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Abstract.—Perfect phylogenies are fundamental in the study of evolutionary trees because they capture the situation when
each evolutionary trait emerges only once in history; if such events are believed to be rare, then by Occam’s Razor such
parsimonious trees are preferable as a hypothesis of evolution. A classical result states that 2-state characters permit a perfect
phylogeny precisely if each subset of 2 characters permits one. More recently, it was shown that for 3-state characters the
same property holds but for size-3 subsets. A long-standing open problem asked whether such a constant exists for each
number of states. More precisely, it has been conjectured that for any fixed number of states r there exists a constant f (r) such
that a set of r-state characters C has a perfect phylogeny if and only if every subset of at most f (r) characters has a perfect
phylogeny. Informally, the conjecture states that checking fixed-size subsets of characters is enough to correctly determine
whether input data permits a perfect phylogeny, irrespective of the number of characters in the input. In this article, we
show that this conjecture is false. In particular, we show that for any constant t, there exists a set C of 8-state characters such
that C has no perfect phylogeny, but there exists a perfect phylogeny for every subset of at most t characters. Moreover, there
already exists a perfect phylogeny when ignoring just one of the characters, independent of which character you ignore.
This negative result complements the two negative results (“strikes”) of Bodlaender et al. (1992, 2000). We reflect on the
consequences of this third strike, pointing out that while it does close off some routes for efficient algorithm development,
many others remain open. [Four gamete condition; local obstructions conjecture; maximum parsimony; perfect phylogeny;
phylogenetic tree.]

The traditional model for capturing the evolution of a
set X of contemporary species or taxa is the phylogenetic
tree. In such trees, internal nodes represent hypothetical
(common) ancestors. The central goal in phylogenetics is
to infer phylogenetic trees given only data obtained from
(or observed at) X for example DNA sequences, amino
acid sequences, or morphological features (Felsenstein
2004). The data observed at a taxon x in X is typically
represented as an ordered length-m vector of discrete
states, where the states are elements of some size-r
alphabet. For example, if we have a length-200 sequence
of aligned DNA data for each of the X taxa, where X
denotes the number of taxa in X, this can be summarized
as a matrix M on X rows and 200 columns, where
each entry of the matrix is an element from {A,G,C,T},
so r=4. Each of the 200 columns is then known as a
character.

Given such data, how do we quantify the “goodness
of fit” of the data on a given tree T? A classical optimality
criterion for T is the parsimony score of T. Informally,
this is the minimum number of state-changes that
would necessarily be incurred along the branches of
T if the data observed at X had evolved following the
topology of the tree. If, for each character, each state
is introduced at most once along the branches of the
tree, we say that T is a perfect phylogeny for the data
(Semple and Steel 2003). If such a tree T exists, we say
that the data permit a perfect phylogeny. The parsimony
score of each character is then equal to the number of
observed states (i.e., number of distinct states in the
corresponding column) minus one. Perfect phylogeny

is thus the best case for phylogenetic trees constructed
under the popular maximum parsimony optimality
criterion, where (motivated by Occam’s Razor) trees
are preferred that explain the observed data with as
few evolutionary changes as possible (Felsenstein 2004).
We refer to Figure 1 for clarifying examples of perfect
phylogenies.

Determining whether the input data permits a perfect
phylogeny is a fundamental combinatorial problem
in phylogenetics, with a long history [see Lam et al.
(2011) and Shutters et al. (2013) for excellent overviews],
and it has also attracted substantial attention from
the discrete optimization community (Bodlaender et al.
1992; Fernández-Baca 2001; Gramm et al. 2008; Lam
et al. 2011; Misra et al. 2011). The latter is due to links
with the literature on (variously) graph triangulations,
parameterized complexity, and Steiner Trees. For binary
data (r=2) a classical result from Buneman from 1971
states that the data permit a perfect phylogeny if and
only if every pair of characters (i.e., every pair of
columns) permits a perfect phylogeny (Buneman 1971).
A consequence of this is that, for binary data, looking
only “locally” at the data is sufficient to determine
the presence or absence of perfect phylogeny. Is testing
pairs of characters also sufficient for r≥3? In 1975,
Fitch refuted this claim by showing data which does
not permit a perfect phylogeny, but where every pair
of characters does (Fig. 1) (Fitch 1975, 1977). However,
later it was shown that for r=3 the data permit a
perfect phylogeny if and only if all size-3 subsets of the
characters do (Lam et al. 2011).
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a) b) c)

FIGURE 1. The example of Fitch (1975, 1977), showing that f (3)>2. The five leaves x1,...,x5 have sequences AAA, ACC, CGC, CCG, and GAG,
respectively. In our notation, the character set is C={�1,�2,�3}, where �1 =x1x2|x3x4|x5, �2 =x1x5|x2x4|x3, and �3 =x1|x2x3|x4x5. For example,
�1 =x1x2|x3x4|x5 indicates that, at the first position, x1 and x2 have the same state, x3 and x4 have the same state, and x5 has a third state. The
figure shows a perfect phylogeny for each pair of characters. However, no perfect phylogeny exists for the full character set (this can easily be
observed by checking that each of the three perfect phylogenies is the unique solution for its respective pair of characters). a) {�1,�2}. b) {�2,�3}.
c) {�1,�3}.

The intriguing question thus arises: is it true that,
for every number of states r≥2, there exists a number
f (r) such that r-state data permits a perfect phylogeny if
and only every size-f (r) subset of the characters does?
To make this more concrete: could it be true that r-
state data, irrespective of the number of characters in
the input, permits a perfect phylogeny if and only if
every subset of characters of size at most, say, r2 permits
a perfect phylogeny? How about 2r instead of r2? Or
22r

? Or is it the case that, however large we choose
this function f (r), at some point a sufficiently large
input will be encountered whereby focusing only on
size f (r) subsets will deceive us into thinking that the
input permits a perfect phylogeny—when in fact it does
not? A conjecture, which has thus been circulating in
various forms for approximately 50 years [see Habib
and To (2011) for a recent treatment], states that such
a constant f (r) does indeed exist for each r≥2. This
would mean that, provided f (r) is chosen to grow quickly
enough, there is no danger that we will be deceived: we
can always determine perfect phylogeny by restricting
our attention to subsets of characters of size at most f (r).
Here, we refer to this as the local obstructions conjecture
for perfect phylogeny. Note that f (r) should depend only
on r and no other parameters (such as X or the number
of characters in the input). We know that f (2)=2 and
f (3)=3, but what about larger r? If the local obstructions
conjecture is true, how fast does f (r) grow?

In the absence of positive progress—it is still unknown
whether f (4) exists—various authors have described
lower bounds on f (r), if it exists. It is known that f (4)≥
5 (if it exists) (Habib and To 2011) and the currently
strongest general lower bound is given in Shutters et al.
(2013), where it is shown that for r≥2, f (r)≥� r

2�� r
2�+1

(if it exists). Such results do not, however, disprove the
local obstructions conjecture, since f (r) might still exist
but grow at least quadratically.

Here we show emphatically that the local obstructions
conjecture is false, forming a third strike against perfect
phylogeny. [The first is the NP-hardness of the problem

(Bodlaender et al. 1992), and the second excludes
the existence of certain parameterized algorithms
(Bodlaender et al. 1992; Bodlaender et al. 2000)].
Specifically, we show that for every even n≥4 there
exists an 8-state input with 2n taxa and 2n−4 characters
with the following property: the input does not permit
a perfect phylogeny, but all proper subsets do permit a
perfect phylogeny. This shows that, to decide whether
there exists a perfect phylogeny for character data with
at least 8 states, it is not enough to check all groups of a
certain number of characters. It is necessary to consider
all characters simultaneously. In particular, this shows
that the constant f (8) cannot exist (and consequently
also f (9),f (10),... do not exist). We emphasize that our
construction can be extended to any number of taxa, odd
or even, as long as it is at least 8. It is not a transient
phenomenon that disappears as the number of taxa
increases.

One implication of this result is the following. For r=2
the fact that f (r) exists forms the basis of an efficient,
fixed parameter tractable algorithm for the near-perfect
phylogeny problem (Sridhar et al. 2007). [See Cygan et al.
(2015) for an introduction to parameterized complexity].
Essentially, this problem asks: “does there exist a tree
that has a parsimony score of at most k with respect to
the input data?” The algorithm leverages the insight that
state-changes which occur above the perfect phylogeny
lower bound must occur inside small f (2)-size subsets
of the input. Given that f (2) is a constant, there are
not too many size-f (2) subsets and inside such a subset
there are not too many places where the state change
could occur. However, our result shows that such an
approach is doomed to fail for r≥8. In a similar vein, the
line of attack posed in Shutters et al. (2013) to establish
the fixed parameter tractability of the character removal
problem (i.e., deleting a minimum number of characters
to obtain a perfect phylogeny), will also fail for r≥8.
This is unfortunate, since data sets certainly do arise
in practice with a large number of states: for amino
acids r=20, and nonmolecular character data such as
that which arises in linguistics can easily have 8 or more
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states. Another negative consequence of our result is the
following. If we allow gaps/indels in the input, we can
reduce the number of states in our construction from
8 to 4. This shows that the conjecture also fails for the
practical case of aligned DNA data (without relying on
any complexity assumption).

On the positive side, f (r) might still exist for r∈
{4,5,6,7} (which includes the case of DNA data without
gaps, i.e., r=4). Also, although our result is negative for
algorithmic approaches that look only at small subsets
of the input in isolation, this is certainly not a case of
three strikes and out! In particular, it does not exclude
algorithmic approaches that analyze the input data in a
more sophisticated way. For example, the question “does
the input permit a perfect phylogeny,” although NP-hard
in general (Bodlaender et al. 1992), can be answered in
time O(22rm2|X|) using dynamic programming (Kannan
and Warnow 1997), which for fixed r becomes O(m2|X|).
Similarly, it is still possible that fixed parameter tractable
algorithms exist to solve the near-perfect phylogeny
problem, but more advanced algorithmic approaches
will be required. Despite the refutation of the local
obstructions conjecture, perfect phylogeny will continue
to play a central role in both applied and theoretical
phylogenetics.

The structure of the article is as follows. We start
by giving an informal description of an example of
the construction for 8 taxa. After that, we give formal
mathematical definitions. In “Main Results,” we first
describe the most important parts of the construction
of the general counter example and explain the main
ideas behind the construction. We then provide the
full construction, and finally prove that this gives a
counterexample to the local obstructions conjecture for
perfect phylogeny.

Example for Eight Taxa
In this section, we describe our counter example for the

case of 8 taxa, the smallest number of taxa for which the
construction works. We describe four (6-state) characters
that are incompatible, that is, they do not permit a perfect
phylogeny, while any three of the four characters do
permit a perfect phylogeny. Note that this example is not
a new result in itself, because it was already known that,
for 6-state characters, we would need to consider at least
�6

2�� 6
2�+1=10 characters simultaneously (Shutters et al.

2013). Nevertheless, the example is of interest because
it can be generalized to higher numbers of taxa and
characters, as we will show in the remaining sections,
thus proving that the local obstructions conjecture is
false.

Consider eight taxa named a1,a2,a3,a4,b1,b2,b3,b4
and the following four characters:

�A =a1b1b2|a2a3b3a4b4

�2 =a1|b1|a2a3|b2b3|a4|b4

�3 =a1a2|b1|b2|a3|a4|b3b4

�B =a1b1a2b2b3|a3a4b4.

The names of the characters might seem odd, but they
correspond to the names used in the general counter
example, where they will make more sense. Also note
that it actually does not matter for the problem which
states taxa have. The only thing that matters is which taxa
have the same state, this is indicated in the characters
by separating blocks of taxa with the same state by |.
For example, in the first character �A, taxa a1,b1, and b2
all have the same state while a2,a3,b3,a4, and b4 have a
different state. In�2, we have six states: a2 and a3 have one
state, b3 and b4 have a second state, and the remaining
four taxa all have their own unique state. The fact that we
have only 6 character states is due to the small number
of taxa. The general example will have 8 character states.

Figure 2 shows that any combination of three of the
four characters does permit a perfect phylogeny.

We now argue that the combination of all four
characters is incompatible, which is a bit more work. First
we look at the characters �A and �B. In character �A,
taxa a1,b1, and b2 all have the same state, while all
other taxa have a different state. Hence, in any perfect
phylogeny, there must be a branch with the taxa a1,b1,
and b2 on one side and the remaining taxa on the other
side. Similarly, character �B says that there must be a
branch with the taxa a3,a4, and b4 on one side and the
remaining taxa on the other side. What the parts of the
tree containing a1,b1,b2 and a3,a4,b4 look like is not
important. What is important is what happens in the
middle part of the tree, which contains the remaining
taxa a2 and b3.

Basically, characters �2 and �3 give us contradictory
information about the order of taxa a2 and b3, see
Figure 3. First look at character �3. Because taxa a1 and a2
have the same state, and taxa b3 and b4 have another
state, we know that the path connecting a1 and a2 may
not overlap with the path connecting b3 and b4. Hence a2
must be on the side of a1 and b3 on the side of b4, as
indicated in Figure 3a. In a similar way, character �2 tells
us exactly the opposite, that is, that b3 is on the side of b2
(and a1) and a2 is on the side of a3 (and b4), as indicated
in Figure 3b. Hence, a perfect phylogeny would need to
simultaneously look like Figure 3a and like Figure 3b,
which is impossible. We can therefore conclude that no
perfect phylogeny exists.

In the remaining sections, we show how to generalize
this example to more taxa, thereby also increasing the
number of characters. We note that the proofs for the
general case will be more involved.

Mathematical Definitions
Let X be a set of labels. For any positive integer r, an

r-state character on X is a partition �=S1|S2|...|Sr′ , where
X is the union of S1,...,Sr′ and r′ ≤r. We refer to the sets
S1,...,Sr′ as states. For the sake of brevity, in this context
we will sometimes write x1 ...xt as shorthand for a set
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a) b)

c) d)

FIGURE 2. Four trees showing that, for eight taxa, ignoring one character of �A,�2,�3, and �B makes the remaining three characters compatible.
a) Tree T1 displaying �2,�3, and �B. b) Tree T2 displaying �A,�3, and �B. c) Tree T3 displaying �A,�2, and �B. d) Tree T4 displaying �A,�2,
and �3.

a) b)

FIGURE 3. Illustration of the proof that, for eight taxa, characters �A,�2,�3, and �B are incompatible. a) Structure of a perfect phylogeny
implied by �A,�3, and �B. b) Structure of a perfect phylogeny implied by �A,�2, and �B.

{x1,...,xt}. Thus for example, if X ={x1,...,xn} then �=
x1|x2|x3x4|{xi : i≥5} is a character on X. (Note that some
states may be empty; in such cases we may treat these
states as nonexistent. Thus for example if Si =∅ then
S1|S2|...|Sr′ is equivalent to S1|S2|...|Si−1|Si+1|...|Sr′ .)

A tree T on X is an unrooted tree with leaves bijectively
labelled with the elements of X. Given a subset S⊂X,
let T[S] denote the minimal subtree of T whose vertices
contain S. We note that degree-2 vertices are usually not

allowed in phylogenetic trees; however our definition of
T[S] allows for degree-2 vertices, as this makes certain
proofs simpler and does not affect the results.

For any positive integer n, [n] denotes the set {1,...,n}.
We say T displays a character �=S1|...|Sr′ on X if there
exists a partition V1|...|Vr′ of the vertices of T, such
that the subtree of T induced by Vi is connected and
Vi ∩X =Si for each i∈[r′]. Equivalently, T displays � if
the subtrees T[Si] and T[Sj] are vertex-disjoint for i �= j.
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We say T is compatible with a set C of characters (or
equivalently, C is compatible with T) if T displays � for
each �∈C. If this is the case, we also say that T is a perfect
phylogeny for C. We say a set C of characters is compatible
if there exists a perfect phylogeny for C.

In this article, we show that the following conjecture
is false:

Conjecture 1.1. For each positive integer r, there exists an
integer f (r) such that for any finite set X and any set C of
r-state characters on X, C is compatible if and only if every
subset of at most f (r) characters in C is compatible.

MAIN RESULTS

Counterexample: Main Concepts
In this section, we outline the main concepts and

ideas used in the construction of our counterexample
to Conjecture 1.1. We also define the label set X and two
trees on X that will be used to show that most subsets of
characters are compatible.

In what follows, let n be any positive even integer.

Definition 2.1. Given a positive even integer n, let X =
{a1,...an,b1,...,bn}. For any i∈[n], let X≤i ={aj,bj :1≤ j≤ i},
and X≥i ={aj,bj :m≥ j≥ i}.

We now define two trees A and B on X. These trees
appear quite similar on a large scale—they are both
lobsters (trees in which every vertex is of distance at most
2 from a central path), with leaves of smaller index closer
to one end of the central path than leaves of larger index.
However, on a local scale they appear quite different—
for example, each x∈X has a different sibling in A than
in B.

Informally, A consists of a number of cherries that
are attached as pendant subtrees to a central path. The
endpoints of the path are a1 and an. Starting at a1
and walking along the path, the first cherry attached
is (b1,b2), then (a2,a3), then (b3,b4), and so on. The
definition of tree B is similar to A, but with the roles
of the a and b leaves reversed. (Fig. 4.)

We give a more formal definition below.

Definition 2.2. The tree A on X is defined as follows:
A has leaves a1,...,an, b1,...,bn, and internal nodes
u1,...,un−1,v1,...,vn−1. A contains a central path a1,u1,
u2,...,un−1,an. For each i∈[n−1], there is an edge uivi. For
odd i∈[n−1], the vertex vi is adjacent to leaves bi and bi+1.
For even i∈[n−2], the vertex vi is adjacent to leaves ai and
ai+1.

The tree B on X is defined as follows: B has leaves a1,...,an,
b1,...bn and internal nodes u1,...,un−1,v1,...,vn−1. B
contains a central path b1,u1, u2,...,un−1,bn. For each i∈
[n−1], there is an edge uivi. For odd i∈[n−1], the vertex vi

a)

b)

FIGURE 4. The lobsters A and B. The middle part of each figure shows some of the vertices near ui, for i even, and near uj , for j> i and j odd.
a) Lobster A. b) Lobster B.
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a)

b)

FIGURE 5. How A and B each display the character �i, for i even.
a) Lobster A. b) Lobster B.

is adjacent to leaves ai and ai+1. For even i∈[n−2], the vertex
vi is adjacent to leaves bi and bi+1.

We next describe a set of characters �i for each i such
that 2≤ i≤n−2 (we note that this is not the full set of
characters that will be used in the complete example).
Informally, each character �i can be thought of as caring
about a small local part of the tree. It roughly enforces
that if one segment of the tree looks like A, then so does
the next segment along.

For each 2≤ i≤n−2, define

�i =X≤i−2|ai−1|bi−1|aiai+1|bibi+1|ai+2|bi+2|X≥i+3.

(Note that for i=2 the set X≤i−2 is empty;
thus �2 could be equivalently written as
a1|b1|a2a3|b2b3|a4|b4|X≥5. Similarly, for i=n−2 the
set X≥i+3 is empty and so �n−2 can be written as
X≤n−4|an−3|bn−3|an−2an−1|bn−2bn−1|an|bn.)

Observe that both A and B display �i for each 2≤ i≤
n−2, but the structure of the subtrees involved is quite
different between the two. In particular, assuming i is
even, in A the path from ai to ai+1 has length 2, whereas
in B the same path has length 6, and similarly in A the
path from bi to bi+1 has length 6, whereas in B it has
length 2. (See Figure 5 for an example when i is even.)

With the addition of further characters (to be described
in the next section), we will be able to enforce that A
and B are in fact the only trees compatible with all those
characters. In order to make the full set of characters
incompatible, we will add two more characters �A and

�B, defined as follows:

�A =a1b1b2|{a2}∪X≥3

�B =X≤n−2 ∪{bn−1}|an−1anbn.

Observe that �A is displayed by A but not by B, while
�B is displayed by B but not by A.

We will claim that every strict subset of this set of
characters is compatible. In order to show this, we will
prove that for each integer i between 2 and n−2, there is
a tree displaying all characters except �i. The intuition
here is as follows: �i enforces something about the local
structure of a perfect phylogeny; in particular it is the
only character in the constructed set requiring that the
path from ai to ai+1 and the path from bi to bi+1 are vertex-
disjoint. Removing �i allows us to consider X as being
made of two parts: X≤i and X≥i+1. We can construct a
tree which is isomorphic to A when restricted to X≤i ,
and isomorphic to B when restricted to X≥i+1. Such a
tree is denoted AiB, and is defined below (Fig. 6).

Definition 2.3. For 2≤ i≤n−2, the tree AiB on X
is defined as follows: AiB has leaves a1,...,an,b1,...,bn
and internal nodes u1,...,ui−1,ui+1,...,un−1, v1,...,vi−1,
vi+1,...,vn−1,uA,uB (note that AiB does not have vertices
ui or vi but instead has uA and uB). AiB contains a central
path a1,u1,u2,...,ui−1,uA,uB,ui+1,...,un−1,bn. For each j∈
[n−1]\{i}, there is an edge ujvj. If i is even then uA is adjacent
to ai and uB is adjacent to bi+1. On the other hand, if i is odd
then uA is adjacent to bi and uB is adjacent to ai+1. For j< i,
the vertex vj is adjacent to bj and bj+1 if j is odd, and adjacent
to aj and aj+1 if j is even. For j> i, vj is adjacent to aj and aj+1
if j is odd, and adjacent to bj and bj+1 if j is even.

Observe that AiB does not display �i, but it does
display �A and �j for each j< i (by a similar argument
to how A displays those characters), and it does display
�B and �j for each j> i (by a similar argument to how B
displays those characters).

It follows that any strict subset of characters in the set
is compatible (since any subset missing �A is compatible
with B, any subset missing �B is compatible with A, and
any subset missing �i for some 2≤ i≤n−2 is compatible
with AiB).

In the next section, we make the concepts described
above more formal. The main work will be to define
additional characters (used to enforce that any tree
compatible with all characters except �B must have
a similar structure to A), and then to prove formally
that the observations outlined above (that the full
set of characters is incompatible, and that it becomes
compatible if any character is removed) hold when the
new characters are considered.

Full Counterexample
We now describe the full set C of 8-state characters

on X. C will be a set that is incompatible, but such that
every strict subset of C is compatible. In what follows we
assume that n is a positive even integer, and that n≥6
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a)

b)

FIGURE 6. The lobster AiB, for the cases when i is even and i is odd. a) Lobster AiB for i even. b) Lobster AiB for i odd.

(as we already gave a counterexample with n=4 in the
Introduction).

(In order to avoid tedious repetition of definitions, for
some values of j the characters below may be described
as containing elements ah or bh for h /∈[n]. Such elements
should be treated as nonexistent, as they are not in X.
Note that certain states of some characters will be empty
as a result.)

Definition 2.4. For each 2≤ j≤n−2, define the following
character on X:

�j =X≤j−2|aj−1|bj−1|ajaj+1|bjbj+1|aj+2|bj+2|X≥j+3.

For 3≤ j≤n−1, define the following characters:

�j =

⎧⎪⎪⎨
⎪⎪⎩

X≤j−3 ∪bj−2bj−1|aj−2|aj−1|bj|bj+1|ajaj+1
∪X≥j+2 if j is even

X≤j−3 ∪aj−2aj−1|bj−2|bj−1|aj|aj+1|bjbj+1
∪X≥j+2 if j is odd.

Finally define the two characters:

�A =a1b1b2|{a2}∪X≥3

�B =X≤n−2 ∪{bn−1}|an−1anbn.

Let C be the set of all 2n-4 characters described above.

Observe that the construction of C is the same as in
the section “Counterexample: Main Concepts” with the
addition of characters �j for 3≤ j≤n−1. We give a full

proof that C is incompatible and that every strict subset
of C is compatible in the Appendix.

DISCUSSION

First note that we have only described a counter
example for the case that there are 2n taxa with n≥4
even. However, we can easily create examples for any
number of taxa, that is at least 8, by “copying” taxa. More
precisely, we can replace, say, a1 by any number of taxa
that all have the same state as a1 in all characters.

Secondly, we describe how our counter example can be
seen as a counter example with four different states and
gaps. Considering Definition 2.4, observe that each of the
characters has at most four states that contain more than
one taxon. The remaining states contain just one taxon
and can therefore be replaced by gaps (indicating that we
do not know which state the taxon has in that character).
This gives a counter example with four different states
and gaps. One can argue that the local obstruction
conjecture is anyway unlikely to be true even for binary
characters with gaps, because if it were true we would
then be able to solve the quartet compatibility problem
[see, e.g., Semple and Steel (2003)] in polynomial time,
which would in turn imply that the complexity classes P
and NP would coincide. However, one appealing feature
of our counter example is that it does not rely on any
assumptions on complexity classes.
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We conclude the paper by reiterating that, if we do not
allow gaps, the local obstructions conjecture restricted to
characters with 4,5,6, or 7 states is still open.
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APPENDIX

COUNTEREXAMPLE PROOF

In this section, we show that every strict subset of C
is compatible and that C itself is incompatible. We begin

by proving formally that the lobster A displays every
character in C except for �B.

Compatibility of C\{�B}.— Before continuing, we note
that if a state S of some character � consists of a single
element of X, then for any tree T on X, the subtree
T[S] is automatically vertex-disjoint from T[S′] for any
other state S′ of �. This is because T[S] consists only of
a single leaf in T, and as S and S′ are disjoint, T[S′] does
not contain that leaf. Therefore, when showing that a
tree displays a particular character, we may focus on the
states of size at least 2 in that character.

Lemma A.5. Lobster A displays �A.

Proof . Observe that cutting the edge u1u2 separates
A into two trees, one with leaves a1,b1,b2 and one with
leaf set {a2}∪X≥3. It follows that the subtrees of AB
spanning these two sets are vertex-disjoint, and so A
displays �A. �

Lemma A.6. For each 2≤ j≤n−2, lobster A displays �j.

Proof . The nonsingleton states of �j are X≤j−2,
{aj,aj+1},{bj,bj+1}, and X≥j+3. Cutting the edge uj−2uj−1
separates X≤j−2 from the other nonsingleton states.
Similarly, cutting the edge uj+1uj+2 separates X≤j+3 from
the other nonsingleton states. It remains to show that the
trees A[{aj,aj+1}], A[{bj,bj+1}] are vertex disjoint. This can
be seen by cutting the edge ujvj (as vj is adjacent either
to the leaves aj and aj+1, or to the leaves bj and bj+1,
depending on whether j is even or odd). �

Lemma A.7. For each 3≤ j≤n−1, lobster A displays �j.

Proof . The character �j has two nonsingleton states.
If j is even, then the nonsingleton states are X≤j−3 ∪
{bj−2,bj−1} and {aj,aj+1}∪X≥j+2. Note that in this case
bj−2 is adjacent to vj−3, bj−1 is adjacent to vj−1, and aj
and aj+1 are both adjacent to vj. It follows that cutting the
edge uj−1uj (which separates vj from vj−1 and vj−3) will
separate the two nonsingleton states from each other.

If j is odd, then the nonsingleton states are X≤j−3 ∪
{aj−2,aj−1} and {bj,bj+1}∪X≥j+2. In this case, aj−2 is
adjacent to vj−3 (unless j=3, in which case aj−2 =a1 is
adjacent to u1 =uj−2), aj−1 is adjacent to vj−1, and bj and
bj+1 are adjacent to vj. Thus, we again have that cutting
the edge uj−1uj will separate the two nonsingleton states
from each other. �

The next lemma follows from Lemmas A.5, A.6,
and A.7.

Lemma A.8. Lobster A is compatible with C\{�B}.

Compatibility of C\{�A}.—We next prove formally that
the lobster B displays every character in C except for �A.
The proofs here are very similar to those for A.

Lemma A.9. Lobster B displays �B.
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Proof . Observe that cutting the edge un−2un−1
separates B into two trees, one with leaves an−1,an,bn
and one with leaf set X≤n−2 ∪{bn−1}. It follows that the
subtrees of B spanning these two sets are vertex-disjoint,
and so B displays �B. �

Lemma A.10. For each 2≤ j≤n−2, lobster B displays �j.

Proof . The nonsingleton states of �j are X≤j−2,
{aj,aj+1}, {bj,bj+1}, and X≥j+3. Cutting the edge uj−2uj−1
separates X≤j−2 from the other nonsingleton states.
Similarly, cutting the edge uj+1uj+2 separates X≤j+3 from
the other nonsingleton states. It remains to show that the
trees B[{aj,aj+1}], B[{bj,bj+1}] are vertex disjoint. This can
be seen by cutting the edge ujvj (as vj is adjacent either
to the leaves aj and aj+1, or to the leaves bj and bj+1,
depending on whether j is even or odd). �

Lemma A.11. For each 3≤ j≤n−1, lobster B displays �j.

Proof . The character �j has two nonsingleton states.
If j is even, then the nonsingleton states are X≤j−3 ∪
{bj−2,bj−1} and {aj,aj+1}∪X≥j+2. Note that in this case
bj−2 and bj−1 are adjacent to vj−2, aj is adjacent to vj−1,
and aj+1 is adjacent to vj+1. It follows that cutting the
edge uj−2uj−1 (which separates vj−2 from vj−1 and vj+1)
will separate the two nonsingleton states from each
other.

If j is odd, then the non-singleton states are X≤j−3 ∪
{aj−2,aj−1} and {bj,bj+1}∪X≥j+2. In this case, aj−2 and
aj−1 are adjacent to vj−2, bj is adjacent to vj−1, and bj+1 is
adjacent to vj+1 (unless j=n−1, in which case bj+1 =bn is
adjacent to un−1 =uj). Thus, we again have that cutting
the edge uj−2uj−1 will separate the two non-singleton
states from each other. �

The next lemma follows from Lemmas A.9, A.10,
and A.11.

Lemma A.12. Lobster B is compatible with C\{�A}.

Compatibility of C\{�i} for each 2≤ i≤n−2.—We
now show that for any 2≤ i≤n−2, the set C\{�i}
is compatible. Recall the definition of Lobster AiB
(Definition 2.3 and Fig. 6). We will show that AiB displays
every character in C except for �i.

Recall that AiB restricted to X≤i is isomorphic to
A[X≤i], while AiB restricted to X≥i+1 is isomorphic to
B[X≥i+1].
Lemma A.13. For any 2≤ i≤n−2, lobster AiB displays �A
and �B.

Proof . To see that AiB displays �A, observe that
cutting the edge u1u2 (or u1uA if i=2) separates AiB into
two trees, one with leaves a1,b1,b2 and one with leaf set
{a2}∪X≥3. It follows that the subtrees of AiB spanning
these two sets are vertex-disjoint, and so AiB displays
�A. Similarly, to see that AiB displays �B, observe

that cutting the edge un−2un−1 (or uBun−1 if i=n−2)
separates AiB into two trees, with leaf sets X≤n−2∪{bn−1}
and {an−1anbn}, respectively. �

Lemma A.14. For any 2≤ i,j≤n−2 such that i �= j, lobster
AiB displays �j.

Proof . The nonsingleton states of �j are X≤j−2,
{aj,aj+1}, {bj,bj+1}, and X≥j+3. Cutting the edge uj−2uj−1
(uj−2uA if j= i+1, uBuj−1 if j= i+2) separates X≤j−2 from
the other nonsingleton states. Similarly, cutting the edge
uj+1uj+2 (uj+1uA if j= i−2, uBuj+2 if j= i−1) separates
X≤j+3 from the other nonsingleton states. It remains to
show that the trees AiB[{ajaj+1}], AiB[{bjbj+1}] are vertex
disjoint. This can be seen by cutting the edge ujvj (as vj is
adjacent either to the leaves ai and ai+1, or to the leaves
bi and bi+1). �

Lemma A.15. For any 2≤ i≤n−2 and for each 3≤ j≤n−1,
lobster AiB displays �j.

Proof . The character �j has two nonsingleton states;
these are either X≤j−3 ∪{bj−2,bj−1} and {aj,aj+1}∪X≥j+2
(if j is even) or X≤j−3 ∪{aj−2,aj−1} and {bj,bj+1}∪X≥j+2
(if j is odd).

We first consider the case when j /∈{i,i+1,i+2}. In this
case, there are four possibilities to consider:

• If j is even and j< i, then cutting the edge
uj−1uj separates X≤j−3 ∪{bj−2,bj−1} from
{aj,aj+1}∪X≥j+2.

• If j is even and j> i+2, then cutting the
edge uj−2uj−1 separates X≤j−3 ∪{bj−2,bj−1} from
{aj,aj+1}∪X≥j+2.

• If j is odd and j< i, then cutting the edge
uj−1uj separates X≤j−3 ∪{aj−2,aj−1} from
{bj,bj+1}∪X≥j+2.

• If j is odd and j> i+2, then cutting the
edge uj−2uj−1 separates X≤j−3 ∪{aj−2,aj−1} from
{bj,bj+1}∪X≥j+2.

We now consider the case when j∈{i,i+1,i+2}, and
suppose first that i is even.

• If j= i, then cutting ui−1uA separates X≤j−3 ∪
{bj−2,bj−1} from {aj,aj+1}∪X≥j+2.

• If j= i+1, then cutting the edge uAuB separates
X≤i−2 ∪{ai−1,ai}=X≤j−3 ∪{aj−2,aj−1} from
{bi+1,bi+2}∪X≥j+3 ={bj,bj+1}∪X≥j+2.

• If j= i+2, then cutting uBui+1 separates X≤i−1∪
{bi,bi+1}=X≤j−3 ∪{bj−2,bj−1} from {ai+2,ai+3}∪
X≥i+4 ={aj,aj+1}∪X≥j+2.

Finally, consider the case when j∈{i,i+1,i+2}, and i
is odd.
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• If j= i, then ui−1uA separates X≤j−3 ∪{aj−2,aj−1}
from {bj,bj+1}∪X≥j+2.

• If j= i+1, then cutting the edge uAuB separates
X≤i−2 ∪{bi−1,bi}=X≤j−3 ∪{bj−2,bj−1} from
{ai+1,ai+2}∪X≥j+3 ={aj,aj+1}∪X≥j+2.

• If j= i+2, then cutting uBui+1 separates X≤i−1 ∪
{ai,ai+1}=X≤j−3 ∪{aj−2,aj−1} from {bi+2,bi+3}∪
X≥i+4 ={bj,bj+1}∪X≥j+2.

Thus in each case, we have that AiB displays �j. �

The next lemma follows from Lemmas A.13, A.14,
and A.15.

Lemma A.16. For any i∈[n−1], lobster AiB is compatible
with C\{�i}.

Compatibility of C\{�i} for each 3≤ i≤n−1.— We now
show that for any 3≤ i≤n−1, the set C\{�i} is
compatible. To this end, we need to define a new type of
tree AiB, which we will show is compatible with C\{�i}.
This tree will be isomorphic to A when restricted to
X≤i−1, and isomorphic to B when restricted to X≥i. This
property is also true of Ai−1B, but the structure of AiB is
slightly different (Fig. A.1).

Definition A.17. For 2≤ i≤n−2, the tree AiB on X
is defined as follows: AiB has leaves a1,...,an,b1,...,bn
and internal nodes u1,...,ui−2, ui,...,un−1, v1,...,vi−2,
vi,...,vn−1, uA, uB (note that AiB does not have vertices
ui−1 or vi−1 but instead has uA and uB). AiB contains
a central path a1,u1,u2,...,ui−2,uA, uB,ui,...,un−1,bn. For
each j∈[n−1]\{i−1}, there is an edge ujvj. If i is even then
uA is adjacent to ai and uB is adjacent to bi−1. On the other
hand, if i is odd then uA is adjacent to bi and uB is adjacent to
ai−1. For j< i−1, the vertex vj is adjacent to bj and bj+1 if j is
odd, and adjacent to aj and aj+1 if j is even. For j> i−1, vj is
adjacent to aj and aj+1 if j is odd, and adjacent to bj and bj+1
if j is even.

Observe that for i even, AiB is equivalent to Ai−1B with
the leaves ai and bi−1 swapped; for i odd, AB is equivalent
to Ai−1B with the leaves ai−1 and bi swapped. We are
now ready to show that AiB displays every character in
C except for �i.

Lemma A.18. For any 3≤ i≤n−1, lobster AiB displays �A
and �B.

Proof . To see that AiB displays �A, observe that
cutting the edge u1u2 (or u1uA if i=3) separates AiB into
two trees, one with leaves a1,b1,b2 and one with leaf set
{a2}∪X≥3. It follows that the subtrees of AiB spanning
these two sets are vertex-disjoint, and so AiB displays
�A. Similarly, to see that AiB displays �B, observe
that cutting the edge un−2un−1 (or uBun−1 if i=n−1)
separates AiB into two trees, with leaf sets X≤n−2 ∪{bn−1}
and {an−1anbn}, respectively. �

Lemma A.19. For any 3≤ i≤n−1 and for each 2≤ j≤n−2,
lobster AiB displays �j.

Proof . The nonsingleton states of �j are X≤j−2,
{aj,aj+1}, {bj,bj+1} and X≥j+3. Cutting the edge uj−2uj−1
(uj−2uA if j= i, uBuj−1 if j= i+1) separates X≤j−2 from
the other nonsingleton states. Similarly, cutting the edge
uj+1uj+2 (uj+1uA if j= i−3, uBuj+2 if j= i−2) separates
X≤j+3 from the other nonsingleton states.

It remains to show that the trees AiB[{ajaj+1}],
AiB[{bjbj+1}] are vertex disjoint. For j �= i−1, this can be
seen by cutting the edge ujvj (as vj is adjacent either to
the leaves ai and ai+1, or to the leaves bi and bi+1). For
j= i−1, this can be seen by cutting the edge uAuB. �

Lemma A.20. For any 3≤ i≤n−1 and for each 3≤ j≤n−1
with j �= i, lobster AiB displays �j.

Proof . The character �j has two nonsingleton states;
these are either X≤j−3 ∪{bj−2,bj−1} and {aj,aj+1}∪X≥j+2
(if j is even) or X≤j−3 ∪{aj−2,aj−1} and {bj,bj+1}∪X≥j+2
(if j is odd).

We first consider the case when j /∈{i−1,i,i+1}. In this
case, there are four possibilities to consider:

• If j is even and j< i−1, then cutting the
edge uj−1uj separates X≤j−3 ∪{bj−2,bj−1} from
{aj,aj+1}∪X≥j+2.

• If j is even and j> i+1, then cutting the
edge uj−2uj−1 separates X≤j−3 ∪{bj−2,bj−1} from
{aj,aj+1}∪X≥j+2.

• If j is odd and j< i−1, then cutting the
edge uj−1uj separates X≤j−3 ∪{aj−2,aj−1} from
{bj,bj+1}∪X≥j+2.

• If j is odd and j> i+1, then cutting the
edge uj−2uj−1 separates X≤j−3 ∪{aj−2,aj−1} from
{bj,bj+1}∪X≥j+2.

We now consider the case when j∈{i−1,i+1}, and
suppose first that i is even (and thus j is odd).

• If j= i−1, then cutting the edge uAuB separates
X≤i−4 ∪{ai−3,ai−2}=X≤j−3 ∪{aj−2,aj−1} from
{bi−1,bi}∪X≥j+1 ={bj,bj+1}∪X≥j+2.

• If j= i+1, then again cutting the edge uAuB
separates X≤i−2 ∪{ai−1,ai}=X≤j−3 ∪{aj−2,aj−1}
from {bi+1,bi+2}∪X≥j+3 ={bj,bj+1}∪X≥j+2.

Finally, consider the case when j∈{i−1,i+1}, and i is
odd (and thus j is even).

• If j= i−1, then cutting the edge uAuB separates
X≤i−4 ∪{bi−3,bi−2}=X≤j−3 ∪{bj−2,bj−1} from
{ai−1,ai}∪X≥j+1 ={aj,aj+1}∪X≥j+2.
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a)

b)

FIGURE A.1. The lobster AiB, for the cases when i is even and i is odd. a) Lobster AiB for i even. b) Lobster AiB for i odd.

• If j= i+1, then again cutting the edge uAuB
separates X≤i−2 ∪{bi−1,bi}=X≤j−3 ∪{bj−2,bj−1}
from {ai+1,ai+2}∪X≥j+3 ={aj,aj+1}∪X≥j+2.

Thus in each case, we have that AiB displays �j. �

The next lemma follows from Lemmas A.18, A.19,
and A.20.

Lemma A.21. For any 3≤ i≤n−1, lobster AiB is compatible
with C\{�i}.

Combining Lemmas A.8, A.12, A.16, and A.21, we have
the following lemma.

Lemma A.22. For any C′ ⊆C with C′ �=C, C′ is compatible.

Incompatibility of C.— Let S1|S2|S3|S4 be a partition of
X′ ⊆X. We say a tree T on X displays the quartet S1|S2 ‖
S3|S4 if there exist internal vertices u and v, such that
deleting any edge on the path from u to v separates S1 ∪S2
from S3 ∪S4, and in addition deleting u separates S1 from
S2, and deleting v separates S3 from S4 (Fig. A.2). Note
that this notion is a generalization of the usual notion of
displaying a quartet, in which each of the sets S1,...,S4
consists of a single leaf.

Definition A.23. Given a tree T on X and a leaf x /∈X′ ⊆X,
we say that x meets T[X′] at a vertex v if v is a vertex in T[X′]

FIGURE A.2. A tree displaying the quartet S1|S2 ‖S3|S4.

and there is a path from v to x in T that is edge-disjoint from
T[X′]. We say x meets T[X′] between u and v if u,v are two
vertices in T[X′] and x meets T[X′] at v′ for some vertex v′
on the path from u to v.

To prove that C is incompatible, we will prove that
any tree compatible with C\{�B} must display certain
quartets. In particular, it must display a quartet that
cannot be displayed by a tree displaying �B. This implies
that there is no tree compatible with C. The next lemma
gives the base case, and the following two lemmas give
the inductive step of this proof.

Lemma A.24. If T is a tree on X that displays �A, �2, �3,
�3, and �4, then T displays X≤2 ∪{a3}|a4 ‖b3|b4.

Proof . Let u1 be the vertex in T at which a2 joins
the subtree T[{a1,b1,b2}]. Let u2 be the vertex at which
b3 joins T[{a1,b1,a2,b2}]. Observe that since T displays
�A, u2 must be between u1 and a2. Indeed, if this is not
the case then the path from a2 to b3 must pass through
u1, which is also part of the subtree T[{a1,b1,b2}],
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a)

b)

c)

FIGURE A.3. Illustration of the Proof of Lemma A.24. Trees are drawn with their degree-2 vertices suppressed. a) T[{a1,b1,a2,b2,b3}].
b) T[X≤3 ∪{b4}]. c) T[X≤4].

a) b)

c)

FIGURE A.4. Illustration of the Proof of Lemma A.25. Trees are drawn with their degree-2 vertices suppressed. a) T[X≤i]. b) T[X≤i ∪{ai+1}].
c) T[X≤i+1].

contradicting the fact that T[{a1,b1,b2}] and T[{a2}∪X≥3]
are vertex-disjoint (Fig. A.3a).

Now let v2 be the vertex at which a3 joins
T[{a1,b1,a2,b2,b3}]. As T displays �2, v2 must be between
u2 and a2, since otherwise the subtrees T[{a2,a3}]
and T[{b2,b3}] both contain u2. Next let v3 be the
vertex at which b4 joins T[X≤3]. As T displays �3,
v3 must be between u2 and b3, since otherwise the
subtrees T[{a1,a2}] and T[{b3,b4}∪X≥5] both contain u2
(Fig. A.3b).

Now in order to show that T displays X≤2 ∪{a3}|a4 ‖
b3|b4, it remains to determine the relative poition of a4. In
order to do this, we need to consider a5, although we will
not determine the position of a5 itself. As T displays �3,
the subtrees T[{a1,a2}] and T[{b3,b4}∪X≥5] are vertex-
disjoint, and in particular the path from b4 to a5 must
not contain u2. Also as T displays �4 (and thus T[X≤2]
and T[{a4,a5}] are vertex-disjoint), the path from a4 to a5
does not contain u2. As neither of the paths T[{b4,a5}]and
T[{a4,a5}] contain u2, it follows that the path T[{a4,b4}]
does not contain u2 either (note that the path T[{a4,b4}]
is a subgraph of the union of T[{b4,a5}] and T[{a4,a5}]).
This implies that a4 meets T[X≤3 ∪{b4}] in one of three-
places: either between v3 and b4, between v3 and b3, or

between u2 and v3. However, as T displays �3 (and thus
T[{a3,a4}] and T[{b3,b4}] are vertex-disjoint), the path
T[{a3,a4}] cannot contain v3. This implies that a4 must
meet T[X≤3 ∪{b4}] between u2 and v3. Let u3 be the vertex
at which a4 meets T[X≤3 ∪{b4}] (Fig A.3c).

Now observe that deleting the edge u3v3 separates
X≤2 ∪{a3,a4} from {b3,b4}, that deleting u3 separates
X≤2 ∪{a3} from a4, and that deleting v3 separates b3 from
b4. Thus, T displays X≤2 ∪{a3}|a4 ‖b3|b4. �

Lemma A.25. Let i∈[n−2] such that i≥4 and i is even.
If T is a tree on X such that T displays X≤i−2 ∪{ai−1}|ai ‖
bi−1|bi and T displays �i−2,�i and �i, then T displays
X≤i−1 ∪{bi}|bi+1 ‖ai|ai+1.

Proof . Let ui−1,vi−1 be internal vertices in T such that
deleting any edge on the path from ui−1 to vi−1 separates
X≤i−2 ∪{ai−1,ai} from {bi−1,bi}, deleting ui−1 separates
X≤i−2 ∪{ai−1} from {ai}, and deleting vi−1 separates bi−1
from bi (Fig. A.4a).

As T displays �i, it must be that ai+1 meets T[X≤i]
between ui−1 and ai, as otherwise the subtrees T[X≤i−3 ∪
{bi−2,bi−1}] and T[{ai,ai+1}∪Xi≥2] are not vertex-disjoint
(in particular, the paths T[{bi−2,bi−1}] and T[{ai,ai+1}]
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a)
b)

c)

FIGURE A.5. Illustration of the Proof of Lemma A.26. Trees are drawn with their degree-2 vertices suppressed. a) T[X≤i]. b) T[X≤i ∪{bi+1}].
c) T[X≤i+1].

both contain ui−1). Let vi be the vertex at which ai+1
meets T[X≤i] (Fig. A.4b).

Now consider bi+1. As T displays �i−2, the paths
T[{bi−2,bi−1}] and T[{ai+1,bi+1}] are vertex-disjoint. It
follows that T[{ai+1,bi+1}] cannot contain ui−1, and so
bi+1 joins T[X≤i ∪{ai+1}] at one of three places: either
between vi and ai+1, between vi and ai, or between
ui−1 and vi. Furthermore as T displays �i, the paths
T[{ai,ai+1}] and T[{bi,bi+1}] are vertex disjoint, and
in particular T[{bi,bi+1}] cannot contain vi. It follows
that bi+1 joins T[X≤i ∪{ai+1}] between ui−1 and vi. Let
ui be the vertex at which bi+1 joins T[X≤i ∪{ai+1}]
(Fig. A.4c).

Now observe that deleting uivi separates X≤i−1 ∪
{bi,bi+1} from {ai,ai+1}, that deleting ui separates X≤i−1 ∪
{bi} from bi+1, and that deleting vi separates ai from ai+1.
Thus, T displays X≤i−1 ∪{bi}|bi+1 ‖ai|ai+1. �

Lemma A.26. Let i∈[n−2] such that i>4 and i is odd. If T is
a tree on X such that T displays X≤i−2 ∪{bi−1}|bi ‖ai−1|ai and
T displays �i−2,�i and �i, then T displays X≤i−1 ∪{ai}|ai+1 ‖
bi|bi+1.

Proof . The proof is symmetric to that of Lemma A.25.
Let ui−1,vi−1 be internal vertices in T such that deleting
any edge on the path from ui−1 to vi−1 separates X≤i−2 ∪
{bi−1,bi} from {ai−1,ai}, deleting ui−1 separates X≤i−2 ∪
{bi−1} from {bi}, and deleting vi−1 separates ai−1 from ai
(Fig. A.5a).

As T displays �i, it must be that bi+1 meets
T[X≤i] between ui−1 and bi, as otherwise the subtrees
T[X≤i−3 ∪{ai−2,ai−1}] and T[{bi,bi+1}∪Xi≥2] are not
edge-disjoint (in particular, the paths T[{ai−2,ai−1}] and
T[{bi,bi+1}]both contain ui−1). Let vi be the vertex at
which bi+1 meets T[X≤i] (Fig. A.5b).

Now consider ai+1. As T displays �i−2, the paths
T[{ai−2,ai−1}] and T[{ai+1,bi+1}] are vertex-disjoint. It
follows that ai+1 joins T[X≤i ∪{bi+1}] at one of three
places: either between vi and bi+1, between vi and bi, or
between ui−1 and vi. Furthermore as T displays �i, the
paths T[{bi,bi+1}] and T[{ai,ai+1}] are vertex disjoint, and
in particular T[{ai,ai+1}] cannot contain vi. It follows that

FIGURE A.6. Illustration of the Proof of Lemma A.28.

ai+1 joins T[X≤i ∪{bi+1}] between ui−1 and vi. Let ui be
the vertex at which ai+1 joins T[X≤i ∪{bi+1}] (Fig. A.5c).

Now observe that deleting uivi separates X≤i−1∪
{ai,ai+1} from {bi,bi+1}, that deleting ui separates X≤i−1∪
{ai} from ai+1, and that deleting vi separates bi from bi+1.
Thus T displays X≤i−1 ∪{ai}|ai+1 ‖bi|bi+1. �

Lemma A.27. For any 3≤ i≤n−2, if a tree T is compatible
with �A and with �j for all 2≤ j≤ i and �j for all 3≤ j≤ i,
then T displays X≤i−1 ∪{bi}|bi+1 ‖ai|ai+1 if i is even, and T
displays X≤i−1 ∪{ai}|ai+1 ‖bi|bi+1 if i is odd. In particular, if
T is compatible with C\{�n−1,�B} then T displays X≤n−3 ∪
{bn−2}|bn−1 ‖an−2|an−1.

Proof . The claim follows by induction on i. For i=3,
the claim follows from Lemma A.24. For larger values of
i, if i is even then the claim follows from Lemma A.25
and the fact that the claim holds for i−1. If i is odd, the
claim follows from Lemma A.26 and the fact that the
claim holds for i−1. �
Lemma A.28. If T is a tree on X such that T displays X≤n−3∪
{bn−2}|bn−1 ‖an−2|an−1, then either T does not display �n−1
or T does not display �B.

Proof . Let un−2,vn−2 be internal vertices in T
such that deleting any edge on the path from
un−2 to vn−2 separates X≤n−3 ∪{bn−2,bn−1} from
{an−2,an−1}, deleting un−2 separates X≤n−3 ∪{bn−2} from
{bn−1}, and deleting vn−2 separates an−2 from an−1
(Fig. A.6).
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If T displays �n−1, then the subtrees T[X≤n−4 ∪
{an−3,an−2}] and T[{bn−1,bn}] are vertex-disjoint, and
in particular T[{an−1,an,bn}] are the path T[{bn−1,bn}]
does not contain un−2. It follows that bn joins T[X≤n−1]
between un−2 and bn−1. On the other hand, if T displays
�B, then the subtrees T[X≤n−2 ∪{bn−1}] and vertex-
disjoint, and in particular the path T[{an−1,bn}] does not
contain vn−2. It follows that bn joins T[X≤n−1] between
vn−2 and an−1. As bn cannot join T[X≤n−1] in two
different locations, T either does not display �n−1 or does
not display �B. �

Lemma A.29. C is not compatible.

Proof . This follows immediately from Lemmas A.27
and A.28. �

By choosing n such that 2n−4> t, Lemmas A.22
and A.29 give us the following theorem, which shows
that Conjecture 1.1 is false.

Theorem A.30. For any integer t, there exists a set C of 8-
state characters such that C is incompatible but every subset
of at most t characters in C is compatible. D
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