best action, with help

of the cases and the robot knowledge.

Objects
The object database contains all the object generated with the map maker, like the walls, rulers, chargers.

Routes
The route database contains all the route points.

Actions
In the action database, all the generated and modified actions are stored.

XML reader/ writer
With the XML reader/ writer all the objects, routes and actions can be saved in an XML file or retrieved

from a XML file.

41

6 Requirements route drawer
In this section first some requirements of the Lely Discovery are specified. Then the requirements of the

map drawer, route drawer and the action sequence as output are specified.

6.1 Assumptions and requirements for the Lely Discovery
- The set of actions are presented in Figure 29 from which users can choose

- Each action has a set of parameters that users can configure before starting

- Users can transfer a map in xml format to the machine and vice versa

- Users should start and end every route at the charger when programming

- The machine shall drive a pre-programmed route accurately enough to come back to the charger

- Inaccuracies while driving, caused by slipping wheels for example, shall be compensated by using

the given map where possible. For example when the machine is driving parallel to cubicles and

it passes the end of the cubicles (which is also drawn in the map) it shall correct the longitudinal

position to the end of the cubicles

- Wall following is more reliable than a straightforward action and a parallel action

- A parallel action is more reliable than a straightforward action

- Wall turn is more reliable than a normal turn

- More bumping points in the route makes the route more reliable

Other relevant requirements for the Lely Discovery can be found in Appendix A

Figure 29 action types for the Lely Discovery

42

6.2 Map drawer
- There is functional support available so that users can draw a map with 1 cm accuracy

- There is functional support available to let users draw one or more walls

- There is functional support available to let users draw one or more chargers

- There is functional support available to let users draw one or more rulers, this to easily place

different objects on the correct distance of each other

- There is functional support available to let users draw the walls straight

- A grid should be available to help users to draw the walls straight

- The system should connect points of the same object which are drawn by users on the same

location. This to create from different walls that connect, one big object.

- A connected object, for example all the walls that overlap with the endpoints should easily be

moved to another location in the map

- A connected object can be copied and pasted

- The system should support users to place the charger easily on a wall

- The system should support users to easily define on which side the charger is placed on the wall

- The length of a wall should be displayed

- The system should support users to delete all types of objects

- The system should have functionality to export a map to an xml file which can be imported by the

robot

- The system should have functionality to import a map from an exported xml file

- Rulers are not included in the export

- The system should support users to zoom into the map and move through the map

- The grid size should change when zoomed in

- The system should have functionality to let users type the distance between the selected point

and the new point

- When a distance is typed, a new point should be placed into one of the four direction from the

selected point with the arrow keys

6.3 Route drawer
- The system should support users to draw one or more routes

- The route points should not merged to one point as in the map maker when drawn on the same

place

- Every line/ route segment should show the direction of the route

- Route lines are defined by the middle position of the robot

- Route lines should be easily placed along the walls with a distance between the line and the wall

of half the robot width

- Routes should start and end in the charger

- Route lines should be easily be placed along other route lines with the a distance between the

two line of 0.9 * width of the robot

- Route lines should not intersect with walls

- Every route should get a checkbox where the user can set a route on and off

- If the route is set off, then the route is not displayed in the map and not exported to the robot

43

6.4 Route feedback
- When the route starts and end in a charger, users should get feedback on the reliability of every

route segment

- Every route segment should get a color: green (reliable), orange (will work but it cannot be

guaranteed that it will be reliable) and red (will not work).

- When hovered over a route segment, the calculated actions are displayed in text and an overlay

over the map is shown with the route actions. The actions are in colors related to an action and

the position of the robot which is not directly the same as the route segment.

- The calculated actions can be changed, where after the new actions are calculated from that point

- When hovered over a box called area cleaned, the area that is cleaned by the calculated route

actions is colored green

- Time needed to drive the route is calculated and displayed

- Energy cost in percentage of the battery is calculated and displayed

6.5 Action output
- For every route an actions sequence should be created

- The action sequence exist of the same actions available to the robot

- The actions should include bump points on every place where possible

- The actions should follow the route segments in the same direction

- The most reliable actions possible on the route should be chosen

44

7 Scope route drawer
Before the algorithm can be designed and implemented, the scope for the Lely Discovery needs to be

clear. In this chapter the layout of the most barns and the design of the discovery is shown. At the end

the input for the algorithm is defined.

7.1 Barn layout
According to the farm management support department of Lely (FMS), the ideal barn should have the

minimal distances displayed in Table 6 between a specific object and the first obstacle. This to give the

cows enough space to pass other cows and to escape (see Figure 30).

Table 6 distances between object and the first obstacle

row of cubicle (resting box) 3 meter

feeding fence 4 meter

passageway + drinker 4 meter

milk robot 5 meter

Figure 30 minimal distances between objects for the ideal barn

In Figure 31 you can find an example of a 2 + 2 barn and in Figure 32 a 4 + 4 barn. In a 2 + 2 barn there are
two rows of cubicles in one part of the barn, and on the other site of the passageway there are again two
rows of cubicles.

45

Figure 31 2 + 2 with 2 rows of cubicles on one side of the feeding path and 2 rows of cubicles on the other side

Figure 32 4 + 4 barn with 4 rows of cubicles on one side of the feeding path and 4 rows of cubicles on the other side (one side
displayed)

According to FMS the majority of all the farms in the world are built with right angles between the walls

which is approximately more than 90%. They expect that less than 10% of all the farms in the world satisfy

the ideal farm described in Table 6. The sizes of the old barns are difficult to estimate, but there are barns

which are built in such a way that some paths are width enough for one cow, but the variation is huge. So

the minimal distance between the walls depends on the Lely Discovery. The Lely Discovery is 1.2 meter

46

width, so when a margin is included, the minimal width of a path needs to be 1.3 meter to let the Lely

Discovery drive on an accurate way every possible route. This minimal distance will be a requirement for

the program where users can still draw a path and where the algorithm should find an action sequence.

Almost every barn has some places where the robot can’t follow the wall or can’t bump on a wall. The

reason for this is for example that there is placed a drinking trough against the wall, the wall is too low for

wall following or the wall is not strong enough.

Overview barn layout:
- Most corners have right angles between the walls but there are always corners with other

angles

- There are other obstacles then walls like drinking troughs

- Some walls are usable for bumping and some walls not

- Some walls are usable for wall following and some walls not

- The minimal distance between the walls where the Lely Discovery can drive between is 1.3

meter

7.2 Lely Discovery design
The Lely Discovery is designed in such a way that when he is aligned with a wall, still can turn from the

wall without bumping on the wall when there is enough space on the other side. See Figure 33 how the

Lely Discovery turns to the left from the wall without getting stuck on the wall.

Figure 33 Lely Discovery turns from the wall without getting stuck on the wall

47

7.2.1 Control points

Figure 34 control points used for executing the actions

When a robot drives around in the world the robot can be represented by one single point. In this case it

is quite simple on paper to move the robot from location x to a goal point y. In the real world, this is not

so simple because the robot has a finite area in the plane and volume in three dimensions. For example,

when the robot is represented by a single point on the front-center and there is an obstacle in the front

left of the robot. With this representation, the obstacle is not seen by the robot, because in the front-

center of the robot is not an obstacle. When driving forward, the robot will get stuck with the left-front

on the obstacle. Evaluating the effect of a movement on every place on the robot is mathematically and

computational quite complex. An alternative approach is to select a subset of points on the robot, called

control points (H. Choset, 2005).

For executing the actions eight control points are defined for the Lely Discovery (see Figure 34). For almost

every action one control point is used. The left- and right-front control points are used for wall-following

and the front point is used when driving straight. When driving backwards the front points cannot be

used, because when the robot slips for example with the left-wheel, the back of the robot will move to

the right-side. This will cause the robot to turn around with 180 degrees and then moves forward instead

of backwards. For this reason one of the three control points on the back should be used in this case.

When making a turn to the left, the robot will use only the right wheel which will move the robot around

the left-wheel. For this reason both center-points of the wheels are also used as control points. In Table 7

the control points which are used for the position during the execution of an action are displayed. The

other control points are also used in the code of the robot but are not directly used for the end position.

For the algorithm of the route drawer, another subset of control points could be used to find obstacles.

Minimal the left-front, right-front, left-back and right-back point should be used for finding the obstacles.

To move to a waypoint, also the center point (point between the wheels) of the robot should be used.

48

The front-center and the back-center point are usable for calculating the position of the robot when an

obstacle is in the front or at the back. So for the algorithm to generate the action with the route drawer

will minimal use 7 control points in total.

Table 7 control points used for the position of the robot during the execution of an action

Action Control point

Forward Front

Turn left Right-front

Turn right Left-front

Backward Back

Wall follow left Left-front

Wall follow right Right-front

Wall turn left Right-front

Wall turn right Left-front

Parallel to wall left Left-front

Parallel to wall right Right-front

7.3 Input for algorithm
The input for the algorithm is the map and the waypoints of every route. In the subsection barn map and

route waypoints is shown how the input should look like and what the requirements are for the input.

7.3.1 Barn map

With the map drawer a set of walls and the position of the charger(s) is generated. Here is assumed that

the map is drawn correctly which can be done with 1 cm accuracy. Every wall is specified correctly, if it is

usable for wall-following, bumping or for ultrasound. The charger is placed on a wall with a minimal of 3

meter from one of the end points where the robot drives into the charger and minimal 1 meter from the

second end point to let the robot drive from the charger. Also no obstacles are placed around the charger.

This because the robot should be able to do wall-following until it finds the charger. If there is a small

obstacle somewhere in the field, users have placed a no-go-area so that the robot can avoid the obstacle

like a drinking trough.

Overview map input requirements:
- Drawn with 1 cm accuracy

- Charger is placed on a wall with a minimal distance of 3 meter from one end point of the wall

and minimal 1 meter from the second end point

- Obstacles are enclosed within a no-go-area

- Walls are specified if they are useable for bumping, wall following and ultrasound

7.3.2 Route waypoints

The route maker provides a set of waypoints which are drawn with a minimal distance of half the width

of the robot from every wall and the routes that start and end in a charger (see section Route Maker).

Besides the waypoints, also every point on the route line should have a minimal distance of half the width

of the robot from every wall. On this way the drawn routes automatically avoid obstacles, so that the

robot will not get stuck on an obstacle when moves forward along a route segment. If there are points on

49

the line that have a smaller distance than half the width of the robot from a wall, the route maker should

not draw the line and should provide feedback. Waypoints drawn with a larger distance from the wall are

also possible, but can result in a less accurate route. Waypoints which does not satisfy the described

conditions can result the robot not being able to move from one waypoint to another. The route maker

should show when a waypoint is placed incorrectly and violating the requirements. Although with those

requirements users have to spend more time defining the route, it will result in a more simple and stable

algorithm to generate a robust route.

Overview route input requirements:
- The route starts and ends in the charger

- Waypoints are draw with a minimal distance of half the width of the robot from every wall

- Every point on the line has a minimal distance of half the width of the robot from every wall

50

8 Algorithm design for generating an route action sequence
In the previous section is the input for the algorithm defined. In this section is shown what the output

should be. Then an algorithm is presented which is able to find a correct set of actions. A decision is made

that a case based system would be the best option, this because of the complex actions of the Lely

Discovery. Then the pseudocode and the possible cases are shown.

8.1 Output
As input a set of waypoints is given, which represents the route. Also the map, start position and

orientation of the robot is given.

The algorithm should generate an action sequence which ensures that the robot drive the drawn route in

an accurate en reliable way. The algorithm should find the right places to bump on the wall and find the

most reliable actions possible in every situation. For every action, the right parameters should be selected

and defined.

When a waypoint is placed on a place which cannot be reached by the robot on a reliable or accurate way,

the corresponding route line should be marked with an error specification. This error specification will be

translated to a color in the simulation. With the color for every part of the route, uses can see if the robot

can reach the waypoint with a reliable and accurate set of actions. If a part of the route line is not colored

green, users should change the route until every part of the route is colored green in the simulation.

With the algorithm the position and orientation of the robot can be calculated after every action in perfect

conditions. This can be used in the simulation to simulate the movements of the robot, which can help

users to decide if the generated action sequence is what they want and if it the route cleans what they

wanted to clean. If this is not the case, they can change the route on that location and so the input for the

algorithm. When the route is to their wishes they can export the action sequence to an xml-file which will

be the input for the robot.

8.2 Search algorithms
From the map and from the routes an action sequence should be generated, which moves the robot from

the first waypoint to the next waypoints and finally to the charger. For this a search algorithm should be

found which is able to find an action sequence that ensures the robot to drive the route robust and

accurate.

To move from every waypoint to another waypoint there can be made a choice between a discrete set of

possible type actions. In Figure 29 five action types are described which the robot use to drive around.

Every action can be defined by the direction, speed and distance or by the direction, speed, angle and

radius. The parameters distance, angle and radius are continuous so the set of actions is infinite. When

there is an infinite set of actions, there cannot be searched for every possible combination of actions to

move from one waypoint to the other waypoint. So an algorithm that search for example for a least-cost

path by checking every possible action sequence is not possible.

51

The continuous parameters could be transformed to a discrete set of values. The angle can for example

defined with a factor of 20 degrees which gives us 18 different actions. When every parameter is

transformed to a discrete set of values, there is a finite set of actions.

Before the transformation there was an infinite set of actions but only 5 type actions. After the

transformation there will be a large set of actions. A large set of actions will make it hard to calculate

every possible path from the first waypoint to the last waypoint.

8.3 Case based algorithms
The algorithm doesn’t have live input from the robot so the actions need to be simulated. In a simulator

the movements of the robot can be simulated in ideal conditions. When the map and the position of the

robot is known, the position of the robot can be calculated after executing an action.

With the map and the exact position of the robot, a knowledge base can be built about the position of the

robot in the environment. For a set of points on the robot can be calculated what the distance is between

that point and the next obstacle and what the angle of incidences is for that point on the obstacle. Also

the distance and the angle to the next waypoint can be calculated. This information can be used to

calculate which actions are possible and what the position of the robot will be after a specific action in

the simulation. With the exact location of the robot, the position history of the robot is not necessary to

find the most reliable action.

From the users a route is required as input which is simple to follow and already avoids obstacles. To get

from one waypoint to another waypoint in ideal conditions, the robot needs to do one turn action and

then one or more move actions to drive to the next waypoint. To find a correct action sequence in ideal

conditions, only the relevant turn or movement action needs to be found on every position. So it is not

needed to search for all the possible action sequences.

To find the relevant turn and movement actions, a set of rules can be used. In practice with the old route

programming method, users find a path solution by explaining the problem with expressions as ‘in such

and such situation, I do this action first and then that action’. These expressions can be represented in if-

then production rules (Negnevitsky, 2005). A system that uses production rules is also called a rule-based

system.

A rule-based system is based on the idea that humans solve problems by applying their knowledge to a

given problem representation with problem-specific information (Negnevitsky, 2005). In this situation

every problem could be matched with a known case which describes a general situation, so a sort of case

based system can be build which is a subset of a rule-based system. A case-based reasoning (CBR) system

solves new problems by retrieving relevant cases and adapting them to fit new situations (Leake, 1994).

For this a set of cases needs to be found which overlap with every possible situation. Then the algorithm

can iterate over the cases, until it finds the case which is relevant to a specific situation, and return the

corresponding action.

In Figure 35 the basic structure is shown of a rule-based system. In the long-term memory all the rules or

cases are stored and in the short-term memory the problem-specific information and the facts are stored.

52

With the information in the short-term memory, the system can find the relevant case from the long-term

memory with the corresponding action to execute. When is known which action can be executed, the

continuous parameters of the action can be calculated like the distance or the angle. This can be calculate

with the rules specified for that case in the long-term memory and with the variables in the short-term

memory like the distance to a wall in front.

Figure 35 basic structure of a rule-based reasoning system (Negnevitsky, 2005)

For a complex case specific rules can be defined with certain thresholds. When for example the angle

between the front of the robot and the wall in front is between 80 and 100 degrees and if the wall is

usable for bumping, the robot can move forward until the robot bumps onto the wall. With this simple

case a lot of different situations are covered, where a wall is in front with an angle between 80 and 100

degrees.

The advantage of a case based system is that with a finite set of cases all known complex situations are

covered, which are solvable with a standard solution. Every case can cover a large set of situations where

the situations are bounded by the thresholds of the rules.

The algorithm has as input a route which is simple to follow and already avoids obstacles. In ideal

conditions the robot only need to turn to the next waypoint and then move in the direction of the next

waypoint. So in the simulation the problem can be solved by selecting the most reliable action that is

possible. The possible actions of the robot are a combination of the type actions and the discrete

parameters, direction and stop-condition. For example there are 4 possible actions for the type action

wall-follow, wall-follow left or right and as stop condition distance or wall-bump. From this it follows that

there can be maximal 18 possible actions and from the fact that there are no obstacles in ideal condition,

there are 18 cases when the robot only drives in ideal conditions.

53

In the barn the conditions are not ideal. The actions needs to be corrected or actions needs to be added

to avoid obstacles next to the route, see for more information the section Action sequence evaluation.

For every combination of actions the algorithm need to look if it can go wrong when there are obstacles

next to the route. This cannot follow from the analysis because situation can be very specific, so those

cases needs to be found by testing.

The disadvantage of a case based expert system is that it is possible that not every case is covered. Only

the cases which follows from the possible actions are known and the cases which are found with testing.

In the scope is found that more than 90% of the barns has right angles between the walls. When there are

only right angles between the walls, then the barn is not a very difficult environment for the robot. So for

90% of the barns the total sum of possible complex cases will be small and can be found by testing in a

test barn. For other barns the total sum of cases can be much larger, but every case can be added

afterwards by an expert when there is a high change that the case can be found in more barns.

8.4 Pseudocode
With the algorithm the movements of the robot are simulated. Every movement is done by a specific

action. A route is defined by a set of waypoints which will be translated to a set of actions which will be

simulated in the simulation.

To generate an action sequence for a route, where the robot moves from the first waypoint to all other

waypoints, the algorithm needs to iterate over all the waypoints. For every waypoint the robot begins

with a position and an orientation and the goal point which is the current waypoint. With the map and

the position and orientation of the robot the position knowledge can be calculated, which contains

information of the environment, like the distance to the first wall from the front of the robot.

With the position knowledge can be searched for the best case which fits the situation by iterating over

all the known cases in the long-term memory, until a relevant case is found that satisfies all the conditions.

Then the action from the case can be added to the action sequence. While the robot is not at the goal

point, the position knowledge is again generated for the new position and an iteration is done over the

cases to find the next action.

In the simulation are no uncertainties, so in the simulation only the most accurate action sequence in the

best conditions is calculated. In practice the robot can encounter some problems when the conditions are

worse. After an action sequence is made, the action sequence is evaluated and updated. This to make the

action sequence robust so that the route also works in practice. In the section Action sequence evaluation

this is explain in more detail.

In Figure 36 the pseudocode for generating the action sequence for a route can be found.

54

generateRoute(waypoints, startPositionRobot, startOrientationRobot, map){
var routeactions = array()
var position = startPositionRobot
var orientation = startOrientationRobot
foreach waypoints(waypoint){
 While ! at waypoint {

 var action = generateAction(position, orientation, waypoint)
 routeActions add action

 }
}
evaluateActions(routeActions)
checkRoute(routeActions)

}
generateAction(position, orientation, goalPoint){
 var positionKnowledge = buildPositionKnowledge(position, orientation, goalPoint)

case if (conditions) then { update position and orientation and return action}
….
return error no case found

}
evaluateActions(actionSequence){
 evaluateCase1(actionSequence)
 evaluateCase2(actionSequence)
 ….
 evaluateCase10(actionSequence)
 …
}
evaluateCaseX(actionSequence){
 for(i = 1; i + 1 < actionSequence.length; i++){
 if actions [i] is wall following{
 if actions [i – 1] instance of … && …{
 change distance of action … && change distance of action …

 }
 }
}

}
checkRoute(routeActions){
 if last action does not end in charger, add path error
 if route does not start in the charger, add path error
 …
}
Figure 36 pseudocode for generating the route actions

8.5 Route cases
It is important that the system can find the correct action in every situation where the Lely Discovery can

drive. In this section all the cases which can be matched with every situation in ideal conditions are listed.

55

In the scope is the barn layout defined, where is found that more than 90% of the barns have right angels

between the walls. Also is defined how route points should be placed and that the route lines already

should avoid obstacles. With this information the possible set of cases can be limited to the movement

possibilities of the robot in ideal conditions. 18 possible movement types can be defined which are

displayed in Table 8. From the test done in the workshop is concluded that only the first 16 cases are

needed, so only the first 16 cases are used in the algorithm.

Table 8 cases for simple situations

Situation Case

1

Goal:
Change direction of the front of the robot to the next waypoint
Environment:
Direction is to the left and no obstacle on the left side to turn
Action:
Turn Left

2

Goal:
Change direction of the front of the robot to the next waypoint
Environment:
Direction is to the right and no obstacle on the right side to turn
Action:
Turn Right

3

Goal:
Move forward to the next waypoint and bump on the wall
Environment:
If in the correct direction and there is a wall at the end which can
be used to bump on
Action:
Straight forward until bump

4

Goal:
Move forward to the next waypoint with the center of the robot
Environment:
If in the correct direction and there is no wall at the end which can
be used to bump on
Action:
Straight forward with distance

5

Goal:
Move backwards to the next waypoint and bump on the wall
Environment:
If obstacle on the left, right and front and if there is a wall at the
end which can be used to bump on
Action: Straight backward until bump

56

6

Goal:
Move backwards to the next waypoint with the center of the
robot
Environment:
If obstacle on the left, right and front
Action:
Straight backward with distance

7

Goal:
Follow the wall on the left to the next waypoint and bump on the
wall in the front
Environment:
If in the correct direction, wall on the left within 1cm which can be
followed and if there is a wall at the end which can be used to
bump on
Action:
Wall follow left until bump

8

Goal:
Follow the wall on the right to the next waypoint and bump on
the wall in the front
Environment:
If in the correct direction, wall on the right within 1cm which can
be followed and if there is a wall at the end which can be used to
bump on
Action:
Wall follow right until bump

9

Goal:
Follow the wall to the end of the wall
Environment:
If in the correct direction, wall on the right within 1cm which can
be followed
Action:
Wall follow left with distance

10

Goal:
Follow the wall on the right to the next waypoint with the center
of the robot
Environment:
If in the correct direction, wall on the right within 1cm which can
be followed
Action:
Wall follow right with distance

11

Goal:
Change direction to the left with help of the wall in front
Environment:
If direction is left and wall within 1 cm in the front which can be
used to bump on
Action:
Wall turn left with distance

57

12

Goal:
Change direction to the right with help of the wall in front
Environment:
If direction is left and wall within 1 cm in the front which can be
used to bump on
Action:
Wall turn right with distance

13

Goal:
Follow the wall on the left parallel until at the next waypoint or
the end of the wall
Environment:
If in the correct direction, wall on the left which can be followed
with 1 – 3 m distance between the robot and the wall
Action:
Parallel to wall left with distance

14

Goal:
Follow the wall on the right parallel until at the next waypoint or
the end of the wall
Environment:
If in the correct direction, wall on the right which can be followed
with 1 – 3 m distance between the robot and the wall
Action:
Parallel to wall right with distance

15

Goal:
Follow the wall on the left parallel until the robot bumps on the
wall in the front
Environment:
If in the correct direction, wall on the left which can be followed
with 1 – 3 m distance between the robot and the wall and wall in
the front which can be used to bump on
Action:
Parallel to wall left until bump

16

Goal:
Follow the wall on the right parallel until the robot bumps on the
wall in the front
Environment:
If in the correct direction, wall on the right which can be followed
with 1 – 3 m distance between the robot and the wall and wall in
the front which can be used to bump on
Action:
Parallel to wall right until bump

17 - Action:
Backward turn left

18 - Action:
Backward turn right

58

8.6 Action sequence evaluation
When an action sequence is generated with the algorithm, which follows the waypoints in an accurate

way, the set of actions should be correct to finish the route in perfect conditions. When the conditions

are worse the robot will end on some other place then in the simulation after a movement. For example,

when the robot has some slip, the robot can stop too early which result in another end position than in

the simulation.

The drawn routes already avoid obstacles, but can be drawn next to an obstacle. So when the actions are

evaluate, the algorithm mainly needs to look to obstacles next to the route like corners of obstacles.

Corners can be avoided by adding margins to a route action, so that the distance between the robot and

the obstacle will be larger. Some corners can only be avoided by first turning away from the obstacle,

move forward and then turning back, see case 3 from Table 9.

Figure 37 (a) generated action sequence which needs to be evaluated, (b + c) route goes wrong in practice (d) desired action
sequence

In Figure 37 a, the movements of the robot in ideal conditions is shown of an example route where the

robot moves in the simulation from the first waypoint to the second waypoint with a wall-following action.

59

Then the robot makes a turn left to the next waypoint. The robot drives forward until it finds a wall on the

right. Then the robot can follow the wall on the right.

For the simulation the set of actions is correct, but in practice the robot will get stuck on the wall most of

the time. If the robot ends after the second waypoint and then turn and drive forward, the robot will get

stuck on the corner of a wall as in Figure 37 b. To avoid the corner a margin can be subtracted from the

first wall-following action so that the robot never get stuck on the wall. With the drive forward action, the

robot can end too early. This will give some problem to the next wall-following action, which will drive

forward and drive to the left until it finds the wall as in Figure 37 c, but this time the robot will get stuck

again on the wall. The desired action sequence which is generated after the action evaluation is shown in

Figure 37 d, where the robot stops wall-following earlier and drive with a larger distance forward so that

the robot will find the wall on the right when the robot wants to do wall-following again.

For a barn with right angles between the walls, the set of complex cases will be small. This because only

one type of corner needs to be avoided. In Table 9 all the complex situations are described which are

found for barns with right angles between the walls which covers approximately more than 90% of the

barns. For more complex barns with different type of corners, it will be harder to find all complex cases,

those barns are out of the scope for this project. Every type of corner can be avoided if there is enough

room for the robot to move around, so it should be possible to find all the cases for other type of corners.

In Figure 36 the pseudo-code can be found for evaluating the action sequence. For every case which is

described in Table 9, an iteration should be done over all the actions to determine if the case applies on

a specific part of the action sequence. If a part of the action sequence is found which satisfies the

conditions of the case, some parameters should be changed like the distance of an action or a turn action

should be added before and after the action depending on the case. From the cases described in Table 9

can be found if some actions need to be changed to increase the robustness of some part of the route.

Table 9 cases for complex situations

Situation Case #

If one of the next actions is wall follow,
drive less forward so that the robot can
follow the next wall

1

If next action is wall follow, drive further
forward so that the robot can follow the
next wall when the robot has a lot of slip

2

60

If there is an obstacle next to the route
add a small turn action with some distance
to the other side so that the robot can
safely drive around the obstacle

3

If there is an obstacle on the side and the
robot needs to turn to that side, drive
further forward

4

When the next action is turn, drive further
backward so that the robot doesn’t get
stuck on the wall when the robot did not
drive enough backwards

5

If the action end at the end of the wall,
drive less forward, so that the robot does
not try to do wall-follow after the end of
the wall when the robot drives to far

6

61

If one of the next actions is wall follow,
drive further forward so that the robot can
follow the next wall

7

If there is an obstacle next to the route
decrease the distance between the robot
and the wall to avoid the obstacle

8

If the robot needs to turn but there is an
obstacle in front, the robot first needs to
drive backwards and then make the turn

9

When making a turn and there is an
obstacle on the other side of the robot.
Add a radius to the turn, to prevent
scrapping with the back of the robot the
wall

10

62

8.7 Conclusion
In this chapter is described that the actions of the Lely Discovery has an infinite set of possible actions.

When the continuous parameters are transformed to discrete values, a large set of actions is retrieved

which makes it hard to calculate every possible path.

In 8.3 is looked at a case-based reasoning (CBR) algorithm which fits a new situation with known cases to

find the relevant action. The advantage of a CBR is that it can handle complex situations and that it make

use of a finite set of cases. The variation of the situations which fits those cases will be very large.

The disadvantage of a CBR is that it is possible that not every case is covered. With testing the most

cases will be found but some cases can be missed. The possible set of cases in ideal conditions is limited

and follows directly from the possible action types. The set of complex cases where corners need to be

avoided is not limited, but for 90% of the barns only one type of corner need to be taken into account.

When there is one corner type, the set of complex cases is also limited and can be found by testing.

There is decided that a CBR would be the best solution. This algorithm is implemented and the test plan

and results can be found in the next chapters.

63

9 Test plan
The research is about how the user-friendliness and effectiveness of the route teaching for the Lely

Discovery platform can be improved. A complete new route programming method is designed and

implemented. To compare the current system and the route drawing system on user-friendliness and

effectiveness a user study is done and the routes of the users are tested on the robot. First the results of

the pilot are shown. Then is described how the user study is performed. At the end is shown how the

routes of the users are tested on the robot.

9.1 Pilot
With the pilot is checked if the generated action sequence works in the workshop and if more cases should

be implemented. Also is checked if users where able to draw a route with the tool and if the tool missed

some features.

During the pilot 5 route are tested on the robot which can be found in Appendix C. The first four tests

ended successfully in the charger. The last test ended after the charger because the route line of the

drawing did not directly follow the wall. This caused that the algorithm added two wall following actions

where the second wall following action was only 1 cm and ended in the charger. When those two

actions are combined to one action, then the robot will be able to end in the charger. During some parts

of the route when the robot turned away from the wall, the back of the robot scraped against the wall.

This could be solved by adding two new cases, case 9 and 10 in Table 9. Also a bug in the code was

solved which caused that the robot made a turn of 540 instead of 180 degrees. The robot was able to

drive the routes very accurately and did not get stuck on some obstacles. With those 5 tests the author

gained a lot of trust in the system and that it would work in practice.

Three users tried to draw a route with the tool. After some explanation and some trials, they were able

to draw their own route. The route of the last test in the workshop (see Appendix C) was also drawn by

one of the users. The visualization of the movements of the robot in the feedback module and the

actions where difficult to understand for users. Without this visualizations and details about the actions,

users where able to make a good route. When the user is able to visualize the movements and is able to

understand the actions, the route will be more robust and will contain less problems. To help the user a

little bit, route errors are added with some explanation about the error in the tool. Those errors are

generated by a route checker which evaluate every route part. This method can only indicate known

problems, but for the prototype this is a good alternative for users when they cannot visualize the

movements automatically and when they don’t get detailed information about the actions. With some

instructions before the user test, users should be able to understand how the tool works.

9.2 User Study
In the user study, users should draw a route on paper and then draw the route in the tool. Users will get

4 maps with different configurations of the workshop where different parts of the workshop are selected

and different obstacles are added. The last map is a map which is used for a test barn. Drawing the map

is not part of the test, a correct drawing of the map is given.

64

9.2.1 Participants

To compare the results of the route drawing tool with the current route programming method, minimal

10 people will be recruited which already have some experience with the current route programming

method. Also 10 students will be recruited which have no experience with the current route programming

method. So there will be 20 users for the user study.

9.2.2 General objective

The current route programming method and the route drawing tool should be analyzed on user-

friendliness and time needed to program the routes. The routes users wants to draw should be compared

with the routes users actually draw in the tool.

9.2.3 Task

The participants should draw one route which covers the whole ground of the barn. First they should draw

the route on paper and then draw the same route in the tool. They get 5 maps with 4 configurations of

the workshop where different obstacles are added and 1 map of a test barn. After they have drawn a

route, users are asked to generate the action sequence and check in the feedback tab if the generated

action sequence will work in practice.

9.2.4 Preparation

Before the test starts, instructions for the users about the tool and the test should be prepared. The

following instructions and preparations needs to be done:

1) Minimally three days before the test, every user gets an explanation of how the tool works.

2) 5 maps with different configurations of the workshop will be drawn in the tool and exported to

a xml-file.

3) The instruction document is printed including the maps on paper.

4) Users are instructed that they should draw one route that covers the whole ground on the given

map by the robot.

5) Users are instructed that they should draw the same route in the tool as on paper.

6) Users are explained that after the second drawing on paper, they can get again an explanation

on how they should draw the routes.

7) Users are instructed that every route should follow the walls, drawn parallel to walls and use

walls in front for bumping as much as possible.

9.2.5 Procedure

When the preparations are done and users are instructed three days before, the test can be started.

Only one user can do the test at the same time. The procedure of the test will be the following:

1) The user gets the instruction document including a print of all the maps (same order for every

user, from simple to difficult), a pencil, ruler and eraser from the experimenter.

2) The user answer the questions in the instruction document about their background. If they have

experience with the current route programming method, they answer the questions about the

current route programming method for the Lely Discovery

3) The user draws a route on paper.

65

4) The experimenter imports the map in the tool while the user draws the route on paper.

5) If this is the second drawing, the users receives explanation how the tool works again.

6) The user is asked to draw the route in the tool.

7) The experimenter start a timer.

8) When the user indicates that the generated action sequence should work, is green in the feedback

tab on every part of the route and the route covers the whole ground of the barn, the

experimenter stops the timer and writes down the time.

9) The user export the route to an xml-file.

10) The user can give some comments about the route in the instruction document.

11) Step 3 – 10 is repeated for all the maps.

12) The user answers the questions in the instruction document about the route drawing tool.

9.2.6 Instructions and questions

Before the test the instruction document is given to the users. In the instruction document the

procedure and questions are described (See Appendix C for the instruction document).

In the instruction document first some questions are asked about their background, so that can be

measured whether specific skills affect the results. If this is the case, it is possible that only certain groups

of users can use the tool. The rest of the document consists of two parts where the first part is about the

current route programming method and the second part about the route drawing tool. This is done to

separate the questions of both methods. Some people don’t have experience with the current route

programming method and they can’t use the current system, they can skip the first part. The questions

about the current route programming method is in the first part so that users are not influenced by the

user test of the route drawing tool, on the moment that they answers the questions about the current

route programming method.

To compare the usability of the current route programming system with the route drawing tool, a standard

computer system usability questionnaire (Lewis, 1995) for both systems is included.

For the route drawing tool the usability of every module can be measured. The current tool consist of two

modules for the users, a route drawing module and a feedback module. To measure the usability of those

two modules, a Component-Based Usability Questionnaire (CBUQ) is used to measure the perceived

usability of a specific part of an interactive system (Brinkman, Haakma, & Bouwhuis, 2009).

The user study cannot be done with a lot of people, so the results will not be very significant. For this

reason some open questions are included for both parts.

9.3 Routes from users on robot

9.3.1 General objective

When the users have drawn the routes with the drawing test, the routes can be evaluated whether the

Lely Discovery drives the route as drawn and whether the Lely Discovery can finish the route without

problems.

66

9.3.2 Task

With the user test, 20 users have created a route for 4 different configurations of the workshop. This

delivers us 80 routes which can be used to generate an action sequence and which can be exported to

the Lely Discovery. The Lely Discovery can drive the route by executing the action sequence. When the

Lely Discovery executes the action sequence, it can be checked whether the Lely Discovery is able to

finish the route, drive the route without problems and drives the route accurately.

9.3.3 Preparation

Before the routes are tested on the robot, the routes should not contain any green or orange parts in

the tool. During the user test, the simulation of the robot movements and the visualization of the

actions was turned off, this because the simulation for now is too simple and the visualization of the

actions are too difficult for users to understand. The experimenter will simulate the route in the tool and

locate possible problems before the route is exported to the robot. For every route the following

preparations should be done:

1) Check if the route is displayed green or orange, when a part is displayed red, simulate the route

in the tool and try to fix the problem and write it down.

2) When the route is displayed green or orange in the tool, simulate the route in the tool and

check for possible problems. Write down the possible problem and the position of the problem

in the route.

3) Print the map and the route on paper for every route which is displayed green and orange in the

tool, the print should be used to draw the driven route of the robot in the workplace.

9.3.4 Procedure

To test the routes on the robot, the action sequence needs to be exported from the tool to the robot.

Then the actions can be executed on the robot and checked how the Lely Discovery drive the route,

whether the Lely Discovery encounter problems during the route and whether the Lely Discovery is able

to finish the route. The procedure is the following:

1) Run the route on the robot by exporting the actions from the tool to the robot.

2) While the robot drives the route, write down the driven route on the printed map by drawing a

route line of the position of the front of the robot during the test.

3) Write down on the same paper where the robot must correct for problems during the route by

drawing a circle on the map.

4) Check whether the robot is able to finish the route in the charger and write it down.

5) Save the data from the robot which can be played in a simulation and shows the estimate of the

position of the robot during the route.

6) Repeat step 1 – 5 for all routes which are displayed green and orange in the tool.

67

10 Evaluation
In this chapter the results are shown of the user test and the results of the test on the robot. First some

information about the background of the participants is given. Then the results of the system usability

questionnaire, open questions and the Component-Based usability questionnaire are presented. After this

the results are shown of the routes in practice which are drawn by the users. At the end the results of the

user study and the results of the routes are combined and an overview of the interaction between

education and other factors which have effect on the result are given.

10.1 Background information participants
The user test is done by 20 participants where 13 participants have experience with the current route

programming system. See Table 10 for the information about the participants.

Table 10 Background information participants

User Job Title Education
Experience
current system

1 Student VWO No

2 Tester HBO Yes

3 Student BSC No

4 Test coordinator MSC Yes

5 Embedded software engineer HBO Yes

6 - HBO Yes

7 Software developer MSC No

8 Service support HBO Yes

9 Embedded software engineer MSC Yes

10 Test/service technician MBO Yes

11 Product specialist (TSS) - Yes

12 Software engineer PHD No

13 Manager product development HBO Yes

14 Student VWO No

15 Student VWO No

16 Principle engineer HBO Yes

17 Student VWO No

18 Embedded software engineer MSC Yes

19 Test service engineer MBO Yes

20 Technical service support - Yes

10.2 Route results
In the user study, 20 users drew a route for 4 different configurations of the workplace. 79 routes where

drawn by users which have been tested on the robot. One user had no time for the fourth route. First the

changes on the routes made by the author are shown. Then the results and the problems which the robot

encountered during the routes are represented.

68

10.2.1 Route changes

Before the routes where tested on the robot, some routes of the users where changed. The changes are

categorized into two types, simple and complex changes. Simple changes are changes which could be

automatically corrected by the tool and complex changes are changes to avoid bugs in the robot software

or in the tool, or changes which should be found by the checker in a next version of the tool and should

result in a red line.

Table 11 user route changes

Map Routes Routes
without
changes

Routes with
simple
changes

Total Simple
changes

Routes with
complex
changes or
not possible

Total
Complex
changes

1 20 11 9 11 0 0

2 20 14 6 8 1 1

3 20 2 6 7 18 26

4 19 7 2 2 11 8

Total 79 34 23 28 30 35

For the routes in the first two maps, mostly the start and end point are corrected. It was for the users not

clear how they should end and start in the charger. Map 3 and 4 contained a very complex corner. The

checker in the tool was not advanced enough to see the problems in this corner, so the most routes in

this corner needed to be corrected. See Figure 38 for an example of a route in the complex corner. In the

simulation the robot drives into the gap, and then needs to turn to the left. In the simulation the robot

turns 270 degrees to the right where the robot will bounce on the corner right of the robot in practice. In

practice it was also not possible for the robot to drive into the gap from the top in a reliable way. See

Table 31 in Appendix D for all the changes in the routes.

Figure 38 complex corner in the workshop

10.2.2 Results

From the 79 routes drawn by the users, 68 routes were usable for testing on the robot. Some of the other

11 routes are tested but the author concluded that it was not possible for the robot to drive into the gap

69

from the top as in Figure 38. From the 68 tested routes the robot was 64 times able to finish into the

charger, 94% of the tested routes and 81% of all drawn routes. See Table 12 for the results.

Table 12

Map Routes Finished
in charger

Finished
without
problems

Finished
with small
problems

Finished
but missed
part due to
problems

Did not
finish

Not
possible

Bug in
robot
software

1 20 19 / 20 15 3 1 1 0 0

2 20 19 / 20 10 9 0 1 0 0

3 20 13 / 13 4 8 1 0 7 0

4 19 13 / 15 6 7 0 1 4 1

Total 79 64 35 27 2 3 11 1

10.2.3 Route problems

The robot encountered some problems during the routes. In 51% of the tested routes, the robot finished

in the charger without problems. In 91% of the tested routes, the robot finished in the charger without

missing a part of the route. During the routes on map 2 and 4, the most occurring problem was going in

and out of the middle of the cubicle. There was almost no margin on the left and right side of the robot

so with a small error, the robot already bounced on the corner of the opening. In the routes on map 3,

the biggest problem was the corner of the top left large cubicle (the complex corner of Figure 38) and

the corner of the drinking trough as obstacle. See Table 30 for all the problems which the robot

encountered.

In three cases the robot could not finish the route and in one case the robot could not finish the route

due to bug in robot software. See Figure 39 for the route where the robot crashed in map 1. As you can

see in the simulation right, the robot drives a little bit too far (action of 8 cm) which cause the front right

of the robot to move into the wall. In practice this was not a problem because the robot needed to drive

70

20 cm backwards to make a turn more reliable for the robot, the routes are not corrected afterwards for

driving 20 cm backwards before every turn when close to a wall. So the problem in the simulation was not

the problem in the test on the robot in practice. In practice the robot software wanted to drive further

forward while the robot already bounced on the wall. To drive more forward the software tried to correct

and used avoid algorithms which caused that the robot got lost.

Figure 39 Route 13 in map 1 where the robot crashed, right the simulation where the robot should end after the move forward
action for 8 cm

In map 2 and in map 4 the robot crashed one time on the wall of the large cubicle when going inside of

the middle of the cubicle. Mostly the users first followed the wall and then turned into the cubicle which

is more reliable. In route 11 of map 2 the robot had an error of 0.5 meter which the robot could not correct

before going into the cubicle. See Figure 40 and Figure 41 of the routes where the robot was not able to

get inside the cubicle.

Figure 40 Route 11 in map 2 where the robot did not get inside the cubicle

71

Figure 41 Route 2 in map 4 where the robot did not get inside the cubicle

10.2.4 Conclusion

Before the routes of the users where tested on the robot, a lot of changes needed to be made on the

routes. The most changes, the simple changes, can be solved by improving the tool by automatically

correcting the routes. When the simple changes automatically can be solved with the tool, still 38% of the

routes needs to be corrected, the complex changes.

Some of the complex changes are done to avoid bugs in the algorithm or in the robot software. The most

complex changes are to avoid problems in a very difficult corner (see Figure 38). This problem need to be

solved to make the tool useful. A solution can be to improve the feedback checker in the tool, this can

help users to find in an early stage problems and display a red line in this corner. Another solution is to

deliver users a better insight in how the robot drives the route and help them to see how reliable a move

is. This can be done by automatically simulate the robot movements in the tool or by making a reliability

calculation for every route part and display the results in the tool.

During the test on the robot, the robot encountered in 49% of the routes some problems. The maps

contained 2 parts, in and out of the center and the difficult corner on the top left, which can’t be driven

by the robot on a reliable way. The instruction for the users was to clean every part of the barn so they

did not avoid those difficult parts. Those parts are the cause of 56% of the total problems, which will also

be a problem for the current route programming method. The most other problems shouldn’t be there

and are mostly the result of a strange or wrong drawing of the users. One of those strange drawings also

resulted in a crash of the robot. This can be solved by training the users and by automatically align route

parts with walls and check if users draw in the red area.

The results are not convincing but provides a reasonable result to work on a second prototype. With the

second prototype the tool should automatically correct the simple changes and a solution should be

implemented to avoid the complex changes. To see if the route problems can be reduced, the second

prototype should automatically align the route parts with the walls and show users that they drew in the

red area. Also a better training should be given to reduce the problems or by making a help function and

instructions in the tool.

10.3 Route draw and drive time
During the user study the time the users needed to draw the routes in the tool was measured. Also the

time which the robot needed to drive the route was measured during the test on the robot. In Table 13

72

the result can be found. From the results can be seen that the factor drive time/ draw time increases for

almost every map. This can be explained by the learning curve of the users and the overlap of the maps.

When users draw a route on a place where they already have drawn a route, they already know how they

need to draw the route on that place.

Table 13 Average draw and drive time

 Map 1 Map 2 Map 3 Map 4 Map5 Sum avg
map 1-4

Avg drawing
time

300 358

430

373

620

1462

Avg drive time 616

839

1001

1189

- 3646

Drive time /
draw time

2,05 2,34 2,33 3,19 2,49

It can be assumed that making a route with the current system cost minimal the drive time of the robot.

From the results can then be concluded that making a new route with the drawing system takes 2-3 times

less than the current system. The time to draw a route with the route drawing system can be optimized.

This can be done by adding functionality to copy route parts, optimize drawing functionality and automatic

aligning with the walls.

When the draw time is compared with education, one significant result can be found. In Figure 42 you can

see the scatter plot for the interaction between the draw time of map 4 and the computer experience of

the users. When users have more computer experience, the draw time is much lower. For the first three

maps there was no significant difference between the draw time and computer experience of the users.

The learning curve of more computer experienced user is steeper so after some routes done, they draw

the routes faster. It can be expected that less computer experienced users also will learn to draw a route

faster and will reach a factor of more than three between drive time and draw time after more routes

done.

73

Figure 42 Interaction between computer experience and the draw time for map 4

10.4 Route drawing on paper compared
Before the users drew the route in the tool, they drew the route on paper. This gives the possibility to see

if users can draw a route in the tool how they want a route to be done.

Table 14 Average route parts drawn on paper and in the tool

 Map 1 Map 2 Map 3 Map 4

Average route
parts drawn on
paper

13,2 24,5 28,45 36.35

Average route
parts drawn in
tool

14 25,2 30,5 38,12

Average same
parts on paper
and in the tool

10,6 21,55 22,4 30.82

In Table 14 can be seen that the average difference in route parts drawn on paper and in the tool is not

so large. The users were able to draw more than 80% of the route parts on paper also in the tool. The

other 20% of the route parts are drawn differently. When users drew the route in the tool, they got more

insight in the area coverage, so they changed the route to cover every part of the barn. This explains also

why users drew more route parts in the tool then on paper.

10.5 Area cleaned
In the tool users could see which parts are cleaned by the route. The pixels of the area which are covered

by the route are counted and divided it by the total pixels in the whole area. In Table 15 you can find the

average area coverage.

74

Table 15 Average area cleaned for every map in the drawing tool

 Map 1 Map 2 Map 3 Map 4

Average area
cleaned

99.74% 99.11% 97.53% 97.82%

The average area cleaned by the routes was more than 98%. In some situations users avoided specific

corners or obstacles. This is why users not always reached 100% coverage. The lowest area coverage of

one user was 83.1% for the third map.

The results shows that users are able to make a route which cleans almost every part of the barn.

10.6 System usability
Users could rate the current system usability and the usability of the drawing system in the instruction

document with 19 questions on a 7 point Likert scale. There was a group of 7 students which has no

experience with the current system, they only rated the usability of the drawing system. The other group

of 13 people rated first the usability of the current system and after they finished the user test, they rated

the usability of the drawing system.

10.6.1 Results

The means of the usability for the two systems are compared, this is done with a T-test. The two groups

the current system and the drawing system are related because the participants of the first group are also

in the second group. When two groups are related, a paired sample T-test needs to be done to compare

the means. In Table 21 in Appendix D the results of the paired sample T-test can be found and in Table 16

the questions can be found.

Table 16 usability questions

1. Overall, I am satisfied with how easy it is to use this system

2. It was simple to use this system

3. I can effectively complete my work using this system

4. I am able to complete my work quickly using this system

5. I am able to efficiently complete my work using this system

6. I feel comfortable using this system

7. It was easy to learn to use this system

8. I believe I became productive quickly using this system

9. The system gives error messages that clearly tell me how to fix
problems

10. Whenever I make a mistake using the system, I recover easily and
quickly

11. The information (such as online help, on-screen messages, and other
documentation) provided with this system is clear

12. It is easy to find the information I needed

13. The information provided for the system is easy to understand

14. The information is effective in helping me complete the tasks and
scenarios

75

15. The organization of information on the system screens is clear

16. The interface of this system is pleasant

17. I like using the interface of this system

18. This system has all the functions and capabilities I expect it to have

19. Overall, I am satisfied with this system

For all the pairs can be said that when p < 0.05, the difference in mean is significant. From the results in

Table 21 can be seen that the difference in mean for question 4,7,8,10,15,16,17 is significant. For all those

questions the mean of the route drawing system is 1 to 2 points higher than the current system. See Figure

43 for the means for every question on both systems.

76

Figure 43 means usability questions of both systems

10.6.2 Conclusion

According to the result of the usability questionnaire users can complete their work more quickly, learn

to use the system more easily, are more productive, recover more easily and quicker when making a

mistake. In chapter 10.3 can be seen that users are able to complete their work more quickly. This is in

line with the results of the usability questionnaire.

77

Users also thinks according to the usability questionnaire that the organization of information of the

system is more clear, the interface is more pleasant and they like the interface of the route drawing system

more than the current system. In the chapter Route drawing on paper compared can be seen that users

are able to draw the same route in the tool as they drawn on paper. They are also able to clean the most

parts of the barn, see the chapter Area cleaned. With the interface of the route drawer, users are able to

complete their task.

10.7 Open questions
During the user test, users filled in answers to the open questions in the instruction document. In

Appendix D the answers to all the questions can be found.

From the answers to the open questions can be concluded that most negative aspects of the current route

programming method are turned into positive aspects with the route drawing method, like programming

speed, route modification and route overview. The most negative aspects of the route drawing method

are zooming, unspecific feedback and miss clicks. Those negative aspects can be solved by improving the

tool.

The positive aspects of the current route programming method is mostly what users miss in the route

drawing method. With the current route programming method, you see directly what you get, but with

the route drawing method, users have no idea about how the robot will drive the route. A good simulation

of the route could replace this positive aspect of the current route programming method.

10.8 Component-Based Usability Questionnaire
With the Component-Based Usability Questionnaire (CBUQ) it is possible to measure the perceived

usability of a specific part of an interactive system (Brinkman, Haakma, & Bouwhuis, 2009). This method

is used in the user test to test the usability of two components, the drawing component and the feedback

component of the drawing tool.

10.8.1 Reliability Usability scales
Table 17

 Cronbach’s alpha

Drawing component 0,84

Feedback component 0.91

The Cronbach’s Alpha is used as an estimate for the reliability of the measurements. To simplify the

analysis and because of the high cronbach’s Alpha the analysis was done with the average rating for each

component.

When the Cronbach’s Alpha is > 0.7, the reliability is good and when the Cronbach’s Alpha > 0.9 the

reliability is Excellent. In Table 17 can be seen that Cronbach’s alpha for both components > 0.7, the

reliability of the test scores is good.

78

10.8.2 Usability rating - Hypothesis testing Component rating
Table 18

In Table 18 can be seen that the mean for both components is around the 5 and the std. deviation < 1.

10.8.3 One-Sample t-Test

With the one-sample t-test the mean can be compared with a hypothetical value, and can be seen if the

difference of the mean is significant. If the significance is lower than the critical value alpha (0.05), then

the hypothesis can be rejected and can be concluded that the difference between the means is significant.

The hypothetical value is 5.29 which is based on (Brinkman, Haakma, & Bouwhuis, 2009), where 5.29 was

the breakeven point of the probability that a rating would come from distribution of a set difficult to use

component or from an ease to use components.

Table 19

79

Figure 44

From Figure 44 and from Table 19 can be seen that the mean of both components is lower than 5.29, but

the difference is not significant because alpha > 0.05. For both components there cannot be made a

conclusion that it is difficult or easy to use the drawing or feedback component.

10.9 Interaction between background and results
The background data of the users is used to search for an interaction between education and the results.

First the correlation is shown between education and the results of the questions about the current

system. Then the correlation between education and the result of the questionnaire about the drawing

system is shown. At the end is looked at the correlation between education and the results of the routes

and the time needed to draw the routes. See Table 20 for the different education types which are

compared with the results.

Table 20 background data types

Education 1 Computer experience

Education 2 Experience with programming routes on the Lely Discovery

Education 3 Auto cad experience

Education 4 Experience with drawing tools

Education 5 Diploma, MBO = 1, VWO =2, HBO = 3, BSC = 3, MSC = 4, PHD = 5

80

10.9.1 Interaction between education and current system

When is searched for significant results between education and the results on the questionnaire about

the usability of the current system, 5 significant results are found (see Table 22).

For three questions there seems to be a correlation with experience on programming the routes on the

Lely Discovery. It seems that more experience with programming routes on the Lely Discovery has a

positive influence on how easy and simple it is to use the system and how quickly they can complete their

work with the system. See Figure 45 for a scatter plot of the relation between education 2 and the three

questions.

From the scatter plot in Figure 45 the correlation between the first question and education 2 seems not

very strong. The correlation between the question how simple to use the system and if users can complete

their work quickly seems to be more strong but is also not very strong. When users have more experience

with programming the routes on the Lely Discovery, they seems to find it simpler to use the system and

they experience that they can complete their work more quickly than other users.

81

Figure 45 Interaction between experience with programming routes on the Lely Discovery and current system, a = Overall, I
am satisfied with how easy it is to use this system, b = It was simple to use this system, c = I am able to complete my work
quickly using this system

In Figure 46 the scatter plot is shown for interaction between the diploma received and if users feel

comfortable using the current system and if they find the interface pleasant. The correlation between

diploma received and both questions seems strong. In Table 28 there seems to be no relation between

education 2 and 4. When users have a higher diploma they are less comfortable using the current system

and find the interface less pleasant.

82

Figure 46 Interaction between diploma and current system, a = I feel comfortable using this system, b = The interface of this
system is pleasant

10.9.2 Interaction between education and drawing system

When searched for significant results between education and the results on the questionnaire about the

usability of the current system, 4 significant results can be found (see Table 24).

Three of the 4 significant results are between experience with the current system and the questions about

the drawing system. In Figure 47 can be seen that there is a negative relation between education 2 and

that it was easy to learn the system, to become productive with the system and if they expect that the

system has all the functions and capabilities needed. Education 4, experience with drawing tools has a

positive effect on how fast they become productive with the system.

When users have more experience with the current programming system, they find it more difficult to

learn the new system and they think that they don’t get quickly productive with the new system. When

users have more experience with drawing tools, they think that they become more quickly productive

with the new system. The new system use some features of drawing tools which makes it easier to learn

for users which have experience with drawing tools.

Users with more experience with the current programming system are less positive about the functions

and capabilities that the drawing system has. This can explained by the fact that they know what is

necessary for a good route and don’t see everything back in the route drawing system.

83

Figure 47, a = It was easy to learn to use this system, b and d = I believe I became productive quickly using this system, c =
This system has all the functions and capabilities I expect it to have

10.9.3 Interaction between education, route success and draw time

For significant results between education, route success and draw time, 5 significant results can be found

(see Table 26).

In Figure 48 can be seen that computer experience has a positive influence on the draw time and the route

success. Also the highest diploma received has a positive influence on the draw time. When is looked to

Figure 49, it can be seen that the influence of computer experience and highest diploma received has

almost the same influence on the draw time for route 4. Route 4 is a combination of 2 other routes, so it

is possible that users with more experience and a higher education are more easily able to reproduce

route parts from earlier routes drawn.

84

Figure 48 a-c = Interaction between computer experience (education 1) and draw time and route success. d = Interaction
between draw time and experience with drawing tools.

Figure 49 Interaction between draw time and computer experience (education 1) and diploma (education 5).

85

From this can be concluded that computer experience and the highest diploma have a positive effect on

the learning curve and so the average drawing time. The computer experience of the users has also a

positive effect on the success of the routes.

10.9.4 Conclusion

Some significant results are found between the background of the users and the results of the user-study.

Experience with the current route programming has a positive influence on the user experience on how

simple it is to use the current system and they think they can complete their work quickly with the current

route programming method then less experienced users.

When users have more experience with the current route programming system, they find it more

difficult to learn the new system and they think that they don’t get quickly productive with the new

system. They are also less positive about the functions and capabilities that the drawing system has then

users with less experience with the current route programming system.

Computer experience has a positive influence on the draw time and the route success. Also the highest

diploma received has a positive influence on the draw time.

86

11 Conclusion and recommendations
A prototype of a route drawer is shown where users can generate an action sequence for the Lely

Discovery by drawing the route in the tool. The route drawing method can replace the teaching method.

The main problem with the teaching method is that it is time consuming to program a route and to modify

a route. It is also difficult to learn to use the teaching method.

A user study is done where 20 users drew 5 routes in the route drawing tool, 4 of the 5 routes are tested

on the robot. Users where able to generate a route 2-3 times faster with the drawing method than the

minimal time needed to program the routes with the teaching method. Users first drew the route on

paper, they were able to draw more than 80% of the route parts on paper also in the tool. Users where

able to clean the whole barn with the routes, the average area coverage for every map was > 97.5 %.

The results of the user friendliness of the drawing method and the reliability of the routes are not

convincing but provides a reasonable result to work on a second prototype. With the second prototype

the tool should automatically correct the simple changes and a solution should be implemented to avoid

the complex changes. To see if the route problems can be reduced, the second prototype should

automatically align the route parts with the walls and show users that they drew in the red area. Also a

better training should be given to reduce the problems or by making a help function and instructions in

the tool.

For generating the action sequence from the routes and the map, a case-based algorithm is implemented.

The algorithm is divided into two parts, a part where the action sequence is generated and a part where

the action sequence is evaluated and made more reliable. The robot drove the routes as calculated with

the algorithm very accurately. When a second prototype is build, it is recommend to improve the cases of

the second part of the algorithm and to add cases for actions that where not implemented in the first part

of the algorithm.

When the suggested improvements are made, the most small route problems should be solved and the

problems which will cause the robot not can finish in the charger are reduced. The robot was in 91% of

the routes able to finish in the charger. When this number cannot be increased, the drawing method will

be in 91% of the routes 2-3 times faster in programming the route than with the teaching method. In 9%

of the cases can be expected that users need some more time to program a route.

The route drawing method can be a step towards more advanced techniques for programming the routes.

More advanced techniques could be that the routes are automatically generated in the tool. More reliable

action types can be made which make use of the map. Route problems and logs can be shown in the tool

on the map.

87

12 Future work
When the route drawing method is successfully implemented, more research can be done to make the

method more simple and some steps can be automated. In this chapter is first shown how new cases

can be added to the system and then how the step of drawing the routes can be automated.

12.1 Adding cases
When the system is in use, it is possible that new cases are necessary for some type barns. Those cases

need to be added to the system. In the next subsections is shown how new cases can be added to the

system.

12.1.1 Learning from new cases

When no relevant cases are found by the algorithm, the system should learn from the new situation. The

system can’t learn from new cases by itself. In (Leake, 1994) they describe the case based reasoning (CBR)

cycle (see Figure 50), where they retain at the end of the cycle “parts of this experience likely to be useful

for future problem solving”. The expert should decide if the new situation is likely to be useful for future

situation, and if useful add the learned case to the general knowledge of the system. For this an module

should be made, where the situation is send to the expert when the system did not find an relevant case.

On this way the expert will be informed when a user defined a case that is not covered by the system.

Figure 50 The CBR cycle

88

12.1.2 Opaque relations

When the expert decided to add a new case to the system, he should check if the new rules does not infer

with the other rules. The individual production rules can be relatively simple but the logical interaction

with the large set of rules may be opaque (Negnevitsky, 2005). For example you first add a case where

the waypoint ends in the charger and the robot can wall-follow to the charger. The action will then be

wall following until the robot is in the charger. After this you add the case wall following when a wall is on

the side of the robot before the case wall follow to charger. Now in every situation that the case wall

follow to charger applies, the case wall following when a wall is on the side does also apply. In every

situation where the waypoints ends in the charger only the action from the other case is retrieved because

that case is checked first. This is a simple example but in practice, the relations between the cases can be

very opaque. This can be checked by using a test suite. The test suite should consist all relevant cases and

a large set of test routes with the corresponding actions. When a new case is added, the expert should

run the test suite to check if all the relevant cases and routes still return the corresponding actions. If this

is not the case, there could be some opaque relation between the new rule and the old rules.

12.2 Generate automatically routes
When the route drawing tool successfully is implemented, more research could be done by applying

advanced techniques like automatically generating routes in the tool. In the chapter Route planning is

already mentioned some techniques for automatically planning a route. With the map and knowledge

about the type routes, for example a route along feeding fence, a minimal cost function could be build.

Waypoints can be placed into the tool and the cost of a route can be calculated with a cost function.

When the waypoints are placed, the route actions can be automatically generated with the

implemented algorithm.

When the routes can be automatically generated, users can select a generated route or make some

modification to a generate route. This can save a lot of time and prevent users from making inefficient

routes.

89

13 Bibliography
Beeson, P., MacMahon, M., Modayil, J., Murarka, A., Kuipers, B., & Stankiewicz, B. (2007, March).

Integrating Multiple Representations of Spatial Knowledge for Mapping, Navigation, and

Communication. In Interaction Challenges for Intelligent Assistants, (pp. 1-9).

Brinkman, W., Haakma, R., & Bouwhuis, D. (2009). Theoretical foundation and validity of a component-

based usability questionnaire. Behaviour and Information Technology, 28(2), 121 - 137.

Castellanos, J. A., Tardos, J. D., & Schmidt, G. (1997, April). Building a global map of the environment of a

mobile robot: The importance of correlations. In Robotics and Automation, 1997. Proceedings.,

1997 IEEE International Conference on. Vol. 2, pp. 1053-1059. IEEE.

Chronis, G., & Skubic, M. (2004, April). Robot navigation using qualitative landmark states from sketched

route maps. In Robotics and Automation. Proceedings. ICRA'04. 2004 IEEE International

Conference (pp. 1530-1535, Vol. 2). IEEE.

Davison, & Andrew, j. (2007). MonoSLAM: Real-time single camera SLAM. Pattern Analysis and Machine

Intelligence (pp. 1052-1067). IEEE Transactions.

Dijkshoorn, N. (2012). Simultaneous localization and mapping with the AR.Drone. University of

Amsterdam.

Discovery Team. (2014). Software requirements Discovery. Maassluis.

Fong, T., Thorpe, C., & Baur, C. (2003). Robot, asker of questions. Robotics and Autonomous systems,

42(3), 235-243.

Gat, E., & Dorais, G. (1994, May). Robot navigation by conditional sequencing. In Robotics and

Automation, 1994. Proceedings., 1994 IEEE International Conference on (pp. 1293-1299). IEEE.

Guo, C., & Sharlin, E. (2008, April). Exploring the use of tangible user interfaces for human-robot

interaction: a comparative study. In Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems (pp. 121-130). ACM.

H. Choset, K. M. (2005). Principles of Robot Motion: Theory, Algorithms, and Implementation. Boston:

MIT Press.

Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A formal basis for the heuristic determination of

minimum cost paths. (pp. 100-107). IEEE Transactions on 4.2.

Henry, P., Krainin, M., Herbst, E., Ren, X., & Fox, D. (2012). RGB-D mapping: Using Kinect-style depth

cameras for dense 3D modeling of indoor environments. The International Journal of Robotics

Research, (pp. 647-663).

90

Hristu-Varsakelis, D., & Andersson, S. (2002). Directed graphs and motion description languages for

robot navigation. In Robotics and Automation, 2002. Proceedings. ICRA'02. IEEE International

Conference on. Vol. 3, pp. 2689-2694. IEEE.

Leake, D. B. (1994). Case-based reasoning. The knowledge engineering review, (pp. 61-64).

Lewis, J. R.-C.-7. (1995). Computer System Usability Questionnaire. Retrieved from

http://hcibib.org/perlman/question.cgi

Maeyama, S., Ohya, A., & Yuta, S. (1996, November). Outdoor landmark map generation through human

route teaching for mobile robot navigation. In Intelligent Robots and Systems' 96, IROS 96,

Proceedings of the 1996 IEEE/RSJ International Conference on. Vol. 2, pp. 957-962. IEEE.

Negnevitsky, M. (2005). Artificial intelligence: a guide to intelligent systems. Pearson Education.

Park, C. S., Kim, S. W., Kim, D., & Oh, S. R. (2011, November). Comparison of plane extraction

performance using laser scanner and Kinect. Ubiquitous Robots and Ambient Intelligence (URAI),

(pp. 153-155). IEEE.

Park, K., Bell, M., Kaparias, I., & Bogenberger, K. (2007). Learning user preferences of route choice

behaviour for adaptive route guidance. IET Intelligent Transport Systems, 1(2), 159-166.

Project Tango. (n.d.). Retrieved february 28, 2014, from https://www.google.com/atap/projecttango/

Rawlinson, D., & Jarvis, R. (2008). Ways to Tell Robots Where to Go-Directing autonomous robots using

topological instructions. Robotics & Automation Magazine, IEEE, 15(2), 27-36.

Shah, D. C., & Campbell, M. E. (2013). A qualitative path planner for robot navigation using human-

provided maps. 32(13), 1517-1535.

Shah, D. C., Schneider, J., & Campbell, M. E. (2010, October). A robust sketch interface for natural robot

control. In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on (pp.

4458-4463). IEEE.

Silver, D., Bagnell, J. A., & Stentz, A. (2010). Learning from demonstration for autonomous navigation in

complex unstructured terrain. The International Journal of Robotics Research, 29(12), 1565-

1592.

Sisbot, E. A., Marin-Urias, L. F., Alami, R., & Simeon, T. (2007). A human aware mobile robot motion

planner. Robotics. IEEE Transactions on, 23(5), 874-883.

Skubic, M., Anderson, D., Blisard, S., Perzanowski, D., & Schultz, A. (2007). Using a hand-drawn sketch to

control a team of robots. Autonomous Robots, 22(4), 399-410.

Skubic, M., Blisard, S., Bailey, C., Adams, J. A., & Matsakis, P. (2004). Qualitative analysis of sketched

route maps: translating a sketch into linguistic descriptions. Systems, Man, and Cybernetics. Part

B: Cybernetics, IEEE Transactions on, (pp. 34(2), 1275-1282).

91

Sprunk, C., Tipaldi, G. D., Cherubini, A., & Burgard, W. (2013, November). Lidar-based teach-and-repeat

of mobile robot trajectories. In Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ

International Conference on (pp. 3144-3149). IEEE.

Wang, Y., Huber, M., Papudesi, V. N., & Cook, D. J. (2003, October). User-guided reinforcement learning

of robot assistive tasks for an intelligent environment. In Intelligent Robots and Systems,

2003.(IROS 2003). Proceedings. 2003 IEEE/RSJ International Conference on (pp. 424-429, Vol. 1).

IEEE.

Wieland, A., & Wallenburg, C. M. (2012). Dealing with supply chain risks: Linking risk management

practices and strategies to performance. International Journal of Physical Distribution & Logistics

Management, 42(10).

Yamada, S. (2004). Recognizing environments from action sequences using self-organizing maps. Applied

Soft Computing, 4(1), 35-47.

92

14 Appendix A

14.1 Requirements Lely Discovery
A selection of the requirements for the Lely Discovery:

1) The user is responsible to provide a set of routes and timetable that ensures the coverage of

the desired cleaning area and also provides the cleaning method in each area.

Installation

During installation of the machine, the user (service technician) shall be guided through a number of

steps required to make the machine operational.

After that the user shall perform the following actions (which can be done with multiple machines in

parallel):

1) Perform tests to verify that machine was not damaged during transport and correctly assembly

at farm

2) Configure the machine, perform calibrations and confirm that they are correct

3) Create a map and download it into the machine

4) Program routes and confirm that they are correct

5) Fill in the timetable and put the machine in operation

Managing routes

2) The user can program a new route and modify an existing route. When programming (parts of)

existing routes can be copied to allow reuse. When modifying, the user does not need to

reprogram the complete route.

3) The system shall guide the user while programming a route.

4) A set of actions are presented from which the user can choose.

5) Each action has a set of parameters that the user can configure before starting.

6) The user explicitly starts the action.

7) When the action was started, the user can pause and resume.

8) Meanwhile (a part of) the map with the machine location is shown on the UI device.

9) When the action is stopped or finished the user shall explicitly accept the action.

10) The action will be saved with the learned prime parameters.

11) The user can transfer a map from the UI device to the machine and vice versa. The user can

view, create and edit the map, but not necessarily on the UI device.

12) The user can make and restore a backup of the routes, map and timetable. A backup will be

stored on the UI device.

13) The user can manage the timetable, i.e. create, modify and delete entries (start time for a

specific route). The user can see the used capacity of the machine, i.e. how much time the

93

machine will spend driving and how much time it will spend charging according to the

configuration in the timetable.

14) The user can manually start a route and can decide if the machine shall go to the in operation

state afterwards. A route that was started by the user overrides all other tasks.

15) The user should start and end every route at the charger when programming. The machine shall

give a warning when starting programming of a route when it's not at the charger or when

ending programming of a route not at the charger.

16) Among the actions programmed in the route by the user, it is included the control of the

cleaning.

Navigation

17) The machine shall drive a pre-programmed route accurately enough to come back to the

charger.

18) In case an obstacle like a cow (leg) or bucket blocks the pre-programmed route, the machine

shall try to circumvent it in order to complete the route. The machine has no way of detecting

an obstacle before colliding with it, so it shall not be able to prevent such collision.

19) Inaccuracies while driving, caused by slipping wheels for example, shall be compensated by

using the given map where possible. For example when the machine is driving parallel to

cubicles and it passes the end of the cubicles (which is also drawn in the map) it shall correct the

longitudinal position to the end of the cubicles.

20) The machine shall always try to charge the battery when connected to the charger.

21) The machine shall beep when driving autonomously. The user can configure the beep interval

and even turn of the beep completely.

94

15 Appendix B

15.1 Usability test of route programming on the Lely Discovery

15.1.1 Introduction

Thank you for participating in this test. With this test we want to compare a new route programming
method with the current route programming method for the Lely Discovery. You can skip part 1 if you
don’t have experience with the current route programming method on the Lely Discovery.

15.1.2 Background

Name:
Job Title:
Highest level of education you have received:

Please rate your computer experience by placing an X in one of the seven gray cells after each
statement.

 1 2 3 4 5 6 7

1. I have experience with using computers Strongly disagree Strongly agree

2. I have experience with programming routes on the Lely Discovery Strongly disagree Strongly agree

3. I have experience with auto cad Strongly disagree Strongly agree

4. I have experience with drawing tools Strongly disagree Strongly agree

15.1.3 Part 1 Current route programming with the E-Link or Smartphone

This part of the usability test is about the current route programming method. You can skip this part if you
don’t have experience with the current route programming method on the Lely Discovery.

15.1.3.1 Current route programming method usability

Please rate the usability of the current route programming method on the Lely Discovery by placing an X
in one of the seven gray cells after each statement. Try to respond to all the items.

 (System = current route programming method) 1 2 3 4 5 6 7 NA

1. Overall, I am satisfied with how easy it is to use this system Strongly disagree Strongly agree

2. It was simple to use this system Strongly disagree Strongly agree

3. I can effectively complete my work using this system Strongly disagree Strongly agree

4. I am able to complete my work quickly using this system Strongly disagree Strongly agree

5. I am able to efficiently complete my work using this system Strongly disagree Strongly agree

6. I feel comfortable using this system Strongly disagree Strongly agree

7. It was easy to learn to use this system Strongly disagree Strongly agree

8. I believe I became productive quickly using this system Strongly disagree Strongly agree

9. The system gives error messages that clearly tell me how to fix
problems

Strongly disagree Strongly agree

95

10. Whenever I make a mistake using the system, I recover easily and
quickly

Strongly disagree Strongly agree

11. The information (such as online help, on-screen messages, and other
documentation) provided with this system is clear

Strongly disagree Strongly agree

12. It is easy to find the information I needed Strongly disagree Strongly agree

13. The information provided for the system is easy to understand Strongly disagree Strongly agree

14. The information is effective in helping me complete the tasks and
scenarios

Strongly disagree Strongly agree

15. The organization of information on the system screens is clear Strongly disagree Strongly agree

16. The interface of this system is pleasant Strongly disagree Strongly agree

17. I like using the interface of this system Strongly disagree Strongly agree

18. This system has all the functions and capabilities I expect it to have Strongly disagree Strongly agree

19. Overall, I am satisfied with this system Strongly disagree Strongly agree

List the most negative aspect(s) about the current route programming method on the Lely Discovery:

1.

2.

3.

List the most positive aspect(s) about the current route programming method on the Lely Discovery:

1.

2.

3.

List the three most occurring problems that you encountered while programming a route with the current

method:

1.

2.

3.

Please provide any other comments on using the current route programming method:

96

15.1.4 Part 2 Instructions and questions about the new route drawing tool

15.1.4.1 Introduction

Below you will find step-by-step instructions on how to carry out the test. Please follow them carefully
in order to ensure consistency between the procedure followed by the different testers.

15.1.4.2 Preparations

1. If you did not receive any instructions 3 days ago, please contact the experimenter
2. Make sure that you have received an pencil, ruler and eraser from the experimenter

15.1.4.3 Tasks

1. Draw with a pencil in map 1 of the attachments a route that starts and ends in the charger and

covers the whole ground.

2. Try to draw the same route in the tool if possible, the map is already opened.

3. Check if the route is ok.

4. Update the route in the tool if a route part is displayed red or orange.

5. Check the route on possible problems by simulating the route with the robot in the route drawing

module, update the route until the route is ok.

6. Save the route and map to xml in the route drawing module.

7. Please provide any comments about the problems you encountered while drawing the route in

Table 1.

8. Repeat step 1– 7 for the other 4 maps.

97

Table 1 Time needed for drawing the route and comments

Map Time Comments about problems

1

2

3

4

5

15.1.4.4 Route drawing module usability

Below are six statements about the route drawing module. Please rate the degree to which you disagree

or agree with each statement. Please indicate your rating by placing an X in one of the seven gray cells

after each statement.

 1 2 3 4 5 6 7

1. Learning to operate the route drawing module would be easy for me. Strongly disagree Strongly agree

2. I would find it easy to get the route drawing module to do what I want it
to do

Strongly disagree Strongly agree

3. My interaction with the route drawing module would be clear and
understandable

Strongly disagree Strongly agree

4. I would find the route drawing module to be flexible to interact with. Strongly disagree Strongly agree

5. It would be easy for me to become skilful at using the route drawing
module

Strongly disagree Strongly agree

98

6. I would find the route drawing module easy to use Strongly disagree Strongly agree

15.1.4.5 Feedback module usability

Below are six statements about the feedback module. Please rate the degree to which you disagree or

agree with each statement. Please indicate your rating by placing an X in one of the seven gray cells after

each statement.

 1 2 3 4 5 6 7

1. Learning to operate the feedback module would be easy for me Strongly disagree Strongly agree

2. I would find it easy to get the feedback module to do what I want it to
do

Strongly disagree Strongly agree

3. My interaction with the feedback module would be clear and
understandable

Strongly disagree Strongly agree

4. I would find the feedback module to be flexible to interact with Strongly disagree Strongly agree

5. It would be easy for me to become skilful at using the feedback module Strongly disagree Strongly agree

6. I would find the feedback module easy to use Strongly disagree Strongly agree

15.1.4.6 Route drawing tool usability

Please rate the usability of the route drawing tool for the Lely Discovery by placing an X in one of the seven
gray cells after each statement. Try to respond to all the items.

 1 2 3 4 5 6 7 NA

1. Overall, I am satisfied with how easy it is to use this route drawing tool Strongly disagree Strongly agree

2. It was simple to use this route drawing tool Strongly disagree Strongly agree

3. I can effectively complete my work using this route drawing tool Strongly disagree Strongly agree

4. I am able to complete my work quickly using this route drawing tool Strongly disagree Strongly agree

5. I am able to efficiently complete my work using this route drawing tool Strongly disagree Strongly agree

6. I feel comfortable using this route drawing tool Strongly disagree Strongly agree

7. It was easy to learn to use this route drawing tool Strongly disagree Strongly agree

8. I believe I became productive quickly using this route drawing tool Strongly disagree Strongly agree

9. The route drawing tool gives error messages that clearly tell me how to
fix problems

Strongly disagree Strongly agree

10. Whenever I make a mistake using the route drawing tool, I recover
easily and quickly

Strongly disagree Strongly agree

11. The information (such as online help, on-screen messages, and other
documentation) provided with this route drawing tool is clear

Strongly disagree Strongly agree

12. It is easy to find the information I needed Strongly disagree Strongly agree

13. The information provided for the route drawing tool is easy to
understand

Strongly disagree Strongly agree

14. The information is effective in helping me complete the tasks and
scenarios

Strongly disagree Strongly agree

15. The organization of information on the route drawing tool screens is
clear

Strongly disagree Strongly agree

16. The interface of this route drawing tool is pleasant Strongly disagree Strongly agree

17. I like using the interface of this route drawing tool Strongly disagree Strongly agree

99

18. This route drawing tool has all the functions and capabilities I expect it
to have

Strongly disagree Strongly agree

19. Overall, I am satisfied with this route drawing tool Strongly disagree Strongly agree

List the most negative aspect(s) about the route drawing tool:

1.

2.

3.

List the most positive aspect(s) about the route drawing tool:

1.

2.

3.

List the three most occurring problems that you encountered while programming a route with the
drawing tool:

1.

2.

3.

Please provide any features you missed in the route drawing module.

Please provide any features you missed in the feedback module.

100

Please provide any other comments on using the route drawing tool.

Thank you for your time and effort,

Jan Pieter Mars

101

15.1.5 Map 1

102

15.1.6 Map 2

103

15.1.7 Map 3

104

15.1.8 Map 4

105

15.1.9 Map 5

106

16 Appendix C
Routes tested in the pilot:

Figure 51 Test 1, normal route

Figure 52 Test 2, turn at end of alley

107

Figure 53 Test 3, bouncing with different angels on the walls

Figure 54 Test 4, bouncing with different angels on the walls

108

Figure 55 Test 5, route drawn by Mauro

109

17 Appendix D

17.1 Correlation between factors questions and results

Table 21 paired samples test between current system and route drawing system

110

Table 22

111

Table 23

112

Table 24

113

Table 25

Table 26

Table 27

114

Table 28

Table 29

 Table 30

Problems routes map 1

1 Corner to right after second wall following

115

1
Last wall follow to left corner, going too far, bump on wall could not directly
turn

1 Bounced on wall cubicle left, not cleaned that part

1 Corner left bottom, robot software try’s to correct but makes it worse

1 Turning to the right at cubicle

5

Problems routes map 2

1 Missed charger, needed local solver to get in charger

1 Getting in cubicle turn to right

7 Corner out of middle

5 Corner going in of middle

1 Drove 0.5 meter too far to get in middle

15

Problems routes map 3

11 Corner top left large cubicle

1 Corner top left small cubicle

8 Drinking trough bottom

2 Needed local solver to charger

1 Corner top right large cubicle

2 Corner bottom left large cubicle

3 Corner bottom left small cubicle

1 After drinking trough bottom left (bump to long on wall)

1 Corner top left small cubicle

30

Problems routes map 4

5 Corner out of middle

1 Getting inside of cubicle

4 Corner going in of middle

1 Missed charger needed local solver

1 corner small cubicle top left

1 Corner top left

13

Table 31 route changes

Routes map 1

116

Simple changes

3 First or last waypoint deleted

4 Wall follow to charger

1 Route part close to charger moved

2 Deleted a point

1 Shifted one point out of red area to make route green

Routes map 2

Simple changes

2 First or last waypoint deleted

1 Deleted a point

2 Start or end in charger

1 Route part close to charger moved

1 Point in middle before going out shifted

1 Wall follow to charger

Complex changes

1 Added point on red line to avoid wall follow bug

Routes map 3

Simple changes

1 Turned after alley

2 First or last waypoint deleted

1 Start or end in charger

1 Fix small part drawn in red area

1 Wall follow to charger

1 Moved part bumping on charger

Complex changes

1 Aligned line with wall

20 Corner top left

1 Fixed top left to avoid wall follow bug

1 Deleted point after corner top left

1 Deleted part where it crashed in test 1

1
Fixed part after drinking trough (bug in evaluation
algorithm)

1 Fixed bug in evaluation algorithm

Routes map 4

Simple changes

1 Moved part close to charger

1 Moved last part due to wall follow bug

Complex changes

8 Corner top left

17.2 Answers open questions current programming method
List the most negative aspect(s) about the current route programming method on the Lely Discovery

117

4x Route modifications are complex and takes a lot of time

3x Cost a lot of time to make a route

3x It’s hard to have a good insight in the barn coverage

3x The organization of information on the system screens is not clear

2x The organization of information on the system screens is not clear

2x It is not easy to find the information I needed, more infor on the screen could be helpful

2x Not clear which route options you need to use, and how they work

2x App interface has no added value (only wireless)

2x Difficult to perform advanced tasks

1x Inefficient use of ui platform

1x Slow down method is unclear

1x The menu looks old

1x To many clicks to perform action (not intuitive)

1x Bugs in the software that cause the route to be discarded

1x For good routing you need to draw the barn, draw routes and then teach routes

1x You need good insight in how the navigation works

1x Requires lots of knowledge about the behavior of the machine (to avoid possible problems)

1x Can't add actions between a route

1x Hard to find the action that made the route crash

1x Undoing multiple actions

1x Overseeing potential problems in an early stage

List the most positive aspect(s) about the current route programming method on the Lely Discovery

6x You see directly what you get

5x Simple to use

3x Reliable

2x Basics look straight forward

1x It works

1x Simple interaction (few buttons)

1x self-learning ability is quite high

1x copy/ paste is a handy tool

1x With just little experience, a technical interested person can easily make a reliable route

1x I don't need to think ahead too much in details

1x Predictable system

1x Intuitive route programming

1x If you know where to find it you can change a lot

List the three most occurring problems that you encountered while programming a route with the
current method

7x No easy or/and reliable way to cancel an already programmed route action

4x Selecting a wrong radius, difficult to set the robot back

2x Route reliability, crashes

2x Route lost because of a bug

1x Information is sometimes wrong

118

1x Programming with a lot of manure there is a lot of slip which cause that the distances are
incorrect

1x Lack of knowledge of possibility to use (parts) of existing route while making new route

1x There is no clear feedback and interactive explanation towards new users

1x Buttons not performing the action that is written on screen

1x An action is not properly executed and after a few trials you have to start again from scratch

1x Wrong gyro values remembered when making adjustments

1x Small corners have big margins

1x Adding actions after making a route

Please provide any other comments on using the current route programming method:

1x Route programming needs to be done by experienced technician! If customers want to do it by
their own, they should have this possibility but technician should first show, demonstrate how
to make the first route's to let the customer having an idea of performance and capabilities of
the machine

1x My impression is that bugs and limitations of the platform are hollowing back this programming
method. In general i like the idea of programming the routes by teaching

17.3 Answers open questions route drawing method
List the most negative aspect(s) about the route drawing tool

8x Zooming and navigation

6x Feedback is unspecific , which makes problem solving less efficient

3x Sometimes confusing whether adding a point or moving it

2x Distance to drinking trough, no suggestion

2x No how to use guide/No interactive help functionality

2x Difficult to find out what's possible/ allowed within drawing a route without test/training

1x Switching to feedback mode to see area covered makes route making slower

1x Colors in feedback mode are difficult to see

1x Too few grid options

1x Setting startpoint is difficult

1x Needed to search for functionality of mouse and keyboard

1x Route action with … floor no reverence

1x selection button, in/out zoom

1x I cannot specify the action I want to perform (turn with big radius)

1x No feedback about accuracy of the action (maybe warnings would be nice)

1x If there is a fault, a lot of lines become red

1x With real machine seeing it working

1x Error message sometimes invisible

1x Feedback module geeft me niet direct vertrouwen of een route robust is

1x Bij grote kaarten/routes komen er al snel te veel referentie punten, overzicht weg

1x Snapping is not exact enough

1x Missing some efficiency feedback like runt time and area covered double

1x Missing undo function

1x Soms gele lijnen die naar zijn om weg te werken

119

1x Inschatten waar niet-wandvolg acties moeten koemen is vaag

1x Overlappende lijnen zijn verwarrend

1x Measuring distance

1x Influence the turn or behaviour of the Lely Discovery

1x Feedback realtime

List the most positive aspect(s) about the route drawing tool

12x Fast and efficient

7x Interface is clear and simple, easy to use

4x Overview of the route

3x Easy to change the route

3x Helps with drawing (snapping to corners etc)

1x Learning using the route making tool is easy

1x User friendly

1x No more walking along with the machine for 3 hours

1x The red marking of area where you can't drive, easy to place waypoints on the border

1x Visual

1x After tips easier to use

1x Clear boundaries for robot

1x Clear if everything is cleaned

1x You don't need to think by yourself which actions you need

1x Analysis of route reduce the fault risk

1x Getting more and more experienced results in some time winning

1x Instant feedback

1x Relatief overzichtelijk

1x From the "comfort" at the office

List the three most occurring problems that you encountered while programming a route with the
drawing tool

5x Difficult to solve a problem like red lines

5x Zooming

4x Miss click resulting in adding points

2x Bringing back the Lely Discovery to the charger

2x Snapping, snapped at the wrong places

1x Small walls

1x Switching between route maker and feedback

1x Estimate of distance between route-parts, sometimes you miss a small strip

1x difficult to get straight lines

1x Lack of warnings or tip messages to start/end a route

1x Efficient routing

1x Selection dots (in/ out zoom) /feedback text small

1x How many route lines in an alley, based on width of robot

1x Needed to add extra point to get right referent points

1x Overlap in points not clear

120

1x No real time floor coverage

1x Moeilijk weg te werken gele lijnen, 1 rode lijn die moeilijk weg te werken was omdat de
eigenlijk verkeerde lijn nog groen was

1x Continuously questioning reliability

1x No information of the barn

Please provide any features you missed in the route drawing module

9x Immediate feedback of area covered

2x Create automatically a route

2x Efficiency

2x Making lines exactly horizontal or vertical

2x Integrate drawing and feedback tool

1x Use Lely Discovery figure instead of points

1x Interactive grids

1x Dump areas

1x Action once a day

1x If a waypoint could not be reached, add error-info which tells which part of a wall is the
problem

1x Capacity

1x Red area constant on screen

1x Using double click for making a point, scrolling with single click

1x Instruction overview of key's

1x Reference lines for parallel to wall, bumping points, end of wall (reliability of route)

1x Drawing curves

1x Pop-up feedback about incorrect routes

1x Mini map. While making a route i would like to see a live feed with an indication of the coverage

1x Runtime of the route

1x Ctrl + z

1x Feedback messages

1x In de route maker een idee krijgen waar niet-wandvolg acties getekend moeten worden om aan
te sluiten op eerdere acties

1x Copy part working

Please provide any features you missed in the route feedback module

5x More detailed information about red lines

2x Auto improvements suggested

2x Simulation of the route

1x Use a smarter way to indicate that a route is reliable

1x Bigger feedback

1x Warning for accuracy of actions

1x Speed, (I don't want to wait)

1x Clear overview of actions

1x Information about the percentage of the covered area and length of the route (some statistics)

121

Please provide any other comments on using the route drawing tool

2x In practice you see it directly, not directly a secure feeling about the route

1x It is a concept with lots of potential and the current implementation is good to prove the "proof
of concept"

1x With the big map I sometimes had to squint at the screen. Zoomed out I couldn’t see everything
well enough and the tool was not exact enough

1x See logs from practice directly in the tool would be nice, then you will have a good tool

1x Small things in the barn are not visible in the map

1x Gray area between drawing and practice

122

18 Appendix E

18.1 Solutions
There are a lot of possible options how a robot can navigate and finds it way. In this section some solutions

are described in short for programming a route, building a map, how feedback from the robot can be used

and how we could improve the current interface or which options we can use for the new interface.

18.2 Building global map
For some programming methods we need a map. In this section, some methods are described to make a
map of the barn.

Handmade
A map from the barn can be made by hand. To make a map, all distances between walls needs to be

measured, which is time consuming. Hand-made measurements are not very accurate which will result in

a map which is not very accurate.

Augmented reality
A tablet with an camera can be used to make a 3d model of the environment (Project Tango, n.d.). This

3d model can be used as a global map. The user can see the camera feed on the tablet with an overlay or

just only the 3d model while walking around. By walking around with the tablet we can make a map.

Drones
In the barn one or two drones can be launched which autonomously tries to make a complete picture

from the barn. According to (Dijkshoorn, 2012) the main bottleneck for indoor drones is reliable indoor

positioning. So for today this solution is not reliable enough to use.

Driving
A map can also be made by driving around with the robot on every path once. To drive the robot around

costs some time but this can result in an accurate map. See building a local map for which sensors we can

use.

Driving Autonomous
The robot can explore the map by driving around (Yamada, 2004). This will cost the user almost no time,

but the available sensors on the robot are not accurate enough to make an accurate map. If we use

temporal sensors on the robot, see building local map, we have the problem that cows can make the

sensors dirty necessary for exploring the barn. The user can move the cows but then we have an safety

issue, because the user doesn’t know which way the robot goes.

18.3 Building local map
For some methods to build a global map, we first need to explore local parts of the barn, where after the

local parts are merged to one global map. In this section, some methods are described on which way a

robot can make a local map around his position.

Ultra sound

123

With the ultra sound sensors, walls within 2 meters can be measured. From the data, a map can be made,

but ultra sound sensors are not very precise and contains a lot of noise which cause they are not usable

for making a map.

-censored-

18.4 Route programming
Before the robot can drive around automatically, the preferred route needs to be programmed. In this

section, some methods to program the route for the robot in the barn are described.

Sketch the route
The route can be sketched on a tablet (Skubic, Blisard, Bailey, Adams, & Matsakis, 2004). Before we can

sketch the route, a map of the barn is needed. From the sketch and the map, landmarks and waypoints

are extracted where after the robot tries to drive the sketched route. This is a fast and cheap way to

program the route. The problem is that it is not accurate and not robust to errors in the sketch.

Description
1) Sketch place and direction of the robot on the map

2) Sketch route which needs to be followed

3) Derive waypoints/ description from sketch (Skubic, Blisard, Bailey, Adams, & Matsakis, 2004)

4) Robot drive route and convert description/ waypoints to actions

a. Drive indicated direction

b. If the description match the current observation, execute new action which follows from

the description

c. Save all actions and count wheel turns, distance to wall x.

d. Connect every action with a description/ waypoint

5) From the sketch you can click on a part of the description and go the corresponding action

Pros
- When humans don’t have a detailed map, they make also a sketch of how to drive which don’t

need to be very precise

- A sketch is a fast way of describing the barn and the route which can result in a fast installation

- A map is more intuitive than a sequence of actions

- It is more intuitive to show preferences on a map than with a menu

Cons
- Cows can block the route

- Sketch can be wrong

- Difficult to follow the description/waypoints with the current sensors

- Different corners are difficult to sketch

Sketch the route with straight lines

124

The same idea but there can be sketched with straight lines. This is less user-friendly because the user has

less freedom to draw lines. But because of the straight lines, distances between the (straight) walls are

more accurate which result in a more robust behavior of the robot.

Autonomous path finding
With autonomous path finding the robot can find its own route (Silver, Bagnell, & Stentz, 2010). To make

this possible we need an accurate map and the robot needs to get a better understanding of its

environment which will result in a high investment necessary to make this possible. If the farmer has some

route preferences, it should still be possible to add those preferences.

Pros
- User does not need to program the route

Cons
- Difficult to add preferences if there are preferences

- Very accurate map needed

Select and change automatic generated paths
The robot can generate automatically paths if a map is available (Park, Bell, Kaparias, & Bogenberger,

2007). From the generated paths the user can select the preferred path. To generate robust and accurate

paths, an accurate map is necessary.

Pros
- User does not need to program the route

Cons
- Very accurate map needed

- Need to select a path

- Difficult to update a path with preferences if there are preferences

18.5 Interface
In this section some options are described which can be used for the interface with the current route
programming method.

Action suggestions
During the route programming, the system can give suggestion for the next action, based on actions

already done, other routes, sensor data and the map if available. Two or three action suggestions are

displayed, which the user directly can select. Those suggestions can be calculated with a cost function

(Silver, Bagnell, & Stentz, 2010) which for example depends on previous chosen actions and wall/map

knowledge from ultrasound sensors. This can save the user a lot of time, because he don’t need to search

through the menu for the right action. The problem can be that other actions which are better than the

suggested actions, like specific curves, are not considered by the user.

Sketch commands
Instead of searching for an action in a menu, actions can be found by making a small sketch as command

(Shah, Schneider, & Campbell, 2010, October). From this sketch one action can be derived or more actions

125

can be shown on the suggestion menu. Sketching and accept or select an action from the suggestion menu

if faster than searching for the right action in the menu.

Speech recognition
The user can ask with speech for an action, the system selects the most relevant actions which are

displayed in the suggestion grid. This can be very fast if the speech is directly recognized and correctly

interpreted.

18.6 Feedback
To make routes more robust and accurate, we can let the robot give feedback to the user of the
programmed route. This will help the user to evaluate and to improve the programmed routes.

Feedback during programming
During the programming of the routes, the robot could evaluate the actions and give some feedback about
the accuracy of the actions. On this way the user can learn from the robot too increase the reliability of
the routes.

Ask questions via smartphone
If the robot gets lost or if he wants to know more about the environment to make the route more robust,
he can ask questions (Fong, Thorpe, & Baur, 2003). If the robot gets lost, he can make a snapshot of the
environment and sends the previous actions done. The user can give feedback to the robot with the
smartphone. Also during the route programming, the robot could ask for example some questions about
the correctness of some actions.

Description

- Send latest actions done, expected location and sensor information

- Turn 360 degrees for more detailed information about the walls

- User can give instructions where after the robot can try to get back on track

- Or user knows that there is a problem and can go to the barn

- If user can identify problem, user can update action sequence

Pros
- Problems with robot are identified fast

- Help robot on distance

- Increase reliable of the route when asked questions during the rout programming

Cons
- Difficult to give correct instructions

- User can get annoyed when he gets the same questions about the route many times

18.7 Solution comparison
In Table 32 the solutions are compared on the following points:

Accuracy
Accuracy is a measure on how close the result or a repeated measurement is, compared with the true-

value or other measurements.

126

Robustness
Robustness is defined as "the ability of a system to resist change without adapting its initial stable

configuration” (Wieland & Wallenburg, 2012).

Installation cost
The price is a measure of the cost for every installation, which contains time and extra cost for products

needed for every installation/ route update.

Investment
Investment is defined by the total cost for developing new techniques or products and the procurement

costs for the necessary items.

User-friendly
User-friendly is the ease of use and learnability of a human-made object. This can for example be how

easy it is to use a specific programming method or item, or how easy it is to read a specific map.

Feasibility
Feasibility is an evaluation method on how great the change is that a new method or technique will be in

production in a specific time-frame, and that the knowledge is available to develop the new method. In

this case for the time-frame, one year is available to develop the new method or technique. This time

frame is for projects for the short-term, for this reason project for the long-term have a more negative

feasibility.

In Figure 56 a decision tree is displayed where you can see the decisions that needs to be made. First we

need to decide which route programming technique we will use or explore. When we have chosen a

programming technique and if the technique requires a map we need to choose how we can make a map.

If we make a global map by driving the route, the robot needs to make a local map of the environment

around him. The local map of every place will then be merged to a global map, and after this we can make

an decision on which device we need. This device is needed for the user to program the route or to get

feedback from the robot. After this we can make a decision on what new functionality we need in the

interface, which navigations sensors we need for the robot to navigate the programmed routes, and if we

can use a sort of feedback technique.

127

Table 32 Solution comparison
 A

cc
u

ra
cy

R
o

b
u

st
n

es
s

P
ri

ce

In
ve

st
m

en
t

U
se

r-

fr
ie

n
d

ly

Fe
as

ib
ili

ty

 C
o

m
m

en
ts

Building global map

Handmade -- ++ - + + ++ Everything needs to be measured by hand

Driving + + +/- + + + Need first to drive around

Virtual reality +/- - + - + - Dynamic objects in environment (cows)

Building local map

-Censored-

-Censored-

Route programming

Sketch the route - - + - ++ +/-

Sketch with straight lines +/- +/- + - + +/- Cows can make metal stripes dirty

Autonomous path finding +/- - ++ -- ++ --

Path generator +/- +/- + - ++ -

Interface improvements

Action suggestions +/- +/- + - + ++

Sketch commands + + + - +/- +

Speech recognition +/- +/- + -- + +/-

Feedback

Feedback during
programming

+ + ++ + +/- +

Ask questions via
smartphone

+ + ++ - + +

128

Figure 56 Decision tree with possible solutions

129

18.8 Conclusion and decision
In this section the possible solutions are discussed which can give an answer to the research question

“How can we improve the user friendliness and effectiveness of the route teaching for the Lely Discovery

platform?”. From the possible solutions and the field research done, a decision is made.

Route programming
From Table 32 we can see that the current route teaching method where you must select an action from

a menu has the highest feasibility and we don’t need to invest a lot of money to improve this method. But

the current method has a high price for every installation and is not very user-friendly. The two reason to

choose for a method with a map is the low installation cost because of the time-saving during route-

programming and that the user-friendliness will be much higher. So a solution which use a map will be a

good option. There are different options on how we can make a map where from which we need to choose

one option if we will use a map. From Table 32 we find that driving autonomous the route, to make a map

and to make route options will be the best solution, because of the very low installation price and the high

user friendliness. Driving autonomous is only not reachable on this moment, because of the high

investment and the time needed to develop this new technique, so we can’t use this technique on this

moment. Virtual reality could be a nice alternative but the current technique is not that well developed

to make accurate and robust maps so we also can’t use this technique on this moment. Drones are still to

futuristic and should be further developed before they are reliable enough to use in barns, so this is also

not usable on this moment. -Censored- Sketching the route and the map is not accurate enough which

will result in unreliable routes, so we can’t use this technique directly. Drawing the map with a “Computer

Aided Design” (CAD) program and also drawing the routes with a Computer Aided Route Drawing (CARD)

program can be a good alternative. The technique to draw maps with a CAD program is available and the

installation price is better than the current method.

Current method
From the field research we can conclude that the current route programming method works well for the

technician. He needs to work with it every week so he can program the routes in an acceptable time. The

user-friendliness of the current method is not very high, but this is not a problem for the technician

because he needs to work with it every week. Some Lely-centrums let the farmer program the routes so

that they can sell the robots for a cheaper price. But this can give the farmer a lot of problems, because it

is too difficult for him to make good routes. Those bad programmed routes result that the robot gets stuck

where after the farmer needs to bring the robot back to the charger by hand. This will decrease the trust

in the robot by the farmer and the cost can be high if the technician needs to come back to reprogram the

routes made by the farmer. So another route programming technique can be valuable to the farmer, and

can decrease the price of the robot if the farmer is able to program the routes by himself.

Decision
We need to make a decision if we will improve the current method or that we choose for a programming

technique which makes use of a map. If we improve the current method we can increase the user-

friendliness for both the farmer and the technician. For the technician this will not result in a lower

installation cost. For the farmer it can be possible that a more user-friendly design of the current method

will help him to understand how to program the routes like the technician does. This can result in more

130

reliable routes by the farmer. If we choose for a route programming technique with a map, a CARD

program will be the best option for now. It is only the question off the installation cost will be lower when

the technician needs to program the routes. This because all the distances between the walls needs to be

measured to make a map from the barn. But the new robot has the option to add a map to the robot to

make the robot more reliable. So if a map is added, the installation cost can be lower when the routes are

programmed with a CARD program. If the farmer is able to program good routes, the installation cost can

be much lower. Also the user-friendliness will be much higher if the routes can be programmed with a

CAD like program on the laptop.

Computer Aided Route Drawing (CARD)
Based on the solutions found and the field research and the fact that the new robot has the option to add

a map, we will research if we can improve the user-friendliness and the installation-cost when the user

program the routes with a CARD program. For this we need to build a prototype where the user is able to

make a map and draw the routes on the laptop. With this program the user can export the result to an

xml-file which can be exported to the robot. To make an xml-file with the right route actions and a route

that is reliable and robust, we need to develop an algorithm that is able to translate the map and the

drawn route to the right actions. When the prototype is build and if we are able to transform a map and

a drawn route to reliable route actions, we can do a user study on the available test-farms. From the user

study we need to find an answer to the question whether the user is able to make reliable routes in an

acceptable time and on a satisfying way with this new method.

131

18.9 Research computer aided route design method
In this section is described how the new route programming method should work and which research is

necessary.

18.10 Route programming with CARD tool
With the new route programming method, the user should be able to make a map and to draw the desired

routes on the map. When the routes are drawn on the map, the program should be able to export the

map and for every route an action sequence to the robot. When the user has measured all the distances

between the walls in the barn, the user can make the map and the routes on his computer outside the

barn.

18.11 Algorithm to build the action sequence
From the map and the drawn routes an action sequence should be automatically made. This can be done

with an algorithm which calculate the most accurate and robust route. The algorithm should try to follow

the drawn lines and to find the most robust actions available on a specific place in every situation. The

selected action can for example be wall following if there is a long wall next to the robot. To make the

route more robust, the algorithm needs to find as much as possible bump points. The algorithm should

also take into account errors in the map. The algorithm should be tested on the following points:

- Is the robot still able to follow the automatically created actions when there are one or more

errors of 5 cm in the map? This should be tested by drawing several maps with various errors for

every barn.

- Are the automatically created routes robust enough? Routes should be drawn by different users

and be evaluated by some field testers. The robots should drive the created routes for several

days with not more than one mistake related to the route in two days.

- Are the created routes in line with the drawn routes? The routes should clean the same space in

the same direction of the drawn routes with a minimal coverage of 90%.

18.12 User study
The user should be able to drawn the map and the routes in a reasonable time-frame. The user should do

this in a satisfying way. The program should be tested on the following points:

- Is the user able to draw a map with 1cm accuracy? This should be tested for different farms by

different users.

- Is the user able to draw the routes to his wishes? Are the routes drawn on the paths he wanted

to drive the robot the route. This can be tested by first letting the user explain in the barn how

the route should be done. Then the explanation can be compared with the drawn route.

- Is the user able to draw the map and the route in not more than a half hour?

- Can the user program the routes in the same time or faster than the current programming

method? This can be tested by programming the routes with both methods, in different order.

- Is the user convinced enough that his drawn routes are correctly driven by the robot?

- Is the user satisfied about the program?

- Is the user able to make good routes with the program?

132

18.13 Map making and route programming by drawing
Before we make a program by our self, we need to do some research on existing programs if they are

usable. If this is the case, this can save a lot of time on developing and support.

DraftSight
This program is a copy of AutoCAD and contains almost the same functionality.

Pros
- All the functionality you want is in it

 Cons
- Too complex, you need some hours to get handy with it

- Too much options, the normal user like the farmer or the technician does not know what and how

to use

- Before the program can correctly be used, a lot of settings first need to be set

- Export function to the right format need to be developed. We can also make the export to svg

usable for importing

- Need to pay if we want to write plugins or to use it for an application

- Not possible to define different objects, like a wall and a charger

- We can’t add functionality to give directly feedback off the route to the user

Other simple CAD programs

- We mostly miss some functionality that we just want or need

- Same cons as DraftSight

Other simple drawing programs
- Mostly you can only print the drawing and you can’t export the drawn objects to another file

Edraw Max, floorplan
- Predefined objects

- Walls seen visual nice

- Walls have some thickness which cannot be set

- Usable for home decoration but not for making a map which can be used for programming the

routes

Draw in web-browser
- Miss too much functionality

Conclusion
There are a lot of different programs available on the internet, but it is difficult to find an application that

we can use for our prototype. Mostly they are too complex and if they are simple, they miss too much

functionality. Besides that we also couldn’t find a program that can draw a map and define routes in

another way, so we still need to build that functionality. For this reason we choose to build the prototype

from scratch.

133

	Committee
	Abstract
	Table of Contents
	List of figures
	1 Introduction
	1.1 Situation Sketch
	1.2 Technical specifications Lely Discovery
	1.3 Route programming
	1.4 Requirements for a Good Route
	1.5 Interface
	1.6 Research question

	2 Related work
	2.1 Map making
	2.2 Route teaching
	2.3 Route planning
	2.4 Route preferences
	2.5 User interface
	2.5.1 Gestures
	2.5.2 Sketch

	2.6 Route feedback
	2.7 Conclusion

	3 Field Research
	3.1 Point learned during the field research
	3.2 Conclusion

	4 Improving the current system or making a new system
	5 Prototype route drawer
	5.1 Interface route drawer
	5.2 Functionality route drawer
	5.2.1 Map Maker
	5.2.2 Specify Walls
	5.2.3 Route Maker
	5.2.4 Feedback system

	5.3 System data flow

	6 Requirements route drawer
	6.1 Assumptions and requirements for the Lely Discovery
	6.2 Map drawer
	6.3 Route drawer
	6.4 Route feedback
	6.5 Action output

	7 Scope route drawer
	7.1 Barn layout
	7.2 Lely Discovery design
	7.2.1 Control points

	7.3 Input for algorithm
	7.3.1 Barn map
	7.3.2 Route waypoints

	8 Algorithm design for generating an route action sequence
	8.1 Output
	8.2 Search algorithms
	8.3 Case based algorithms
	8.4 Pseudocode
	8.5 Route cases
	8.6 Action sequence evaluation
	8.7 Conclusion

	9 Test plan
	9.1 Pilot
	9.2 User Study
	9.2.1 Participants
	9.2.2 General objective
	9.2.3 Task
	9.2.4 Preparation
	9.2.5 Procedure
	9.2.6 Instructions and questions

	9.3 Routes from users on robot
	9.3.1 General objective
	9.3.2 Task
	9.3.3 Preparation
	9.3.4 Procedure

	10 Evaluation
	10.1 Background information participants
	10.2 Route results
	10.2.1 Route changes
	10.2.2 Results
	10.2.3 Route problems
	10.2.4 Conclusion

	10.3 Route draw and drive time
	10.4 Route drawing on paper compared
	10.5 Area cleaned
	10.6 System usability
	10.6.1 Results
	10.6.2 Conclusion

	10.7 Open questions
	10.8 Component-Based Usability Questionnaire
	10.8.1 Reliability Usability scales
	10.8.2 Usability rating - Hypothesis testing Component rating
	10.8.3 One-Sample t-Test

	10.9 Interaction between background and results
	10.9.1 Interaction between education and current system
	10.9.2 Interaction between education and drawing system
	10.9.3 Interaction between education, route success and draw time
	10.9.4 Conclusion

	11 Conclusion and recommendations
	12 Future work
	12.1 Adding cases
	12.1.1 Learning from new cases
	12.1.2 Opaque relations

	12.2 Generate automatically routes

	13 Bibliography
	14 Appendix A
	14.1 Requirements Lely Discovery

	15 Appendix B
	15.1 Usability test of route programming on the Lely Discovery
	15.1.1 Introduction
	15.1.2 Background
	15.1.3 Part 1 Current route programming with the E-Link or Smartphone
	15.1.3.1 Current route programming method usability

	15.1.4 Part 2 Instructions and questions about the new route drawing tool
	15.1.4.1 Introduction
	15.1.4.2 Preparations
	15.1.4.3 Tasks
	15.1.4.4 Route drawing module usability
	15.1.4.5 Feedback module usability
	15.1.4.6 Route drawing tool usability

	15.1.5 Map 1
	15.1.6 Map 2
	15.1.7 Map 3
	15.1.8 Map 4
	15.1.9 Map 5

	16 Appendix C
	17 Appendix D
	17.1 Correlation between factors questions and results
	17.2 Answers open questions current programming method
	17.3 Answers open questions route drawing method

	18 Appendix E
	18.1 Solutions
	18.2 Building global map
	18.3 Building local map
	18.4 Route programming
	18.5 Interface
	18.6 Feedback
	18.7 Solution comparison
	18.8 Conclusion and decision
	18.9 Research computer aided route design method
	18.10 Route programming with CARD tool
	18.11 Algorithm to build the action sequence
	18.12 User study
	18.13 Map making and route programming by drawing

