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Abstract: Studies of colonization processes in past human societies o�en use a standard population model in
which population is represented as a single quantity. Real populations in these processes, however, are struc-
tured with internal classes or stages, and classes are sometimes created based on social di�erentiation. In this
present work, information about the colonization of Old Providence Island was used to create an agent-based
model of the colonization process in a heterogeneous environment for a population with social di�erentiation.
Agents were socially divided into two classes and modeled with dissimilar spatial clustering preferences. The
model andsimulationsassessed the importanceof gregariousbehavior for colonizationprocesses conducted in
heterogeneous environments by socially-di�erentiated populations. Results suggest that in these conditions,
the colonization process starts with an agent cluster in the largest andmost suitable area. The spatial distribu-
tion of agentsmaintained a tendency toward randomness as simulation time increased, evenwhen gregarious-
ness values increased. Themost conspicuous e�ects in agent clusteringwere producedby the initial conditions
and behavioral adaptations that increased the agent capacity to access more resources and the likelihood of
gregariousness. The approach presented here could be used to analyze past human colonization events or
support long-term conceptual design of future human colonization processes with small social formations into
unfamiliar and uninhabited environments.

Keywords: Human Colonization, Gregarious Behavior, Social Di�erentiation, Settlement Patterns, Caribbean,
Archaeology

Introduction

1.1 Human colonization processes are a common research topic in disciplines such as archaeology and population
genetics that study social human evolution in our past. Studies of colonization processes in past human soci-
eties o�en use a standard populationmodel in which population is represented as a single class of agents that
o�en exhibits highlymobility without strong spatial constraints (Barton et al. 2004; Jochim 2009; Winterhalder
et al. 2010). However, real populations during colonization processes are o�en structured with internal classes
or stages based on age or other natural phases (Briggs et al. 2010; Hey &Machado 2003), and classes are some-
times created based on social di�erentiation (Rockman & Steele 2003; Stein 1999). In this paper we model a
colonization process with a socially-di�erentiated population in order to provide insights about how the sum
of individual preferences and the internal diversity of populations shape human colonization processes. This
approach could be used to analyze past human colonization events or support long-term conceptual design
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of future human colonization processes with small social formations into unfamiliar and uninhabited environ-
ments (Billingham et al. 1979; Smith & Davies 2012).

1.2 In the work herein, a case study of the European colonization of the Americas was used as input data to model
how structured human populations colonize a broad range of environments. A�er the arrival of Columbus, Eu-
ropeans controlled communities and territories of Amerindian societies but also occupied new and unfamiliar
landscapes through processes of exploration, migration, and colonization. These processes were undertaken
by hierarchically-organized, slave-based, sedentary, and small populations, that stemmed from demograph-
ically larger societies with original settlements located in Old World environments. Europeans and enslaved
Africans found in the Americas a landscape full of unfamiliar and heterogeneous environments, in which their
social conditions and available communication and transportation technologies inhibited immediate interac-
tions with their origins.

1.3 The colonization of Old Providence Island represents one of these cases. Old Providence Island is about 240
km East of the Nicaraguan coast, and 630 km Southwest of Jamaica (Newton 1914; Ordahl 1993; Parsons 1985)
(Figure 1). The events that occurred during colonial times in Old Providence Island provide us an opportunity
to explore fundamental questions about how humans interact in heterogeneous environments. In this paper, a
colonization process wasmodeled based on information about the colonization of Old Providence Island using
agent-basedmodel techniques. Agentswere socially di�erentiated andmodeledwith dissimilar spatial cluster-
ing preferences. The purpose was to evaluate the importance of gregarious behavior when structured human
populations with di�erent preferences about group organization colonize a new heterogeneous environment.

Figure 1: General Location Old Providence Island (a�er Esri 2019).

1.4 The model and simulations were not designed to accurately account for the demographic changes and past
land use of Old Providence Island. Instead, we aimed to build what Gilbert calls a middle-range model (Gilbert
2008). We were interested in exploring how the spatial distribution of agents changes with di�erent degrees of
independence or interdependence when involved in a colonization endeavor. Independence and interdepen-
dence are expected to have an e�ect on spatial distribution since they o�en require some degree of face-to-
face interaction (Drennan & Peterson 2006). Therefore, minimizing or maximizing spatial distance is the most
common strategy that humans use to manage costs and benefits of interaction (Drennan 1988). Agent-based
models can provide a digital representation of populations with internal di�erences in preference for frequent
peer interaction.

1.5 By means of an agent-based model, we simulated a continuum of scenarios between two extremes: one rep-
resenting a society with a large proportion of independent agents, and the other a society with agents prone
to being more interdependent. Agent gregariousness was taken as proxy for interdependence; agents prone
to be interdependent were defined as more gregarious while more independent agents were assumed as less
gregarious. Scenarios were run in a digital representation of the island’s environment.
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1.6 Theenvironmental variability andoccupationhistoryofOldProvidence Islandwereusedas inputdata tomodel
colonization dynamics. The digital environmentwas structuredwith a land classification of the island that used
biotic and abiotic data with the aim of identifying areas that were more suitable for the first settlers (Fajardo
& Rodríguez 2017). Social di�erentiation was included in the model using the behavioral component of the
slavery process on the island. The earliest permanent settlements were built in the 17th century when English
puritanswere expanding in the Caribbean. The absence of Amerindians on the island since the beginning of the
colonization process led Europeans to bring Africans as slaves. Regardless of the changes in territory control
between Englishmen and Spaniards, the presence of Africans was a constant factor in the social organization
of the island (Parsons 1985, p. 33-35). An important aspect of the behavior of Africans on the island was that
theymarooned and sometimes evenmanaged to escape from the island (Newton 1914, 149-150). The voluntary
preference to become marooned, namely withdrawing or reducing the possibility of interaction with other in-
dividuals by physical migration, was considered as a relevant feature of gregariousness and it was included in
the model. This preference was also an important part of the historical context of the island. It highlights how
dramatically segregated individuals reacted and decided to act based on their social conditions. Cultural stud-
ies underscore how African presence is now in every aspect of Caribbean societies and culture (Hall 2000). This
characteristic suggests that despite their disadvantageous position, enslaved Africans played an active part in
the construction of societies created in the Americas. The colonization process of Old Providencewasmanaged
by Europeans, but the resulting communities and patterns of social interactionwere also shaped by African be-
havior. For these reasons, the colonization process is referred here as managed by Europeans although the
resultant communities are understood as an Euro-African product.

Agent-basedmodeling in archaeology

1.7 Computer modeling and simulation in archaeology date back to the early 1970s and have explored several as-
pects of a wide range of societies. Readers can refer to Lake (2014), BarcelÃş et al. (2000) and Grosman (2016)
for how computer technologies changed the way archaeologists model, document, visualize, and analyze ar-
chaeological data. Recent works also discuss epistemological issues of agent-based computational modeling
in archaeology (Saqalli & Van der Linden 2019;Wurzer et al. 2015). Lake (2014) highlights that some agent-based
approaches with an archaeological scope can be classified as attempts to analyze long-term socio-ecological
change as a complex adaptive system, and this is the approach presented here. This is also a topic actively
studied in recent agent-based simulations (Lake 2014; Saqalli & Van der Linden 2019).

1.8 Complex adaptive system approaches in archaeology that work with agent-based simulations study di�erent
aspects of agent interactions and settlement systems of pre-industrial societies. These simulations usually de-
velop models focused on understanding one particular long-term sequence of social change. For example,
Kohler and collaborators have developed their model as a programmatic research about pre-European popu-
lations in the Mesa Verde region of Southwest Colorado. They started from a simple model that applied fixed
agent decision-making rules to settlement locations (Kohler & Carr 1997). Today, theirmodel has grown in com-
plexity and contains algorithms for a decision-making process that includes cultural preferences, kin relations,
and a changing environment (Kohler et al. 2007, 2012). Barton et al. (2016) have been studying agro-pastoralist
eco-dynamics in the Mediterranean in order to answer questions about the sustainability of socio-ecological
systems. Small bronze age communities from theMiddle East have been studiedwith agent-basedmodels and
archaeological datasets that demonstrate resource gains from some household-like agents at the expense of
others, producing more economically di�erentiated communities through time at the onset of urbanization
(Wilkinson et al. 2007). Other recent evolutionary topics addressed by agent-based simulations have been the
process of fission and fusionof settlements in pre-industrial societies (Crema2014; Gri�in&Stanish 2007), long-
term anthropogenic e�ects on landscapes (Barton et al. 2015), and social cooperation within high risk environ-
ments (Clark & Crabtree 2015).

1.9 The examples above share an interest in long-term societal change; inclination toward environmental realism
as a pivotal part of their model; explicit concern about human-environment interaction; model testing against
archaeological and/or historic data; and increasing complexity built over an initial simplemodel. Although the
model presented here shares similar interests in the analysis of long-term human complex systems, it follows a
complementary approach. Environmental heterogeneity is included in the model without dynamics. Instead,
the model focuses on parameters that represent di�erent preferences of social interaction. Also, the analyses
donot aim to explain a particular long-term sequenceof social changebut to explore howdiversity in individual
preferences about interaction could a�ect human clustering in a colonization process.
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Aim of the study

1.10 The agent-based simulation was focused on modeling the variability between two simple âĂĲwhat ifâĂİ sce-
narios. On one hand, a scenario where agents prefer to live in gregariousness near other similar agents. This
was taken as a proxy for a population with preference for frequent interaction and dependence on each other
(interdependent scenario). On the other hand, a scenariowhere themajority of agents preferred to live far from
similar agents. This scenario represented a population with preference for self-sustainability and low daily in-
teraction (independent scenario). The rationale behind this approachwas to simulate the heterogeneity of spa-
tial patterns, based on di�erent preferences that agents in a given society could have in their attitudes towards
living in proximity to others.

Input Data

Old Providence Island

2.1 Historians and archaeologists suggest that the Old Providence Island was not permanently occupied by hu-
man populations before 1629 CE, when The Old Providence Company established an English colony (Newton
1914; O�en 2008; Ordahl 1993; Rowland 1935). A few Dutchmen visited Old Providence before the establish-
ment of the English settlements but they never settled. The English colony on the island was probably the first
European-African community to interact with the Miskito population. These first encounters are inferred from
toponymy in early European maps, early development of Amerindian-African societies on Miskito cays, and
from use of some Miskito terms by puritan colonizers on Old Providence (O�en 2011). Although contact with
indigenous communities did occur, it was not based on daily interactions and occurred infrequently on the
Island. The Miskito population probably visited the island but never settled (Nietschmann 1995; O�en 2008;
Vollmer 1997). Archaeological data indicate that Miskito groups were located around 240 kmwest of Old Provi-
dence Island, along the Caribbean coast ofmodern Nicaragua andHonduras (Balladares 2013; Clemente-Conte
& Gassiot BallbÃĺ 2004, 2015; Tous i Mata 2002). The earliest Miskito occupation in the Nicaraguan coast has
been dated to 1120 ± 60 BCE, while hierarchically organized Miskito communities could have existed since at
least 1150-1400 cal. CE (Clemente-Conte&Gassiot BallbÃĺ 2004, pp. 112-119). Archaeological evidence ofMiskito
occupation in Old Providence Island has not been reported in any of the archaeological studies conducted to
date (Fajardo & Rodríguez 2017; LondoÃśo 2014; Mayfield 2019; Romero 2013). When Amerindian-European-
African dynamics in the Caribbean started, Old Providence Island functioned as an uninhabited territory not
only for European-African communities but also for Amerindian populations.

2.2 By the year 1635CE, 500Englishmen, 40womenwith somechildrenand90 slaveswere livingonOldProvidence
Island. This population was divided in two types of settlements: one small nucleated settlement and several
dispersed farmsteads. The small nucleated settlement was named New Westminster and it was located in the
Bowden area (Figure 2, northwest of the island). NewWestminster only had 30 houses, a church and the gover-
nor’s house (Newton 1914, pp. 87-152), while the rest (most) of the population lived outside of NewWestminster
in dispersed farmsteads. The enslaved African population was introduced in 1633 CE. Some Africans managed
to escape from landlords and established shelters in forest areas, especially in the southeast part of the island.
These shelters were burned down by Europeans at least two or three times, which dispersed the African popu-
lation into the forest (Newton 1914, pp. 151). Historical documents indicate that the puritan company hierarchy
was divided by status di�erences in at least three tiers, and each tier had di�erential access to agricultural land.
Around 1636, governor Robert Hunt received 100 acres of land to farm, whereasmenwith onlymoderately high
status obtained 50 acres, andmen with the lowest rank received 30 acres (Newton 1914, pp. 216-223) (Table 1).

2.3 The colonial history of Old Providence was always part of the conflict of colonial powers in the Caribbean Sea.
The colonization was conducted by English puritans, and the Spanish crown reacted to this endeavor at least
twice between 1641 and 1666 CE. During these two episodes, Spaniards brought English settlements and the
Africanpopulationon the islandunder their control (Parsons 1985; Rowland 1935). Historic records indicate that
a�er 1670 CEOld Providencewas uninhabited for almost sixty years. In the year of 1738 CE, there are references
of the presence of new Englishmen on the near island of San Andres, but none about permanent occupation on
OldProvidence (Parsons 1985, p. 48). It is only in the year 1793CE that a Spanisho�icer documentedoccupation
on the island again. This was represented by only two families from San Andres Island that were living on Old
Providence. Nonationality or rankof these families is reported, butbasedon familynamesofpopulationonSan
Andres Island, families in Old Providence probably stemmed from the initial Puritan settlements (Ramery de
1793, sheet 595). A�er that, in 1809 CE, Oneill reported about 250 people between free people and slaves living
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on the island (Oneill 1809, sheet 472). Oberto (1834, p. 25) indicated that in 1834 CE, about 500 people lived on
Old Providence, of which about two thirds were slaves.

Social Position Description Agricultural Land Received in Hectares

Highest rank English governor 40.5
High rank Englishmen 20.23
Low rank Englishmen 12.14

Lowest rank Runaways 0

Table 1: Old Providence Company Distribution of Agricultural Available Based on Newton (1914, pp. 216-223).

Suitability classification

2.4 Habitat suitability classificationofOldProvidence Islandusedbioticandabioticdata (Álvarezetal. 2014;CORALINA-
INVEMAR 2012; Posada et al. 2011). Areas were classified according to their suitability for the type of commu-
nities that settled on the island in the past. The variables used to create the habitat suitability classification
are presented in Table 2. It was assumed that early settlers preferred to locate their dwellings in areas with
good agricultural land, abundant terrestrial resources, easy sea access to harbor, and fresh water availability.
All variableswereweighted as equally important. Each variablewas transformed in a four level rankwith higher
values representing more suitable areas and smaller values representing less suitable areas. Original values of
each variable and their assigned values are presented in Table 2. Drainage basin systems (Figure 2) were used
to describe patterns observed in the graphic simulation outputs and input data.

Figure 2: Old Providence Drainage Basins.

2.5 Marine and terrestrial resources were included in the suitability classification. It was assumed that the most
relevant land resource on the island was cultivable land. Areas located in alluvial fans with slight slopes and
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an average of 200-250 rainfall days per year were classified as best for agricultural practices. Other geomor-
phological units with conditions such as low stability or without watersheds were considered as areas with low
suitability to establish dwelling structures or agricultural plots. Black crab (Gecarcinus ruricola) was included
as the most important wild terrestrial resource. Today, presence of black crab is concentrated in the western
forested areas. Based on a regional study of black crab distribution conducted in 2004 (CORALINA-INVEMAR
2012, p. 93), the highest value in the suitability rank was assigned to those basins withmore than 200,000 indi-
viduals.

Variable Description Variable Value Assigned value

Geomorphological
unit

Alluvial Fan 4
Moderately inclined/dissected hills of denudative structural origin 3
Moderately inclined/dissected hills of denudative origin 2
Cli� 1
Colluvial deposit 1
Dejection cone 1
Residual hill 1
landslide 1
Storm deposits 1
Coastal lagoon 1
Playon 1
Mangrove swamp 1
Beach 1
Steep and severely dissected hills of denudative origin 1
Very steep and severely dissected hills of denudative structural origin 1

Slope degree Slight 0-6Âž 4
Moderate 6-13Âž 3
Steep 13-25Âž 2
Very steep ≥ 25Âž 1

Average rainfall Days per year 200-250 4
200-150 3
150-100 2

Total Gecarcinus
ruricola individuals
recorded in 2004
by drainage basin
name

Fresh Water 817,520 4
Southwest Bay 558,072 4
Gamadith 405,680 4
San Felipe 307,708 4
Bowden 293,384 4
Smooth Water 180,804 3
Catalina Sur 178,048 3
Mc Bean 83,348 2
Catalina Norte 67,164 2
Bailey 15,756 2
Garret Bay 0 1

Drainage basin
density (m/ha)

Bailey 62.6 4
Fresh Water 58.7 4
San Felipe 57.7 4
Catalina Norte 56.6 4
Bowden 52.3 3
Smooth Water 51.1 3
Mc Bean 47.9 2
Garret Bay 47.2 2
Gamadith 44.3 1
Southwest Bay 27.5 1
Catalina Sur 16.1 1

Table 2: Suitability Variables

2.6 The reef that protects the island provides a reliable source for fish and species such as Lobatus gigas. Artisanal
fishing data and coastal limits (Crawford & MÃąrquez-PÃľrez 2016; INVEMAR-ANH. 2012; Rueda et al. 2010) sug-
gest that the distribution of fishing practices is homogeneous around the island. Given the small size of the
island (17km2), it can be argued that access to marine resources would be determined by access to the sea
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from the coast. The surface of the island was divided according to the proximity to beach and storm deposits
using bu�ers of 500, 1000, 1500 and 2000meters wide. These deposits were associatedwith easy sailing points
for small boats, such as those required today to conduct artisanal fishing, and zones closer to these placeswere
classified with higher suitability given the easier access to marine resources they o�er.

2.7 Fresh water is paramount for any human population. Although fresh water can be provided through exchange
networks or a supply line, these options are limited by logistics. Any sedentarization process supported on
non-local fresh water resources will be so limited. This means that permanent human populations seeking
self-su�iciency require sources of fresh water to ensure their stability; proximity to this resource is therefore
an important variable to decide where to locate a residential structure. For this reason, fresh water availability
was included in the suitability classification representedby thedrainagedensityof eachbasin. Drainagedensity
was calculated dividing the sum of the length of the drainages in a basin by the basin area (Horton 1932). This
measure canbe used as indicator of surface permeability andproxy for freshwater availability on surface (Table
2).

2.8 The overall suitability classification added the values of suitability ranks for each variable by means of a raster
calculation. This classification was originally structured in a 2x2m raster file of the terrestrial area of Old Provi-
dence Island. All suitability valueswere reclassified in four categories: very low suitability (1), low suitability (2),
high suitability (3), and very high suitability (4).

The Model

3.1 The model description follows the ODD protocol (Grimm et al. 2006, 2010). The description consists of six el-
ements. These elements provide an overview of the model and the general concepts behind the modelâĂŹs
design. An animation of one of the runs can be found in the Appendix.

Purpose

3.2 The purpose of the model was to understand how average gregariousness in a socially di�erentiated human
population changed settlement location in a heterogeneous environment during a colonization process. The
model presented did not aim to reproduce historical events. The model simulated settlement patterns under
di�erent degrees of gregariousness within an enclosed and heterogeneous environment. It was conceived as a
tool to model gregarious behavior as a proxy for interdependence and independence.

Entities, state variables and scales

3.3 The model contains two kind of agents: settlers and runaways. Settlers represent colonial households, and
runaways represent escaped slaves. Both settlers and runaways were characterized by the state variables gre-
gariousness, occupation radius, reproduction rate and position (occupied cell). Additionally settlers have the
state variable escape rate, and runaways have the state variable fear of settlers (see Table 3). Each agent is
gregarious only with agents of the same class. Runaways attempt to stay away from settlers.

3.4 Of all state variables, only position is dynamic: gregariousness, occupation radius, reproduction rate, escape
rate and fear of settlers are static variables i.e. they are assigned at agent birth and their value does not change
a�erwards. Other than gregariousness, which is sampled from a normal distribution, these properties were
homogeneous across the whole population. This was a design choice taken in order to emphasize the analysis
of the spatial distribution patterns produced by changes in gregariousness. Changing the sampling distribution
for any of these attributes can be easily achieved by re-implementing the corresponding sub-procedure in the
source code provided.

3.5 The digital landscape in which agents interact is heterogeneous, fixed, and without mobility constraints. It
simulates the land extent of Old Providence Island (22.3 km2) and an adjacent sea area surrounding the Island
(0.69 km2). The total area represents roughly 23 km2. Each habitat cell characterizes an area of approximately
3401m2. Cell size matches the resolution of the digital elevation model available for the island. Cell size also
roughly represents modern rural land property on the island in which 71% of rural properties are smaller than
1 ha (Rico GarcÃŋa & DurÃąn GarcÃŋa 2015). Cells are arranged in a 2D 67 × 101 layout. Habitat cells can be
occupied by one agent at a time.
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3.6 Landscape heterogeneity is represented by the suitability of cells: the land classification of Old Providence Is-
land introduced above was used to create a four-level rank for cells, representing their suitability for human
habitation; inland cells have suitabilities ranging from 1 to 4, and sea cells have 0 suitability and cannot be in-
habited. Suitability here is used only as a representation of the agents’ preference for certain terrain, and pro-
vides no advantage to the inhabitants. Furthermore, each cell maintains its suitability without changes derived
fromharvesting activities or environmental hazards. Once again, these factorswere excluded from themodel in
order to focus on the spatial results of interaction between agents with di�erent average gregariousness. Each
step of the simulation was intended to represent a period of 1-2 years.

Variable Type Range Description

All agents
Position Dynamic [0, 6766] ID of the cell occupied by the agent
Occupation Radius Static Integers in [0, 10] Radius of the agent’s area of influence. The agent har-

vests cells and interacts with other agents within this
area

Reproduction rate Static Float in [0, 100] Probability of spawning a new settler on any given
simulation step

Gregariousness Static Floatnumber in [−1, 1] Preference for living close to other agents. Positive
values represent preference for spatial closeness to
other agents, negative values represent spatial avoid-
ance of other agents

Settlers
Escape rate (set-
tlers only)

Static Float in [0, 100] Probability of spawning a new runaway on any given
simulation step (slave escape)

Runaways
Fear of settlers
(runaways only)

Static Integers in [2, 14] Valuation of the importance of avoiding settlers

Table 3: State Variables in the Model

Process overview and scheduling

3.7 Figure 3 presents the workflow of one simulation step. The following processes take place in each step:

• An agent assesses terrain by comparing its position with that of their peers.

• Based on this assessment, the agent chooses betweenmoving or staying.

• If the agent is a settler, they kill all runaways within their occupation radius.

• The agent may then reproduce with a probability given by their reproduction rate.

• If the agent is a settler, it may spawn a runaway through the slave escape submodel (see Submodels).

3.8 This schedule is completed by each agent successively in random order. Agent variables are updated asyn-
chronously while population attributes (means and deviations) are updated globally at the end of each simu-
lation step. Agent attributes are inherited by their o�spring. Descendants assess available cells and then settle
on an unoccupied cell immediately a�er birth. Only runaways die, and only when killed by settlers.

Design Concepts

3.9 Basic principles: The model uses the principle that simple rules of social interaction could explain macro level
phenomena such as spatial patterns (Drennan 1988; Drennan & Peterson 2006; Janssen & Ostrom 2006; Peter-
son & Drennan 2005). More complex forms of social interaction such as cooperation could derive from simple
rules (Carballo 2013), like with whom or why you participate as part of a group. In this sense, gregariousness
preferences are given in the range between individualism and collectivism, being collectivism a society-level
indicator that allows to map communities or groups in which cooperation can emerge.
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Figure 3: Process overview. Rectangles represent actions, diamonds represent conditionals, and circles repre-
sent control switching to another agent.

3.10 Emergence: The main emergent phenomenon is the formation and shaping of communities. Both settlers and
runaways change their location and proximity to other agents, and therefore the number and characteristics of
their clusters, in response to their interactions.

3.11 Adaptation: Agents identify the optimum cell according to an individual criterion (see objectives) and make
a decision about whether to emigrate from their current location or not (see stochasticity). Agents consider
suitability of terrain, location of other agents, and their own preference to live near other agents to choose
their location. Upon moving to a new cell, settlers exterminate all runaways inside their occupation radius
thus shaping the environment to their needs. Conversely, runaways avoid settlers to increase their chance of
survival.

3.12 Objectives: Each agent aims to settle at an optimum location, according to the following criteria: a) Suitability
of the terrain (cells) ; b) Neighbors: Agents assess the presence of agents of the same class negatively from the
point of view of resource distribution, and positively or negatively from the point of view of companionship,
depending on their own gregariousness. With positive gregariousness and as population density increases,
the drive towards closeness opposes the impulse to inhabit the best terrain available. Runaways assess the
presence of settlers in their neighborhood negatively.

3.13 Prediction: Agents predict the need to split resources (suitability) with other agents inside their occupation ra-
dius. Agent predictions do not use memory of previous decisions. Agents predict their gains based on the as-
sumption that other agents maintain the same location.

3.14 Sensing: Agents sense cell suitability and the presence of other agents. They are aware of the satisfaction of
agents of their own class with their current locations.

3.15 Interaction: Two agents may not occupy the same cell at the same time. Settlers kill runaways within their
occupation radius. Runaways actively avoid settlers. Agents share their location and satisfaction with their
current locations.

3.16 Stochasticity: Agent gregariousness is assigned randomly, following a normal distribution. Mean gregarious-
nessandstandarddeviationaremodelparameters. Thechoice tomove is a stochasticprocess, but takesagent’s
objectives into account. Agents on a disadvantageous position relative to peers of the same class are more
likely tomove. The choice to reproduce is stochastic: all agents are equally likely to reproduce, with a probabil-
ity given by their reproduction rate. The escape of a runaway from a settler is probabilistic as well. Other than
gregariousness, all random variables are sampled from uniform distributions.

3.17 Observation: Location and gregariousness of each agent were recorded a�er each simulation step, along with
the total number of agents of each class.
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(a) Initialization (b) A�er 73 Simulation Steps (c) A�er 100 Simulation Steps

Figure 4: Three snapshots of a simulation with high reproduction rate (3.6%) and the other parameters on de-
fault values. Demographic explosion drives runaways toward the highlands (red terrain). The low suitability of
that terrain combinedwith their owngregariousness keeps settlers away from this area, which allows runaways
to thrive — one of the few scenarios where that happens.

Initialization

3.18 Values for the following parameters must be provided in order to run the simulation:

• Reproduction rate

• Initial population of settlers

• Mean gregariousness and standard deviation for settlers and for runaways

• Escape rate

• Occupation radius

• Fear of settlers.

3.19 These parameters were not adjusted with input data; instead, simulations were run with wide ranges of values
and the e�ect of variations on the parameters was analyzed (See Section 4).

3.20 Cells are arranged in a grid and their suitability values initialized according to input from a png file in which
suitabilities are encoded as colors. The initial population of settlers spawns in the center of the grid and then
their attributes are initialized, one agent at a time, as follows:

• Reproduction rate, escape rate, and occupation ratios are assigned the values of the corresponding pa-
rameters.

• Gregariousness is assigned randomly, following a normal distribution with the givenmean and standard
deviation.

• The settler is positioned at its preferred location.

An example of an initialized simulation is shown in Figure 4 (a).
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Submodels

Move

3.21 This submodel is summarized in Figure 5 (a). Agent a assesses the suitability of a cell p as a potential habitat by
calculating the sum of suitabilities of all cells within its occupation radius from p, and then dividing the result
by the number of agents inside that region. Other agents present will be valued negatively due to the need of
sharing produce with them. For this purpose, settlers only take other settlers into account.

3.22 Closeness to other agents may be valued positively or negatively depending on the gregariousness of agents.
Only agents of the same class are considered when assessing agent closeness. Last, runaways weight in the
presence of settlers within the area. Taking all these factors into account, the overall valuation of the cell is
given by:

position-value(p|a) =

∑
q∈r(p|a) suitability(q)

A
(1 + C gregariousness(a)− δaS fear-of-settlers(a)) (1)

where r(p|a) is the set of cells within the occupation-radius of a from p, A is the number of agents in r(p|a)
with which awould share the product of the cells,C is the number of agents of the same as a in r(p|a), S is the
number of settlers in r(p|a), and δa equals 1 if a is a runaway and 0 otherwise.

3.23 Agenta is satisfiedwith its current position if textitposition− value(a) is greater or equal to themeanposition
valueof agentsof its class. In this case, agenta stays in its currentposition. If textitposition− value(a) is below
1 standard deviation of the mean, agent a is unsatisfied and will move to a new cell. Otherwise, agent amay
move to a new cell with probability:

p(a→ move) =
m(position-value)− position-value(a)

σ(position-value)
(2)

3.24 wherem and σ stand for themean and standard deviation respectively, calculated on the population of agents
of a’s class. If the agent moves, it will settle on a random cell with maximum position-value(a).

Slave escape

3.25 A runaway escapes from a settler with a probability equal to the settler’s escape rate. The new runaway has a
gregariousness sampled fromanormal distributionandmoves immediately to anoptimum location (see Figure
5 (b)).

(a) (b)

Figure 5: Move (a) and Slave-escape (b) Submodels. Rectangles represent actions, circles represent control
switching to another agent.

Simulation Experiments

4.1 Simulationexperimentswereconductedsystematically changing theparameter valueswithin theallowed ranges
(see Table 4). Only one parameter changed at a time; all the others remained at their default values. A total of
10 replicas were run for each set of values. Each replica consisted of 100 simulation steps.
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4.2 The e�ect of each parameter on the spatial distribution of settlers and runaways was measured through the
Average Nearest Neighbor Ratio (ANNR) (Ebdon 1985):

ANNR =
d̄

〈d〉
(3)

where d stands for the distance from an agent to its nearest neighbor, d̄ is the average over the corresponding
agent set:

d̄ =

n∑
i=1

di
n

(4)

and 〈d〉 stands for the expected value of d for a randomly distributed population, which is given by:

〈d〉 =
0.5√

n
A

(5)

where A is the area of the minimum enclosing rectangle around the island (6237.019775). The island’s con-
tourwas not used to calculate theA because it is very irregular and this a�ects ANNR values (Pinder et al. 1979).
That’swhywe instead consideredaquadrilateral area that covered the islandwhileminimizing zones that could
not contain population (in this case the sea). Settlers and runaways were considered as two di�erent popula-
tions, and their ANNRs were calculated separately.

4.3 The ANNRs allow to evaluate changes in spatial clustering for agents of the same class within a fixed study
area. If the ANNR is less than 1, the pattern exhibits clustering. If the index is close to 1 it suggest a random
distribution. If the index is greater than 1, the trend is toward dispersion (Mitchel 2005). We compared the
changes in the spatial distribution of settlers and runaways, simulating long-term changes. Wewere interested
in the variability of ANNR values over time. For each simulation step, the distribution and confidence intervals
of ANNR values were calculated using the mean and standard deviation of all ANNR values for each change in
parameter values. Parameter values were used as a grouping variable to plot mean ANNR values and standard
deviations (Figures 6, 7, and 8).

Parameter Low Value Used Default Setting High Value Used Increment

Reproduction rate 0 1% 3.6% 0.4%
Fear of settlers 2 10 14 2
Initial population 50 100 500 50
Mean gregariousness -1 0.7 1 0.2
Gregariousness std. dev. 0 0.33 1 0.1
Occupation radius 0 2 10 1
Escape rate 0 10% 50% 5%

Table 4: Parameter Settings Used in Simulation Experiments

Reproduction rate

4.4 Increments in the reproduction rate diminished settler clustering across the digital landscape (Figure 6 (a)).
Changes in reproduction rate values for settlers≤ 1.6% showed an incremental tendency from clustered pat-
tern to random spatial distribution. In runswith reproduction rates≥ 2% the curve flattens on ANNR=1 at some
point of the simulation, revealing a pseudo-random pattern. For reproduction rates > 2.4% the spatial dis-
tribution shi�ed toward dispersion in the last steps. This is due to saturation of high-to-mid-suitability terrain
enforcing settlement separation outside of the most crowded areas (see Figure 4).

4.5 The patterns shown by runaways were di�erent (Figure 7(a)). The spatial distribution of runaways showed a
clustered pattern with ANNR values roughly between 0.5 and 1. The runaway population was kept low by set-
tlers’ location change: runaway colonies were small and short-lived. In most cases, this pattern continued un-
til the end of the simulation. However, for reproduction rates > 3.2% there was a significant increment in
runaway clustering during the final simulation steps. This is due to the increase in settler dispersion and fos-
tered occupation of new areas at high reproduction rates: runaways answered to this situation by fleeing to
the lowest-suitability area, which settlers avoided because of its low productivity and isolation (see Figure 4).
This e�ectively created a safe haven for runaways, where an unusually large and tightly clustered community
flourished.
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Figure 6: Mean and Standard Deviation ANNR Values Grouped by Parameter Values for Settlers. Lines represent
the mean and standard deviation of ANNR values calculated for each parameter value indicated in the legend
on the right of each subfigure. The parameter is indicated in the subtitle of each subfigure. The mean and
standard deviation of the ANNR values were calculated based on 10 replicas for each parameter value. Each
replica included 100 simulations steps.
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Figure 7: Mean and Standard Deviation ANNR Values Grouped by Parameter Values for Runaways. Lines rep-
resent the mean and standard deviation of ANNR values calculated for each parameter value indicated in the
legend on the right of each subfigure. The parameter is indicated in the subtitle of each subfigure. The mean
and standard deviation of the ANNR valueswere calculated based on 10 replicas for each parameter value. Each
replica included 100 simulations steps.
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Initial population

4.6 The initial population always clustered in the northwest where the largest fertile bay is located (Figure 4 (a)).
Historic accountsmention that this place sheltered NewWestminster, the first European nucleated settlement.
This area is also where the largest nucleated community is located today on the island (Figure 1). Agent cluster-
ingwas sensitive to and increasedwith the initial population. First settlers and settlers prone to gregariousness
were concentrated in themost suitable areas but then population growth resulted in a steady tendency toward
dispersion (Figures 6 (b) and 4 (b)). A�er the second half of the simulation steps, settler clustering in the simu-
lationwith the smallest initial population (n=50) showed considerable spread of its ANNR values. This suggests
that the number of possible spatial configurations of agents across the landscape increased. Simulations with
larger initial populations showed settler spatial patterns that could be better explained as stochastic processes.
Simulations with initial populations≥ 250 showed ANNR values around 1, without conspicuous dispersion. In
this scenario, neither increase nor decrease in settler clustering occurred but rather low predictability in settler
spatial patterns. Runaway spatial patterns did not di�er with changes in settler initial population. The ANNR
values for runaways were close to 1, indicating that their spatial configuration probably followed a stochastic
process (Figure 7 (b)). These patterns are consistent with those observed for reproduction rate, and are likely
caused in the samemanner by demographics.

Fear of settlers

4.7 As expected, settlers maintained similar spatial distributions regardless of how much runaways preferred to
avoid them (Figure 6 (c)). The ANNR values of settlers increased monotonously during the simulation. Once
more, this is explained by population growth enforcing colonization of new areas. Runaway clustering was
not sensitive to changes in their preference to avoid cells with settlers either (Figure 7 (c)). Simulation runs
with di�erent fear of settlers’ valuesmaintained a similar tendency and spread of runaway ANNR values, which
were more or less constant across the simulation. These values spread roughly between 0.6 and 1, suggesting
that runaways had a slight tendency to clustering. This was a consequence of settlers eliminating runaway
settlements in each of the new locations they settled, as explained before.

Escape rate

4.8 The increase of escape rate decreases variability in runaway clusteringwithout visible e�ects on settler cluster-
ing (Figure 6 (e)). For runaways, all escape rate values showed ANNR values below 1, which could be interpreted
as an indication of constant aggregation in space. The lowest positive value (5%) showed more spread of the
runaways’ ANNR values than other parameter values, at the beginning and at the end of the simulation. The
highest escape rates (≥ 40%) created an initial population e�ect on runaways that increased the randomness
in the spatial distribution of runaways during the first quarter of the simulation steps, a�er which the growing
settler population overtook runaways (Figure 7 (e)).

Occupation radius

4.9 Simulationswerevery sensitive tochanges in theoccupation radiusandahighvalue in thisparameter increased
settler clusteringmore thananyother parameter included in themodel. Lowvalues (between 1 and4) increased
the randomness in the spatial locations of settlers, while values≥ 5 augmented clustering (Figure 6 (e)). This
change in regimehighlights the increasing importance of gregarious life compared to terrain qualitywhenmore
opportunities for interaction are available. The spatial location of runaways rather showed a stochastic pattern
with increasing spread in ANNR valueswith respect to themean (Figure 7 (e)). As before, this is explained by low
runaway population due to extermination by settlers. In fact, atminimumoccupation radius, where settlers are
e�ectively blind to the presence of runaways, the runaways population grew and the ANNR curve displayed a
di�erent pattern, quite similar to the one observed for settlers.

Settler gregariousness

4.10 As with the previous simulations, a trend towards increasing randomness driven by population growth was
observedas timeprogressed. Non-gregariouspopulations (meangregariousness≤ 0) showedalmost the same
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mean ANNR values, falling within each other’s standard deviation intervals. On the other hand, increasingly
positive gregariousness values (≥ 0.2) visibly increased settler clustering, as expected. Each increment was
significant enough tomake themeanANNRvalues fall outside the standarddeviation interval of thenext greater
adjacent value. Nevertheless, thee�ectproducedby thepopulationgrowth through timecontinued todrive the
ANNRvalues closer toward randompatterns (Figure8 (a)). Runawayclusteringwasnot very sensitive to changes
in settler gregariousness. Runaway locations show similar spread inmean and standard deviation ANNR values
regardless of changes in settler gregariousness (Figure 8 (b)). Settler and runaway clustering was not sensitive
to changes in runaway gregariousness. For both class agents, each parameter showed very similar clustering
patterns without significant di�erences in the spread of values or the tendency of ANNR values through time
(Figures 6 (f), 7 (f)).

Figure 8: Mean and Standard Deviation of ANNR Values Grouped by Changes inMean Gregariouness for Settlers
(a) and Runaways (b) and Standard Deviation Gregariousness for Settlers (c) and Runaways (d). Lines represent
the mean and standard deviation of ANNR values calculated for each parameter value indicated in the legend
on the right of each subfigure. The parameter is indicated in the subtitle of each subfigure. The mean and
standard deviation of the ANNR values were calculated based on 10 replicas for each parameter value. Each
replica included 100 simulations steps.

Standard deviation gregariousness

4.11 Figures 8 (c) and 8 (d) show that this parameter did not a�ect agent clustering for either population.
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Discussion

5.1 The di�erent scenarios showed that initial settlers start in very suitable areas with a clustered pattern, and
new agents move to lower suitability areas o�en following a random or evenly-dispersed pattern. Figure 4 (a)
shows that during the initialization one major cluster of settlers emerged. Initial settlers found the best spot
and thrived there, showing gregarious behavior in resource-rich locations. Figure 4 (b) and Figure 8 (a) suggest
that initial gregarious behavior or a large proportion of the populationwith strong gregarious preferences does
not preclude the existence of dispersed agents. On the contrary, simulations showed that on average agents
have a tendency to disperse themselves, driven by population growth. Initial settling and environmental het-
erogeneity limit high suitability locationoptions for subsequent agents (settlers and runaways), increasing their
dispersal across the environment.

5.2 Clusters of settlers and runaways can be taken as a representation of local (nucleated) communities (Drennan
& Peterson 2006) and these are intensified by some changes in simulation parameters. Although they did not
necessarily located always close to each other, settlers and runaways showed orientation to in-group behavior,
which could be interpreted as a sign of collectivism. Initialization always produced one nucleated settlement
in the same place where initial settlers of Old Providence started. This place has the largest number of contigu-
ous, highly suitable cells, and for this reason, all simulations started always from a clustered pattern. However,
ANNRanalysis reveals that the size of this settlement decreases for 0 andnegative gregariousness, showing that
gregarious drive can play a role in the emergence of large nucleated communities (see Figure 8 (a)).

5.3 Settler clusteringwas reducedwith time inmost of the simulations, driven by the population growth of settlers
and the restrictions imposed by the initial population and environmental heterogeneity. Runaway clustering
showed values in the same intervals through time in all simulations, regardless of parameter changes. Con-
siderable variability in the distribution of runaway clustering, expressed bymeans of the standard deviation of
ANNR values, was observed. This variability could be associated with the dominated role of runaways in the
model. Runaways sustained a constant population but could not form permanent groups because they were
heavily dominated by settler activities. This suggests that populations structured by dominant roles hinder
possibilities of steady interaction between dominated agents.

5.4 Simulations showed that gregarious behavior increased clustering, but the likelihood of interaction between
agents showed stronger e�ects on agent locations. Settler clustering increased when: a) there was a strong
increment in occupation radius (Figure 6 (e) and (b) the initial settler population was very small (Figure 6 (b)).
These parameters aremodifiers of the number of possible interactions between agents. Large occupation radii
triggermore interactionsbecause settlers can intersectwitha largernumberofotheragentoccupation radii and
cover more settlers with their own occupation radius. A larger occupation radius also increases the number of
cells available for each settler which, other things being equal, reduces the disadvantages/benefits of increas-
ing distance between agents and the importance of environmental heterogeneity in ideal location calculations.
The combination of these factors averages on a negative or positive e�ect on the value of gregariousness. The
negative e�ect dominated for occupation radius <5, causing an increase in clustering. Then, at occupation ra-
dius >5, the potentiating e�ect on gregariousness starts to dominate, causing clustering to increase.

5.5 Runaway clustering, on the other hand, was most a�ected by: a) strong increments in occupation radius; and
b) high reproduction rate values (Figure 7 (a)). Occupation radius a�ected runaways in the same way as set-
tlers, but now another e�ect emerged from the survival pressure characteristic of this population: at very low
occupation radius settlers’ ability to detect runaways becomes hindered, which allows the population to thrive.
Similarly, reproduction rate increments increased runaway clustering because new runaways weremore likely
to emerge fromolder runaways, but specially because demographic explosion pushed them towards areas less
prone to be reached by settlers (See Figure 4). This allowed new runaways to cluster near other runaways with-
out being killed by settlers. At the same time, the population growth of settlers created by larger reproduction
rates increased settlementdispersal and reducedareas inwhich runaways could thrive,which in turndecreased
the average nearest neighbor distances between runaways that survived a�er each simulation step. A small ini-
tial populationallowed theoccupationof highly suitable areas in a slowandorderly process, delaying the emer-
gence of behaviors that locate settlers and runaways in less suitable areas. Simulations thus suggest that the
frequencyof agent interaction canbedrivenby the averagedegreeof gregariousness in a structuredpopulation
but the most conspicuous e�ects in clustering were produced by initial conditions and behavioral adaptations
that increased the capacity of agents to access more resources and the likelihood of more frequent interaction
with other agents.

5.6 The model also suggested that regardless of the agents’ preferences, most of the agent population aggregates
first within the cells with best suitability and then occupies other less suitable areas. Historic data about Old
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Providence Island indicate that the colonization process was similar to the pattern in Figure 4. Historic records
describe amixed settlement pattern configured by a small nucleated settlement, named NewWestminster (to-
day Old Town), located in the same area where the largest nucleated community occurred in the model. Dis-
persed farmsteads and settlements of escaped slaves emerged later on the island. New Westminster only had
30 houses, a church and the governorâĂŹs house (Newton 1914, pp. 53-152). Input data and simulation re-
sults suggest that archaeological contexts produced by initial colonial settlements could be located inside the
Bowden area. These observations are congruent with theoretical expectations of an Ideal Free Distribution
model (Winterhalder et al. 2010). Simulations also suggest that regardless of the way a human population is
structured within a heterogeneous environment, clustering and spatial location are governed by underlying
principles such as the likelihood of interaction and the maximization of individual gains, respectively.

Extensions

5.7 The model can be improved in several dimensions. The model assumed a static environment, whereas eco-
dynamics of humanpopulations and environments create density dependent e�ects that are usually expressed
in a decreasing relationship (Winterhalder et al. 2010). In other words, the density of the population can reduce
habitat suitability. Dynamic environments with feedback loops that simulate positive and negative e�ects of
population density is one way to improve the model. Further extensions should explore the e�ects of travel
costs bymeans of including variation in the terrain topology. Othermodel extensions should include stochastic
environmental hazards. For example, on Old Providence Island storms and hurricanes occur at irregular inter-
vals and their ecological consequences on settlement nucleationdynamics couldbe substantial (e.g floods, lost
crops). In order to improve the model, extensions can also evaluate the e�ects of environmental homogeneity
on agent’s behavior. The model should be run in environments with less environmental heterogeneity to test
its e�ects on agent clustering. Themodeled scenarioswere similar in demographic terms. The e�ects of slavery
in themodel can be expanded by including slave labor and di�erent slave trade scenarios as part of themodel.
The population growth of settlers was constant and this agent class did not die in the model. The model also
lacks variables to measure fitness. Agent reproduction can be improved by including death events for settlers
and agent fitness measures. The occupation radius is an important parameter in themodel and it can bemod-
eled with more variability for each agent class. Di�erent occupation radii between or within the same or more
agent classes could help to explore complexity behind several levels of hierarchical formations.

Concluding remarks

5.8 Thispaperdescribesanexploratoryexercise inarchaeological agent-basedmodeling. A simple socio-ecological
model yielded results that can be meaningfully compared with historic records and theoretical expectations.
This is an encouraging finding. It might be interesting to explore what kind of agent behavior and emergent
phenomena occur in larger areas with less environmental heterogeneity, and larger populations with less com-
plete knowledge about their environment merits. Human colonization events limited by technologies of com-
munication and transportation occurred very o�en in the past. The archaeological context derived from these
processes hold data that could be used to analyze, validate, and plan future long-term human colonization
endeavours. One possible future application of this type of model can be found in considering long-term so-
cial variables of small hierarchical formations in the future human colonization processes into heterogeneous
environments outside planet Earth. Themodel also shows that evenwith highly simplistic assumptions, agent-
based modeling can be used to assess the e�ects of di�erent factors in spatial patterns of a colonization pro-
cess. Di�erences in the frequency of face-to-face interaction, central to the modeling process, can resemble
cross-cultural variability of individualism versus collectivism found in innumerable studies (Minkov 2013). The
spatial patterns found across space and time in a human community are a proxy for di�erent the degrees of
gregariousness that a community may show. They capture the spatial aspect of collectivism. Improving the fit
of such agent-basedmodels to analyse high level concepts such as gregariousness is still a challenge, but such
a broad-brush approach as this one could be a good starting point.

Model Documentation

6.1 The model was developed in Netlogo (v. 6.1.1) (https://ccl.northwestern.edu/netlogo/6.1.1/) using
KIDS guidelines (Edmonds&Moss 2005). Files for further use or replication, and the code canbe foundonline in
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CoMSESathttps://www.comses.net/codebases/d5cfd5b6-6cfe-4dbc-ab9c-6fadb3ed688a/releases/
1.0.0/.

Appendix A: Simulation high reproduction rate (3.6 %) and other param-
eters on default values (mp4 file)

Figure 9: Simulation high reproduction rate (3.6 %) and other parameters on default values. Click here to see
the animated version.
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