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Abstract—Air traffic sector demand and capacity balancing are
necessary for safe and efficient flight execution. Demand and
capacity are determined in current operations based on schedules
and flight plans. This research aims to improve air traffic demand
forecasting by exploring machine learning-based trajectory pre-
diction, specifically the newly emerged transformer-based neural
network models. The predicted trajectories are considered to im-
prove demand forecasts for Air Traffic Control in the Netherlands.
We successfully built a transformer neural network using available
traffic messages from the EuroControl B2B connection and actual
trajectories obtained from the OpenSky ADS-B repository. A new
lost function is specifically designed to improve this prediction
model’s performance. This trajectory predictor could accurately
generate trajectories, outperforming the flight plan and other
neural network approaches by a good margin. For demand
prediction, introducing improved trajectories provided small gains
that could lead to more stable predictions.

Keywords—Trajectory prediction, transformer neural network,
demand forecasting

I. INTRODUCTION

Managing the balance between demand and capacity in air
traffic is critical for ensuring safety and efficiency. Demand
refers to the number of flights within a sector, while capacity
denotes the Air Navigation Service Provider’s (ANSP) ability to
manage these flights safely. The Dutch ANSP, LVNL, utilizes
flight plans to forecast demand, although the inherent uncer-
tainty in flight data poses challenges to accurate forecasting.
This research aims to refine air traffic sector demand forecasting
through machine learning-based trajectory prediction, focusing
on a three-hour lookahead time crucial for air traffic control
decisions. By leveraging machine learning, the study seeks to
provide a more accurate representation of flight trajectories,
thereby improving predictability of air traffic demand within
the Dutch airspace, with LVNL’s support in data and expertise.

Effective demand forecasting is vital for balancing the
number of aircraft in a sector against the available capacity.
Traditionally, forecasts rely on flight schedules or plans, but
deviations due to delays, re-routing, or disruptions introduce
significant uncertainty. Könnemann [1] highlights departure
time as a primary uncertainty source, with air traffic control
(ATC) interference and trajectory prediction also contributing.
Recent efforts aim to improve predictions through trajectory-
based and aggregate approaches. Gilbo & Smith [2] achieved
a reduction in demand prediction error for US sectors using
regression models. Fernández et al.[3] utilized Hidden Markov
Models for 4D trajectory predictions, demonstrating how these
predictions can optimize demand and capacity by adjusting
flight start times. Aggregate methods, treating sectors as traffic
flow blocks, have shown predictive improvements, especially in

short-term forecasts, with Ma et al.[4] employing a spatiotem-
poral graph network to enhance accuracy.

Accurate trajectory prediction underpins effective demand
forecasting. Increased access to surveillance data and machine
learning advancements have facilitated the shift towards data-
driven methods. LSTM networks, for example, have shown
promise in predicting accurate trajectories over significant
lookahead times, as evidenced by the work of Overkamp [5],
who demonstrated their effectiveness in free-route airspace.
Clustering has also been employed to enhance trajectory pre-
diction accuracy, with methods proposed by Fernández et al.[3]
and Wu et al.[6] showing an improved performance by grouping
similar flight trajectories before model application.

The introduction of transformer neural networks by Vaswani
et al.[7] represents a significant advancement, offering parallel
computation capabilities and efficiency improvements over tra-
ditional models. While initially designed for language process-
ing tasks, transformers have shown potential in other domains,
including traffic and pedestrian trajectory prediction by Wang
et al.[8] and Achaji et al.[9]. Recent developments in token
mixing algorithms, such as the Fast Fourier Transformation
layer by Lee-Thorp et al.[10] and the multilayer perceptron by
Tolstikhin et al.[11], offer promising alternatives to the attention
mechanism, potentially reducing computational demands while
maintaining high model performance.

This paper adopts the transformer neural network for the
trajectory prediction task. We demonstrate a customized loss
function, which is the key to the successful training of such
neural networks for trajectory prediction. The structure of this
paper is as follows: section II explains the chosen methodology
and experiment set-up. In section III, the experiment results
are provided, after which section IV is a discussion on the
observed outcome. To end, section V contains the conclusion
of this research paper.

II. METHODOLOGY

This section addresses the data processing, transformer model,
customized loss function, and experiment set-ups for evaluating
demand forecasts.

A. Input data

Since this research is relevant to operational decision-making,
the selected input data must be readily available in the opera-
tional domain. For this reason, the following data sources were
consulted to construct the input and testing datasets:

1) Eurocontrol B2B flight messages: The Eurocontrol B2B
connection sends flight status messages to LVNL containing
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information such as a flight plan, departure status, origin,
destination, aircraft registration, and airline. In addition, it may
also include timings, such as the estimated off-block time, taxi
time, and estimated arrival time. This data is currently used to
make demand forecasts for the coming 3-5 hours and has high
integrity. Flight messages from May 2021 are available for this
study.

2) OpenSky ADS-B trajectories: To train a model to predict
trajectories, the actual flown trajectories must be specified.
Because LVNL does not have surveillance data for complete
origin-to-destination flights, this data must be sought elsewhere.
ADS-B surveillance data is tracked and stored by several
contributors on the collaborative OpenSky network. This data
includes positions, speed, track, origin, destination, and aircraft
identification.

3) ERA5 meteorological data: Various studies have shown
the importance of including meteorological conditions in trajec-
tory prediction models [12]. The ECMWF historical database
provides meteorological parameters such as wind, temperature,
and precipitation on 1000-1hPa pressure levels. The spatial
resolution of this data is 31km and spans globally. For this
research, the atmospheric parameters are taken at 0:00, 06:00,
12:00, and 18:00 UTC for the pressure levels from 1000hPa to
125hPa. The northerly and easterly wind components are taken,
as well as the temperatures.

4) Airspace data: To make demand forecasts, trajectories
must be overlaid with the relevant airspace block to test when
and where the airspace is crossed. The airspace layout is taken
from the Eurocontrol NM Demand data repository.

B. Data processing

Data is prepared and converted into a tensor format compatible
with the PyTorch library. This involves resampling flights to
a 4-minute temporal resolution, zero-padding to 220 samples,
and integrating weather conditions into B2B flight messages.
Next, these messages are aligned with ADS-B trajectories using
flight numbers and departure times. Due to data volume and
computational limits, the study focuses on a 3-hour lookahead
time, selecting the last flight message before this period as the
model input.

The process also entails formatting, detailing, and splitting
the data into training and test datasets. The test set comprises
10 full traffic days, chosen randomly to evaluate both trajectory
prediction and demand forecasting. Given the need to assess
demand forecasting error across multiple flights, 30% of the
dataset is allocated to testing, leaving the remainder for training.
This allocation precludes a separate validation set, but training
includes periodic testing to monitor for overfitting.

Formatting data correctly is crucial in machine learning,
as models interpret variables solely through numerical values.
Inputs are typically normalized to a 0-1 range to constrain the
network effectively.

Normalizing parameters like flight plan and trajectory coor-
dinates, however, is complex due to their representation in a
spherical coordinate system, which poses challenges for neural
networks due to its non-linear nature, as noted by Overkamp
[5] and Tran et al.[13]. To address this, coordinates (latitude ϕ,

longitude λ, and height h) are initially converted to the ECEF
frame, then to the ENU frame centered on Amsterdam Airport
(EHAM).

This process involves transformations detailed in Equation 1,
Equation 2, and Equation 3, with the reference location be-
ing Amsterdam Airport. Subsequently, ENU coordinates are
normalized to a 0-1 scale (with Amsterdam Airport as the
upper bound) via a specific transformation matrix A, detailed
in Equation 4. This normalization, which initially adjusts the
range to 1-2 before shifting, is crucial because a direct 0-1 range
lacks a unique inverse matrix. The transformation normalizes
the ADS-B trajectory data for model input but also aids in
converting model output back to real-world coordinates, poten-
tially obviating the need for further dimensionality reduction
techniques like clustering.

Xc = N(ϕ) + hcosϕcosλ

Yc = N(ϕ) + hcosϕsinλ

Zc = N(ϕ) + hsinϕ

(1)

N(ϕ) =
a2√

a2cos2ϕ+ b2sin2ϕ
(2)

xy
z

 =

 −sinλr cosλr 0
−sinϕrcosλr −sinϕrsinλr cosϕr

cosϕrcosλr cosϕrsinλr sinϕr

Xc −Xr

Yc − Yr

Zc − Zr


(3)

A =

[
xorigin yorigin
xEHAM yEHAM

]−1 [
2 1
1 2

]
(4)

Figure 1: Reference frames used for geographic positions: Yellow is the
spherical coordinate system. Blue is the ECEF reference frame. Green is the
Cartesian ENU reference frame.

In addition to normalization, certain variables necessitate dis-
tinct formatting techniques. Static variables like origin airport,
airline operator, and aircraft type are numerically encoded as
integers, each representing a unique entity. Temporal variables,
such as day of the week and departure time, undergo cyclical
encoding to address the limitations of min-max normaliza-
tion with cyclic data. For instance, integer encoding could
misleadingly suggest a significant difference between Sunday
and Monday, with values of 6 and 0, respectively. To accu-
rately reflect cyclical relationships, Equation 5 is employed,
generating two variables to prevent the ambiguity caused by
sinusoidal encoding’s symmetry. The complete list of features
in the dataset are detailed in Tables I., II., and III..
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Hsin = sin(
2πH

max(H)
)

Hcos = cos(
2πH

max(H)
)

(5)

TABLE I.: Input Tensor Time Series Features

Time Series Feature Processing Size

FPL duration timestamp - 220
FPL latitude Trajectory normalization 220
FPL longitude Trajectory normalization 220
FPL altitude Min-Max normalization 220
North wind component Min-Max normalization 220
East wind component Min-Max normalization 220
Air temperature Min-Max normalization 220

TABLE II.: Input Tensor Static Features

Static Feature Processing Size

Estimated take-off time Cyclical Encoding 2
Day of the week Cyclical Encoding 2
Pre-departure delay Min-Max normalization 1
Origin airport Integer encoding 1
Aircraft Type Integer encoding 1
Aircraft Operator Integer encoding 1

TABLE III.: Target Tensor Time Series Features

Time Series Feature Processing Size

ADS-B duration timestamp - 220
∆(ADS-B, FPL) latitude Trajectory normalization 220
∆(ADS-B, FPL) longitude Trajectory normalization 220
∆(ADS-B, FPL) altitude Min-Max normalization 220

C. Trajectory prediction model

Based on the literature survey, the transformer neural network
was selected as the most suitable candidate for the trajectory
prediction task. The original transformer neural network was
developed by Vaswani et al.[7] and consists of an encoder-
decoder structure as shown in Figure 2.

The left side of the figure shows the encoder, and the right
column shows the decoder. The original transformer had to
be adapted slightly for the trajectory prediction task, which
will be explained in more detail. Nonetheless, this was kept
to a minimum in order to properly evaluate the potential
performance of the transformer network. Looking over the
elements of the transformer neural network in Figure 2, the
encoder input is first processed by a linear input embedding
layer. Secondly, a positional embedding is added so the model
can relate the relative positions of input tokens. The positional
encoding is sampled from a sinusoidal relation as shown in
Equation 6.

PE(pos,2i) = sin(pos/100002i/dmodel)

PE(pos,2i+1) = cos(pos/100002i/dmodel)
(6)

The following encoder layer consists of three sub-layers: A
multi-head attention layer, an addition and normalization layer,
and a feedforward layer. As the scheme shows, the input signal
is duplicated to a bypass channel for each functional layer and

Figure 2: Schematic overview of the transformer neural network as proposed
by Vaswani et al.[7].

added afterward, ensuring that the model does not suffer from
vanishing or exploding gradient effects.

When looking at the decoder layer, various elements are
similar to the encoder structure and need no further clarification.
However, two primary differences are apparent. The signal that
enters the decoder in the original transformer is the output
signal shifted to the right and masked. This allows the model
to complete the signal auto-regressively, similar to recurrent
neural networks. Furthermore, the second multi-head attention
layer in the decoder is different because the keys and queries
are taken from the encoder output signal here.

In contrast, the values are obtained from the decoder’s inter-
nal signal. After the multi-headed attention layer, a linear layer
processes the decoder signal into a signal of the desired shape.
The final soft-max element converts this signal to a probabilistic
scale. In the original use case, the highest probability value
determined which word was selected from the embedding
space.

This operation is removed for trajectory prediction because
the output can directly be translated into a trajectory via the
transformation matrix used to normalize the input data. This,
in fact, acts as the embedding space. The number of decoder
layers in the original transformer is determined at four, but this
hyper-parameter can be changed when iterating on the model
architecture.

Most flights are not yet airborne because of the desired
critical lookahead time of 3 hours for demand predictions.
This poses the problem that flights must be predicted with
actual trajectory data points available. It is, therefore, decided to
build the trajectory prediction model primarily for a generative
case, relying on flight plan input for both encoder and decoder.
Nevertheless, an alternative model iteration is made where the
transformer is trained for both generative and regressive use
cases. In this auto-regressive model, the encoder input signal
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also receives the flight data points available.
Besides the classic transformer neural network, an adapted

version is also created based on empirical testing and evaluation
of different transformer neural network layouts. In order to
compare the results of the transformer neural network, simple
trajectory predictors are built based on various machine learning
methods. The test cases include an LSTM network and a
feedforward neural network. Each of these networks has four
layers with 2048 neurons. This corresponds to the classic
transformer neural network’s layer complexity, allowing equal
comparison.

D. Training with a customized loss function

After establishing the model layout and parameters, the training
phase can begin. Neural networks have variable weights or
parameters that each partly contribute to the outcome of the
network. With a loss function, the error of the model can be
calculated. Via error back-propagation, the specific gradients of
each weight can then be determined.

In this research, a new customized loss function is designed.
For the trajectory prediction problem, this custom loss function
is specified based on requirements and iterative modeling expe-
rience. The loss function is given in Equation 7 and Equation 8.

λ = RMSE(ŷ − y) (7)

L =λ ∗W1 + λ′ ∗W2 + λalt ∗W3 + λbegin ∗W4

+ λend ∗W5 + λcruise ∗W6

(8)

where y and ŷ are target and estimated variable. λ denotes
the root mean square error for a given part of the output data
or derivative. These weights were determined empirically to
emphasize certain parts of the trajectory more during training.
Table IV. provides the values of the weights in the loss function.

TABLE IV.: Loss function weights

Diff Weight Value Description

λ W1 10 Entire trajectory error
λ′ W2 10 Derivative trajectory error
λalt W3 10 Altitude error
λbegin W4 3 First three datapoints error
λend W5 5 Final 20% of trajectory error
λcruise W6 2 50-70% of trajectory error

Unlike common trajectory prediction models, the target vari-
able y is set to be the difference between the filed flight plan
points and the actual trajectory. It is found that this gives more
stable trajectory prediction results than directly predicting the
actual trajectory. As a result, the final output vector of the model
(ŷ) must be added to the input signal to get the actual predicted
trajectories. W denotes the weights assigned to the specific
error contribution in the loss function.

E. Experimental set-up for demand forecasting use case

The trajectory prediction and the demand forecasting perfor-
mance are tested to evaluate the suitability of the proposed
transformer model.

The validation dataset consists of 10 full days of traffic
randomly selected from the month of available data. For the
trajectory prediction, 2839 flights can be used to assess the TP
performance. During training, the loss function measures the
predictive accuracy (Equation 8).

In the experiment, lateral predictive accuracy is measured
in along-track, cross-track, and horizontal error, as shown in
Figure 3. Only the flight’s airborne part is modeled, meaning
that all trajectories take off at t0. The errors are then calculated
at each timestamp, comparing the actual trajectory to the
predicted trajectory. Similarly, the altitude difference at each
timestamp is evaluated.

Figure 3: Horizontal error metrics for trajectory prediction.

The mean absolute error for each metric is taken over the
entire trajectory. Another important metric to compare is the
total trajectory distance, which shows whether the predicted
trajectory is globally coherent. In the experiment, the error
distribution of the different models will be compared to the
baseline trajectory, which is the flight plan.

The demand prediction experiment considers the predicted
trajectories to determine the expected demand in the Amster-
dam FIR, which is first calculated. Arrival time is one of the
driving variables; hence, this is an important metric to consider.

The evaluation of arrival time will be two-folded: Since
the predicted trajectories are trained based on aligned take-
off times, there is no pre-departure delay predicted by the
TP model. This was a considerate design choice because
ground-based delay has a significantly different complexity
than airborne delay. This was expected to introduce much
uncertainty into the model had it been included while requiring
an architectural change for both the model and data format.
Because of this, the trajectory predictor model generates a
trajectory that starts at the given departure time in the input
dataset.

Therefore, the predictions and actual flights are compared
based on flight duration up to the FIR arrival time. This metric
is most important to determine the impact of the airborne
element on demand forecast. However, when predicting de-
mand, absolute predicted arrival times are the input; hence, the
absolute arrival time prediction accuracy is also evaluated in
the experiment.

Ultimately, demand forecasts are the most critical metric for
tactical decision-making. Hence, these are pivotal to evaluate
in the experiment as well. Currently, the demand window is 20
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minutes, renewed every 5 minutes. As a result, this experiment
considers the same window size and refresh rate. The demand
predictions for the 10 days in the test dataset are compared to
the actual demand.

It is to be noted that this research is scoped to predictions
for the situation 3 hours ahead only and that some flights
with limited input or actual trajectory data are filtered out.
Hence, the results are not an operational demand forecast but
only an assessment of the 3-hour lookahead time. However,
since this research is constrained to pre-departure generative
trajectory predictions, a direct comparative analysis of the
demand forecasting performance can still be made.

III. RESULTS

After training several model varieties sufficiently, the model
performance can be assessed. This section presents the results
of the developed transformer neural network compared to
other methods. In the first subsection, the trajectory prediction
performance is assessed. The second subsection shows the
model’s performance when forecasting air traffic demand.

A. Trajectory prediction performance

Before showing the predictive capabilities, a summary of the
model training efforts is given in Table V.. With the loss
values that were found, it can be expected that the improved
transformer seems to be the best-performing model. Moreover,
this model trains relatively fast and is stable up to 2500 epochs.

TABLE V.: Model training results

TF TF TF LSTM MLP
AR improved classic

Trainable parameters 24E6 24E6 30E6 117E6 17E6
Time per epoch [s] 33 32 37 39 16
#epochs trained 2500 2500 1600 500 200
Final loss 35 30 39 48 65
Overfitted No Yes No Yes Yes

Although training results are important to assess model per-
formance, the experiment on the test dataset will show whether
or not the model can improve trajectory predictions. During the
first analysis of the experiment, it was found that none of the
models produced accurate trajectory predictions for long-haul
flights. This limitation was especially relevant for flights longer
than 6 hours, which make up approximately 30% of the dataset.
Therefore, it is decided to include only flights with an estimated
flight time below this threshold. This implications are further
discussed in section IV. The final results after having applied
this filter are given below. In Figure 6, the mean absolute along-
track, cross-track, and horizontal error distribution are shown.
Figure 4 presents the mean altitude error. Finally, Figure 5
shows the total trajectory distance error.

When comparing the different models to the predictive per-
formance of the flight plan, it can be noted that the feedforward
model has significant difficulty in predicting trajectories. This
is expected because feedforward neural networks are only
sometimes applied to sequential data structures. The LSTM
neural network shows some improvements compared to the
flight plan, but it was found to be sensitive to overfitting during
training. After 500 epochs, the training was stopped because

Figure 4: Mean absolute altitude error of the different TP models.

Figure 5: Mean total trajectory distance error of the different TP models.

validation results became worse. The classic transformer neural
network was not sensitive to overfitting but converged more
slowly. The final model was trained to 1600 epochs until the
loss stabilized. However, no signs of overfitting were found
during intermittent validation. The transformer outperforms
the three baseline models with a lower mean error and a
reduced error distribution. Only for the global distance attribute,
all machine learning models fail to reduce the mean error,
hinting at several trajectories with very large errors. This is
not uncommon for a data-driven model and does not affect the
majority of predictions.

Based on literary findings and the obtained results from the
three baseline models, the semi-optimized transformer neural
network was created through iterative training of various model
architectures. In this network, the decoder complexity was
reduced to a single layer only, as it was found that the level
of complexity in the data was not easily captured through the
auto-encoder structure. However, a linear pipeline performed
better and could be trained further. Moreover, the encoder
complexity was increased to 6 layers, and the final output block
was extended with a linear and ReLu activation layer.

The results of this model are a significant improvement
from the baseline models. Predictive accuracy horizontally
and vertically improved to a lower median error and better
distribution. This shows that the transformer neural network
can explain the differences between the filed flight plan and
actual flight execution. Looking at the altitude predictions,
when observing individual trajectories, most of the errors are
reduced by more accurately predicting climb and descending
phases. The cruise phase prediction is reasonable, but the flight
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Figure 6: Distribution of the lateral trajectory prediction error, where the mean absolute error is taken for every flight.

plan is usually found to be more accurate here. An example of a
predicted trajectory is shown in Figure 7. Finally, the improved
transformer was adapted to an autoregressive variant capable
of extrapolating future data points of an already airborne
trajectory. Although it still improves TP accuracy, the model
failed to surpass the accuracy of the fully generative models.
However, the presented trajectory prediction improvements
are significant overall, especially for the improved generative
transformer neural network.

Figure 7: Example of a prediction for a flight between Milan and Amsterdam.
The predicted trajectory is compared to the field flight plan and the actual
trajectory.

B. Demand forecasting performance

With the observed increase in trajectory prediction accuracy,
demand forecasts can benefit from more accurate predictions
of aircraft entering the target airspace. Demand forecasting
performance is measured with a variety of metrics, amongst
which the flight duration time up to FIR entry, arrival time, and
demand. The validation dataset includes 10 days of predicted
and actual trajectories used to evaluate the performance. First,
because only airborne segments of flights are considered,
the predicted flight duration times up to FIR entry must be
evaluated. This shows whether or not the TP model is likely
to make an improved arrival time estimate and, henceforth, is
suitable for demand forecasting. These results are shown in
Figure 8. As expected, all models that showed improved TP
accuracy also estimated the flight duration better than the flight
plan. Secondly, the absolute arrival times at the FIR boundary
are calculated with the flight’s duration and the expected take-

off time from the B2B message. These absolute arrival times
are then compared to the actual arrival times from the ADS-
B trajectories. The absolute arrival time prediction errors are
presented in Figure 9.

Figure 8: Error between actual flight duration and the predicted flight duration
up until FIR entry.

Figure 9: Error between actual FIR and predicted arrival times.

The various models’ predicted arrival times of flights do not
show the same increase in accuracy as observed in the flight
duration evaluation. This is partly expected because the take-off
time uncertainty is known to be a considerable factor, which
was argued by Könnemann [1] amongst others. However, some
improvements can still be observed, as the spread of errors is
reduced to some extent with the transformer models. Finally,
the demand forecasts of each method are evaluated. LVNL
considers the demand forecast 3 to 5 hours ahead to be the most
valuable in current operations. This allows the ANSP to apply
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the required capacity resources or to regulate incoming traffic.
For this reason, the dataset is constrained to B2B messages 3
hours before the actual arrival of the flight. The demand forecast
results of all different trajectory predictor models are presented
in Table VI..

TABLE VI.: Demand forecast model results. Measured by the difference in
the number of flights predicted to enter the airspace and the actual number of
flights.

RMSE MAE R2 std

FPL 1.83 1.12 0.79 1.83
Autoregressive TF 1.73 1.07 0.81 1.73
Improved TF 1.66 1.04 0.82 1.66
Classic TF 1.78 1.10 0.80 1.78
LSTM 1.83 1.13 0.78 1.83
Feedforward 2.1 1.32 0.72 2.09

Comparing the demand errors from the flight plan-based
method to the tested TP models, it becomes clear that most
models do not provide any significant improvements. The
feedforward model performs poorly, which was expected based
on the trajectory prediction accuracy. The LSTM model had
slightly better TP accuracy than the flight plan, but these
improvements do not lead to any benefits in the demand
forecasting case.

The transformer neural networks show slightly improved
demand forecasts. The improved transformer shows a more
significant jump over the flight plan-based method. The im-
proved transformer model has a root mean square error that
is 10% lower than the flight plan-based approach. Compared
to the results of the other models, this is the only significant
improvement, given the dataset size of 10 days. When looking
at the demand error distribution in Figure 10, it becomes clear
that the improved transformer marginally reduces the peak
errors. Hence, the improved trajectories potentially provide a
more stable demand forecast.

Nevertheless, the differences are very small. To further
clarify the results, Figure 11 shows the demand forecast for
an entire day of traffic. The traffic peak predictions seem less
erroneous compared to the flight plan-based approach, which
is a desirable improvement.

Figure 10: Distribution of predicted demand error for the flight plan and the
improved transformer approach.

Figure 11: Example of predicted demand on May 19, 2021, where each bin is
predicted with a 3-hour lookahead time.

IV. DISCUSSION

A. Generative machine learning model for trajectory prediction

In evaluating the suitability of generative machine learning
methodologies for trajectory prediction, it was observed that
while generative models struggled with flights over 6 hours due
to normalization issues, they excelled in predicting trajectories
for flights under this duration. The generative data-driven
approach, particularly with the transformer and improved trans-
former models, showed significant promise in enhancing long-
term trajectory prediction accuracy, outperforming traditional
LSTM networks and feedforward neural networks, despite the
latter’s inability to handle sequential data effectively.

The auto-regressive version did not meet expectations, pos-
sibly due to limited contextual data from shorter flights. Com-
paratively, the transformer models achieved superior precision,
with the improved transformer notably reducing mean abso-
lute errors significantly more than previous generative LSTM
models, as evidenced by Liu and Hansen’s findings [12].

The success of these models from this paper is attributed
to effective data formatting, normalization, and a custom loss
function, which simplified data variance and improved training
outcomes. Additionally, the transformer’s multi-headed atten-
tion mechanism and the omission of a complex encoder in the
improved version facilitated more stable training and promising
results, suggesting potential areas for further optimization in
future iterations.

B. Suitability of prediction for air traffic demand prediction

The improved trajectory predictions facilitated more precise
demand forecasts for the 3-hour lookahead time, enhancing
the accuracy of flight duration estimates significantly, with the
improved transformer model reducing the interquartile range
by nearly 30% compared to flight plan-based approaches.
However, improvements in predicting arrival times were less
pronounced, possibly due to the models’ lower performance
on flights with significant deviations from planned operations,
influenced by factors like pilots’ responses to delays.

Despite receiving updated departure time and delay infor-
mation, the models might not fully capture the impact of such
operational variances. The complexity of accurately predicting
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non-standard flight behavior suggests that the neural networks
used might either be inadequate for identifying correlations
between flight path changes and ground delays or the training
data was insufficiently representative of such flights.

Regarding overall demand forecast accuracy, most models
showed no significant improvement, except for the improved
transformer neural network, which notably enhanced prediction
accuracy, particularly in predicting peak demand periods. This
improvement is critical for air traffic management, as accu-
rate peak demand forecasts contribute to more efficient flow
management. However, to validate these findings, a larger test
dataset is necessary for a comprehensive analysis.

C. Implications and limitations

The chosen generative trajectory prediction approach, partic-
ularly with the semi-optimized transformer neural network,
demonstrates notable enhancements in accuracy, albeit with
a significant limitation for flights exceeding 6 hours due to
decreased spatial resolution from normalization. A potential
solution involves developing a dedicated model for long-haul
flights. For demand forecasting, the predictions yield improved
stability, yet improvements are constrained without accurate
departure time data.

Despite LVNL’s success in reducing mean absolute error us-
ing a random forest regressor based on flight schedule data [14],
this study’s trajectory prediction (TP) method did not achieve
similar enhancements in demand forecasting error reduction.
Nonetheless, the error distribution for demand forecasts was
narrowed, highlighting the value of including actual take-off
times for airborne flights to potentially boost demand prediction
accuracy, albeit at the cost of obscuring the direct impact of TP
improvements.

V. CONCLUSION

This research aimed to enhance air traffic sector demand
forecasting by employing machine learning techniques for
trajectory prediction, focusing on the transformer neural net-
work. This study is part of a broader initiative to ensure
more sustainable, safe, and efficient airspace navigation as the
global Air Traffic Management (ATM) system evolves towards
comprehensive flight trajectory management. ANSPs, including
LVNL, aim to align air traffic demand with available airspace
capacity. This task is challenging due to the unreliability of
flight plans and schedules for accurate demand forecasting
hours ahead.

Data for this study was sourced from Eurocontrol NM B2B
feeds and the OpenSky ADS-B repository, encompassing filed
flight plans, flight status information, and actual flight trajec-
tories. This data, prepared and normalized to facilitate a direct
comparison of trajectory prediction performance, underpins the
development of both trajectory prediction (TP) and demand
forecasting models. Various models, including a conventional
transformer neural network, LSTM, and feedforward neural

network, were evaluated, creating an improved transformer
model and an auto-regressive version for enhanced predictive
accuracy.

The analysis revealed that transformer neural networks, par-
ticularly the semi-optimized version, significantly improved tra-
jectory prediction and demand forecasting accuracy for flights
up to 6 hours long. However, the normalization method may
have limited predictions for longer flights, suggesting room for
model-specific improvements. Despite challenges in accurately
predicting actual arrival times, advancements in trajectory pre-
diction resulted in more accurate flight time estimates and de-
mand forecasts, indicating that further refinement in departure
time estimates could augment this trajectory-based forecasting
approach.
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