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Abstract—During the transition from manual driving to (par-
tially) automated driving, conflicts between human and au-
tomation should be minimized. An important factor to reduce
the human-machine interaction risk is by increasing the trust
drivers have in the system. A system including human-like
behaviour tends to be trusted more. Accurate models of human
driving behaviour are important in safety studies and the
development of human-compatible automated driving. While
global models exist showing the relationship between road
geometry and speed control, research on models that use
observable visual inputs for drivers is scarce. Previous research
used a heuristic approach to develop such a model. This work
extends on that basis, using machine learning to develop a
model for speed control based on angles and time margins that
can be extracted from the driver’s visual field. The model is
developed using two optimization methods with a single hidden
layer feed-forward neural network structure and training data
obtained from 14 participants in a fixed-base driving simulator.
Validation runs have been done by the same participants
in order to validate the individual and general (one-size-fits-
all) longitudinal driving models. The validation shows that a
general model is able to accurately capture human longitudinal
acceleration behaviour on single-lane curved high-speed roads
(100km/h).

1. Introduction

Nowadays driving is a very familiar task for most peo-
ple. In order to enhance safety and driving convenience,
many Advanced Driver Assistance Systems (ADAS) are
being developed. Some of the newest systems include lane
keeping assistance and Adaptive Cruise Control (ACC) [1].
A transition is taking place from manual driving towards
autonomous driving by the use of ADAS. During this
transition humans and machines have to understand each
other and work together to execute the driving task. One
of the factors that has an effect on the human-automation
interaction is the trust that drivers have in the automated
system [10, 21]. When an automated system has human-
like behavioral aspects, drivers tend to have more trust in
the system [33]. This is also shown by a study in which
participants were played multiple trajectories, of which the
test subjects preferred their own trajectory [2]. Even though
human-like behaviour can be of great importance in order to

avoid conflict between automation and driver during curve
driving, studies on this subject are still incomplete.

Most studies in the field of cornering speed adaptation
directly relate road geometry to vehicle speed [7, 30, 8].
Since curves usually have a constant radius and width, these
studies relate the average speed in such a curve to its ge-
ometry. Correlations are found between road geometry and
average or minimum velocity [25]. However, even though
these relations can have a positive impact on driving safety,
they do not include the human behavioural aspects. Drivers
tend to slow down while entering a curve and accelerate
while exiting a curve [23, 31]. A study by Zhang [35] on
the development of an ACC system including adaptive speed
control in curve driving takes this phenomenon into account.
However, this study still relates only road curvature and
desired velocity.

Most of the relations between road geometry and ve-
hicle speed can be applied to ADAS to enhance safety by
setting upper speed limits for specific curves. These limits
do however not provide any information about the desired
driver speed, hence do not improve the human-automation
interaction by implementing human-like behaviour. Drivers
tend to make a trade-off between maximum speed and
comfort (often measured as lateral acceleration) [28]. As
stated above, for most curves drivers slow down before the
curve starts, before any lateral acceleration is felt [7, 4, 19].
This indicates the capability of humans to estimate roughly
what the lateral acceleration ahead will be. Reymond et
al. [28] shows that a driver is able to estimate lateral
accelerations during static test runs, without inertial motion,
indicating that this estimation is more strongly determined
by cognitive and visual cues rather than motion cues. Even
though many studies discussed above relate geometry to
speed, people tend to be rather poor judges of road curvature
[12]. Therefore, other visual cues provided to drivers must
play a role in speed adaptation.

Research from Lehtonen et al. [22] investigates the eye
movement when approaching a curve on a rural road. It
was found that drivers switch their focus between the on-
road Far Point (FP) and Tangent Point (TP) and off-road
Occlusion Point (OP). The OP would be used to monitor
upcoming traffic emerging from this point [22], the FP for
steering purposes [29, 18] and the (Extended) TP (ETP)
while driving towards/in curves [18]. Contrary to drivers
being rather poor judges of distances and curvature [12],



they seem to be rather good judges of visual angles and time
margins to visual points [5]. In the case of speed adaptation,
humans tend to use safety margins related to time in order
to control the accompanied risk levels. It is argued that the
ETP is used in curves [15], the time to collision (TTC)
when approaching obstacles [20], the Time to Headway
(THW) for car following purposes [32] and the Time to
Lane Crossing (TLC) for lane keeping [32].

Time values to specific visual cues are easily perceived
by humans. A resulting output of the human neuromuscular
system is not the vehicle velocity but the accelerator and
brake pedal deflections. Research that relates the TETP
value to pedal deflection was done by Gruppelaar [15], who
investigated time margin thresholds of the TETP and its
derivative to decide on the driving phases before, during
and after a curve. Although this model serves as a good
initial estimation for the relationship between TETP and
pedal deflections on single curves, a few flaws are present.
Highest priority for improving this model is by fixing the
oscillations in pedal deflection close to turn exit, which are
assumed to be due to the hard threshold on the rate of
change of the TETP. Furthermore, additional visual cues,
such as the TP angle, can be added to the model in order to
improve the performance for single curves and larger road
distances. In order to remove the hard thresholds on model
inputs, a neural network approach will be used for modeling
driver speed adaptation. Using this approach, it will be easier
to include and exclude certain inputs without changing the
entire model architecture. This is the first research in speed
adaptation that uses visually observable inputs to humans
from the optical world as opposed to the Cartesian world
for a machine learning algorithm. Since drivers seem rather
good judges of time margins and visual angles, these will
be investigated as candidate model inputs.

Section 2 of this document shows the model architecture,
including optimization loops for the neural network weights.
In Section 4 the experimental goals will be explained,
including the methodology in order to achieve these goals.
Section 5 exhibits the results found after processing mea-
sured data and developing speed control models. The results
are analysed and discussed in Section 6.

2. Visual Cues

Most research related to speed adaptation on curved
roads focuses on models that relate speed choice to the
geometry of the road. These models do not include brake
and accelerator pedal deflections, which are direct inputs
for the car dynamics. Gruppelaar [15] investigated relations
between time margins of a driver’s visual fixation point to
the pedal control behaviour. Here, the TETP turned out to be
an important factor in accelerator and brake pedal control
rather than the TLC value, which was argued to be kept
constant by trading off speed and steering performance in
the work of Godthelp and Winsum [32]. The research carried
out by Gruppelaar used an unique approach, hence difficult
to compare to the performance of other models [15]. While
this work produces good initial results, when analysing the

Figure 1. TP, ETP and TP angle representation from a driver’s perspective

final speed control model performance, it seems that room
for improvement is possible. The TETP value will be the
central point of focus in the new model while analysing ad-
ditional visual fixations of humans during a driving task. In
order to not be limited to a pre-established model structure,
a neural network approach is used, additionally resulting in
uncomplicated model input changes.

In contrast to most speed adaptation related research,
the visual field of the driver will be used in order to model
the vehicle pedal deflections. A representation of the visual
cues that are used for the designed model in the perspective
of the driver is shown in Fig. 1. The Tangent Point (TP) is
the point where the driver’s line of sight is parallel to the
road edge at the inner part of the road curve. This point is
found by computing the angle between the line from driver
location to road edge sample point and the road heading
line. When the derivative of this angle becomes zero, the
TP point is found. The Extended Tangent Point (ETP) is
the point where the extended TP line crosses the road edge
a second time, usually at the other side of the road. The TP
angle is defined angle between road heading and TP point.

2.1. Preliminary Findings

Godthelp and Winsum [32] have shown that drivers
trade-off steering performance and speed in order to main-
tain a contant TLC value. Later studies have shown that for
larger curve radii (> 100m), the TLC value does not remain
constant [7, 25, 28], which is verified by Gruppelaar [15],
who points out that the TLC does not appear to be a suitable
candidate to use as threshold for speed adaptation.

In a preliminary study it was found that distances to
visual fixation points such as the TP and ETP are highly
related to the geometry of the road [9]. Field studies have
shown that a correlation exists between road geometry
(hence distances to visual points) and vehicle velocity [7,
30, 8]. Curves with a small radius are driven at lower speeds
and vice versa. A weakness of these models is revealed
by considering that road curvature is generally constant in
extended curves, while observed velocity profiles tend to
vary in the curve. The relationship between curvature and
speed predicts one speed value for such a curve, usually
the maximum speed in the observations. In reality, a ve-

2



DETP [m]

40
60

80

80

100
100

120
120

140
140

160
160

180
180

200
200

220
220

240

50 100 150 200 250 300
0

50

100

150

200

D
is

ta
n

c
e

 t
o

 c
u

rv
e

 [
m

]

TP angle [deg]

2
2

3
3

4
4

5

5

6

6

7

7
89101112

50 100 150 200 250 300

Curve radius [m]

0

10

20

30

40

50

D
is

ta
n

c
e

 t
o

 c
u

rv
e

 [
m

]

Figure 2. Sensitivity of ETP distance (upper) and TP angle (lower) with
respect to changing curve radius and distance (φ = 60 degrees, width =
3.4m)

locity profile can be observed throughout a curve, in which
a driver goes through the following phases: acceleration,
deceleration, braking, brake release and re-acceleration [15].
In the work of Xie [34] a curve was split into three phases
instead of 5. In order to capture these phases in human
driving behaviour, road geometry and hence distances to
visual fixation points are not good model inputs, as they
remain relatively constant throughout a curve, while velocity
does not [9].

In the above-mentioned preliminary study a correlation
was found between time margins to visual fixation points
and accelerator and brake pedal control [9], verifying the
findings of Gruppelaar [15]. Furthermore, there are several
advantages of using brake and accelerator pedal deflection
as model output. First, the pedal deflections are bounded be-
tween 0% and 100% eliminating the possibility of unrealistic
acceleration values. Secondly, accelerator and brake pedal
deflection are direct inputs to the vehicle dynamics. When
developing a Speed Control Algorithm, it is not necessary
to also develop a (complex) control system computing the
pedal deflection input from the model velocity error.

An additional visual cue that shows promising values is
the TP angle. In contrast to drivers being poor judges of the
Cartesian world (distances, velocities and curvature) [12],
they can more accurately judge the optical world (e.g. visual
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Figure 3. Sensitivity of ETP distance (upper) and TP angle (lower) with
respect to changing road width and curve distance (φ = 60 degrees, R =
100m)

angles). The TP angle is defined as the angle between the
road direction at the vehicle location and the TP point. Since
field studies have shown that road geometry is correlated
with speed [7, 30, 8, 25, 23], it seems that the visual cues
that drivers use are geometry sensitive.

2.2. Sensitivity Analysis

A sensitivity analysis of the ETP distance (DETP) and
TP angle with respect to road geometry is performed, and
is visualized in Fig. 2 and Fig. 3. The sensitivity analysis is
done theoretically in a similar way as in the work from
Boer and Mulder [6]. Note that the scales for the ETP
and TP angle analysis are not the same since the TP angle
barely changes at distances above 50m. It is assumed that
the driver’s view point is in the middle of the road. During
this analysis the following findings were discovered. Both
the DETP and the TP angle show high sensitivity to curve
radius. The closer the vehicle is to the upcoming curve, the
larger δDETPδR and δ∠TP

δR are. Additionally, the ETP distance
is sensitive with respect to curve distance starting far (200m)
away, while the TP angle shows high sensitivity only close
(50m) to the curve.

Fig. 3 shows that road width has little to no influence
on the ETP distance while approaching a curve while the
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Figure 4. DETP (and derivative) with respect to curve distance

TP angle is a bit more sensitive to changes in road width.
In this area the TP angle can be a distinctive input. Both
variables show negligible sensitivity towards changing curve
deflection (change in road heading) above 20 degrees, which
could be a point to improve upon during simulation runs
since Gruppelaar [15] has shown variation in average TETP
and velocity with changing curve deflection.

It is also important to understand that the sensitivity
shown in Figs. 2 and 3 is favorable for a neural network,
but not necessarily observable in a similar way by humans.
In general humans tend to follow Weber’s Law when in-
vestigating human perception [11]. This law argues that
the perceived change (dS) to humans is proportional with
constant K to the magnitude of stimulus S (see Eq. 1). This
would mean that when the DETP changes from 40m to 60m,
much more change is perceived compared to a change from
200m to 220m, making the DETP more sensitive to humans
closer to curves.

dS = K · S (1)

Although the ETP distance shows high variability with
respect to curve radius at close curve distances, this may not
necessarily be the case for the TETP as it also depends on
vehicle velocity. The change in TETP with respect to time
can be calculated using Eq. 2a, in which both the DETP
and the velocity are changing in time. In Fig. 4 it can be
seen that for distances larger than 50m, the derivative of the
DETP with respect to distance is close to 1. Therefore the
assumption is made that ∂DETP

t is equal to -V. Also, ∂V
t

is the vehicle acceleration (α). Eq. 2a therefore simplifies
to Eq. 2b. A contour plot (Fig. 5) is made for a velocity
range from 15 to 25 m/s and an acceleration range from
-7 to 0 m/s2 (based on measured data before curves). In
this plot a zero-line can be seen, indicating the possibility
of a non-changing TETP value with respect to time (upper
part of fraction in Eq. 2b equal to 0). This phenomenon
often occurs before and during curves (see Fig. 6). Research
into speed adaptation in car following and lane keeping has
shown that speed control is likely governed by keeping time
margins to salient visual points above constant minimum
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Figure 5. Change in TETP while approaching a curve in the deceleration
phase (distance to curve = 50m)

values [32]. This is also found in the experimental data.
When approaching a curve, the TETP value drops rapidly
(see Fig. 6). At some point (around 50 meters before curve)
the driver starts to brake (drop in δa − δb), causing the
TETP value to become relatively constant initially and then
to rise slightly since the change (decrease) in distance to
the ETP becomes smaller than the change (decrease) in
velocity (below zero-line in Fig. 5). This phase is the braking
phase defined by Gruppelaar [15]. In the next phases of the
curve (brake-release and re-acceleration in [15]), the driver
accelerates to a velocity in which it is comfortable. During
this phase (inside the curve), the distance to the ETP remains
relatively constant while the velocity increases. This causes
the TETP to decrease slightly a second time. At the end of
the curve the distance to the ETP increases rapidly, hence
also the TETP. This results in a time series where the TETP
follows the same trend (slight drop) twice while the output
value (δa − δb) is negative (braking) in the first drop and
positive during the second drop.

∂TETP

∂t
=

∂DETP
∂t · V − ∂V

∂t ·DETP
V 2

(2a)

∂TETP

∂t

∣∣∣∣
d≥50

≈ −V 2 − α ·DETP
V 2

(2b)

Due to the sensitivity of the TP angle with respect to
width, radius and curve distance during the braking phase,
it is a visual cue that potentially can identify the braking
peak magnitude and distinguish between the braking and re-
acceleration phase while the TETP (which is fairly constant
below certain time margin) identifies when deceleration
starts (see Fig. 6).

In mid-curve, after the braking phase (and brake-
release), the re-acceleration phase is active. When the veloc-
ity increases significantly during this phase, the TETP value
will become smaller, resulting in an input change to which
the model can react (to stay above a minimum TETP value).
If not, the input values will remain relatively constant and
the pedal deflection output will too. At curve exit, the TETP
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Figure 6. TETP and TP angle behaviour with respect to road distance. Red marked areas are inside a curve.

increases to its maximum value, and the TP angle will drop
to close to zero. During this transition, the model can switch
from the re-acceleration phase to the acceleration phase.
Therefore, during mid-curve and curve exit, it is expected
that the model is able to respond accordingly.

3. Model Design

3.1. Model Optimization

The general idea of the design is a model with neural
network structure to which visual inputs (TETP and TP
angle) are given. Using these inputs, the model will output
the desired vehicle pedal deflections. Such a model can be
integrated in a speed control algorithm. The complete model
architecture is shown in Fig. 7, and consists of multiple
components. With the experiments presented in Section 4,
the vehicle states were collected during test runs. Together
with the road coordinates these states remain unchanged
during optimization. To start the optimization of the driving
model, the fixed variables are used as input to the visual
cues algorithm in which the time, distance and angle to the
ETP and TP are generated. The methods for deriving these
values are explained and illustrated in Appendix A.

The relevant visual cues (TETP and TP angle) are then
used as inputs to a single hidden layer, feed-forward neural
network with a sigmoidal activation function. A combination
of more inputs was found to more accurately model the
test data, but reduced performance on validation data as the
dimensionality of the problem increases. This is known as
the ‘Curse of Dimensionality’ [3]. Due to the exponential
increase in volume with increasing dimensions, the available
data rapidly becomes sparse.

The neural network weights are optimized and updated
in the ‘First Optimization Loop’ of Fig. 7. For this, the
second order Levenberg-Marquardt (LM) method is used
which uses the Jacobian matrix. A more detailed represen-
tation of the neural network and the LM method are found
in Appendix B. The neural network uses the Mean Squared
Error (MSE) between the measured accelerator and brake
pedal deflection (δa, δb) and the generated pedal deflections

Figure 7. Optimization Schematic (blue/oval = generated variables,
pink/square = algorithms, grey/diamond = fixed/measured data, white/round
= operators)
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of the network itself. Note that the accelerator and brake
pedal are never used simultaneous as only one leg is used for
both accelerating and braking. Therefore only one output is
generated which equals δa−δb. When the output is negative,
a positive brake pedal deflection is represented.

Some problems may arise when optimizing the neural
network weights based on the pedal deflection MSE. A
positive brake pedal deflection only occurs for a small period
of time relative to the periods of positive acceleration pedal
deflection during an experimental run. The optimized model
often neglects large braking peaks and focuses more on
general acceleration trends as this lowers the MSE with
higher significance. Even though braking happens relatively
fast, it is considered an important factor in human driving
behaviour. In the iterative process of obtaining the velocity
profile of a simulation run (Subsection 3.2), large errors
between measured and modeled data are accumulated when
braking is not taking into account with high enough sig-
nificance (see Fig. 8). In order to re-direct the focus of
the neural network weights on specific periods of pedal
deflection which influence the accumulated error of the
velocity profile, a second optimization loop is introduced.
The second optimization loop from Fig. 7 uses the optimized
weights from the neural network as initial conditions. It also
uses the speed control algorithm (see Subsection 3.2) to
generate a velocity profile from the obtained model. Instead
of minimizing the pedal deflection MSE, this optimization
has the objective of minimizing the MSE between the mea-
sured and simulated velocity on a test track by changing the
neural network weights. This is done by a constrained, non-
linear optimization of the objective function (using Matlab’s
fmincon algorithm). The active-set (medium-scale) method
that is used by the fmincon algorithm is the Sequential
Quadratic Programming (SQP) method. The implementation
of this method consist of three stages. At each iteration an
approximation is made of the Hessian (second-order partial
derivative square matrix) of the Lagrangian function, which
in this case (unconstrained) is the objective function. This
is used to generate a Quadratic Programming (QP) sub-
problem of which the solution is used to generate a search
direction for the line search procedure. An overview of SQP
is found in Fletcher [13], Gill et al. [16], Powell [27], and
Schittkowski [16].

3.2. Speed Control Algorithm

The speed control algorithm is the loop segment (blue
marked area) in the optimization schematic (see Fig. 7)
in which a velocity profile is produced by the ‘self-
accelerating’ model. Instead of using the generated visual
cues from the experimental measurements, the speed control
algorithm generates its own visual cues. With the initial
vehicle states at t=0 (Vcar = 0, Xcar = 0 and Ycar = 0), the
speed control algorithm obtains a modeled pedal deflection
(δa − δb) from the neural network. The pedal deflection
is used as input to the vehicle dynamical model which
returns an acceleration (see Appendix C). Integrating the
acceleration over time results a vehicle velocity at the next
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time interval (t + ∆t). Now instead of using the measured
vehicle states to obtain the visual cues at time t + ∆t, the
simulated velocity at this time interval is used to generate the
next visual cue as after t=0 the simulation is diverging from
the measured vehicle states. The represented speed control
algorithm loop in Fig. 7 is repeated for each time interval
until the end of the test track is reached.

There are two ways in which the speed control loop is
used. First, inside the second optimization loop in order to
calculate the objective function. For each iteration of the
SQP algorithm, the weights of the neural network change
resulting in a completely new velocity profile as the velocity
is obtained iteratively since velocity at time t is depending
on its own value at time t−∆t (see Eq. 4). The process of
completely going through the speed control loop including
the visual cue generator for each SQP iteration can be quite
time consuming. In order to reduce the run time in the
second optimization loop, a variable ∆t is used as opposed
to a variable distance to the ETP. With a variable ∆t it is
possible to keep the sample points of the vehicle location
fixed to those of the measurements, hence preserving the
distances to the ETP for each sample. The TETP value
can in this case be calculated by dividing the distance
to the ETP by the vehicle velocity instead of using the
visual cue algorithm. The difference in time between two
samples is calculated using Eq. 3, which assumes a constant
acceleration (α) between time t and t+∆t. ∆s is the (fixed)
difference in distance between two sample points.

∆t =
−Vcar +

√
V 2
car + 4 · 1

2α · ∆s

2 · 1
2α

(3)

The second objective for which the speed control al-
gorithm is used is to validate the model. In reality, the
algorithm does not know the future location and is forced
to use the visual cue generator in order to obtain the neural
network inputs. A fixed sampling rate is used to gather the
vehicle states, hence a fixed ∆t is used. The speed control
algorithm also assumes constant acceleration between two
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Figure 9. Static driving simulator in HMI laboratory (TU Delft)

sample points hence uses the linear approximation from
Eq. 4 to update the velocity with fixed ∆t.

V1 = V0 + α · ∆t (4)

The acceleration between two sample points is obtained
from the vehicle dynamical model. The inputs of this model
are the current velocity and gear, and the pedal deflections δa
and δb. A detailed representation of the longitudinal vehicle
model is given in Appendix C.

4. Experimental Method

All data were collected with the fixed-base driving sim-
ulator in the HMI Laboratory at the faculty of Aerospace
Engineering of Delft University of Technology. The experi-
ments were done in order to satisfy the following four goals:

1) Show that the TETP in combination with the TP
angle can capture general trends of human corner-
ing speed adaptation.

2) Analyse the inconsistency of speed adaptation be-
tween participants

3) Provide validation data to measure the individual
and one-size-fits-all model performance.

4) Deliver a comparison between the classical method
of speed adaptation modeling [15] and the machine
learning method (neural network).

4.1. Apparatus

The fixed-base simulator, shown in Fig. 9, has an ac-
tuated steering wheel, an actuated accelerator pedal and a
passive spring loaded brake pedal [17]. Instruments displays
(speedometer) are visualized on a 12 inch LCD panel. Three
DLP projectors with HD resolution project their image on
a three-sided projection screen, and cover a field of view of
over 180 degrees [26]. Furthermore, realistic engine sound
is played through speakers to aid in speed perception.

4.2. Participants

A total of 15 Participants (13 male, 2 female) took part in
the experiment. During one experiment the simulator failed,

and therefore no training data could be collected, and is
therefore not taken into further analysis. Most participants
were young males (24±4 years), with a driving experience
of 6±4 years. The average annual kilometers driven varied
between 15,000 and 500 km, with a median of 8750 km.
There are two outliers in age (58 and 64 years) with driving
experience of 40 and 46 years respectively. One participant
drives an average of 80,000 km annually.

4.3. Road Design

The test subjects drove on 8 different roads. Two of the 8
roads for model development and 6 for validation purposes.
The two roads for training are relatively long ( 16-17 km)
compared to the validation roads ( 3-4 km). One of the two
training roads has a width of 3.6m and the other a width
of 3.2m. To avoid mental fatigue, the training roads were
split into two and breaks could be held when the participant
experienced tiredness and/or concentration problems. Both
training roads were randomly generated such that all linear
combinations of the following curvature parameters were
present:

• Radius = [50 100 200 300] (meters)
• Deflection = [30 60 90 120] (degrees)
• Direction = [left right]

Each turn is 300m apart from the next one, such that
the influence of one turn on the velocity in the next curve
is low. As opposed to the research from Gruppelaar [15],
a more complete set of data was chosen to be collected
to provide data with sufficient variation for training the
neural network. An incomplete training set may lead to the
neural network extrapolating outside or interpolating in large
gaps of validation road data, resulting in a poorly predicted
output.

The six validation roads are used to measure the per-
formance of the developed speed control algorithm. Each
validation road except Road 1 (from 2 to 6) deviates in terms
of geometry parameters from the training roads. Validation
Road 1 is similar to the training roads in terms of radius,
deflection and distance between turns. The width of this
road is similar to one of the training roads (3.2m). Validation
Roads 2, 3, 4 and 5 all change one road geometry parameter
compared to the training roads in order to check whether the
model is still valid. Road 2, 3, 4 and 5 have, respectively, a
different distance between curves (0, 100 or 200m), a dif-
ferent curve radius set (75, 125, 175 and 250m), a different
curve deflection set (15, 45, 75 and 105 degrees), and a
different road width (3.4m). The final validation road (6),
has all of the above-mentioned modifications implemented
in the track, making it the most different from the training
road. Validation Road 6 is shown in Fig. 10.

4.4. Experimental Task

All participants were informed of the experimental pro-
cedure before the experiment. The subjects were told to
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Figure 10. Example of validation road 6

drive as they would in a real life scenario, adapting their
speed in order to stay (as much as possible) within the
boundaries of the road. The roads were one-way, such that
the participants were able to use the entire width of the
road. Before the data were collected, the participants had a
familiarization run in which they could get familiar with the
dynamics of the simulator. Once each participant felt com-
fortable, the training test tracks were started. Participants
were not told what kind of road (training or validation) they
were driving and also were not told what type of corners
they could expect. This way the subject’s speed adaptation
was mainly based on visual cues instead of biased ideas of
what is ahead on the roads.

5. Results

This section describes how the four goals from Section
4 are satisfied. First results will be shown which demonstrate
the ability of the TETP in combination with the TP angle as
model input to capture general trends of human cornering
speed adaptation on the training data of subjects. These
models, trained on individual participants, will be tested
on other participants in order to capture the inconsistency
between subjects. Some participants show more average
behaviour than others. The models of the participants that
show more average behaviour are used in order to get a
one-size-fits-all model. This model will be compared with
the individual models to investigate whether it is possible
to generalize human speed adaptation. This will be done
using the validation roads which will also indicate what
influences the road geometry adjustments have on model
performance. Finally, the new one-size-fits-all model will
be compared to the classical on-size-fits-all model from
Gruppelaar [15]. Model performance is evaluated using the
MSE and Variance Accounted For (VAF) between measured
and simulated velocity profiles during a specific track. The
VAF (also called Explained Variance), is the part of the total
variance that is actually present, and not due to error- or
residual variance. The VAF indicates how well the model
output is related to the actual output without taking the
impact of extraneous factors into account. The MSE does
not account for whether the error is due to extraneous factors
(such as measurement imperfections / noise) or model im-
perfections. As explained in Section 2 (Fig. 8), some periods

of pedal deflections (e.g. braking) have a larger influence
on the velocity during curves than others. Therefore, in the
analysis of the results, mainly the velocity profiles will be
compared.

5.1. Training Performace

As explained in Section 2, the model inputs are the
TETP and TP angle. Model optimization is done on the
two training roads from Section 4. In Table 1 and 2
the average MSE and VAF values between measured and
modeled velocity and pedal deflection are given for each
participant. For these results, the speed control algorithm
model is compared to the training data of each participant.
The performance on the wide road is only slightly better on
average. Furthermore, the VAF values for velocity are higher
than for pedal deflections (76% and 20% respectively). A
reason for this is the human variability/randomness in pedal
deflection where the model output remains constant. When
for example increasing in velocity with a fluctuating or con-
stant pedal deflection, the deflection shows large differences
while the measured velocity only fluctuates slightly around
the steadily increasing modeled velocity resulting in lower
variance for the error in velocity.

The model from Participant 5 shows a clear difference
in performance with respect to the other participant models,
as the MSE for the velocity is on average (narrow and
wide road combined) 2.22 standard deviations above the
average value of 5.21 (m/s)2. In Fig. 11 a comparison
between measured and modeled data from Participant 1 is
visualized over a 7.5km road (part 1 of test track 1). The
performance of this model is a little above average in terms
of velocity MSE and close to average in terms of velocity
VAF. Interesting to notice in the model behaviour is that
there is only a small variability in the acceleration pedal
deflection maximums. This can be explained by the fact
that the TETP does never exceed 10s, and that there is only
a small variability in the TP angle when far away from a
curve. Small variations in input lead to only small variations
in output. At far distances from curves, pedal deflection
behaviour is most likely not entirely governed by outside
visual cues as the visual cues TETP and TP angle have
little sensitivity at that stage. A cue that is used in the work
of Gruppelaar [15] at large curve distances is the velocity.
More on the topic of driving phases will be discussed in
Section 6.

5.2. Consistency of Participants

In order to come up with a one-size-fits-all model, it is
important to investigate the variability between and within
participants. The optimized models of each participant will
be used as speed control algorithm on the driving path of
every other participant. Subjects that have similar driving
behaviour will show a lower MSE and higher VAF when
a comparison is made between measured velocity data of
Participant A and the speed control algorithm optimized
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Figure 11. Participant 1, training road 1a, comparison between optimized model and measured data

TABLE 1. TRAINING PERFORMANCE (MSE AND VAF) ON WIDE ROAD
(3.6M) FOR EACH INDIVIDUAL PARTICIPANT MODEL

MSE (v) VAF (v) MSE (δa − δb) VAF (δa − δb)
S01 4.54 80.60 240.01 37.11
S02 4.33 78.01 541.00 0.00
S03 2.48 87.72 197.35 8.48
S04 3.48 76.88 301.69 50.86
S05 9.72 53.71 263.63 0.00
S06 3.78 80.68 435.49 23.53
S07 5.49 71.39 173.33 6.52
S08 3.89 83.00 171.62 0.00
S09 7.09 66.57 314.86 3.97
S10 5.91 75.42 286.88 0.00
S11 2.86 85.88 173.15 53.16
S12 3.42 85.69 272.54 43.86
S13 4.58 84.23 222.73 18.18
S14 5.38 81.49 348.84 8.38
Mean 4.78 77.95 281.65 18.15
StdDev 1.89 9.11 105.72 19.98

TABLE 2. TRAINING PERFORMANCE (MSE AND VAF) ON NARROW
ROAD (3.2M) FOR EACH INDIVIDUAL PARTICIPANT MODEL

MSE (v) VAF (v) MSE (δa − δb) VAF (δa − δb)
S01 4.67 77.25 221.39 41.53
S02 2.79 85.04 426.58 5.81
S03 2.87 86.39 260.35 0.00
S04 4.03 70.34 292.67 54.74
S05 11.65 31.55 257.13 0.00
S06 4.53 80.40 267.39 46.65
S07 9.08 58.38 227.90 12.04
S08 8.37 69.38 287.08 0.00
S09 3.31 85.58 168.47 43.95
S10 9.11 61.05 374.43 0.00
S11 1.71 90.89 138.93 63.07
S12 5.75 74.37 743.12 13.38
S13 4.34 83.67 195.33 30.63
S14 6.86 75.65 417.59 1.79
Mean 5.65 73.57 305.60 22.40
StdDev 2.94 15.41 152.31 23.34

with data from Participant B. This analysis is done using
the relatively short validation roads (6 in total).

The results for Validation Road 1 are shown in Fig. 12.
In this figure a vertical change indicates a model from
another participant, and a horizontal change indicates a
change in participant validation data. Similar to the results
from Tables 1 and 2, the model optimized with data from
Participant 5 results in the highest MSE and lowest VAF.
The model performance is not only low when used on other
participants, but also on Participant 5 itself. Additionally,
when data from Participant 5 is used for validation, there
exist some models which are a relatively good fit. Therefore,
it is safe to conclude that optimization problems (such as
being stuck in an undesired local minimum) have occurred
when optimizing the model with data from Participant 5.
Furthermore, there is not a single participant that shows rel-
atively bad performance on every model for each validation
road. This would indicate that such a participant is an outlier
with respect to the other participants. The best model fit was
found to be optimized with data from Participant 12. Almost
every other test subject shows relatively similar speed con-
trol behaviour with a few validation road exceptions.

The inconsistency within participants themselves is in-
vestigated comparing the validation roads of the participants
with the model trained with data of that same test subject
(diagonal values in Fig. 12). These values are checked
with the values of Table 1 and 2, since for an inconsistent
participant it is most likely also more difficult to precisely
model their speed adaptation behaviour. The results (velocity
MSE and VAF) of this analysis are shown in Fig. 13.
First, it is interesting to see the increase in performance
for individual models compared to the average performance
found in Fig. 12. On average the VAF has increased from
approximately 65% to 75% and the MSE has dropped
from around 11.7 to 7.5 (when all validation roads are
considered). Since the model from Participant 5 has not
been optimized properly, this model has not been taken
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Figure 12. Variability table for validation road 1 (MSE above and VAF
below for velocity). up → down: the model is trained with data from Par-
ticipants 1-14. left→ right: the model is tested with data from Participants
1-14. Model of Participant 5 not taken into the mean values

into account in both cases. As predicted beforehand, the
most inconsistent speed adaptation behaviour is found for
Participants 7, 8 and 10. When looking in Table 1 and 2,
these participants also show the highest training error with
respect to the other participants (ignoring Participant 5). The
most consistent participant is found to be number 11. Again
this can be validated by the training error from Table 1 and 2,
as this participant has the lowest training error and consistent
speed adaptation behaviour data are easier to model with
higher accuracy.

5.3. Validation

From Fig. 12 and similar tables from other validation
roads it becomes clear that the model trained with data
from Participant 12 has the most identical speed adaptation
behaviour with respect to the other participants since it has
the highest average VAF and lowest average MSE when
applied to other participants. Initially, this model would be
used as initial condition after which the model would be
further optimized using data from each participant. However,
due to the excessive computational power required by the
optimization algorithm, this optimization step is abandoned.
Instead of being an initial model, this model is used as a one-
size-fits-all model as high average and general performance
is already obtained. The one-size-fits-all speed control algo-
rithm has been used on the routes driven by all participants
and the velocity profiles between participants and model
have been compared in Fig. 14. Interestingly, the model
achieves on average almost identical performance values in
terms of MSE and VAF compared to the individual models.
For some participants, this one-size-fits-all model performs

Figure 13. Performance (MSE and VAF for velocity) of individual models
on all validation roads

even better than their own individual model (e.g. Participants
5, 6, 7, 8, 10, 13 and 14 in terms of MSE). This indicates
that there is a large chance that those individual models
got stuck in an less-desired local minimum during the
second optimization loop. This shows that the optimization
is sensitive to the given initial conditions that resulted from
the neural network optimization.

The participant with the least identical behaviour to the
model is Participant 11 as it is 2.3 standard deviations from
the average velocity MSE value. It is interesting to see
that that same participant is also the most consistent driver,
with lowest training error and validation error on its own
optimized model. The changing characteristics for validation
roads 2-5 are curve distances, radii, deflection and road
width respectively. Validation Road 6 has all parameters
changed. What is also seen in the results is that worst
performance is achieved in Validation Road 2, when looking
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Figure 14. Performance (MSE and VAF for velocity) of the one-size-fits-all
model on all validation roads

Figure 15. Time (seconds) of being off-road on the validation roads for
each participant

at the individual and the one-size-fits-all model. Validation
road 2 has different distances between curves with respect
to the training data. However, it is not possible to conclude
that changing the distances between curves leads to worse
performance. Validation road 6 also has different distances
between curves, yet the performance maintains relatively
high. Most low performing validation roads are caused by
either the driver being off-road for a significant amount of
time or having a different average speed while the behaviour
is still very similar. When the driver is off-road, the visual
cue algorithm is not able to generate the distances and times
to visual cues and is set to a constant value. If the optimized
neural network weights are set in such a way that heavy
braking occurs for this set constant value, the algorithm
tends to brake to zero velocity, after which it accelerates
again. Being off-road for a prolonged amount of time causes
this phenomenon to repeat itself, causing oscillations in the
velocity profile at low speeds. An example of this is shown
in Fig. 16. This is also the case for Participants 6 (Road 3),
9 (Road 2 and 5) and 12 (Road 5), which is also shown in
the additional results (Part II of report, Section B.1). Note
that being off-road does not always lead to large errors.
For example when it occurs at a moment in which the
driver is braking in a similar way as the model has learned,
or when the braking is not sufficient enough to bring the
vehicle to zero velocity (e.g. Participant 1, Road 5). An
example of a large error due to a different average velocity
is shown in Fig. 17. This is also the participant (11) with
the least identical behaviour compared to the one-size-fits-
all model (MSE), yet the highest VAF value. As seen in this
figure, and the other validation roads in Part II, Section B.1,
driving is more slowly compared to the model. The final
example shown is an example where the model shows very
comparable driving behaviour as the participant to which it
is compared. This is shown in Fig. 18.

5.4. Comparison to the Gruppelaar Model

The TETP model input for the speed control algorithm
is used as it turned out to be an important cue from the work
of Gruppelaar [15]. The developed model has changed from
a classical approach to a Machine Learning (neural network)
approach such that inputs can be easily added or changed
without having to change the complete model architecture
and to remove the hard thresholds on driving phases.

The results of the heuristic model by Gruppelaar [15],
that is applied to the data from all participants on the various
validation roads, are shown in Fig. 20. When using the
machine learning approach, in general, the performance in
terms of VAF and MSE is increased. When comparing the
Gruppelaar model to the Machine Learning (one-size-fits-
all) model on the six validation roads from Section 4. The
average VAF for the Machine Learning approach is almost
20% higher (75%-56%) and the average MSE around 4
(m/s)2 (11.5 - 7.3) lower. When looking at the standard
deviation of the MSE and VAF (last row in Figs. 14 and
20), the Gruppelaar model has a slightly lower value for
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Figure 16. Flawed model example 1 (Participant 9, Road 4): Off-road data leading to oscillations in δa, δb and V close to zero velocity.
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Figure 17. Flawed model example 2 (Participant 11, Road 3): Velocity shift between model and experiment
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Figure 18. Accurate model example (Participant 4, Road 5)
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Figure 19. Comparison between classical model, machine learning approach and the measured data (Participant 6, Road 4)

the MSE stdDev (2.04 instead of 2.61) and a slightly higher
value for the VAF stdDev (10.42 instead of 9.00).

In the analysis in the work of Gruppelaar, an average
VAF value of 38.1 was achieved on validation roads driven
by participants on which the heuristic model was devel-
oped (presented in [15]). The performance of this model
increases in performance when only a single isolated turn is
taken for analysis (average VAF = 63.85 [15]). His one-
size-fits-all model produces quite variable results for the
different participants (VAF standard deviation = 29.12 [15]).
Furthermore, as discussed in his work, oscillations in pedal
deflections close to turn exit are found due to a problematic
implementation of a hard threshold on the rate of change of
the TETP that determines which phase the vehicle should
be in (see Fig. 19). Working without a model that first
determines the driving phase, this phenomenon does not
occur in the machine learning approach.

6. Discussion

6.1. Model Performance

Overall, the speed control algorithm shows its capa-
bility of capturing general longitudinal driving behaviour
trends of the participants. The one-size-fits-all model can
be applied to almost all participants with an average VAF
of almost 75% and a MSE of just over 7. The sensitivity
of the TP angle input seems to respond correctly to the
driving phase shifts close to and in the different curves.
There are however a few flaws in the model still. First of
all, no different driving phases are separated explicitly in
order to avoid hard thresholds on model inputs. In the case
of the test tracks from Section 4, this model still works
relatively well as the curves are only 250m apart, causing
the model inputs to never be insensitive for a prolonged
period of time. The insensitivity of the inputs can already
be seen for some short periods of time between curves, as
this results in an relatively constant model output in these

stages (see δa − δb in Fig. 11). In order to achieve higher
accuracy on all road types, including longer straight parts,
it would be better to characterise different driving phases,
each dependent on different inputs. In long straight roads,
the visual cues discussed in this research remain fairly fixed.
As shown in the work of Gruppelaar [15] above a certain
TETP threshold, speed adaptation is most likely governed by
the vehicle velocity. This is an input for drivers which can be
obtained by the optical flow field (roughly), or by looking at
the speed indicator inside the vehicle. Also, inside a curve,
speed control is most likely governed by the maximum
allowable lateral acceleration drivers set for themselves for
different velocities [28].

On the other hand, it is not the case that no driving
phases are identified with the used model approach. By
setting up the neural network and the second optimization
loop (Section 2), it gives the model the possibility to come
up with a driving phase determination by itself. The speed
control algorithm is able to, for example, distinguish be-
tween whether to be in the braking phase or not without
having to set hard thresholds on model inputs. Without
hard thresholds, the oscillation problem in model output
does not occur since no fluctuations between driving phases
are possible (see Fig. 19). A trade-off can be made in
terms of model independence and dimensionality. Due to the
various driving phases being present and being identifiable
by different model inputs, it becomes difficult to develop a
fully independent model (without pre-determining phases)
as more inputs are required. This leads to the curse of
dimensionality [3], as with more model inputs the available
data quickly becomes sparse.

A second change that could improve model performance
with respect to reality, is by introducing car dynamical cues
to the driver. In a research from Reymond et al. [28] the
role of lateral acceleration while driving is investigated. In
their work they show that there exists a relation between
velocity and maximum lateral acceleration. The faster a
subject drives, the lower their maximum allowable lateral
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Figure 20. Performance (MSE and VAF for velocity) of classical model
applied to validation road 1-6

acceleration levels happens to be. In their work they also
show the different driving behaviour for static and dynamic
simulators. From the results, one can conclude that when
lateral acceleration cues are included, drivers show higher
sensitivity to these cues by adjusting the maximum allow-
able levels.

Finally, in order to improve model performance further,
a separate off-road model can be implemented. During test
runs, identification of some road parts have been challeng-
ing for participants, causing them to drive off-road for a
period of time. During the off-road parts, the visual cue
algorithm was not able to generate a correct visual cue
distance and time, causing the algorithm to output a constant
predetermined value. Because participants tend to brake
when driving off-road, the optimized model also decelerates
quickly. Since the model inputs are constant off-road, the
speed control algorithm often brakes back to zero velocity.

Oscillations in velocity close to zero velocity can be seen
in Fig. 16 for an off-road part.

6.2. Model Approach Comparison

Using a neural network approach has lead to some ad-
vantages and some disadvantages compared to the classical
modeling approach. An advantage of the classical approach
is that it is more robust. When defining equations to build the
model, one knows the output value for each possible given
input, and can check whether this value is accurate. With the
neural network approach, it is more difficult to validate each
possible model input, as not all input combinations exist in
the validation and training data. Secondly, when using the
classical approach, it is easier to implement more model
inputs as the curse of dimensionality does not influence
the model development as much as for a neural network.
When data becomes sparse, a neural network may produce
unrealistic output values in places where little to no training
data exists.

An advantage of using the machine learning approach
is that one does not have to set hard phase determination
thresholds. Furthermore, a neural network makes it conve-
nient to implement various model inputs without changing
the entire model architecture.

6.3. Future Work

As discussed before, future improvements directly re-
lated to this research can be the implementation of driving
phases and he use of a dynamical driving simulator. As
explained in Section 1, comfortability and trust is a mayor
factor in human-automation interaction. A next step would
therefore be to implement the developed speed control al-
gorithm into the driving simulator. Participants would not
need to accelerate themselves, but only steer the simulated
vehicle. A human-machine interaction research could be
conducted on these experiments and experiences of the
participants in terms of comfortability can be investigated.

The model can also be used to work towards improve-
ments in current ADAS systems such as a haptic pedal
assistance system, similar to the one developed by Mulder
et al. [24] for car following purposes. Such a system would
be able to give force feedback on the gas pedal and or brake
brake pedal in such a way that the driver can feel the severity
of upcoming turn. Development of such systems can greatly
improve the safety and driving performance on curved roads.

Further development of the speed control algorithm can
also include steering behaviour in order to build towards
more autonomous driving systems. These systems would
need more models developed in various environments. In-
stead of just high speed curved roads without any traffic,
one could include traffic, road signs, different speed limits,
traffic lights, elevated roads, multiple road lanes etc.

7. Conclusion
The objective of this research was to develop a one-

size-fits-all speed control model that uses inputs from the
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observable visual domain. This research is a follow up
project on the work of Gruppelaar [15] in which a heuristic
model was developed relating the TETP to vehicle pedal
deflections. Input examples that have been found observable
by drivers are visual angles and time margins to visual
points. The TP angle has shown increased sensitivity at
moments where the sensitivity of the TETP decreases. Using
these two observable cues as inputs to a neural network,
the developed speed control algorithm is able to accurately
capture longitudinal driving behaviour from the participants.
The advantage of using a neural network model architecture
is that no hard thresholds are set on the input variables,
removing the phase oscillations earlier present in the pedal
actuation. As opposed to almost all previous research, by
using the pedal actuation as output, the model could be
directly applied to the self-accelerating algorithm. In order
to improve the model further, driving phases that are depen-
dent on different input variables could be implemented. A
dynamic simulator could be used to increase the fidelity of
the performed experiments. improved models can be used
in the future to increase autonomy in driving by developing
Advanced Driver-Assistance Systems such as haptic pedal
assistance.

A. ETP detection

In order to have the speed control algorithm accelerate,
it must been given the inputs TETP and the TP angle. In
real life this could be done using one or more cameras
mounted to the front of the car. An algorithm uses these
camera images in order to generate the TETP and TP value.
Such an algorithm is developed by Gallen and Glaser [14].
Their algorithm samples various angle points on both the
right and left road edges. it calculates the derivative of these
angles and finds the zero-crossing. This means that the TP
angle is getting smaller further away, where after it gets
larger at some point in the inside of a curve. The point of
zero-derivative is the angle where the TP point is. the TP
is found by calculating the distance of the road edge at this
angle with respect to the vehicle location.

The same method is used mathematically, without cam-
era, for the visual cue algorithm discussed in Section 2. The
TETP is found by extending the line with the same TP angle
until it intersects with another road edge. Note that this is
usually the other side of the road, but can also be the same
side of the road when two opposite curves are close together.
A visual representation is shown in Fig. 21.

B. Neural Network

B.1. Network Structure

For optimization, a single hidden layer feed-forward
neural network structure is chosen with symmetric sigmoidal
activation function. The general representation of such a
network is shown in Fig .22. The input xi consists of the
TETP and the TP angle. The output yk equals the accelerator

Figure 21. Detection of TP and ETP distance and angle

Figure 22. General description of single hidden layer neural network

minus the brake pedal deflection (δa − δb). First the input
data is normalized by Eq. 5a. After normalization, the input
xnorm is multiplied with weight matrix Wij and the bias
b1 is added (= xj). xj is used as input to the hidden layer
symmetric sigmoidal activation function (see Eq. 6). The
output value of the activation function (yj) is multiplied
with weight matrix Wjk and bias b2 is added resulting in the
normalized neural network output. The normalized output is
de-normalized using Eq. 5b.
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xnorm = (x− xmin) · ymax − ymin
xmax − xmin

+ ymin (5a)

y = (ynorm − ymin) · xmax,2 − xmin,2
ymax − ymin

+ xmin,2 (5b)

xmax,min =

[
TETPmax,min
∠TPmax,min

]
xmax2,min2 =

[
(δa − δb)max,min

]
ymin = −1 ymax = 1

φ =
2

e−2xj + 1
− 1 (6)

B.2. Optimization

The method in used in order to train the data is the
Levenberg-Marquardt (LM) method. This method is a sec-
ond order method and in order to update the weights for the
next iteration, Eq. 7 is used.

Wt+1 = Wt −
(
JTJ + µI

)−1
JTe (7)

In which W is the vector containing all weights to be
updated. e is a vector containing the error (δmeasured−δsim).
This column vector has the size of the number of data
points for δmeasured. µ is the (adaptive) damping parameter.
Finally, J is the Jacobian matrix. The general definition for
J can be found in Eq. 8 in which N is the number of data
points, K the number of input weights (inputs x Nneurons)
and M the number of output weights (outputs x Nneurons).
The partial derivatives in Eq. 8 are calculated using Eq. 9
and 10. These equations are used for all data points in
combination with all weights.

J =
∂e

∂Wt
=
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...
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· · · ∂e(N)
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· · · ∂e(N)
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 (8)

∂e

∂wjk
=
∂ek,q
∂yk,q

∂yk,q
∂vk,q

∂vk,q
∂wjk

= −1 · 1 · yj (9)

∂e

∂Wij
=
∂ek,q
∂yk,q

∂yk,q
∂vk,q

∂vk,q
∂yj,q

∂yj,q
∂vj,q

∂vj,q
∂Wij

= · − 1 · 1 · wjk ·
∂φj (vj)

∂vj
· xi (10)

C. Vehicle Dynamics

TABLE 3. VEHICLE CHARACTERISTICS

Vehicle mass 1600 kg
Front tire cornering stiffness 30,000 N·rad−1

Rear tire cornering stiffness 30,000 N·rad−1

Vehicle yaw moment of inertia 2000 kg· m2

Front wheelbase to c.g. 1.4 m
Rear wheelbase to c.g. 1.4 m

Height of c.g. 0.5 m
Steering wheel rotational inertia 0.5 kg·m2

Steering wheel damping 5 kg·m
Steering gear ratio 25

The main vehicle characteristics are shown in Table 3.
The longitudinal vehicle dynamical model inputs the pedal
deflections and outputs the vehicle acceleration. The gear
in which the vehicle is in is calculated first using Fig. 23.
In these plots, one can find the moment of switching gears
for an accelerating and decelerating vehicle. Secondly the

Figure 23. Gear-shift map for accelerating and decelerating vehicle

engine rpm is calculate using Eq. 11. Finally, the accelera-
tion of the vehicle is calculated using Eq. 12 and Table 4.
In which Tq is the engine torque in Nm, de is the rotation
angle to engine input and G and B are the gas and brake
contributions respectively.
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TABLE 4. LONGITUDINAL VEHICLE PARAMETERS

Parameter Value Condition
Krpm,1 0.1186
Krpm,2 0.00001252
Kg,1 3.944358
Kg,2 -5.12919
Kg,3 2.178
Kb,1 0.5
Kb,2 29.43
Kb,3 14.0283
δb,threshold 0.05
pb,threshold 30

pb
0
200·δb

if δb < δb,threshold
else

pr
pb
30 +Kb,1(pb − 30)

if pb < pb,threshold
else

M 1600kg
Kres 1.7504
Kin 1.65289256198347

gearratio = [11.37 6.31 4.08 2.83];

rpm =
100 · gearratio(gear)

π · V
+ 700 (11)

a =
4 · (G−B) −Kres ∗ V 2 + 200

M + 100 +Kin ∗ gearratio(gear)2
(12a)

G = 0.9 · gearratio(gear) · Tq · de (12b)

B = kb,2 · pb + kb,3 · pr (12c)

Tq = Krpm,1 · rpm−Krpm,2 · rpm2 (12d)

de = Kg,1 · δa + kg,2 · δ2a + kg,3 · δ3a (12e)
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A. PARTICIPANT INSTRUCTIONS

1). Informed Consent Form

Taking part in the study

I have read and understood the study information dated 25/02/2021, or it has been
read to me. I have been able to ask questions about the study and my questions have
been answered to my satisfaction.

I consent voluntarily to be a participant in this study and understand that I can
refuse to answer questions and I can withdraw from the study at any time, without
having to give a reason.

I understand that taking part in the study involves collecting car state data using a
fixed-base driving simulator in order to model human behaviour in curve driving.

I understand that there is currently a global pandemic (Covid-19) and that I have to
take the proper safety measures (distance, mask and disinfect hands) to minimize
infection risks.

Risks associated with participating in the study

I understand that taking part in the study involves the following risks: physical
discomfort (simulation sickness) and mental fatigue.

Use of the information in the study

I understand that information I provide will be used for a MSc thesis project

I understand that personal information collected about me that can identify me,
such as [e.g. my name or where I live], will not be shared beyond the study team.

Future use and reuse of the information by others

I give permission for the simulation data that I provide to be archived at TU Delft so
it can be used for future research and learning.

Yes

�

�

�

�

�

�

�

�

No

�

�

�

�

�

�

�

�

Signatures
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2). Information Sheet

Purpose of research

The purpose of the research is to model human behaviour in curve driving on high speed roads.
The goal is to investigate whether it is possible to make a generic model that includes the gen-
eral trends of human behaviour while driving. Such a model could be used in the future to
enhance comfort while automating vehicle (sub)systems.

Risks of participating

• Mental fatigue: This is a condition triggered by prolonged cognitive activity. Basically, it
sends your brain into overdrive, leaving you exhausted. During and in between experi-
ments, the participant will be asked if any symptoms are present. The participant may
also stop the simulation at any time.

• Simulation sickness: This is a subset of motion sickness. Simulation sickness includes:
Nausea (symptoms are sweating, increased salvation, stomach awareness, and burping)
and Disorientation (symptoms are vertigo1, dizzy (eyes open), dizzy (eyes closed), and
blurred vision). During and in between experiments, the participant will be asked if any
symptoms are present. The participant may also stop the simulation at any time.

• Covid-19: when in public places during this pandemic, there always exists a risk of getting
infected by the Covid-19 virus. Precaution will be taken by disinfecting hands, wearing a
face mask, and to keep at least 1.5m distance.

Procedures for withdrawal from the study

When the participant wants to withdraw from the study, he/she has the right to do so without
any reason. Please contact the researcher and/or supervisors (contact details are below), and
all collected data and personal information will be deleted permanently.

Personal information about the participant

Personal information that will be collected is the information on the Informed Consent form.
This information will be stored separately in a Project Storage (staff-umbrella) within the TU
Delft network, accessible only by the project supervisor. Other information such as age, gender
and years of driving experience will be anonymized.

Retention period for the research data

The retention period of the research data is at least 10 years.

File a complaint

Send an email to the project researcher or to the project supervisor.

Instructions & info for Experiment

• There will be 4 Training road which take approximately 10 minutes each. There are 6
validation roads that will take 5 minutes each. In total the time spend (with breaks) will
be about 2-2.5 hours.

• First, you will have a few familiarisation runs, to get used to the simulation controls.
• Try to drive in a comfortable way as you would normally without any time constraints.
• The maximum speed is 100km/h. Just as on public roads, try to not exceed the limit.
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• In case of emergency , there is a red emergency button next to you one the right that will
stop the simulation.

Contact details of the researcher & supervisors

Stef Ceelen —– s.ceelen@student.tudelft.nl

Max Mulder —- M.Mulder@tudelft.nl

René van Paassen —- M.M.vanPaassen@tudelft.nl

Institution

TU Delft
Faculty of Aerospace Engineering
Control and Simulation Department
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B. ADDITIONAL RESULTS

1). One-size-fits-all Model Results
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Figure B.1: One-size-fits-all model results, participant 01 on validation road 1
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Figure B.2: One-size-fits-all model results, participant 01 on validation road 2
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Figure B.3: One-size-fits-all model results, participant 01 on validation road 3
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Figure B.4: One-size-fits-all model results, participant 01 on validation road 4
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Figure B.5: One-size-fits-all model results, participant 01 on validation road 5
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Figure B.6: One-size-fits-all model results, participant 01 on validation road 6
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Figure B.7: One-size-fits-all model results, participant 02 on validation road 1
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Figure B.8: One-size-fits-all model results, participant 02 on validation road 2
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Figure B.9: One-size-fits-all model results, participant 02 on validation road 3
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Figure B.10: One-size-fits-all model results, participant 02 on validation road 4
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Figure B.11: One-size-fits-all model results, participant 02 on validation road 5
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Figure B.12: One-size-fits-all model results, participant 02 on validation road 6
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Figure B.13: One-size-fits-all model results, participant 03 on validation road 1
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Figure B.14: One-size-fits-all model results, participant 03 on validation road 2
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Figure B.15: One-size-fits-all model results, participant 03 on validation road 3
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Figure B.16: One-size-fits-all model results, participant 03 on validation road 4
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Figure B.17: One-size-fits-all model results, participant 03 on validation road 5
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Figure B.18: One-size-fits-all model results, participant 03 on validation road 6
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Figure B.19: One-size-fits-all model results, participant 04 on validation road 1
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Figure B.20: One-size-fits-all model results, participant 04 on validation road 2
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Figure B.21: One-size-fits-all model results, participant 04 on validation road 3
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Figure B.22: One-size-fits-all model results, participant 04 on validation road 4
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Figure B.23: One-size-fits-all model results, participant 04 on validation road 5
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Figure B.24: One-size-fits-all model results, participant 04 on validation road 6
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Figure B.25: One-size-fits-all model results, participant 05 on validation road 1
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Figure B.26: One-size-fits-all model results, participant 05 on validation road 2
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Figure B.27: One-size-fits-all model results, participant 05 on validation road 3
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Figure B.28: One-size-fits-all model results, participant 05 on validation road 4
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Figure B.29: One-size-fits-all model results, participant 05 on validation road 5
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Figure B.30: One-size-fits-all model results, participant 05 on validation road 6
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Figure B.31: One-size-fits-all model results, participant 06 on validation road 1
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Figure B.32: One-size-fits-all model results, participant 06 on validation road 2
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Figure B.33: One-size-fits-all model results, participant 06 on validation road 3
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Figure B.34: One-size-fits-all model results, participant 06 on validation road 4
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Figure B.35: One-size-fits-all model results, participant 06 on validation road 5
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Figure B.36: One-size-fits-all model results, participant 06 on validation road 6
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Figure B.37: One-size-fits-all model results, participant 07 on validation road 1
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Figure B.38: One-size-fits-all model results, participant 07 on validation road 2
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Figure B.39: One-size-fits-all model results, participant 07 on validation road 3
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Figure B.40: One-size-fits-all model results, participant 07 on validation road 4
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Figure B.41: One-size-fits-all model results, participant 07 on validation road 5
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Figure B.42: One-size-fits-all model results, participant 07 on validation road 6
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Figure B.43: One-size-fits-all model results, participant 08 on validation road 1
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Figure B.44: One-size-fits-all model results, participant 08 on validation road 2
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Figure B.45: One-size-fits-all model results, participant 08 on validation road 3
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Figure B.46: One-size-fits-all model results, participant 08 on validation road 4
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Figure B.47: One-size-fits-all model results, participant 08 on validation road 5
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Figure B.48: One-size-fits-all model results, participant 08 on validation road 6
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Figure B.49: One-size-fits-all model results, participant 09 on validation road 1
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Figure B.50: One-size-fits-all model results, participant 09 on validation road 2
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Figure B.51: One-size-fits-all model results, participant 09 on validation road 3
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Figure B.52: One-size-fits-all model results, participant 09 on validation road 4
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Figure B.53: One-size-fits-all model results, participant 09 on validation road 5
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Figure B.54: One-size-fits-all model results, participant 09 on validation road 6
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Figure B.55: One-size-fits-all model results, participant 10 on validation road 1

0 500 1000 1500 2000 2500 3000
0

10

20

V
e
lo

c
it
y
 [
m

s
-1

] Participant 10 -- Validation Road 02

Experiment

Model

0 500 1000 1500 2000 2500 3000

Distance [m]

-100

0

100

a
-

b
 [
%

]

Figure B.56: One-size-fits-all model results, participant 10 on validation road 2

0 500 1000 1500 2000 2500 3000 3500 4000
0

20

V
e

lo
c
it
y
 [

m
s

-1
] Participant 10 -- Validation Road 03

Experiment

Model

0 500 1000 1500 2000 2500 3000 3500 4000

Distance [m]

0

50

100

a
-

b
 [

%
]

Figure B.57: One-size-fits-all model results, participant 10 on validation road 3
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Figure B.58: One-size-fits-all model results, participant 10 on validation road 4
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Figure B.59: One-size-fits-all model results, participant 10 on validation road 5
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Figure B.60: One-size-fits-all model results, participant 10 on validation road 6
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Figure B.61: One-size-fits-all model results, participant 11 on validation road 1
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Figure B.62: One-size-fits-all model results, participant 11 on validation road 2
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Figure B.63: One-size-fits-all model results, participant 11 on validation road 3
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Figure B.64: One-size-fits-all model results, participant 11 on validation road 4
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Figure B.65: One-size-fits-all model results, participant 11 on validation road 5
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Figure B.66: One-size-fits-all model results, participant 11 on validation road 6
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Figure B.67: One-size-fits-all model results, participant 12 on validation road 1
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Figure B.68: One-size-fits-all model results, participant 12 on validation road 2
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Figure B.69: One-size-fits-all model results, participant 12 on validation road 3
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Figure B.70: One-size-fits-all model results, participant 12 on validation road 4
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Figure B.71: One-size-fits-all model results, participant 12 on validation road 5
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Figure B.72: One-size-fits-all model results, participant 12 on validation road 6
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Figure B.73: One-size-fits-all model results, participant 13 on validation road 1
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Figure B.74: One-size-fits-all model results, participant 13 on validation road 2
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Figure B.75: One-size-fits-all model results, participant 13 on validation road 3
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Figure B.76: One-size-fits-all model results, participant 13 on validation road 4

0 500 1000 1500 2000 2500 3000 3500 4000
0

10

20

V
e
lo

c
it
y
 [
m

s
-1

] Participant 13 -- Validation Road 05

Experiment

Model

0 500 1000 1500 2000 2500 3000 3500 4000

Distance [m]

-300

-200

-100

0

a
-

b
 [
%

]

Figure B.77: One-size-fits-all model results, participant 13 on validation road 5
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Figure B.78: One-size-fits-all model results, participant 13 on validation road 6
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Figure B.79: One-size-fits-all model results, participant 14 on validation road 1
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Figure B.80: One-size-fits-all model results, participant 14 on validation road 2
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Figure B.81: One-size-fits-all model results, participant 14 on validation road 3
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Figure B.82: One-size-fits-all model results, participant 14 on validation road 4
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Figure B.83: One-size-fits-all model results, participant 14 on validation road 5
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Figure B.84: One-size-fits-all model results, participant 14 on validation road 6
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2). Variability Tables

Figure B.85: Variability table (MSE and VAF on velocity) for validation road 1

Figure B.86: Variability table (MSE and VAF on velocity) for validation road 2
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Figure B.87: Variability table (MSE and VAF on velocity) for validation road 3

Figure B.88: Variability table (MSE and VAF on velocity) for validation road 4
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Figure B.89: Variability table (MSE and VAF on velocity) for validation road 5

Figure B.90: Variability table (MSE and VAF on velocity) for validation road 6
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C. CODE GENERATION

1). Process Simulation Data

With the matlab file ‘ProcessRawData.m’ the raw data from the simulator is processed to the
input variables needed for further analysis. First one has to define which participant (1-15) on
which road type (V= validation, T = training) and number needs to be processed.

The simulation data is stored as hdf5 file, which can be displayed with ‘h5disp’ and stored as
variable in Matlab with ’h5read’. The road data is stored in a csv file and is opened using ‘load’.
The road data in the csv file consists of 8 columns shown below:

r oad = [xr i g ht yr i g ht xmi d ymi d xle f t yle f t ψ R]

Due to a different definition of ψ that is used in further analysis (in radians) it is transformed in
line 37. The curve radius is also transformed to road curvature (= R−1).

For each sample point the distance and time values to the TP and ETP are generated using
function ‘findTP’. Also the angle to the TP and the change in ψ is generated using the same
function. These values are stored in lists and after the ‘end-of-road’ data is deleted. The end-
of-road data is defined as the last point where no TP values can be found until the last sample
point.

2). TP & ETP determination

The distances, times and angles to the TP and ETP are found with function ‘findTP.m’. First
the actual location of the vehicle with respect to the road is established. After this it is checked
whether the end of road is reached and if the car is located outside the lanes of the road. If one
of these conditions applies, a fixed predetermined values is set as TETP, DETP, TTP, DTP and
TPangle. If these conditions do not apply, the TP search starts.

First the left side of the road is checked, and TPsearch is set to ‘false’. The ‘90deg-TP angle’ is cal-
culated using simple trigonometry for the first and second road lane point. When the difference
in angle crosses zero, the TP angle must lay between these points. Note that when interpolating
between these point to find the more exact TP angle, a value of 0.5 must be subtracted to both
road lane point index numbers. This is due to the fact that the derivative between two points
(e.g. point 1 and 2) is the derivative at 1.5 when linearly interpolating. When the TP index point
left is found (or end of road is reached), the same is done for the right side of the road. When
on both sides a TP point is found, priority is given to the one closest tot the vehicle. Finally, the
TTP, DTP and TP angle are calculated using Eq. C.1.

DT P =
√

(xcar −xT P )2 + (ycar − yT P )2; (C.1a)

T T P = DT P

Vcar
; (C.1b)

T Pang l e = wr apToPi (at an2((yT P − ycar ), (xT P −xcar ))−ψ); (C.1c)

The distance and time to the ETP is found in a different way since the TP is already established.
The line towards the TP is linearly extended using Eq. C.2 in which X and Y and sample x and y
locations of the road lane.

Y = ∆y

∆x
· (X −xcar )+ ycar (C.2a)
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∆y = yT P − ycar ; (C.2b)

∆x = xT P −xcar ; (C.2c)

Using this line, the difference in y between the (left) side of the road at location x1 and the
linearly extended line at location x1 is calculated. This is also done at the next location x2.
These two differences are multiplied with each other. When this multiplication turns out to be
negative, is must be that these two lines have crossed. Using ‘interp1’, linear interpolation is
done to find the ETP index point. This is done for both the right and left side of the road. The
ETP index closest to the vehicle is set at ETP location. Similar as in Eq. C.1, the TETP and DETP
are calculated.

3). Neural Network

The neural network is trained in the file ‘modelData.m’. First the desired processed files are
opened and variables are put into one array. After this a neural network setup is made using
‘feedforwardnet’. The training algorithm (LM), the number of epochs and the minimum allow-
able gradient are all set in the ’net.trainParam’ structure. The network is trained by using the
input (TETP and TP angle) and output (δa −δb) values. Finally, the weights and normalization
values are retrieved from the network to be used in further analysis. The normalization values
are used before putting in the inputs and and after generating the outputs into/out the neural
net using Eq. C.3a and C.3b respectively.

xnor m = (x −xmi n) · ymax − ymi n

xmax −xmi n
+ ymi n (C.3a)

y = (ynor m − ymi n) · xmax,2 −xmi n,2

ymax − ymi n
+xmi n,2 (C.3b)

xmax,mi n =
[

T ET Pmax,mi n

∠T Pmax,mi n

]
xmax2,mi n2 =

[
(δa −δb)max,mi n

]
ymi n =−1 ymax = 1

The neural network complete structure can be found in the Simulink model ‘NNsetup.slx’. This
model includes normalization and the network weights and activation functions. Note that
these values are set for a specific training case, and do not change automatically when a new
network is trained.

4). Initial Conditions for Optimization

In order to generate the initial conditions needed for the fmincon optimizer, a matlab file called
‘GetInitialValues.m’ is made. In this file one needs to define which model to use (produced in
‘ModelData.m’) and which participant/road to use the model on.

First the distance travelled (‘dRoute’) will be calculated by linearly attaching all vehicle loca-
tion sample point, and calculating the distance between each point using simple trigonometry.
Sample points at the start when the vehicle is standing still are removed using the ’unique’
function since these are not of interest.

The second thing in this script is the running of the speed control algorithm using the defined
model. In order to save much time, ∆t is held variable while the location points of ‘dRoute’
are held fixed. When these location points are held fixed the DETP and TP angle values at
these points remain the same as when processed in ‘processRawData.m’. The TETP values can
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simple be calculated using Eq. C.4 instead of the ‘findTP’ algorithm which needs much more
processing power.

T ET P (i ) = DET P (i )

V (i )
(C.4)

When the visual cues at time t are determined the pedal deflection is calculated using one equa-
tion (line 76). This equation represents the entire neural network which uses inputs TETP and
TP angle, and outputs the pedal deflection (positive = accelerator, negative = brake). The pedal
deflections are used as input to the longitudinal vehicle dynamical model. This entire model is
explained in Appendix C of the thesis article. Using this model the vehicle acceleration between
sample point i and i+1 is calculated. The ’if’ statement in the loop is there in case the vehicle
crosses the side of the road and the vehicle decelerates to negative velocity (not possible in real
life without ’reverse’ gear). The reason this could happen is due to the fact that ∆t is variable
and calculated using Eq. ??. When inside the square root becomes negative, a complex number
would be given to ∆t . The if statement re-sets the visual cues to starting values so that it can
move forward until the vehicle is back on the track. After the speed control algorithm loop, the
neural network parameters and the modeled test drive variables are saved to be used as initial
conditions for the second optimization.

5). fmincon Optimization

The last step in model development is the fmincon (outer) optimization. This optimization
minimizes an objective function that is defined at the end of the script. Because variables are
not in the workspace when the script runs the objective function, global variables are defined
first. These are the visual cues that remain fixed when the vehicle location sample point are
kept fixed (DETP and TP angle). Also the neural network parameters and the measured car
speed (to calculate MSE) are set as global variables. In a similar way as before, the initial con-
ditions generated in ‘GetInitialValues.m’ are loaded into the workspace. In order to set up this
optimization the ‘optimoptions’ funtion is used (line 48). Chosen is the ‘fmincon - active-set’
algorithm. It is also possible to change the constraint and step tolerance depending on the op-
timization problem. The to be determined variables are the neural network weights (defined as
x). x0 are the weights after training the neural network. Furthermore are there no (non)linear
constraints and no upper and lower limits (ub & lb) for the weights. The vehicle dynamics are
integrated in the objective function instead as set as constraints. The objective function is min-
imized during optimization and is found in Eq. ?? for n sample points.

minimize
l b<x<ub

f (x) =
∑nmax

n=1 (Vsi m −Vmodel )2

n
(C.5)

The simulated velocity Vsi m is calculated using the speed control algorithm which is integrated
in the objective function and is a function of x, therefore, the objective is a function of x. Finally,
the optimized neural network weights are saved as a new model.

6). Validation

Validation of models is done using ‘ValidateData.m’. This script is basically the same as the
speed control algorithm used to get initial values for the fmincon optimization. The only differ-
ence between the two is that this time∆t is set to a constant value (0.01 default). This results in
different vehicle location samples compared to the measured values. Therefore, the ‘findTP.m’
algorithm is used again in order to compute the new visual inputs. This also results in a differ-
ent array length when comparing the model and measured velocity. At the end the modeled
velocity is interpolated to match the array size of the measured velocity so that the MSE and

56



VAF can be calculated.

In the folder with the code files, an example is given using the training road of participant 1 (this
is participant 2 in the thesis article since numbering started at S00 during measurements). The
saved results after each script is saved into the same folder.
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1
Introduction

1.1. Background Information
Many car manufacturers are investing their time and money into the development of autonomous vehicles,
also known as the ’Self Driving Car’. This car is able to monitor its surroundings and to move safely through
its environment with little to no input of a human. At the moment there is a slow transition happening from
manual cars to fully autonomous cars. This transition started a long time ago. The goal of this transition is to
enhance safety and driving convenience. The first form of automation was cruise control. This form of au-
tomation was implemented in the late 1950s on the Chrysler Imperial [1]. After cruise control, the Anti-Lock
Braking System (ABS) was developed. The first ABS system as we know it was implemented in a Mercedes-
Benz in 1978 [1]. After the year 2000 more advanced safety features were developed for cars. These features
include ’Blind Spot Detection’, ’Forward Collision Warning’ and ’Lane Departure Warning’ [1]. After 2010,
more driving assistance features were implemented in cars. Vehicles could now assist with ’Rearview Video
Systems’, ’Automatic Emergency Braking’ and give ’Rear Cross Traffic Alerts’. In the last 5 years of development
towards more automation, cars became equipped with partially automated systems such as ’Lane Keeping
Assist’, ’Adaptive Cruise Control’ (ACC), ’Traffic Jam Assist’ and ’Self-Parking’ [1]. Many of these implementa-
tions could still be improved in performance.

Apart from partially automated systems in cars, there also exist projects focusing on fully automated cars. An
example of a project is Waymo. Waymo is an American autonomous driving technology development com-
pany. It is a subsidiary of Alphabet Inc, the parent company of Google. This company was founded in 2009,
where it started as the self-driving car project from Google. By 2018, Waymo had tested its system in six states
and 25 cities across the United States over a span of nine years. By October 2018, the autonomous cars had
driven 10 million miles (16 million km) on public roads and simulations had completed 7 billion miles (11.2
billion km) ’virtual’ miles [37]. By 2020, the experience on public roads exceeded 20 million miles (32 million
km) [32].

The main priority of driving autonomously is of course safety of the passengers and its environment.however,
next to safety, passenger comfort is also an important factor to take into account. People have much expe-
rience in driving and often drive through curves in a way that they themselves find comfortable. For au-
tomation there is a lot to learn from the way people drive through curved roads. This thesis will focus on
creating models that capture human behaviour in order to drive through curves in a safe and comfortable
way. There are multiple studies done regarding speed adaptation in curve driving. Most often, these studies
create models relating road curvature to vehicle velocity. However, humans themselves are often poor judges
of curvature. Yet, most of the time drivers are able to manoeuvre safely and comfortable through curves using
nothing but their senses. Therefore, the main focus of this thesis will be the visual field as input for the speed
adaptation model.
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2 1. Introduction

1.2. Research Objective and Questions
It is expected that the visual field must provide the main inputs for the speed choice behaviour of humans.
Research with gaze detection equipment [11] and theoretical research indicate several features from the vi-
sual field that might play a role. In order to investigate which features contribute to human drivers’ speed
choice, the following main research objective was formulated:

"Measuring and modeling drivers behaviour for speed adaptation in curves using neural networks with vi-
sual field inputs

The reason that a neural network will be used is due to the number of possibilities of in- and outputs. There
are many different cues from the visual field that can be used for speed determination. In order to easily
switch between combinations of these cues, a neural network is used. It is not always possible however to
produce a perfect model with the given in- and outputs. There is a large possibility that human driving be-
haviour is not only related to what they perceive through their eyes but also other inputs such as what is felt
with the vestibular system. Maybe those inputs could also be related back to flows in the visual field. There is
also the inconsistency and randomness of human behaviour within a person and between persons making it
more difficult if not impossible to get one general model. Because of all these possibilities, the research ob-
jective will be split up by means of smaller research questions. The questions that will be answered in order
to move towards a more detailed conclusion are as follows:

• Which visual points represent road geometry best?

• Which visual point flows represent accelerations best?

• Is there a correlation between visual cues and a comfortable speed profile in curve driving? If yes, how
much and which cues?

• Is there a correlation between visual cues and the moment / magnitude of braking/accelerating? If yes,
how much and which cues?

• How much influence has an upcoming curve on the driving behaviour in a current curve?

• How much does human behaviour vary between participants?

• How much does human behaviour vary for one participant?

1.3. Outline
This report is divided into two parts. The first part is a literature study. Many different aspects will be included
in this study and it is important to know the background of these aspects and up-to-date conclusions from
previous research on this matter. In chapter 2, a detailed explanation of the Advanced Driver Assistance Sys-
tem will be given. This includes the most recent developments towards autonomy. Many Advanced Driver
Assistance Systems require (or will in the future require) speed adaptation. This research may provide insight
that could be used in the development of such systems. In chapter 3 previous research will be discussed about
the influences on desired driving speed. Based on the information gathered in this chapter, an (preliminary)
experimental design can be developed. The plan of this research is to use a simulator to collect data. The
types of simulators that exist and how they could potentially influence the data will be discussed in chap-
ter 4. Finally, a small part is dedicated to the basic principles of neural networks in chapter 5 since this type
of modeling will be used for this thesis.

In the second part of this report a preliminary research will be performed. In chapter 6 some already gathered
data will be analysed. With the results from this analysis, it becomes clear which methods will or will not
work and what data is missing on order to answer the research questions properly. With this information an
experimental design can be thought of. This design is worked out in detail in chapter 7.



I
Literature

In part I of this report a literature study is done. This study includes research that has been done regarding
speed adaptation in curve driving as well as closely related topics (chapter 2 and 3). Next to this there is also
information given on the resources that will be needed in order to collect and process data. In chapter 5
the description of a neural network will be given that is used to build a speed adaptation model. The data
for this network will be gathered with a driving simulator. Detailed information on this simulator is given in
chapter 4.





2
Advanced Driver Assistance System

Advanced Driver Assistance Systems (ADAS) are electronic systems that help the driver with driving and park-
ing functions. ADAS can be split into two categories, longitudinal and lateral control [29]. A lateral control
example is the lane keeping system, which makes sure that the vehicle stays within the intended lane. An
example for longitudinal control is Adaptive Cruise Control (ACC).

2.1. Adaptive Cruise Control
ACC was one of the first Advanced Driver Assistance System (ADAS) to be introduced to the market [14]. With
Cruise Control (CC) the vehicle will continue to drive with constant velocity. ACC can also detect another
vehicle in front and adapts its velocity in a safe way. Without any other vehicle in front, the ACC will work
similar to the CC. The ACC usually consists of four functions [6]:

• Constant speed: without any other vehicle (close enough) in front of own car to detect a constant speed
will be held.

• Deceleration control: When another vehicle is detected in front of the own car, the velocity will decrease
in order to keep a certain (safe) distance from that vehicle.

• Acceleration control: When a detected vehicle in front accelerates or disappears, the car itself will ac-
celerate to the desired initially set velocity.

• Following control: The car itself will accelerate and decelerate in order to keep a desired distance from
the vehicle detected in front [30].

2.2. Curve Speed Adaptation
A subsystem of the ACC is the Curve Speed Adaptation (CSA). It is an important step towards an autonomous
driving future. Without CSA a vehicle will try to remain at a constant speed. For some corners this can be very
uncomfortable or even dangerous for the passengers. The goal of the CSA is to decelerate to a desired speed
before a curve and accelerate to the initially set speed after the curve. In order to be able to do so, the CSA
should be able to identify the upcoming curves [30].

Instead of only driving safely through curves, also passenger comfort can be taken into account. How com-
fortable people are, varies from person to person. Taking this in mind, a personalised ACC control algorithm
for curved roads was developed by Zhang et al. [9]. For this research, experimental data regarding driver
behaviour were collected from 40 different participants. To adapt the model to each driver’s individual curve
speed behavior, the coefficients of the model are identified in real time from the data sequences collected
during drivers’ manual operation stage by a self-learning algorithm based on a Recursive Least-Square (RLS)
method with a forgetting factor [9]. The parameters from the model can be identified in the manual operation
phase and the resulting models are applied in the ACC automatic control phase. The most suitable relation
of which the parameters were to be identified can be found in Equation 2.1 [9].
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6 2. Advanced Driver Assistance System

vdb = v0 −k1 exp(k2v0c) (2.1)

In which vdb is the desired velocity, v0 the initial velocity when entering a curve and c the road curvature.
k1 and k2 are the to be identified parameters which are unique for each participant. A visualisation of this
relation and the variation between two participants can be found in Figure 2.1.

Figure 2.1: Velocity profile comparison when entering (left) and exiting (right) a curve

Instead of a constant velocity for a curve with a certain curvature, this relation includes human behaviour. As
can be seen in the figures, almost all drivers slowed down into the curve and then sped up when exiting the
curve. In his work he concludes that the driver curve speed model is adaptive to each driver’s individual curve
speed behaviour and can reflect drivers’ specific characteristics and therefore can significantly improve the
practicality and comfortablity of ACC systems [9].

Even though curve speed estimation has been considered in several works, only a few of them have been
actually implemented and tested either in simulations or real environments [35]. Glaser et al. [28], and Park
et al. [19] have been working on computing the ideal speed to drive through curves. This speed is based on
the curvature of the road. Another research from Lee et al. [17] also computed curve speeds and speed limits.
Their implementation was to an ACC system, in which the driver is still able to take control of the car. The
work of Serna et al. [35], is targeted to become an autonomous solution. In his work he takes into account
road curvature and speed limits with which automatically the vehicle adjusts its speed through their Dynamic
Speed Adaptation (DSA) method. Part of his work consists of ‘curve analysis extraction’, where an algorithm
analyses GPS information, identifies curvatures in the upcoming road and assesses a desired velocity to the
curve. Another part focuses on ‘speed limits database creation’. This database contains information about
speed limits for all traveled roads. With both parts operating, the DSA ensures smooth transitions in velocity
towards the ideal speed. [35].

2.3. Instrumentation
In order to assist the driver with the Advanced Driver Assistance Systems the vehicle will need specific sen-
sors and instrumentation to collect the data needed. The main sensors available for cars at the moment are
discussed in this section.

2.3.1. Digital Maps
Maps nowadays can provide support to the ADAS in predicting road geometry ahead and certain road at-
tributes in front of the vehicle [13]. This is usually done using a Global Positioning System (GPS) together
with an internal map [30]. The interaction between the GPS and internal map is called map matching. This is
developed into the ’electronic horizon’ which can then predict attributes such as road geometry, upcoming
signs, traffic ahead and number of lanes [30].
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2.3.2. Camera
Cameras on board of a vehicle are used for gathering data along the road. They are an important factor
towards a fully autonomous driving future. The front facing camera helps the ACC by identifying objects,
measuring distance towards it and also relative their velocity. The signal from the camera is transmitted to an
image processor. The processor obtains individual images which are sent to the Electric Control Unit (ECU).
The ECU assesses the information from each image and sends it further to the location where needed. For
example, an object in front of the vehicle is needed by the ACC and maximum allowable speed will be shown
on the Human Machine Interface (HMI) / dashboard.

Figure 2.2: Principle of frontal camera sensor [30]

The object detection function works better when working together with a RADAR sensor. When both are
used, the ACC range could be extended.

2.3.3. RADAR
The Radio Detecting And Ranging (RADAR) sensor is usually built in low in front of the vehicle. This sensor
sends out a pulse which bounces back via attributes in front. Using the time it takes for the wave to return,
the distance and relative speed to this object can be calculated. The RADAR used for the ACC usually has a
maximum range of 120-250m [2].

2.3.4. LIDAR
Light Detection and Ranging (LIDAR) is used to make 3D digital representations of a target or surroundings.
The working principle is similar to that of a RADAR. A target is illuminated with laser light, and the reflec-
tion is measured with a sensor. LIDAR is extremely accurate but also relatively expensive. Most companies,
such as Waymo, Uber and Toyota, working on autonomous driving use LIDAR in order to accurately map all
surroundings. The only company which does not use LIDAR is Tesla. The Tesla cars fully rely on vision.

2.4. Latest Developments
The latest development of the ADAS on the market came out in October 2020. In this month Tesla released
the beta version of the ’Full Self Driving’ (FSD) software. Even though the name says ’Full Self Driving’, Tesla
still requires active driver supervision at all times. In this package is included [38]:

• Traffic-Aware Cruise Control: Matches the speed of your car to that of the surrounding traffic

• Autosteer: Assists in steering within a clearly marked lane, and uses traffic-aware cruise control

• Navigate on Autopilot (Beta): Actively guides your car from a highway’s on-ramp to off-ramp, including
suggesting lane changes, navigating interchanges, automatically engaging the turn signal and taking
the correct exit
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• Auto Lane Change: Assists in moving to an adjacent lane on the highway when Autosteer is engaged

• Autopark: Helps automatically parallel or perpendicular park your car, with a single touch

• Summon: Moves your car in and out of a tight space using the mobile app or key

• Smart Summon: Your car will navigate more complex environments and parking spaces, maneuvering
around objects as necessary to come find you in a parking lot.

• Traffic and Stop Sign Control (Beta): Identifies stop signs and traffic lights and automatically slows your
car to a stop on approach, with your active supervision



3
Velocity Determination

The velocity towards, in and out of a curve can be determined by many factors. Much research has been
conducted finding a safe and comfortable speed using road geometry only. Apart from road geometry, one
could also use more inputs such as accelerations felt by the driver. Humans themselves have shown to be
poor judges of geometry values of the road ahead [25]. Instead, we use our visual field we have in front where
we focus on specific points [11].

3.1. Road Geometry
Most research related to speed adaptation on curved roads is directly related to the geometry of the road. The
personalised ACC feature developed by Zhang et al. [9] purely used road curvature as input. The curvature is
defined as the inverse of the curve radius. Many other studies also show a direct correlation between curve
radius and speed [21]-[24]. Those relations however focused mostly on average curvature and mean velocity
throughout the turn.

Odhams et al. [7] points out the importance of taking both curve radius and also road width into account.
In the article he concludes that "lane width and curve radius were both found to be significant determinants
of speed choice, but several existing models of speed choice account for only one or other of these factors"
[7]. Odhams compares various existing models in his work. But all models only relate one velocity to one
curvature/width combination, as can be seen in Figure 3.1a and 3.1b where two of these models are shown
[7].

(a) Raymond’s lateral acceleration model (b) TLC model

Figure 3.1: Two models compared from [7]
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10 3. Velocity Determination

3.2. Accelerations

The second factor to take into account are the accelerations felt by the driver. The most relevant acceleration
felt in a curve is the lateral acceleration. Lateral acceleration in a curve is defined by Equation 3.1.

ay = V 2

r
(3.1)

where V is the vehicle velocity and r the radius of the curvature. A study from Reymond et al. [15] shows that
drivers adjust their speed in curves such that the maximum lateral acceleration decreases with increasing
velocity. In other words, turns with a small radius (and thus lower velocity) are driven with higher lateral
acceleration than large radius curves where a higher velocity is possible (see Figure 3.2 [15]).

Figure 3.2: Maximum lateral acceleration as a function of velocity for normal driving (left) and fast driving (right)

It was also found that drivers use the lateral acceleration they felt while driving. The drivers in the experiment
had driven the test track in a simulator once with the motion cues on and once with the cues off. It was found
that when the motion cues were off, the upper limits of lateral acceleration decreased less steeply. This is
interpreted as an underestimation of curvilinear speed due to the lack of inertial stimuli [15]. More on the
difference in simulators will be discussed in chapter 4. Also in the work from Odhams et al. discussed before
it was concluded that, the achieved lateral acceleration reduced at high speed. This was despite the use of a
fixed-base simulator and the vehicle having no tyre saturation [7].

3.3. Visual Field

When humans drive, usually no information about road geometry is given to them. Also, humans have shown
to be rather poor judges of road curvature [8]. Even though much research is carried out relating road geome-
try to velocity, humans probably make use of different cues. In the previous section it was already established
that humans make use of the lateral acceleration felt while driving. Another cue that is used a lot while driving
is in the visual field. A research from E. Lehtonen et al. [11] investigates the eye movement when approaching
a curve on a rural road. In this study, a distinction is made between various points shown in Figure 3.3 [11].
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Figure 3.3: Main points in visual field

• NP/FP: the Near Point and Far Point. These are the points directly in front of the vehicle and further up
the road [11]. Land et al. [20] and Salvucci et al. [10] have shown that these points might be used for
steering the vehicle.

• FOE: the Focus of Optical Expansion point is a point laying directly ahead from which all apparent flow
patterns in the visual scene symmetrically radiate from.

• TP: the Tangent Point is where is gaze direction is tangential to the road edge. This is only possible in
curves.

• OP: the Occlusion Point is the nearest point where the view of the road is blocked by an obstacle. The
oncoming traffic will emerge from this point.

It was found that drivers switch their focus between the on-road Far Point and Tangent Point and off-road
Occlusion Point. The Occlusion Point would be used to monitor upcoming traffic, the Far Point for steering
purposes and the Tangent Point while driving towards/in curves.

Most models directly relate road geometry to speed, while research into speed adaptation in car following
and lane keeping has shown that speed control is likely governed by time margins to salient visual points
[25]. Several studies have attempted to characterise speed choice as a function of the driver’s anticipated
path following error. In simulator tests by Van Winsum and Gothelp [26] the ‘time to lane crossing’ (TLC) was
found to be kept above a constant minimum level by drivers. A way to determine the TLC was developed by
L.H. Xu et al. [18]. In their work they derived equations in order to compute the TLC for all different variations
of crossing the side of the road. This can either be while driving on a straight part (see Figure 3.4a) or driving
on a curved part (see Figure 3.4b). The derivation of the TLC in their work is found below.
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(a) Straight road (b) Curved road

Figure 3.4: Schematic with TLC derivation definitions [18]

First, for the straight part of the road, the TLC is calculated using Equation 3.2.∫ T LC

0
Vlatd t = D (3.2)

In which TLC is the parameter to be calculated, Vl at is the (time varying) lateral velocity with respect to the
road (vl a in figure) and D the distance toward the side of the road. The lateral velocity is calculated using
Equation 3.3

Vlat =V sinδ (3.3a)

δ= γ+α (3.3b)

Where γ is the degree as the vehicle is at time t (between 0 and θ) andα the yaw angle with respect to the road
center line. γ can be calculated using Equation 3.4.

γ=ωt = v

Rv
t (3.4)

In which ω is the vehicle angular speed and Rv is the vehicle radius. When everything is put together and the
integral from Equation 3.2 is written out, the final equation to calculate the TLC becomes:

T LC = Rv (arccos(cosα−D/Rv )−α)

v
(3.5)

When the vehicle is driving through a curve, slightly different equations apply. Again, Equation 3.2 is used as
starting point. However, this time, δ is calculated differently with Equation 3.6.

δ= arccos

((
R2 +R2

v −D2
r−v

)
(2RRv )

)
(3.6)

Where Dr−v is the distance between the center point of the road curve and the center point of the car curve
(computed with Equation 3.7) and R the distance from the vehicle to the center point of the road curve (com-
puted with Equation 3.8). R is the time variant variable. Note that in this derivation, R is the radius instead of
r which is used in the rest of the report.

cosα=
(
R2

v + (Rr +D)2 −D2
r−v

)
(2Rv (Rr +D))

(3.7)

cosβ=
(
D2

r−v +R2
v −R2

)
(2Dr−v Rv )

(3.8)
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Again, α is the constant value between vehicle yaw and center line of the road. β = 2π−φ− (v/Rv )t (see
Figure 3.4b). φ is computed using Equation 3.9.

φ= arccos

((
D2

r−v +R2
v − (Rr +D)2

)
(2 ·Dr−v ·Rv )

)
(3.9)

However, Gruppelaar [25] provides evidence that the TETP is a better candidate than the TLC for curve speed
modeling applications. The TLC shows great variability, even on straight segments of road, as it depends also
on the steering inputs of the driver. In the work from Gruppelaar et al. [25] the Time to Extended Tangent
Point (TETP) was used to characterise driving behaviour. This point is defined as the time it takes to reach
the Extended Tangent Point (ETP) when the velocity is held constant. The ETP is the extension of the Tangent
Point (TP) to the other side of the road. In this study it was found that there exist a relation between certain
time margins of the TETP (and its derivative) and the different phases in a turn. This relation can be seen
in the flowchart of Figure 3.5 [25]. Unlike much other research, velocity is not the model output. In this
study brake and accelerator pedal deflections were fit to a model. The comparison between the model and a
participant can be found in Figure 3.6. Even though these two seem to be very different from each other, the
model does capture the general trend of curve driving. In Figure 3.7 a velocity profile is plotted by iteratively
deriving the acceleration and velocity from the model. This plot shows that the model captures the general
trend of acceleration and deceleration in curve driving. Since the pedal deflection are the model output, this
model is also easy to implement as input to a simulated or actual vehicle (with same dynamics) as those are
also the actual vehicle’s inputs to control acceleration. Another advantage of this method is that no unrealistic
velocities and accelerations will be modeled as the pedal deflections are always between 0 and 100%.

Figure 3.5: Model phase decision flowchart
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Figure 3.6: Pedal deflection comparison between measured data and model [25]

Figure 3.7: Integrated velocity comparison between measured data ans model [25]

In the study from Gruppelaar et al. [25] the ETP was computed mathematically with a known experimental
road. It is also possible to find these visual points using a front camera. This is done in the work from Gallen
and Glaser [22]. In their work they show how to find the TP and compute the TP Angle in real-time imaging
with a monocular in-vehicle camera. Different methods were used to find the TP, and all methods made use
of the Labayrade and Douret lane detection system [23]. The TP detection is shown in Figure 3.8 [22].

In another research from E.R. Boer and M. Mulder [12] it was investigated what cues drivers use in order to
determine whether to brake before negotiating a curve. Curvature and curve length obviously play an impor-
tant role. However, how drivers perceive these quantities remains largely unresolved [12]. In their work they
demonstrate that the environment around a road provide more salient curvature cues. It was theoretically
derived that a visual angle between the Lane Crossing Point and Extended Target Point could provide a more
accurate estimate of curvature for long curves and that it may naturally bias drivers towards higher curve
negotiation speeds when the curve is short. As seen in Figure 3.9 this cue is sensitive to changes in curve
radius and its sensitivity to change in deflection angle is non-existent for large deflection angles but strong
for short curves. In essence, the cue for short sharp curves is the same as for longer less sharp curves. This
texture density cue is defined as the distance from the LCP to the ETP in world coordinates divided by the
visual angle between to two points and calculated using Equation 3.10.
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Figure 3.8: TP detection in a curve [22]

Figure 3.9: Texture density cue (δ) in the visual angle between the lane crossing point (LCP) and the extended tangent point (ETP). [12]
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δ=
∥∥∥∥(

xET P −xLC P

yET P − yLC P

)∥∥∥∥/θLC P,ET P (3.10)

In which

θLC P,ET P = arccos

 xLC P −xDP

yLC P − yDP

0−h

•
 xET P −xDP

yET P − yDP

0−h

/

∥∥∥∥∥∥
 xLC P −xDP

yLC P − yDP

0−h

∥∥∥∥∥∥
∥∥∥∥∥∥
 xET P −xDP

yET P − yDP

0−h

∥∥∥∥∥∥
 . (3.11)

Where ’DP’ means driver’s eye point (see Figure 3.10).

Figure 3.10: Schematic with definitions used in the work from Boer et. al. [12]



4
Driving Simulators

A simulation is an approximate imitation of reality. There exist loads of different simulators with different
purposes. In the literature used in this report, often a driving simulator was used in order to collect data.
Using a simulator can often be cheaper, and easier to reproduce many times without being dependent on
outside variables (e.g. traffic and weather conditions). Driving simulators can be used for multiple purposes.
Depending on the purpose, also the simulator type may vary. Some purposes require a high fidelity simulator
while others will suffice with a lower fidelity. In this project, a simulator will be used to collect data. When
analysing the data collected, it is important to understand the influence of the characteristics and fidelity of
the used simulator.

4.1. Fidelity

The fidelity of a simulator determines the level of realism for a simulation. Fidelity is determined by the quan-
tity and quality of visual, motion and sound cues. The visual cues can go from less to more realistic. Also, the
screen can be either fixed, moving along with the car or head-mounted. The amount and type of screen will
influence the viewing angle. A larger viewing angle is results in higher fidelity. To achieve a large viewing
angle, either multiple screen can be put around the driver, or a larger convex screen can be used.

The next type of cues are motion cues. A driving simulator can have no Degree Of Freedom (DOF), also known
as a fixed-base simulator. In this case, no motion cues are given to the driver and the simulator has a low-
fidelity level. A high level fidelity simulator has at least 6 DOF [36]. These 6 DOFs are translation and rotation
in all three axis (x, y and z). The largest driving simulators consist often of a dome inside which an actual
size car is placed. This dome is placed on top of a turntable which is supported by a hexapod structure (see
Figure 4.1a). This hexapod is fixed to a xy-table giving the simulator more space to move in the xy-plane (see
Figure 4.1b).
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(a) Hexapod configuration (b) (Hexapod) Simulator on a xy-table

Figure 4.1: Degrees of Freedom in a simulator

Thirdly, also sound cues are important for the fidelity of a simulator. Sound cues mainly consist of the sound
the engine of a car makes during driving. Next to these three major types of cues, also other simulator specific
type of cues of have to be taken into account. For example the force feedback on the steering wheel and pedals
and the vibrations felt by the driver (type of motion cue) are important factors to take into account for a high
fidelity simulator.

4.2. Purpose
The three main purposes for driving simulators are training, entertainment and research. The fidelity needed
for a simulator depends highly on the purpose. Most simulators used for entertaining purposes have a fixed
screen and 0 or 1 DOF. The largest market share for entertaining simulators is owned by the video game in-
dustry [36]. Over the years the level of realism has increased due to increase of processing power. A typical
entertaining driving simulator can be seen in Figure 4.2.

Figure 4.2: Gaming simulator

Another major purpose for simulators is training. Research has shown that driving simulators are proven to
be excellent practical and effective educational tools to impart safe driving training techniques for all drivers
[36]. The advantage of using a simulator is that it is possible to place the driver in a high risk situation without
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actually putting the driver at risk. Also, environmental factors can be controlled ans the student’s behaviour
can be monitored very detailed. The fidelity of a training simulator is often required to be high. An example
of a training simulator can be found in Figure 4.3.

Figure 4.3: Driving lesson in a training simulator

The last main purpose of a driving simulator is for research. This kind of simulator is also used in most arti-
cles discussed in this report. There is a wide range of research that has been done using driving simulators.
Examples are the investigation of driving behaviour, the human-machine interface or to research the effects
of drugs, tiredness, environmental issues or road design. Research simulators allow experiments to happen
which would be illegal or unethical if done in a real environment. Vehicle manufacturers mainly use these
type of simulators to test the design of the interior and the Advanced Driver Assistance System (ADAS) of a
developing vehicle. Also, with the increase in In-Vehicle Information Systems (IVIS) such as navigation sys-
tems and cell phone use, research can be done investigating the effects of these devices on driving behaviour.
Research simulators can have various levels of fidelity, depending on the specific research.

4.3. Simulator Driving Behaviour
It is clear that many different simulator types and purposes exist. For research sometimes a high fidelity is
needed while for other research a low fidelity fixed based simulator will be enough. in a research from G.
Reymond et al. [15] the role of lateral acceleration while driving is investigated. In their work they predict
that there exist a relation between velocity and maximum lateral acceleration. This relation is defined by two
inequalities. When driving through a curve at speed V, a change in curvature, ∆C , would result in a change in
lateral acceleration∆Γ (since Γ = C · V 2). This change in lateral acceleration should not exceed∆Γmax = Γmax

- Γ to avoid reaching maximum acceleration Γmax . This results in the first inequality shown in Equation 4.1a
[15]. The second inequality is governed by other physical constraints. The maximum steering wheel angle (δ+
max) determines the maximum curvature a car can drive (Cmax = δmax/L). Therefore, the lateral acceleration
will always be smaller than the maximum curvature times the velocity squared (see Equation 4.1b) [15].

Γ< Γmax −∆C ·V 2 (4.1a)

Γ< (δmax/L) ·V 2 (4.1b)

A plot of the two inequalities combined can be found in Figure 4.4. The two inequalities together form an
envelope in which a driver prefers to stay inside.
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Figure 4.4: Lateral acceleration envelope [15]

They argue that a driver will adjust its speed before curves in such a way that the maximum lateral accelera-
tion envelope will never be exceeded. Since the lateral acceleration is felt by the drivers and used as feedback,
experiments are performed investigating the influence of feeling the lateral acceleration to the envelope. In
order to do this, three tests are performed. First, a test in a real car, on a real road. This experiment took place
on the Renault test track, located in Aubevoye, France (see Figure 4.5).

Figure 4.5: Renault test track

The drivers were asked to drive the test track a few times while driving normally, and a few laps while driving
as fast as possible. The data showing the relation between velocity and lateral acceleration for one participant
can be found in Figure 3.2.

clearly, when trying to drive as fast as possible, the maximum lateral acceleration increases compared to
driving normally (and comfortable). Also, the envelope resulting from the first inequality is visible in the plot.
After this experiment, another experiment was done. Test drivers had to drive a test track in a simulator as
they would drive usually (same as before when asked to drive ’normal’). A few laps the motion base would be
active, and a few laps the motion base would not be active. The differences between the dynamic and static
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tests for one participant can be found in Figure 4.6 [15].

Figure 4.6: Dynamic (left) and static (right) simulation runs [15]

The major difference between these two plots is the increase in lateral acceleration when the simulator mo-
tion cues are inactive. The increase in parameter Γmax was found to be small. The main change between
static and dynamic experiments was caused by parameter ∆C . The change in these parameters could be in-
terpreted as a change in driving behaviour when lateral acceleration is not felt. However, in experiment 1 (the
real car), the drivers are asked to change their driving behaviour from normal to fast. When changing their be-
haviour, a relatively large variation in both parameters Γmax and ∆C was found. Therefore, it is concluded by
G. Raymond et al. [15] that "motion cuing did not change the driving strategy itself but altered the perceived
motion variables that serve as inputs to this strategy. The apparent modification in the ∆C margin can in fact
reflect a modification in perceived speed V corresponding to an underestimation in the static condition."

The small number of participants in the control group and their inexperience with the simulator produced
dispersed results in Experiment 2, which did not allow to draw statistically valid conclusions regarding the
comparison of driving strategies in real and simulated conditions for the same drivers. Despite the incom-
pleteness of these tests, results from both simulated and real driving experiments are coherent with the pro-
posed model, which thus provides a common framework of analysis by relating a driving behavioral pattern
to the nature of physical stimuli (speed, acceleration) perceived by the drivers.

4.4. TU Delft Simulators

At the faculty of Aerospace Engineering, Control and Simulation Division, simulators are available for re-
search purposes.

4.4.1. Fixed-Based Simulator (HMI Lab)

Operational since 2002 is the fixed-base simulator located in the Human-Machine Interaction (HMI) labora-
tory. This fixed-base simulator can be used for car and aircraft related research (see Figure 4.7). The screens
and devices in the lab are controlled by up to 6 computers, linked together in a high-speed ethernet network.
The lab is split up into an observation room and an experiment room [33].
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Figure 4.7: Fixed-Based Simulator at HMI lab TU Delft [33]

The car side of the simulator contains an actuated steering wheel, an actuated gas pedal and a passive spring
loaded brake pedal [31]. Furthermore it contain a luxury NISSAN car seat and a 12 inch LCD panel for the
instrument displays (800 x 600 pixel resolution) [33]. Both sides share a unique outside visual projection
system. That system is driven off one quad-core PC, with two dual head graphics cards driving a total of 3
DLP projectors with HD resolution. The projectors use a three-sided projection screen, and cover a field of
view of over 180º (see Figure 4.8).

Figure 4.8: Fixed-Based Simulator projection system schematic [33]

4.4.2. SIMONA Research Simulator
The Simona Research Simulator can realistically simulate all types of aircraft, helicopters and even cars. The
simulator was specially built for TU Delft and is used as a laboratory for education and research in the fields
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of flight simulation technology and human-machine interaction [5].

The cabin of the SIMONA Research Simulator is made of lightweight materials and holds a two person flight
deck. The SRS’ glass cockpit is similar to a modern transport aircraft, and provides programmable instru-
mentation to match any aircraft type [5].

The six-degrees-of-freedom motion system is controlled by a multi-variable control system. The linear actu-
ators are equipped with hydrostatic bearings and allow a 1.25 m stroke with advanced safety buffers. Robust
actuator controllers compensate for internal variations in load, temperature, valve dynamics and other ef-
fects. The motion system can realize a maximum heave acceleration of 1.5 g and a minimum which lies
below the threshold for human perception [5].

Integrated with the flight-deck structure, the lightweight outside world display system provides a collimated
180-degree horizontal by 40-degree vertical field of view [5].

(a) Simona hexapod base
(b) Inside view

Figure 4.9: The Simona research simulator [5]

4.5. Conclusions
Many different types of simulators exist for a logical reason: not all simulators have the same purpose. With
driving behaviour research as purpose, the most obvious simulator to use to collect data in this research will
be the fixed-base driving simulator in the HMI-lab at TU Delft. This simulator has a large field of view so
that all potential visual cues can be observed. The downside of this simulator is the absence of (simulated)
accelerations. As shown in Figure 4.6, the driving behaviour will most likely differ from the real world. How-
ever, the behavioural curve does only shift the equation parameters due to the absence of accelerations while
the type of relation remains the same. This means that when this (static) behaviour can be captured using a
specific method, the same method will in all likelihood also be able to capture driving behaviour including
acceleration cues.





5
Neural Networks / Machine Learning

Even though the idea of artificial neural networks is quite old (1800s), the application of neural networks
to model identification is relatively advanced and new. They are based on biological neural networks, also
known as brains. The brain is made up of neurons, which are an extremely complex analog computer [4].
An artificial neuron is a much more simplified mathematical version of the biological neuron. Examples of
some applications for neural networks are pattern recognition, speech recognition, stock market forecasting,
aerodynamic model identification and games like Chess and Backgammon.

5.1. General Definition
A neural network consists of an input layer (i), hidden layer(s) (j) and output layer (k). The general description
is shown in Figure 5.1. For each layer, v is the input and y the output. Each layer also contains an activation
function (φ) relating input v to output y. Therefore, in one layer y =φ(v).

Figure 5.1: General Neural Network schematic [4]

In order to relate the output of the output layer (yk ) to the input of the input layer (vi = xi ), Equation 5.1 is
used. This is the most general description of a neural network containing one hidden layer. Usually, these
equations are a bit simplified. The activation function in the in- and output layers is taken as a ’linear activa-
tion function’ (y = v). Using this property, Equation 5.1 is simplified to Equation 5.2 [4].

25
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yk =φk (vk )
vk =∑

j w j k y j =∑
j w j kφ j

(
v j

)
v j =∑

i wi j yi =∑
i wi jφi (vi )

(5.1)

yk =∑
j

w j kφ j

(∑
i

wi j xi

)
(5.2)

Above a general description of a neural network is given. But in reality there are many different types of
neural networks. All networks are designed for a specific task. There is not a single network which is optimal
for all purposes. Things that can vary from one network to another are the activation functions, the amount
of neurons, the in- and outputs, the training algorithm and more. For a specific task, the right combination
of variables must be found to solve the problem as good as possible.

5.2. Activation Functions
The most popular activation functions can be found below in Table 5.1 and visualised in Figure 5.2 [4].

Table 5.1: Four popular activation functions

Name Function
Linear (purelin) ϕ(x) = x
Sigmoid (logsig) ϕ(x) = 1

1+e−x

TanH (tansig) ϕ(x) = tanh(x) = ex−e−x

ex+e−x

Radial basis function (rbf) ϕ(x) = e−x2

Figure 5.2: Activation functions left to right: 1) linear 2) sigmoid 3) TanH 4) rbf

The Theorem on Neural Networks from Cybenko (1989) is as follows:

"A feedforward neural net with at least one hidden layer with sigmoidal activation functions can approx-
imate any continuous nonlinear function arbitrarily well on a compact set, provided that a sufficient number
of hidden neurons are available. "

The sigmoidal activation function is one of the most popular ones. Another very popular one is the radial
basis function. The description for a radial basis function neural network differs a bit from the general one
of Equation 5.1 since the center position (ci j ) of the activation function is taken in consideration in the input
layer instead of the usual bias term (see Equation 5.3) [4]. When substituting the center position into the
general definition, Equation 5.1 becomes the following:

yk = vk

vk =∑
j

w j kφ j
(
v j

)
v j =

∑
wi j

(
xi − ci j

)2

(5.3)

The main differences between a sigmoidal (tansig or logsig) and radial basis function neural network are:

• rbf is easier to model local complexity

• rbf has higher computational load

• rbf is easier to optimize
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5.3. Network Training
Training of a neural network is done using error back propagation. The goal is to update the weights in such
a way that the output (yk ) of the neural network comes closer to the target values (dk ) (known and correct
output). Updates are performed using partial derivatives from error (E) to weights (w) so that a step is taken
into negative gradient direction (see Equations 5.4a and 5.4b). Also a learning parameter η is used to increase
or decrease the step size. The trade-off of a larger step size is instability.

wt+1 = wt +∆w (5.4a)

∆w =−η ∂E

∂wt
(5.4b)

E =∑
k

1

2

(
dk − yk

)2 =∑
k

1

2
(ek )2 (5.4c)

The partial derivatives used to find ∂E/∂wt are given in Equations 5.5 and 5.6. These are the general partial
derivatives used to update the weights for all ’q’ data points. A similar approach is used to update the bias
terms (feedforward) or the center terms (radial basis function).

∂E

∂w j k
=∑

q

∂E

∂ek,q

∂ek,q

∂yk,q

∂yk,q

∂vk,q
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∂w j k
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q
ek,q ·−1 ·1 · y j (5.5)
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)
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· xi

]
(5.6)

The update approach from Equation 5.4a is a ’First Order Gradient Descent Algorithm’. There are also other
ways to update the weights such as ’Resilient Backpropagation’, ’Fletcher-Powell Conjugate Gradient’ or the
most popular one, the ’Levenberg-Marquardt’ (LM) method. This method is a second order method and in
order to update the weight for the next iteration, Equation 5.7 is used.

Wt+1 =Wt −
(

J T J +µI
)−1

J Te (5.7)

In which W is the vector containing all weights to be updated. e is a vector containing the error (dk − yk ).
This column vector has the size of the number of data points for dk . µ is the (adaptive) damping parameter.
Finally, J is the Jacobian matrix. The general definition for J can be found in Equation 5.8.
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In which N is the number of data points, K the number of input weights (inputs x Nneur ons ) and M the number
of output weights (outputs x Nneur ons ).

5.4. Effect of Hidden Layers and Neurons
Adding extra neurons to a neural network does not necessarily result in better performance. When more
neurons are used, the network is able to model more complex systems. This can be an advantage or disad-
vantage. Usually the data are split up into train, test and validation data. While the network is trained the
Mean Squared Error between target and output is computed for the train and test data. A way to find out
whether too many neurons are used is to compare the MSE between the test and training data. With too
many neurons, the network will ’overfit’ the training data. Overfitting means that the training data will be
fitted to exact by the model so that any future predictions will be unreliable. An example of overfitted data
is shown in Figure 5.3. The point where overfitting occurs can be found when the test data MSE tends to
increase instead of decrease further. When not enough neurons are used, the model will ’underfit’ the data.
This is usually easily spotted due to poor performance on the training data.
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Figure 5.3: Overfitted data

Another way to make a neural network more complex is by adding more hidden layers. However, The Univer-
sal Approximation Theorem states that a neural network with 1 hidden layer and sigmoidal activation func-
tion can approximate any continuous function for inputs within a specific range. In the work from Jacques de
Villiers and Etienne Barnard [3], they state that the complexity of a neural network is defined by its number
of connections and thus by the number of weights. The number of weights used in a neural network can be
calculated using Equation 5.9.

W ei g ht s = Ni nput s ∗N1 +
h−1∑
i=1

(Ni ∗Ni+1)+Nh ∗Nout put s (5.9)

In which h is the amount of hidden layers and Nx the number of neurons in layer x (input, output or hidden
layer 1, 2, 3 ...).

5.5. Conclusions
To conclude from this chapter, there are a few things that should be taken into account when a neural network
will be used in order to produce models with the data from this research. First of all, it is important to keep
the complexity between neural networks constant when a comparison is made in terms of performance. Next
to this, an analysis should be done in which the optimal number of neurons/complexity of the network will
be found. When too the model is too complex, over-fitting will happen. Without enough complexity, model
performance will be bad. In order to find an optimum the data will be split into test and training data.



II
Preliminary Research

The preliminary research is split into two chapters. In chapter 6 existing data will be used in order to test the
main assumptions that have emerged during the literature study. In this part the data will be analysed and
relations between various in- and outputs will be tested. In the chapter 7 a thesis experiment will be designed.
For this, the findings from the literature and from the preliminary experiment will be used.





6
Preliminary Experiment

In this chapter a preliminary experiment will be discussed. In the literature study many different approaches
to driver behaviour modeling are discussed. The goal of this research is to only include visual cues in the
driver model. The kind of data that are needed to construct this driver model is still unknown. Therefore, a
preliminary experiment will be performed with previously collected data that are available. The objective of
the preliminary experiment is to find how much certain visual inputs are related to driving behaviour. When
these inputs are analysed, it is also important to find why they are (or aren’t) related and which data is still
lacking in order to draw a proper conclusion. With results from the preliminary experiment, the experimental
setup of final thesis can be designed. This will be done in chapter 7.

6.1. Data
The data that was available to use for the preliminary experiment was data from the work of Gruppelaar et al.
[25]. In his work he collected data using the Fixed-Based Simulator in the HMI Lab at the faculty of Aerospace
Engineering of Delft University of Technology (see section 4.4). The simulated vehicle was equipped with an
automatic 4-speed gearbox. In order to improve speed perception, the road was lined with poles spaced at
regular intervals, and trees were placed in the scenery as can be seen in Figure 6.1 [25].

Figure 6.1: Fixed-based driving simulation with surroundings

The data was collected on 6 different roads (3 mirrored pairs), all consisting of 8 curves with straight parts in
between them. The roads were approximately 4 kilometer long. Road pair 1/2 is the same as road pair 5/6,
except from the width of the road. Road pair 5/6 used a width of 2.4 meters, and all other roads used a width
of 3.6 meters. An example of a road (number 3) is given in Figure 6.2 [25].

31
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Figure 6.2: Experimental road example (number 3) [25]

The most essential data that was collected during these experiments were time series of the velocity and
acceleration (both lateral and longitudinal), x and y position, yaw angle, gas/brake pedal deflection and force
and steering wheel angle.

6.2. Experimental Goal
In most research discussed in the literature study, road geometry is used in order to compute a driver velocity
in curve driving. within a curve, the road geometry (usually) remain constant. However, the velocity with
which a driver goes through a curve is generally not constant. This is also established in previously discussed
research. In Figure 2.1 the velocity time series is shown for vehicles entering and exiting a curve. Clearly, the
velocity is not constant throughout the curve. In the work from Reymond et al. [15] it is stated that when
entering a curve the speed choice strategy of a driver is based on adjusting a safety margin of lateral accel-
eration. When entering a curve, the driver will lower the car velocity to avoid reaching a maximum value
for lateral acceleration (Γmax ). The value for Γmax varies from person to person based on driving experience,
handling performance and personal level of acceptable risk. Not reaching this value will make the driver more
comfortable. A margin is taken while decelerating in case of an unexpected deviation (obstacle, steering er-
ror or increase in road curvature) [15]. After the entry of the curve, the driver could feel more comfortable
and starts to accelerate towards an acceptable velocity for that specific curve. This kind of velocity profile is
seen in other research too. In the work from Gruppelaar [25], a curve a split into 5 phases. These phases are
acceleration, deceleration, braking, brake release and re-acceleration. A flowchart of the phases related to
time margin can be found in Figure 3.5 [25]. The time series velocity and pedal deflections of these phases
are shown in Figure 6.3.

In the research from Xie et al. [16] the road curvature was not split into 5 phases but into 3 phases. A curve
would be split into curve entry, mid curve and curve exit. During curve entry a driver would decelerate,
in the mid curve keep a constant speed, and while exiting the curve, acceleration would take place. These
phases are very similar to those in Figure 6.3 if deceleration and braking would be put into one phase, and
the acceleration phase before a curve would not be taken into account.

By now is has become pretty clear that drivers do not maintain a constant velocity between the start en end
of a curve. The goal of this preliminary research is find potential visual points that could be used by drivers to
control the vehicle velocity. Visual points, and time/distance towards those points do not only capture road
geometry, but also vehicle position on the road and within a curve. The visual inputs will be fed to a neural
network which will then try to predict the speed from the driver model. The in- and outputs and the details
of this network will be discussed in the next section.
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Figure 6.3: Five phases throughout a curve [25]

6.3. Model Inputs and Outputs
The inputs that will be analysed in the preliminary experiment are time and distances to visual points. The
visual points that are used are the Tangent Point (TP), the Extended Tangent Point (ETP) and the Straight
Lane Crossing Point (SLCP) (see Figure 6.4). The SLCP is the point where the vehicle crosses the road in case
it continues to drive straight ahead. This is the Lane Crossing Point that is also used in the theoretical work
from Boer [12]. For one visual point, various inputs can be thought of. From the ETP point, inputs Time to
ETP (TETP), Distance to ETP (DETP) and Angle to ETP can be used. The TETP is defined as the DETP divided
by the current velocity.

Figure 6.4: Top view schematic of specific visual points

The most straightforward output to determine driver behaviour through curves would be the (longitudinal)
velocity. This output is most often used in literature to determine driver behaviour in curve driving. In order
to analyse driver behaviour in a more detailed fashion, also gas and brake pedal deflections will be used as
outputs. These pedal deflections can be used to compute a velocity profile iteratively using accelerations in-
stead of directly from data. As concluded in the work from Gruppelaar [25], the TETP and its derivative have
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a strong connection with the start of the braking/acceleration phase. When vehicle velocity is used as output
it is important to chose the right inputs. When for example the distance and time to a visual point is used, the
model will not learn a relation between visual points and desired velocity. Instead, it will learn the physical
relation of V = distance/time since the time to a visual point is defined as distance/V and thus, indirectly, the
output is given as "disguised" input. The output of such a model will always be the current vehicle velocity
instead of the desired velocity.

From the literature study it has become clear that road geometry plays an important factor in speed determi-
nation. Even though humans are not very well capable of estimating curve radius, they can estimate times
and distances to points in the visual field. It could be of interest to investigate which visual cues are the clos-
est related to road geometry. In order to do so, combinations of inputs are plugged into the neural network
used in section 6.5, with as output the (known) curvature. It turns out that a combination of distances to the
TP, ETP and SLCP, together with the TP angle was best at predicting the curvature. The coefficient of determi-
nation (R2) of network output and (perfect) linear fit between target and output equals 0.89 (R = 0.945). The
result is plotted and shown in Figure 6.5. The highest errors are found on the positions close to a change in
curvature. A reason for this is that the actual curvature of the road is a non-continuous function (has sudden
jumps) while the neural network is a continuous function.
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Figure 6.5: Neural Network curvature estimation

6.4. Neural Network
The link between the in- and outputs will be a feed-forward neural network. The activation function that
is used is the TanH function (see Table 5.1), and the training method will be the second order Levenberg-
Marquardt method. The number of neurons and hidden layers will be determined using trail and error while
looking at the performance of the network. The performance is the Mean Squared Error (MSE) between
model output and target value. For the preliminary experiment, the network does not need to be fully opti-
mized since only potential candidates for the final experiment need to be found. The influence of the num-
ber of neurons when the vehicle velocity is chosen as output and with the four best performing inputs, can
be found in Figure 6.6. It can be seen that after around 50 neurons, the increase in performance is relatively
low. Due to the time consuming training with additional neurons, no network with more than 50 neurons
was used for the preliminary experiment.

In Figure 6.6 the effect of additional neurons can be observed. Another way to change a neural network is by
having more hidden layers. In the case of having 50 neurons in one hidden layer, and 4 inputs, the number
of weights in the network equals 250 (see Equation 5.9). In the work from Jacques de Villiers and Etienne
Barnard [3], they state that the complexity of a neural network is defined by its number of connections and
thus weights. In order to compare the effect of extra layers properly, the number of weights should remain
equal. According to Equation 5.9, the number of weights in a 50 neuron 1 hidden layer network is equal to
one with 3 hidden layers of all 10 neurons. In order to analyse the performance of a these networks, three
plots will be used.

In the regression plot (Figure 6.7), the relation between target and output value is shown. The goal of the neu-
ral network is to create a regression in which output equals target (y = t) with an R value of 1. The regression



6.4. Neural Network 35

0 20 40 60 80 100

Neurons [-]

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

P
e
rf

o
rm

a
n
c
e
 [
m

2
/s

2
]

Performance for varying number of neurons

Training

Test

Validation

Figure 6.6: Relation between number of neurons and performance

equation on the y-axis gives an indicates of how far the regression of the output is from the target, the R value
above the figure is the correlation coefficient. It shows the degree of correlation between input and output
within the data. For example, multiple target values when the inputs are the same is an inconsistency in the
collected data. This can either be related to noise, poor training or due to a missing input.

The performance plot (Figure 6.8) shows the learning curve of the neural network. In this plot the difference
in performance between training, test and validation data is shown. When the performance of the training
data is much higher, the network probably has ’over-trained’ as explained in section 5.4. The validation per-
formance is the Mean Squared Error (MSE) between the target- and output of the validation data. Also, the
point where the best validation performance is found is shown, this does not have to be the last epoch due to
over-training.

The output plot (see Figure 6.9) shows the difference between target and output values of a second validation
set (also not used for training the neural net and kept separate). In this plot it becomes visible when the neu-
ral net is performing well, en when it is not. This plot could be analysed in order to improve data and training
in the future. The red marked areas in this plot represent the locations of the corners of the driving track.

The results from the single hidden layer with 50 neurons network are shown in Figure 6.7 - 6.9. These have
been compared with the results from a network with triple hidden layer with 10 neurons each (shown in
section 6.5, Figures 6.11 - 6.10). In this case, the triple layered neural net (with the same complexity) showed
a slightly higher R value, better performance and shorter training time (3m43s instead of 3m58s). Although
the differences are very small, the triple layered neural net was chosen to be used for further analysis of the
in- and outputs in the next section.
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Figure 6.7: Regression plot, 50 neurons, 1 layer, complete road
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Figure 6.8: Performance plot, 50 neurons, 1 layer, complete road
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Figure 6.9: Result comparison plot, 50 neurons, 1 layer, complete road

6.5. Results

This section will present the results found with the data from Gruppelaar [25]. Different in- and outputs are
tested in the first two subsections and the variability of the data is analysed in the final subsection.

6.5.1. Velocity Profile

For the first experiment, the output was chosen to be the (longitudinal) vehicle velocity. Since no time and
distance inputs could be used simultaneously, a choice needed to be made between them. As expected, the
velocity as output is more related to the distances of the visual points with respect to the time towards a visual
point. This makes sense, as discussed in Gruppelaar’s work [25], the time margins are often held constant. In
other words, the time to visual points are related to the moment of braking/accelerating while the distances
are related to road geometry, hence velocity. As inputs, a combination could be made from distances to the
TP, ETP, SLCP and the TP-angle. The highest performance was found when all four inputs were used. The
results of the trained neural network can be found in Figures 6.11, 6.12 and 6.10.
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Figure 6.10: Performance plot, 10 neurons per layer, 3 layers, complete road
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Figure 6.11: Regression plot, 10 neurons per layer, 3 layers, complete road

Figure 6.12: Result comparison plot, 10 neurons per layer, 3 layers, complete road

The first results that were found were relatively poor. The regression in Figure 6.11 shows quite a variability
between input and output. The performance plot gives a MSE of 1.4897 which equals a Root Mean Square
Error (RMSE) of 1.22 m/s. This variability and error between in- and output is visualised in Figure 6.12. In
this plot also the position where the largest errors occur can be found. When looking at this plot, peculiarly,
the performance is relatively high when the velocity is peaking, and relatively low when the velocity reaches
the bottom. The reason that this happens was found using Figure 6.13. When the velocity is at the ’bottom’
in the time series, the distance to visual points are all quite constant. When driving through a curve, in the
mid phase the distances to those visual points do not change much. Hence, when the inputs do not change
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(much), the output will not change much either. It is therefore that the velocity prediction is unable to predict
the correct profile properly. It seems that drivers use more or different inputs (might be other than the visual
field) to control their velocity in curves.

Figure 6.13: Velocity output, visual point inputs time series

In order to verify this hypothesis, the data will be split into data collected on straight parts of the road (driving
towards a curve) and data collected driving inside a curve. The straight parts are defined as the parts where
the curvature equals 0. The curved parts when the curvature does not equal 0. The results that are found
from the data during cornering can be found in Figures 6.16 - 6.14. Note that the distance on the x-axis is not
the actual track distance, but accumulated distance of all corners put directly after each other.
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Figure 6.14: Performance plot, 10 neurons per layer, 3 layers, curved road parts
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Figure 6.15: Result comparison plot, 10 neurons per layer, 3 layers, curved road parts
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Figure 6.16: Regression plot, 10 neurons per layer, 3 layers, curved road parts

As predicted, the results are of even poorer quality compared to the results from all data analysed together.
The validation R value has dropped to 0.918 and the MSE has increased to 1.846. In the output plot (Fig-
ure 6.15) it can be observed that the network output has troubles with following the target data. When zoom-
ing out on this figure, another notable encounter should be discussed. In Figure 6.17 a pattern is recognized.
The output data of the neural network seems to cluster around 3 values. These values are approximately
25, 22 and 16 m/s. When looking at the driving track that was designed to collect this data, corners with 3
different radii are found which can indeed be matched to these 3 velocities. Distances to the visual points
differ between corners with different radius. Therefore a difference in output velocity is found. However, as
predicted, the neural network has troubles assigning the correct output velocity within one curve where the
distances to the visual points remain fairly constant.
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Figure 6.17: Zoomed out result plot from Figure 6.15
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On the contrary, the outputs resulting from the neural network trained and tested on only the straight road
parts are promising. The validation R value has increased from 0.92 to 0.97 and the MSE has dropped from
1.85 to 0.53 with respect to the results in corners. This is clearly a better network performance and higher
correlation between in- and output.

Figure 6.18: Regression plot, 10 neurons per layer, 3 layers, straight road parts
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Figure 6.19: Performance plot, 10 neurons per layer, 3 layers, straight road parts
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Figure 6.20: Result comparison plot, 10 neurons per layer, 3 layers, straight road parts

6.5.2. Pedal Deflections

Instead of using the velocity as output, also outputs brake- and accelerator pedal deflections will be analysed.
In this case it is allowed to use time, distances and velocity as inputs simultaneously since there is no direct
relation between these and the pedal deflections. The inputs that were used are TETP, TTP, TLC and longitu-
dinal velocity. With these inputs, indirectly also the distances to visual points are used since the time values
are calculated using t = d / V. The results of the brake pedal deflection on straight parts of the road can be
found in Figure 6.21 - 6.22.
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Figure 6.21: Regression plot, 10 neurons per layer, 3 layers, straight road parts, brake pedal deflection output

0 50 100 150 200 250 300

300 Epochs

10
0

10
1

10
2

10
3

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r 

 (
m

s
e

)

Best Validation Performance is 1.7798 at epoch 218

Train

Validation

Test

Best

Figure 6.22: Performance plot, 10 neurons per layer, 3 layers, straight road parts, brake pedal deflection output
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Figure 6.23: Result comparison plot, 10 neurons per layer, 3 layers, straight road parts, brake pedal deflection output

Overall, these results are not too bad. In Figure 6.21 an R value of 0.93 for the validation data is given. Another
thing that is shown in this plot is the straight vertical line of data above target equal to 0. These output values
correspond to ’False Positives’ (FP) i.e. the output gives a positive value while the target is actually 0. The per-
centage of False Positives in the test data equals approximately 16.1%. This could be an error by the model,
or an inconsistency in human braking behaviour. The number of ’False Negatives’, i.e. no braking while the
target would brake, is relatively low (1.5%). Even though the R value is not very large, the output of the net-
work does not do a bad job identifying when braking occurs. This can be seen in Figure 6.23. The moment of
braking is captured quite well by the model. Most of the errors and inconsistencies are due to not perfectly
identifying the magnitude with which the driver brakes. Probably, this is due to the variance in human be-
haviour. But the degree of variance in human behaviour should be investigated further. The performance
plot (Figure 6.22 shows a high performance. A MSE of 1.78 is equal to an RMSE of only 1.33%. However, this
value is not very representative since most of the time the brake pedal deflection is 0%. Also, again the same
difference in results is found between the straight and curved road parts. The R value of the regression plot
from the data in the curve equals 0.75. The MSE cannot be compared properly since in corners the number
of brake pedal deflection equal to 0 is much higher.

The results from the accelerator pedal as output on straight road segments are shown in Figure 6.24 - 6.25.
It is clearly visible that the accelerator pedal deflection is less related to the visual inputs with respect to ve-
locity and braking. A reason for this might be that accelerating is not controlled as actively as braking. When
looking at Figure 6.26, it is seen that the magnitude of the deflection is often incorrectly predicted while the
moment of pedal release (engine braking) is predicted well. The percentage of FPs in this case equals 4.7%.
This is much lower than for braking. However, the cases where the accelerator pedal deflection equals 0 is also
much lower (less chances for FPs to happen). The percentage of FN equals 6.8%, which is higher compared
to braking. However, again, for accelerating the chances for a FN is much higher since it is almost never 0.
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Figure 6.24: Regression plot, 10 neurons per layer, 3 layers, straight road parts, accelerator pedal deflection output
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Figure 6.25: Performance plot, 10 neurons per layer, 3 layers, straight road parts, accelerator pedal deflection output
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Figure 6.26: Result comparison plot, 10 neurons per layer, 3 layers, straight road parts, accelerator pedal deflection output

Another way to analyse the brake pedal deflections is to combine the two. Similar to the work of Gruppelaar
[25], a combined model of brake and accelerator pedal deflection is made. This model is then iteratively
transformed to an acceleration which can be integrated into velocity. An experimental model is made with
only the data from participant 4 (same participant as shown in [25]). This predictive model can be compared
with the actual participant in Figure 6.27. In order to convert this model to a self accelerating algorithm
and compare the velocity profile, a model of the vehicle dynamics is needed. This model has not yet been
available, but will be in the actual thesis experiment. To still have a rough idea of how this iterative process
works, acceleration was taken as model output instead of pedal deflections. This acceleration is integrated to
velocity and plotted in Figure 6.28. In this figure, the blue line represents a self accelerating algorithm. This
plot does not have the same input values as the actual participant had since from the start the two deviate
from each other. It seems that the algorithm does pick up the corners and decelerates accordingly.

Figure 6.27: Pedal deflections (δa & δb ) prediction

Figure 6.28: Integrated and iterated velocity profile from predicted acceleration, compared with measured data

The main finding in the results is the difference in performance between data inside a curve and on straight
road segments. The reason for the poor performance of the network within a curve could be due to the fact
that a certain visual point is missing, or due to the fact that the velocity determination is not fully depen-
dant on visual points only. As discussed in the work from Reymond et al [15], lateral acceleration has an
important role in velocity determination. Even if lateral acceleration could be introduced indirectly by for ex-
ample visual flow rates, it is still difficult to model the surprising velocity profile. A driver tends to slow down
while entering the curve up until a point where it feels comfortable. After this point, an acceleration is found
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since the driver feels more and more confident while driving through the curve. if the curve is long enough,
there should be a point where the acceleration stops. This point is however not found in the data generated in
this experiment. In the new experimental set up there should be longer curves in order to test this hypothesis.

6.5.3. Variability
The desired outcome of this research would be a general model that would be sufficiently accurate to rep-
resent all humans. When human behaviour is too inconsistent this will not be possible. The variability be-
tween participants and within one participant is researched in this subsection. An example of an experiment
is shown in Figure 6.29. From left to right the model input for training changes from participant 1 to 15. From
up to down, the model remains fixed but the participant with which the model is tested changes from 1 to
15. The output of the model is the vehicle velocity. The diagonals are kept empty since in this table train-
ing is done with road 1, 2, 5 and 6 while testing is done only with road 1. The diagonals would not give a
accurate representation since training and testing data would overlap. The numbers inside the table are the
coefficients of determination (or R2).

Figure 6.29: R2 values when training with road 1, 2, 5 and 6

From this table is becomes clear that when training the model is done with data from participant 9, 11 or 15,
a model is created that does not fit well with the 12 other participants. The same is seen for participant 9 and
11 when their data is used for testing the models produced by the other participants. Surprisingly, when the
data from participant 15 is used for testing, a relative high R2 value is found. This indicates that data from this
participant is bad for producing a model, but still fits reasonable in another model. In the work from Grup-
pelaar, he concludes that the behaviour of participants 6 and 9 are significantly different from the rest of the
people. The variability of participant 6 was not found to be as high as was expected (R2 value above average
for testing and producing a model). However, participant 11 did show a high variability. When looking at the
parameters from the model created by Gruppelaar [25], also participants 11 and 15 show to be significantly
different from the rest of the participants. participant 6 does not show that much difference. The K-values
and T-values are gains and safety margins respectively. In Figure 6.30 it can be seen that participant 9, 11 and
15 show most difference compared to the other drivers. An orange circle indicates the value is between 1 and
2 standard deviations, a red circle indicates that the value is outside 2 standard deviations.

A similar pattern is found when looking at the Mean Squared Error of the residuals. Again training with
data from participants 9, 11 and 15 results in large MSE values relative to the other models (see Figure A.1).
Another test was done by training the neural network with data collected on road 2, 5 and 6 while the model
would be tested with data from road 1, a road the model has not yet seen before. The results are shown in
Appendix A. Logically, the performance is slightly worse compared to models trained with data from road
1. Also, performance is better on the diagonals (mean R2 = 0.65), indicating people are less variable with
themselves compared to with other people. When even more training roads are deleted, performance drops
more. In Figure A.4 and A.5, results are shown when the model is trained solely with data from roads which
are 2.4m wide (road 5 and 6), while testing is done with a road width of 3.6m. Finally, a model is produced with
data from all participants except numbers 9, 11 and 15 due to previously found results. The model is trained
with data from road 2, 5 and 6 and again tested with data from road 1. The results are shown in Figure 6.31.
Removing the ’outlier’ participants for training, results on average in a much higher R2 value and lower MSE.
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Figure 6.30: Parameters from the model of Gruppelaar for each participant [25]

Without the outlier participants, it might eventually be possible to produce a model which reveals the general
trends of human behaviour in curve driving.

Figure 6.31: MSE and R2 value for each participant when training the model with all participants except the outliers



7
Thesis Experimental Design

In this chapter the thesis experiment will be designed. In order to do so, the results from the literature study
and experimental research will be used. A set of experimental scenarios will be created so that the research
questions from chapter 1 can be answered. The number of participants needed to achieve proper results will
be discussed in section 7.3. The data will be collected using the fixed-base driving simulator in the HMI lab
at Delft University of Technology (section 7.4). In order to make sure that the experiments run smoothly, a
sequence is created which the participants should follow. This sequence will result in familiarisation with
the simulator dynamics but not with the road corner sequence. A detailed description is given in section 7.5.
Before any data is collected it is also important to have a proper plan of which data to collect and how to
process/analyse it. This plan is given in section 7.6. Based on the results from chapter 6 and the literature
study, a hypothesis is formulated (see section 7.7).

7.1. Experimental Scenarios
In order to answer the research questions from chapter 1, the following scenarios are needed in the thesis
experiment:

• One participant, one corner deflection, varying radius: to research the influence of a varying radius on
visual cues and driving behaviour

• One participant, one radius, varying road heading deflection: to research the influence of a varying
deflection on visual cues and driving behaviour

• One participant, one corner, varying road width: to research the influence of a varying road width on
visual cues and driving behaviour

• One participant, one track, multiple runs: to research the variability/inconsistency within human be-
haviour

• Multiple participants, one track: to research the variability between participants.

When analysing the data throughout the experimental track of the preliminary research the velocity as a func-
tion of time almost never seems to be (reasonably) constant on the straight parts of the road. It seems that the
corners are significantly close together so that before reaching the end of accelerating to the maximum speed,
decelerating for the next corner is already required. It could be that these corners close enough together in-
fluence the driving behaviour as opposed to separate corners. Therefore, the design of this experiments will
be with corners further apart so that each corner can be analysed solely too. The vehicle in the simulation
will have the maximum allowable velocity when approaching a curve, and thus also accelerate towards this
speed after exiting a curve.

other interesting scenarios to investigate would be the influence of road super-elevation in curves, and the
impact of driving in a climb/descent. The way the visual cues are derived will change in this case, since a 3
dimensional model needs to be made instead of a 2 dimensional model.

49
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7.2. Experimental Track

The experimental track has to be designed in such a
way that the answers to the research questions will be
clear and valid. The following variables will be tested
on the experimental road:

• Radius = [50 100 200 300] (meters)

• Deflection = [30 60 90 120] (degrees)

• Direction = [L R] (-)

• Width = [2.8 3.2 3.6] (meters)

The widths of the road are based on the average ru-
ral road widths investigated by the SWOV Institute for
Road Safety Research in The Netherlands [34]. The de-
flections and radii are based on the results from other
research, and the preliminary experiment. If a test
track has all combinations of radii, deflections and di-
rections, it will have 32 corners. each corner will have
a 400 meter straight part after it so that there will be
no influence on the next corner. For this research it
is important to investigate the use of the visual field
only. A participant should not become accustomed
with the test track since in that case not only the vi-
sual field is investigated, but also the influence of fa-
miliarisation. Therefore, the sequence of test track
corners should always feel random for the participant.
A random road generator is designed which produces
a road which includes all linear combinations of cor-
ner variables which are given as input. The road will
never cross itself, and each corner is randomly placed.
Some example roads with the inputs given above can
be found in Figure 7.1. Figure 7.1: Randomly created test tracks with same corners

This track has a width of 3.6m, but roads of any width can be produced. The length of the road in this example
is around 20 km, which will take the participant about 15 minutes to complete. The test track can also be split
in two parts, in case the 15 minutes leads to weariness during a test drive.

Test tracks will also be used for validation. This will be done in a few different ways. First of all, randomly
selected data points from the training data will be eliminated and stored as test or validation data. With this
data the model results will be tested for over-fitting. Secondly, a test track with corners similar to tracks which
are used for training will be held apart. This track is never been seen by the neural net and will be used to
validate the model. Finally, a track with different corners compared to track for training will be held apart for
validation. This way, the model can be validated to work as a general model for all corner radii and deflections
(within range). In this last validation part, some corners will also be put closer together in order to create a
more realistic road.

7.3. Participants
It is important to have the right amount of participants for an experiment. When too little participants are
used, the change of significant results drops. When too many are used, much unnecessary time is wasted
on collecting and analysing data. Also, the research facilities will be occupied longer, delaying other research
that needs to use the same facilities. In order to find the amount of participants needed, a power analysis will
be done. Generally speaking, there are two things that need to be considered. The state of the actual world
and the findings from the study.
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Table 7.1: Real world versus study finding: conclusions

Study Finding
Effect present Effect absent

Real World Effect present Reject H0 False Negative (type II)
Effect absent False Positive (type I) Retain H0

There exist two types of errors, a type I and a type II error. A type I error is also known as a False Positive (FP).
In this case the research results pick up an effect or correlation which does not exist in real life. The chance
of a type I error occurring is represented by the α-value. An α-value of 0.05 indicates a 5% chance of wrongly
rejecting the null-hypothesis. One could argue that it would be favourable to have α as low as possible. How-
ever, decreasing α will also lower the chances of detecting a true effect, hence increasing the probability of a
type II error. The type II error is known as a False Negative (FN). In this case the null-hypothesis is retained
while in real life this is not the case. The probability of a type II error is the β-value. This value is related to
the power levels of a statistical test (power = 1 - β). It is possible to increase the power level, hence decreasing
the probability of a type II error, by increasing the sample size.

The next important factor is the effect size. Where α only indicates whether an effect is statistically signif-
icant, the effect size indicates the magnitude of this effect. The effect size represents the correlation of the
effect that is studied. It is also known as the square root of the coefficient of determination (R =

p
R2). From

the results of the preliminary experiment an average R value of 0.708 was found when comparing model and
real life output from data runs never seen by the neural network. This included outlier participant behaviour
(S9, 11 and 15). When the model is made without outlier runs, the R value increases to 0.83.

To compute the required sample size such that the α and β input requirements are met using data with an
effect size R, a software called G*Power is often used. This software is developed by the Heinrich-Heine-
Universität in Düsseldorf, Germany [27]. This software can be used for statistical power analysis. The type
of statistical power analysis that is used before the study is done is the ’A priori analysis’ (Bredenkamp, 1969;
Cohen, 1988): "The necessary sample size is computed as a function of user-specified values for the required
significance level α, the desired statistical power 1−β, and the to-be-detected population effect size." [27].

However, in the case of the experiment that will be done in this research, this software can not be used. The
simulator collects data in time series for multiple participants. The sample size will increase when more par-
ticipants are used, but also when more types of corners are put into a certain track, or when a track is driven
more often. It is very difficult if not impossible to determine the number of participants using G*Power with
all these variables. Therefore another approach is taken to determine the minimum number of participants.
When looking at the variability table (Figure A.1), a few outlier drivers can be identified. The histogram of the
coefficients of determination (R2) is shown in Figure 7.2.

The distribution of R2 has a mean value of 0.501 and a standard deviation of 0.191. One standard deviation
below the mean equals therefore 0.310. The number of occasions with a coefficient below 0.310 equals 44
and the total number of measurements equals 225 (152). This means that 19.56% of the coefficients have a
value below 0.31. These values are almost solely divided over 3 participants (number 9, 11 and 15) that make
up 20% of all participants. Therefore, one could say that the variability of these three participants is higher
compared to the rest of the group. In this thesis it will be important to be able to say with a specific certainty
that the outlier participants can be detected. In this case it would be preferable if it is possible to say with
at least 95% certainty that the number of outlier participants is lower than 40%, which is a clear minority.
For this a derivation is done. The number of combinations that exist for a group of N people including an X
number of outliers equals:

CN ,X = N !

X !(N −X )!
(7.1)

Assuming the data to find the variability is correct, 20% of the participants are considered ’outliers’ (Po = 0.2).
Therefore the chance of having more than 40% of the participants being an outlier equals:

chance =
N∑

X=cei l (0.4·N )
CN ,X

(
P X

o · (1−Po)N−X )
(7.2)
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Figure 7.2: Histogram of coefficients of determination

This value will decrease with an increasing number of participants. In order to achieve the 95% certainty, this
value should drop below 0.05. As can be seen in Figure 7.3a, for this 16 participants are required. This seems
like a realistic number of participants in the scope of this research. When for example a certainty of 95% is
required with number of outliers below 30%, much more participants (50+) would be needed (see Figure 7.3b)
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Figure 7.3: Chance of outlier participants above X% versus required minimum

7.4. Apparatus
The experiments will be done in the fixed-base simulator located in the Human-Machine Interaction (HMI)
laboratory of the Aerospace faculty at Delft University of Technology. A detailed explanation of this simulator
can be found in section 4.4. As explained in chapter 3, lateral acceleration does play an important role in curve
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driving. The results of this experiment will therefore probably deviate from real life experiments. However,
even though driver behaviour deviates compared to real life, it is still possible to capture driving behaviour
based on visual cues. If there happens to be a significant correlation between visual cues and behaviour, more
testing could be done in dynamic simulators and actual vehicles. The participants will be able to control the
steering wheel and the gas/brake pedals. Furthermore, the road will have some scenery next to it in order
increase realism and to give the participant an indication of speed without looking at the speedometer.

Figure 7.4: Fixed based driving simulation (HMI lab), different elements [33]

7.5. Sequence
To start with, each participant gets a few runs on the simulator in order to get familiar with the vehicle dy-
namics. This will be done on a road that will not be used for collecting the actual data. After being familiar
with the simulator, the participant is asked to drive three different test tracks. These tracks will all have the
same corners but the road width is varying. Also, for each track, the corner sequence is different. This is done
in order to eliminate two effects as much as possible.

The first effect is getting familiar with the corner sequence, which should not happen. When this happens,
driving behaviour will not be depending solely on visual cues. The second effect is the influence of corner
sequence itself. For example, when multiple large radius corner are in front of a small radius corner, the
participant might have a different judgement on the upcoming corner as opposed to a situation where the
corners in front all have a small radius. Changing the test track randomly, increases the variability of corner
sequence, and hence decreases the possibility of unwanted influences on the data. Note that each participant
should drive the same test tracks. This way a better comparison can be made between each participant.

Finally, each participant is asked to drive validation runs. One run includes the same type of corners as the
tracks driven before and one run will include a completely new set of corners. These validation runs may be
much shorter as compared to the runs for model development.

Driving in a simulator can lead to simulator sickness. Symptoms of simulator sickness include discomfort,
apathy, drowsiness, disorientation, fatigue, and nausea. During each run, the participant will be asked how
he/she is feeling once every minute. The participant can name a number between 1 and 5. 1 means that
the participant feels very sick and 5 means feeling very good. Once this number drops to 2 (below a neutral
feeling), the simulation run will be stopped immediately in order to minimize the chances and magnitude of
simulator sickness.
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7.6. Data
7.6.1. Measurements
The most important variables that will be measured during the experiments are the following:

• Time (t) [s]

• Longitudinal distance (global plane of reference) (Y ) [m]

• Lateral distance (global plane of reference) (X ) [m]

• Longitudinal velocity (local plane of reference) (Vlong ) [m/s]

• Lateral velocity (local plane of reference) (Vl at ) [m/s]

• Longitudinal acceleration (local plane of reference) (αlong ) [m/s2]

• Lateral acceleration (local plane of reference) (αl at ) [m/s2]

• Yaw angle (ψ) [r ad ]

• Yaw rate (ψ̇) [r ad/s]

• Accelerator pedal deflection (δa) [%]

• Brake pedal deflection (δb) [%]

• Steering wheel angle (δs ) [r ad ]

Next to these, there will also be more measurements done. Some of them can be used for validation of visual
inputs, but would not be available in the actual vehicle (e.g. curve radius).

7.6.2. Analysis
The data will be analysed in different steps. First, all different corners will be split so that they can be analysed
separately if necessary. Also, the straight and cornering parts of the road will be split for the same reason. After
this, mathematical expressions for the distances, times, angles and their derivatives towards the following
visual points will be derived:

• TP

• ETP

• LCP

• SLCP

With all variables derived, separate corner types will be investigated. The combined effects that road width,
radius and deflection have on the outputs (velocity and pedal deflections) and visual cues will be checked.
With a detailed analysis on this it will become easier in the future to select the right visual inputs needed to
compute the desired output. When inputs turn out to be desirable that are not in the visual field directly, it
will be examined if such a cue also can be derived in the visual field.

After this, linear combinations of inputs will be tested to produce various models. These will be models of
velocity and pedal deflections. When the best working linear combinations of inputs are found, they will be
used for further analysis. Participants will be analysed separately in order to check if there any ’outlier partic-
ipants’ that show very different behaviour compared to the rest. The results from these participants will not
be taken into account for developing a general model.

Models will be developed for each individual. These models will be tested and validated with the validation
runs from that driver and other drivers. This way the variability between people can be analysed. In the end,
a general behavioural model will be made with data from all participants. With this model it can be checked
whether it is possible to capture the general trends of human driving behaviour within one model that can be
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used for all people.

The main model will have a similar form as used in the work from Gruppelaar [25]. This model will predict the
pedal deflections based on the visual inputs. These deflections can then be transformed into an acceleration
which will be integrated to a velocity. The difference between this thesis and the work from Gruppelaar is that
more visual cues will be tested in order to try to obtain a more accurate results. The model will be a trained
neural network instead of a set of pre-determined relations.

7.7. Hypotheses
The main research objective is to capture human behaviour in curve driving in a model using a neural net-
work with visual inputs. In order to work towards this objective, several smaller questions need to be an-
swered. Based on the literature and preliminary experiment, the following hypotheses are formulated:

• A combination of distances to visual points represent road geometry best:
When testing the visual cues available at the moment as inputs to the neural network, the road curva-
ture was predicted best when distances to visual points (TP, ETP, LCP) were used. Accelerations were
not tried to be predicted yet, since they have not yet shown any improvement in the model as input.

• There is a correlation between visual cues and speed profile in curve driving:
The highest correlation will be found with distances to specific visual points. This correlation is found
to be stronger in the straight parts of the road as opposed to the cornering parts. Also, this correlation
varies based on the data that is used for training and testing. When data is used from one participant
only, the model correlation coefficient is estimated to be between 0.9 and 1. When more people (10+)
are used, this correlation is estimated to be between 0.8 and 0.9. The reason for this is that the variability
is higher between people than for one participant. The correlation coefficient will also drop when the
test data is from a test run that is never been seen by the model before.

• There exist a correlation between visual cues and moment of braking/accelerating:
The correlation is highest when times to specific visual points are used as inputs. This correlation is
stronger for braking than for accelerating. Also, the moment of braking/acceleration can be modeled
quite well, but the magnitude of pedal deflection not yet. However, when iterating and integrating the
pedal deflection to a velocity, the model does seem to capture general acceleration and deceleration
trends well. It is also not the goal to capture the pedal deflections magnitude perfectly since this is also
very variable in human behaviour.

• Variability between people is larger than for one participant:
When investigating the variability table, lower R2 values are found when training and testing is done
with data from different participants. Also, some ’outlier’ participants can be present which have a
different driving behaviour compared to the rest of the group.

• When curves are close together, they will influence each other:
When curves are close together, a driver will be unable to accelerate at the end of the first curve as
would be done without a curve ahead. Also, the driver will enter the second curve differently if it would
have been approached by a straight road segment only. This is an hypothesis based on the data from
Gruppelaar [25]. In the actual thesis experiment the curves will be further apart for training, while in
the validation data also corners will exist which are close together. At these positions this hypothesis
will be investigated. If the produced model will still work ate these positions, corners closer together do
not influence the model.





8
Conclusion

The goal of the preliminary thesis was to collect enough information in order to be able to design a well
defined thesis experiment. This information is both obtained through the use of available literature and a
preliminary experiment. The research should be designed in such a way that the following researched objec-
tive will be met:

"Measuring and modeling drivers behaviour for speed adaptation in curves using neural networks with vi-
sual field inputs"

In the literature study, much research was found on modeling driver behaviour in curve driving. But still,
there is a lot of variation between the methods used for modeling. Most research was based on relating speed
to road geometry (radius and width). A flaw in this modeling is that often curves have a fixed radius and
width, while the velocity through this curve does not remain constant. As a human, it is also very difficult to
predict the radius of an upcoming curve, yet humans (usually) seem to drive safely and comfortably through
curves. The main cue that people have available during driving is their visual field. There are specific points
in the visual field where drivers seem to look most often such as the Occlusion Point and the Extended Tan-
gent Point. Speed control is most likely governed by time margins to these points.

In the preliminary experiment, different types of models were produced. The distances to visual points best
represent road geometry. It makes sense that therefore these same inputs also has the highest correlation to
velocity directly. Strong relations between in- and output are found on straight road segments (driving to-
wards a curve). These relations were weaker on curved road parts since also the distances to these points re-
main relatively unchanged. When predicting the brake and acceleration pedal deflections, the most promis-
ing inputs are time values towards specific visual points. The moment of braking and accelerating was found
with high accuracy, while the magnitude was more difficult to predict. This might not be a problem since
human behaviour is quite variable itself. When iterating the pedal deflections to a velocity profile, the model
captures most acceleration and deceleration trends.

The main plan for the thesis is to collect data from about 16 participants driving roads with varying width and
curve radii. The curves will be far enough apart so that they can be analysed separately. The model that will
be trained will have as output the pedal deflections. These will be iterated and integrated to a velocity profile
for validation. There are a few advantages when using this method. Firstly, no unrealistic accelerations will
be modeled since deflections are always between 0 and 100%. Secondly, the pedal deflection inputs are very
easy to implement into a vehicle as these are the actual inputs of the system. Finally, this method also shows
promising results on the whole track, instead of only on the straight road segments.
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A
Variability tables

Figure A.1: MSE values when training with road 1, 2, 5 and 6 and testing with road 1

Figure A.2: R2 values when training with road 2, 5 and 6 and testing with road 1
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62 A. Variability tables

Figure A.3: MSE values when training with road 2, 5 and 6 and testing with road 1

Figure A.4: R2 values when training with road 5 and 6 and testing with road 1

Figure A.5: MSE values when training with road 5 and 6 and testing with road 1
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