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Summary

Emotion Recognition is one of the vastly studied areas of affective computing. Attempts have
been made to design emotion recognition systems for everyday settings. The ubiquitous na-
ture of Intelligent voice assistants (IVAs) in households, make them a great anchor for the
introduction of emotion recognition technology to consumers. The existing systems lack such
pipelines and rely on dictionary-based architectures in their design. Further, these systems
lack conversational properties and are merely an extension of information retrieval engines.

In this setting, we propose to introduce and develop emotion recognition pipelines that
are suited to the interactions, common with these IVAs. To augment the existing emotion
recognition pipelines which rely on audio information, we look at physiological information
derived from wearables. The design motivations for this combination of data streams stem
from the existing examples of such combination of devices such as the Apple Air watch, which
combines the capabilities of a wearable sensor with an embedded IVA - Siri.

In this thesis, we try to develop a few shot emotion recognition systems to meet the chal-
lenges posed by the devices and user behaviours. Unobtrusive and ubiquitous sensing is
utilized to augment the scarcity of samples owing to the short and limited user interaction com-
mon with IVAs. This motivates the design choice of few-shot learning algorithms, which rely
on a fractional amount of data as compared to common machine learning and deep learn-
ing algorithms. Our proposed model uses multimodal embeddings with a Siamese Network to
achieve the task of emotion recognition from a few samples. Physiological signals of blood vol-
ume pulse (BVP) and electrodermal activity (EDA) are used as additional input embeddings to
two audio embeddings arising from the speech samples. We employ the state-of-the-art train-
ing schedules for Siamese Networks, which use a very limited amount of training on support
datasets via sample pair comparisons.

The proposed model is applied on two datasets that denote two unique experimental set-
tings - the K-EmoCon dataset and RECOLA dataset. We demonstrate an improvement in the
state-of-the-art accuracy with the K-EmoCon dataset with accuracies of 63.97% and 66.91%
on arousal and valence dimensions respectively. Further, on the RECOLA dataset, the model
performs moderately well with 53.81% and 53.87% respectively for arousal and valence di-
mensions. In addition to this, we present a study of the effects of variation of available support
set for training from the dataset. We make some salient observations for these experiments
across individual participants and also identify how the label distributions affect the perfor-
mance of the model. Further, we investigate the impact of real-world noise samples from the
DEMAND dataset on the two datasets. We observe that the proposed model is robust and
performs sustainingly well even in the presence of imputed noise.

The performance of the proposed model presents new opportunities in the domain of emo-
tion recognition with few-shot learning techniques. This work demonstrates the ability of the
Multimodal Siamese Network to predict emotion dimensions even with a limited amount of
data. Although satisfactory, the performance does not sustain across the two data sets. We
discuss the issues of the proposed model and the potential sources of its moderate perfor-
mances and motivate the future work for opportunities for improvement. This work contributes
to the inquiry of few-shot emotion recognition in everyday household scenarios.
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1
Introduction

Affective computing aims at the development of systems and devices that can recognize, in-
terpret, and simulate human emotions. Rosalind Picard [71] states the ability to simulate and
adapt emotional intelligence in machines, as the motivations of affective computing. One of
the many ways of understanding human emotions is by capturing expressions through facial
expressions and voice. Besides such direct emotional attributes, indirect attributes of emotion
include body gestures and physiology [89] [109] [86]. Over the last decade, affective comput-
ing has found applications in many areas from education, healthcare, virtual and social experi-
ences amongst many. Based on applications, there could be different kinds of agents possible,
for example, a virtual chatbot application, speech-based interactive voice assistants, conver-
sational and expressive autonomous robots, to even virtual avatars in a video game. These
applications need different abilities expression and perception of human emotions. Their com-
plexity depends on the degree to which they perceive or express or perform both actions. One
such application is intelligent voice assistant systems (IVAs).

Intelligent Voice Assistants (IVA) are software-based interaction agents operating through
voice commands. These are available on variety of devices from application-specific devices
to desktops to home assistants to smartphones. Apple’s Siri, Amazon’s Alexa, Google’s As-
sistant, Microsoft’s Cortana are some of the popular commercial voice assistants currently
available [40]. Thus, voice interfaces have become ubiquitous in households and present
a great opportunity in understanding the everyday interactions of users. Research on voice
interfaces describes the complex relationships between the user(s) and the voice assistant
systems [56].This is attributed to the multiple-user interactions, simultaneous commands, use
of conversational language [10] [73]. These interactions are short utterances and consist of
directed questions. Household applications of IVAs also pose a challenge of combating back-
ground noise from the environment to clearly identify the command and decode it.

This dynamic environment of household provides the setup for the problem of emotion
recognition in everyday contexts. Here, speech is the primary source of information for in-
ference of emotions from the user. Since IVAs are considerably available across devices,
we pose a problem of the integration of physiological information from wearable devices with
speech captured by IVAs. Some wearable smartwatches from Apple, Samsung and Fitbit to
name a few, already capture physiological information from the user such as heart rate, electro-
dermal activity and blood volume pulse as a part of the health and fitness applications[84][15].
This persistent availability of physiological information helps in forming multimodal emotion

2



1.1. Intelligent Voice Interfaces 3

Figure 1.1: Commercial Intelligent Voice Assistants [24]

recognition systems [109]. The fusion of speech and physiology for emotion recognition has
not been examined in conversational contexts [108] in literature.

In this thesis, we propose the use of multimodal information to help augment the traditional
speech emotion recognition methods. When designing multimodal emotion recognition sys-
tems with IVAs, we aim our focus on two sets of devices – household voice assistant systems
(for example Amazon’s Alexa) and a smartwatch (for example Apple’s Series 7 Smartwatch).
Speech and physiological signals are collected from these devices and integrated at a central
server (on the smartphone) for emotion recognition. This collective information would thus
allow multimodal emotion recognition of the user’s interactions in that environment.

In the remaining of the chapter, a brief overview of the workings of an IVA is presented,
followed by the current commercial use-cases. Following, a short literature study on the user’s
interactions with IVAs forms the basis of the motivations of the research. Finally, the research
questions and contributions are proposed which address some of the challenges in the current
methods used for emotion recognition.

1.1. Intelligent Voice Interfaces
Voice Assistants operate by responding to a specific keyword as a trigger for interaction. Upon
receiving the keyword, the IVA sends the voice command of the user to a central server for
interpretation [40]. The speech recognition engine sends back the appropriate information to
the specific device to perform the task. Many such IVAs are designed to have social interac-
tions with their users including telling jokes or stories. In user research, there are examples of
several task-specific IVAs designed for domains like automotive assistance, intelligent tutoring
and health monitoring and assistance. These devices have a limited ability of perception as
opposed to their commercial counterparts.

The need for an emotionally aware and cognitive voice assistant can be attributed to sev-
eral applications found in the literature. Healthcare is one area, where conversational agents
have been effective in personal assistance for several activities – from self-management such
as harmonization of food, exercise and medication to assisting elderly with technology use
[76]. Several characteristics requirements of such agents are – natural interaction, personal
and situational context, empathy, emotion, multimodal interaction and adaptive responses [54]
[47] [96]. These have been shown to affect the level of trust and frequency of interaction of the
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device [18]. Literature on affect-sensitive educational technologies has moved from traditional
passive computer-based training to more intelligent systems which can capture the cognitive
states of students while learning [26]. Improvements that have helped students’ learning have
been attributed to focusing on a natural language dialogue and discourse processing. These
systems focus on the detection of basic affect descriptors such as boredom, confusion, frus-
tration, and anxiety as opposed to comprehensive 2-dimensional affect detection [5].

In the seminal paper [22], the authors described possible future use-cases and design con-
siderations of IVAs from the perspective of household use. Here the authors categorize IVAs
by their degree of assistance and agency. The state-of-the-art IVAs have achieved a certain
degree of ‘assistance’ in that, they can perform directive tasks. Yet, they lack ‘agency’ - they
cannot yet act on behalf of users or function outside the scope of a command [108]. Although
intelligent and adaptable, they are poor in their usability for complex tasks and general infer-
ences [11] [56]. This is because IVAs are incapable of inferring context and user intentions
and emotions. Further, current IVAs are far from personalization for a specific user. Person-
alization can aid in understanding user contexts and emotions from the user’s voice and build
a cognitive model of the user. Emotion intelligence in IVAs can bridge this gap of ‘agency’ in
IVAs, together with bringing personalization to the inferences of the user.

Before proposing the solution for emotional intelligence in IVA, we examine the nature of
the use of IVA and smartwatches. Various factors such as duration of use, interaction settings
and environment act as the primary source of constraints for the proposed system. Litera-
ture on the everyday use of IVAs shows nuances of interactions of the users with IVAs. A
conversationalist approach to IVA design has increased its usability and user experience in
commercial devices [110]. They can hold dialogue-like interactions and attempt to provide a
sense of companionship. User research of voice interfaces describes the complex relation-
ships between the user(s) and the voice assistant systems. In F. Bentley et al.[11], a study on
the use of Google Home is presented by studying the logs of the interactions from 88 house-
holds. The use of the IVA is restricted to a few basic domains – namely ‘music’, ‘information
seeking’, ‘automation’ and ‘small talk’. Most sessions of interaction have a small number of
commands, with very few words per command (4.1 on average). Only 10% of the sessions
involved more than 10 words per command. This resounds the need of systems which work
with very little amount of data. The authors in [73] study IVA interactions at home using Ama-
zon Echo, in several households. Principal observations show the seamless embedding of
the IVA within activities as a resource of action. The commands and interactions with Echo
are also highly colloquial. This provides the need to test proposed systems on speech sam-
ples which exhibit spontaneous interactions between individuals, rather than acted speech.
A recurring theme in most of the brown-field user studies is the prevalence of background
chatter and noise, particularly in a household setting. While analyzing speech, the IVAs need
inherent noise removal algorithms before processing the commands for execution. Therefore,
proposed systems must account for robustness against characteristic noises in the speech
signal.

Smartwatches distinctively differ from IVAs in the sense that they encounter application
micro usage. Visuri et al.[101] summarize their user studies with the following observations.
Approximately 64.87% interactions last for less than or equal to 5 seconds, referring to ‘peek’
sessions, while 35.13% of interactions are longer than 5 seconds referring to ‘interaction’ ses-
sions; in addition, approximately 82.31% interactions are user-initiated. Further, the mean
length of interaction duration is 7.94 seconds for user-initiated sessions. The main interaction
categories involve productivity and communication tasks. In McMillan et al.[59], the authors
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present a similar study on patterns of smartwatch use with a focus on social context, current
activity and location. Firstly, when comparing social contexts, domestic use and socializing
account for 6% and 15% of the usage. Secondly, comparing the location of use, home use
dominates with 44% interactions of use. With a mean usage for the interaction of 6.9 sec-
onds, duration is found like the previous works. The interaction duration derived in the studies
motivate the need for analyzing suitable sample segment lengths when designing emotion
recognition system.

The results obtained form the user research of IVAs and smartwatches provides directions
for implementation of emotion recognition systems using these devices. These factors also
contribute to the constraints of the proposed system. In the next section, we present the
motivations for the research direction derived from the settings discussed so far.

1.2. Motivation
The usage scenarios described in the previous section act as motivations for the proposed
system. Several factors are accounted for. Firstly, we restrict the problem to the application
of IVAs in a multimodal fashion in a household setting. This means a smartwatch and an IVA
device (smartphone or a commercial device such as Amazon’s Alexa) act as input sources
for physiological and speech signals, respectively. Secondly, the interactions assessed in the
problem are natural conversations between the IVA and the user or between multiple users
of IVAs. The nature of interactions is restricted to a specified length of 5 seconds or lesser.
This is derived from the results of user studies of interaction and command lengths for IVAs
and smartwatches discussed previously. The proposed system must operate on very few
samples of data with each sample being of this length. Thirdly, the household environment
is characterized by noises from the surroundings, which must be corrected by the proposed
system.

Having provided an overview of the problem, we aim to solve this using an emotion recogni-
tion system that is suitable subject to the factors described above. One of the immediate ways
of introducing emotional intelligence is through speech emotion recognition. Additional user
information may be derived from physiology captured by wearable devices such as a smart-
watch. Evidence shows multimodal emotion recognition systems outperform their unimodal
counterparts [25] [69] [74]. In this context, a combination of speech and physiological signals
can improve emotion recognition over their unimodal models. Thus, developed multimodal
emotion recognition system can aid in deducing user emotions and providing personalization
for the user.

For the task of speech emotion recognition, literature provides exhaustive list of methods.
Recent developments in large-scale deep neural networks have led to the development of sev-
eral deep learning techniques which explore specific attributes of speech [75] [57] [79]. On
the other hand, emotion recognition from physiological signals is motivated by literature from
physiology. Physiological signals such as electrocardiography (ECG), electroencephalogra-
phy (EEG), electrodermal activity (EDA), among others have been identified as biomarkers
for emotional responses [53]. In the current work, we focus on physiological signals readily
available with commercial smartwatches. Therefore, we select PPG and EDA signals, which
are the most common set of physiological signals found in smartwatches.

The keymotivation of the proposedwork is that of inference of emotions from a few samples
of data. Literature on Multimodal emotion recognition focuses on audio-visual and textual
mediums [88] . The focus of such studies has been on emotion classification from the audio-
visual medium. Many studies focus on integrating data from video and audio modalities with
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(a) Samsung Smartwatch with BVP tracking [30] (b) Apple Watch with BPM Measurement [4]

Figure 1.2: Commercial Smartwatch with physiological measurement

physiological data collected with medical-grade equipment [89]. These methods need a large
volume of data to perform emotion classification. However, very few methods explore to learn
from a few samples of multimodal data. In contrast recent developments in deep learning
have proposed multiple solutions to this problem. One such paradigm is that of Few-shot
learning (FSL). Few-shot learning refers to algorithms which aim at learning from a small set
of supervised data samples. Here, the unknown set of samples is considerably larger as
compared to the known set of samples.

While few shot learning is widely explored in literature for numerous problems, very little
exploration has been done with these methods for emotion recognition problem [105] [19].
Particularly, the wide benefits of FSL problem in multimodal settings have not been explored
sufficiently. Literature of multimodal emotion recognition from a few samples is scarce and
focuses on facial emotion recognition [21] [46] [52] [50]. Existing work also lacks exploration
of noisy speech when dealing with a few samples of data [12]. In addition, the existing body of
work lacks studies on the effect of segment length on the performance of a few shot emotion
recognition system. These research gaps are explored in our work.

The following summarizes the problem constraints for the proposed work –

• short spontaneous and infrequent utterances of speech
• sample duration of less than or equal to 5 seconds
• very small amount of data used for learning
• use of wearable sensors to facilitate in-the-wild data capture
• noisy speech samples

Summarizing the details of the system requirements, we propose a few-shot multimodal
emotion recognition system. We use Siamese Networks [45] as the backbone for the mul-
timodal emotion recognition pipeline. Siamese Networks are powerful metric learning algo-
rithms which require few samples of data to obtain a satisfactory generalization on classifi-
cation tasks. Multimodality is introduced in the backbone using an independent embedding
structure per modality. Embeddings are optimized for themodality they are created for, thereby
preserving the characteristics within the modality, while also providing classification. We use
mel-frequency spectrograms as one of the embedding inputs owing to their powerful discrim-
inating mapping and robustness against noise. Further, we propose to use eGeMAPS [33]
feature set to complement the frequency domain features of mel-frequency spectrograms with
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time-domain features. Finally, we propose use of deep Gated Recurrent Unit (GRU) embed-
ding for physiological signals to embed time-recurring EDA and PPG signals. Siamese Net-
works work on the basis of discrimination between similar and dissimilar pairs and hence, the
loss function for this architecture is different. Here, contrastive loss is used as a cost function
for optimization. The performance of the proposed system is therefore quantified mainly by
loss rather than accuracy or squared error metrics. This is because the loss gives a direct
measure of the performance of the system.

The effectiveness of the proposed system is tested on real-world dyadic interactions. This
is achieved by testing on numerous participants from two multimodal emotion recognition
datasets which posit two settings described in the previous section. We use K-EmoCon [70],
a dataset with dyadic debate setting; and RECOLA [81], another dataset with spontaneous
conversation setting. To simulate the real-world setting, speech signals from these datasets
are overlaid with four classes of real world noise samples namely - living, kitchen, office and
hallway ( names corresponding to the setting in which they are captured) from from the DE-
MAND dataset [97], to simulate the natural household setting. This thesis provides empirical
findings of the proposed architecture for different segment lengths as well as different amounts
of samples used in training the model. This study contributes to identifying the effect of length
of input sample, number of samples and background noise on performance of the system.
In the next section, we present the research questions for this thesis, followed by research
contributions.

1.3. Research Questions
We present a problem of few-shot multimodal emotion recognition. In the proposed setting
speech and physiological signals are obtained from commercial microphones and Empatica
E4, respectively. These signals are fed to the multimodal emotion recognition set-up to learn
from a few samples of data. To simulate this setup, we use signals from 2 datasets and perform
an Oracle-based learning approach. Emotion prediction by a few-shot learning pipeline is
trained and validated per participant on 2 datasets proposed in the previous section. Our goal
is to generalize emotion recognition using a few-shot learning models. With the motivation
presented in the previous section, the thesis intends to answer the following research question
:

How can we use few samples of EDA, PPG and speech signals derived from interac-
tions with an IVA, to perform emotion classification ?

This question is investigated using the following sub-questions :

1. How to integrate information from speech and physiological signals - PPG and EDA, to
perform emotion recognition from a few samples of data?

2. How many data samples are needed to achieve the state of the art results using the
integrated speech and physiological signals?

3. What is the effect of segment length of samples on the performance of the multimodal
emotion recognition algorithm?

4. How does noise from real-world settings affect the performance of the multimodal emo-
tion recognition algorithm?
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1.4. Research Contributions
The following are the expected contributions of the thesis work:

1. Build a multimodal few-shot learning model for emotion recognition with speech, PPG
and EDA signals.

2. Provide empirical findings of performance of the system against 6 different sizes of train-
ing set.

3. Provide empirical findings of performance of the system against 2 different audio lengths
based on the annotation lengths of the two datasets (1s and 400ms).

4. Provide empirical findings of performance of the system against 4 different background
noises.

5. Compare the performance of the proposed system with state-of-the-art results.

1.5. Outline
In this chapter we introduced the problem of few shot emotion recognition for the application of
IVAs. The specificity of usage of IVAs and smartwatches provide the basis for the motivations
of the research described in 1.1. Thereafter, motivations for the proposed work is presented
in 1.2 leading to the research questions presented in section 1.3. Finally, the research contri-
butions are presented in 1.4.

The remaining of this thesis is organized as follows. In Part II, an in-depth literature re-
view of theories of emotion, and provide state of the art methods for emotion recognition and
deep learning techniques are popular. In Chapter 2 a background on the problem of emotion
recognition is established, detailing the theories of emotion and verbal as well as non-verbal
emotion expressions. In Chapter 3, emotion recognition methods are presented with a focus
on speech, physiological signals and combined modalities. This includes the state-of-the-art
methods available currently. In Chapter 4, we describe some powerful few-shot learning tech-
niques, which have found recent use in data-starving deep learning problems. This concludes
the literature review.

In Part III, the proposed methodologies and setups are discussed. In chapter 5, the selec-
tion of datasets is presented together with pre-processing requirements. A detailed account of
the proposed architecture is provided in chapter 6. Here, the model together with suggested
embedding from the different modalities is discussed. Finally, the description of fusion and
loss criteria for the deep-learning model developed so far is provided.

Part IV discusses the experimental setup and results of the proposed methodology. This
is divided into two tasks according to the two datasets on which the tasks are performed.

Finally in Part V, a conclusion with some discussion points is provided.
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2
Background

This chapter provides the required background for establishing the emotion recognition prob-
lem and provides the preliminary definitions for the deep learning concepts introduced in the
later chapters. Firstly, section 2.1 gives a short literature review on theories of emotions. Two
sets of theories are discussed and motivation for the selection of the desirable theory is pre-
sented. Next, in section 2.2 common topics from deep learning are introduced. Starting with
the perceptron in sub-section 2.1, a basic deep learning network is explained. Thereafter, var-
ious useful activation layers are discussed in sub-section 2.2.2. Next in sub-section 2.2.3, the
concept of convolutional neural networks is introduced with its component layers. Finally in
sub-section 2.2.4, the concept of recurrent neural networks is presented. Overall, the section
explains the basic building blocks useful for the architectures discussed in the thesis.

In the next section 2.3, the concept of few-shot learning is introduced and explained to-
gether with its mathematical formulation in sub-section 2.3.1. The concept of distance learning
methods that form the basis of the proposed architecture is presented in sub-section 2.3.3.

2.1. Theories on Emotions
Emotions are a result of internal and external psychological reactions to events. For automated
emotion classification, the definition of emotion can be narrowed down to the following – “a
response of the organism to a particular stimulus (person, situation or event). Usually it is an
intense, short-duration experience and the person is typically well aware of it”. The description
of emotions requires some kind of a model to measure. Literature from psychology broadly
categorizes the available emotionmodels into two categories [69] [1] – Discrete emotion theory
and Dimensional emotion theory. These are presented briefly in the next section.

Discrete Emotion Theory
Discrete Emotion theory [23] puts emotions in discrete categorizations. It asserts the universal
and biological invariance of emotions in all humans. Several models fall within this theory. One
of the most popular models is Plutchik’s wheel of emotions. Plutchik’s Wheel Model [72] maps
a set of basic emotions on a wheel and provides an added dimension of intensity. The basic
emotions of this model are – joy, trust, fear, surprise, sadness, anger, disgust and anticipation.

Dimensional Emotion Theory
Dimensional Emotion Theory [35]formulates emotions on one or more dimensions in space.
This is usually a smaller number of latent dimensions in a continuous space. This provision

10
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allows for similar emotions to exist in space nearby, while also providing a measure for differ-
entiation and intensity. One of the most common dimensional models is Russel’s Circumplex
model. Russel’s Circumplex Model [82] uses 2 dimensions to describe an emotion – arousal
and valence. Valence refers to the nature of the emotion – either positive or negative, and
arousal refers to the intensity of the said emotion – either calm or excited.

(a) Plutchik’s Wheel of Emotions [72] (b) Mehrabian’s PAD Model [60]

Figure 2.1: Russel’s Circumplex model of emotions [82]

Choice of Emotion Models
To select an emotion model, we compare the two theories discussed. Discrete emotion theory
has several shortcomings. Firstly, it uses words as descriptions of emotional experiences.
This may result in vague translations in case of complex emotions or with different languages
and cultures. Secondly, there is a possibility of overlapping emotion categories captured with
the facial expressions, speech and physiology of individuals. Finally, categorical labels to
emotions can be very idiosyncratic. On the other hand, the dimensional emotion theory has
several issues too. For instance, it is not intuitive. In some cases, there is also the ambiguity of
axes. However, continuous emotion spaces restrict the task of automated emotion recognition
within a defined search space and make the problem tractable. We, therefore, select Russel’s
Circumplex Model of emotions for our experiments and analysis.

2.2. Deep Neural Networks
2.2.1. The Perceptron
A perceptron is a basic unit of neural networks. A basic perceptron is shown in Fig. 2.2. Here xi
represents the inputs, wi,j represents the weights for the corresponding inputs i. The weighted
inputs are added together to get a network input shown as netj . This is transformed through a
nonlinear activation function with a threshold θj . The result is the output oj of the perceptron.
Mathematically, the above can be described by the following equation 2.1 :

netj =
n∑

i=0

xiwi

oj = ϕ(netj) = { 0 if netj ≤ θj
1 if netj ≥ θj

(2.1)
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Figure 2.2: Perceptron

Deep Neural Networks (DNNs) (also known as feedforward neural networks) are multilayer
perceptrons with a large number of hidden layer units. Multilayer Perceptrons (MLP) are net-
works consisting of an input layer, a hidden layer and an output layer. These can be thought of
as composed of multiple perceptrons (or neurons) cascaded end to end. A schematic diagram
of a multilayer perceptron is shown in Fig. 2.3. Theoretically, this structure can represent any
nonlinear function with appropriate architecture and weights. Training a multilayer perceptron
refers to finding appropriate weight values for various connections between the layers.

Figure 2.3: Deep Neural Network (Multilayer Perceptron)

2.2.2. Activation Layers
Activation Layers are non-linear functions that map the sum of the weighted inputs to produce
the required output. Sigmoid, ReLU, tanh are commonly used activation functions used in
neural network architectures which are shown in Fig. 2.4.

ReLU
ReLU stands for Rectified Linear Unit. ReLU functions are easily optimizable, and have prop-
erties of linear activation, keeping gradients large when the inputs are positive. For any input
x < 0, the activation is 0 otherwise the output is x. It is commonly used across most neural
network architectures owing to its properties and less susceptibility to vanishing gradients.

Sigmoid
Sigmoid activation transforms any real-valued input to a [0, 1]. This activation is useful in gen-
erating probability distributions in network outputs. For a single neuron, a sigmoid activation
is a transformation of the weighted linear combination of inputs of the neuron to a probability
between [0, 1].
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Tanh
The tanh activation function is the hyperbolic tangent. It is similar to the sigmoid activation
layer with the difference in output mapping to [−1, 1]. Tanh activation is useful when designing
recurrent neural networks.

Figure 2.4: Activation Layers

2.2.3. Convolutional Neural Networks
Convolutional Neural Networks (CNNs) are a class of DNNs that operate on images as inputs.
These can operate with 2-dimensional inputs (typically images). CNNs are characterized by
specific architectural layers. These include the convolutional layer which generates the con-
volved feature maps; the pooling layer which generates averaged outputs from the generated
feature maps and the fully connected layer, which acts as the learning layer for the pooled
feature maps. These are discussed in the following sections.

Convolutional Layer
The convolutional layer maps the input layer through convolution across its dimensions to
extract local features. The convolution operation involves a kernel (also known as a filter) of a
defined dimension). The kernels act as learnable units with a typically small width and height.
The kernel acts as a medium to learn the spatial position of features in a 2-dimensional grid (or
image). The kernel parses through the image at each point generating a sparse convolution
map. A sample operation is shown in Fig. 2.5. The desirable shift is provided through the
stride parameter which measures the number of units shifted per convolution operation. To
prevent loss of information due to convolution at edges, padding of values is applied. The
density of features to be learned may be specified through the number of kernels since the
maps thus, generated will be stacked depth-wise. The activation layer follows the convolution
layer to generate feature maps. Therefore, a convolutional layer can be characterized by :

• kernel size : the size of feature maps to be generated
• number of kernels : depth of feature maps
• stride : shift per convolution operation in a specific direction
• padding : addition of values around input edges to maintain the size of output after
convolution.
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Figure 2.5: Convolutional Layer

Pooling Layer
The pooling layer generates down-sampled feature representation through the reduction of
spatial dimensions of the forthcoming layers. As described in Fig. 2.6 this is done either by
retaining maximum-value (in case of max-pooling) or averaging (in case of average pooling)
of input kernel values. It is characterized by :

• stride: similar to convolution operation, it decides the shift per pooling operation.
• kernel size: the desirable size of the succeeding layer

(a) Average Pooling (b) Max Pooling

Figure 2.6: Types of Pooling

Fully connected Layer
A fully connected layer is a composite multilayer perceptron with all connections between the
neurons activated. Generally, this layer is preceded by a flattening layer (as in Fig. 2.5), which
converts the down-sampled 2-dimensional feature maps generated by the max pool layer to
a single long vector. This vector can then be used for the activation of class probabilities to
predict the output.

Figure 2.7: Fully Connected Layer
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2.2.4. Recurrent Neural Networks
Recurrent Neural Networks (RNNs) are a class of neural networks which are used in process-
ing of sequential data. These are characterized by their ability to allow previous outputs to be
utilized inputs in successive time stamps. For each time stamp t, the activation a<t> and the
output y<t> are expressed as :

Figure 2.8: Recurrent Neural Network

a<t> = g1(Waaa
<t> +Waxx

<t> + ba)

y<t> = g2(Wyaa
<t> + by)

(2.2)

WhereWaa,Waa,Waa,Waa, ba, by are coefficients that are shared temporally and g1, g2 are
activation functions. A schematic of a typical RNN unit is shown in Fig. 2.8. RNNs have the
advantage of processing time series inputs of any length while accounting for historical infor-
mation. Generally, RNNs are created using a gating structure that represents the operations
shown in the equation 2.3, where W,U, b are coefficients specific to the gate and σ is the
sigmoid operation. These include update, relevance, forget and output gates.

Γ = σ(Wx<t> + Ua<t−1> + b) (2.3)

GRU
Gated Recurrent Units (GRUs) are specialized RNN units that do not contain the forget and
output gates. This simplifies their structure and computation time, as there are lesser number
of weights to be propagated per optimization operation.

LSTM
Long Short-Term Memory units (LSTMs) are RNNs that have all the gates of the traditional
RNN unit. They are the more generalized version of GRUs.

(a) GRU unit (b) LSTM Unit

Figure 2.9: RNN Types
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2.3. Few Shot Learning
Few Shot Learning (FSL) is a class of techniques involving learning from a limited amount of
samples of supervised data. In addition to limitations of supervised data, it is also useful in
cases where there is a lack of annotated data due to extensive costs of annotation; or scarcity
of data from rare classes. Few shot learning reduces the burden of data annotation and makes
learning inexpensive. It also provides a robust framework to deal with rare classes. These
benefits make Few Shot Learning a powerful technique in many applications today. In this
thesis, the data constraints require learning emotions from very few samples. Hence, FSL is
useful in designing the framework.

2.3.1. Mathematical Formulation
Consider a classification task T for which we have a data set D = {Ds, Dq}, spanning in a
hypothesis space H with a training set Ds = {(xsupport, ysupport)}Ii=1 where I is small, and a
testing set Dq = {xquery}. Let (x, y) denote an input-output pair from the dataset D and If ĥ
represents the optimal hypothesis from x to y. A Few Shot Learning problem is an optimization
problem of finding an approximate function h∗ ∈ H of the optimal hypothesis ĥ spanning the
dataset D. This is achieved by parameterizing the hypothesis as h(·; θ) where θ denotes all
the parameters used by h. An optimization space schematic for the above described few shot
learning problem is shown in Fig. 2.10. The optimization cost of FSL problem is measured by
a loss function ℓ(ŷ, y) defined over the prediction ŷ = h(x; θ) and the observed output y. The
performance metric of the task T is denoted by P through the extracted knowledge E. Here,
the FSL optimization algorithm is encapsulated by the knowledge E, which contains a small
number of supervised information samples of T .

Figure 2.10: Illustration of the Few Shot Learning Problem (adapted from [105])
In literature, FSL problems are defined with two parameters. These are the number of

classes N and the number of samples per class available for training K. We formally define
a N -way-K-shot learning problem as one in which Ds contains I = K ×N examples from N
classes each withK examples. A few shot classification problem learns classifiers given only a
few labelled samples of each class, and a few shot regression problem estimates regression
function from data, given only a few input-output examples pairs from that function. If the
number of samples in the training scheme with E is only one, then the problem becomes a
one-shot learning problem. Alternatively, if there are no supervised training pairs in E, the
problem is termed a zero-shot learning (ZSL) problem. With zero-shot learning problems,
additional information about tasks is needed from auxiliary channels. In this thesis, we strictly
consider the size of the training space E to be greater than zero.
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2.3.2. Methods
Literature on few-shot learning has varied taxonomy for different approaches of few-shot learn-
ing. While there are no formal definitions to classify a method as a few shot learning model,
several reviews try to address this. In Wei-Yu Chen et al.[19], the authors classify existing
methods into four categories - initialization based, metric learning based, hallucination based
and domain adaption based methods. In Y. Wang et al.[105], the authors take a fundamental
approach to differentiate methods by the aspect of problem augmented – Data, Model and
Algorithm. Yet another categorization is presented in [41]. Without referring explicitly to any
specific classification, we can summarize literature into four groups given in Fig. 2.11. In this
thesis, the goal is to obtain a novel emotion classifier using speech and physiology.

Figure 2.11: Snapshot of Few Shot Learning Methods (adapted from [19, 105, 41])

Of the several class of few shot learning techniques shown in Fig. 2.11, we refrain from
using techniques which use data augmentation techniques in order to increase data samples.
This is because low sampling rates of the physiological signals from the wearables result in
disproportionate effects of augmentation techniques. In addition, the specificity of application
requires realistic elicited speech corpus with a specific context. This narrows the datasets
available for analysis. Due to limited corpus’ which fulfil the criteria, transfer learning architec-
tures are not suitable. Therefore, we constrain the survey (and use) on the methods where
the learning is achieved through the comparison of data samples. Such methods are called
Distance Metric Learning methods. Additionally, the focus of comparison is the task of binary
arousal and valence discrimination. In the next section, a short introduction of popular Metric
Learning methods is provided.

2.3.3. Distance Metric Learning Methods
DistanceMetric learning methods refer to the class of algorithms which use an abstract embed-
ding space as a region of measuring distances between samples. Here, instead of prediction
of labels, the goal of the algorithm becomes that of prediction of this distance. Various encod-
ing schemesmay be used to achieve a coherent embedding space. Optimization improves the
ability of embeddings to provide sufficient distance between different classes. Considering the
earlier defined task setting, we search for embeddings for each sample xsupport ∈ X ⊆ Rd onto
a lower-dimensional zi ∈ Z ⊆ Rm, such that similar samples are in proximity while dissimilar
samples are far apart. A simple overview of the method is shown in Fig. 2.12. Mathematically,
the distance metric learning problem can be composed of the following [105] :

1. an function f for test sample xquery ∈ Dq to Z,
2. an function g for training sample xsupport ∈ Ds to Z,
3. a similarity function s(·, ·)whichmeasures the similarity between f(xquery) and g(xsupport)

in Z.
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Figure 2.12: Schematic of Distance Metric Learning Methods

The choice of mapping function is varied and motivated by the task in question. A few pow-
erful distance metrics for comparison, have been identified – ℓ1 distance (Manhattan Distance),
ℓ2 distance (Euclidean Distance), cosine similarity shown in Fig. 2.13. These are defined be-
low:

dl1 [xs,nk, xq,nk] =

N∑
n=1

K∑
k=1

||f(xs,nk)–g(xq,nk)|| (2.4)

dl2 [xs,nk, xq,nk] =
N∑

n=1

K∑
k=1

√
||f(xs,nk)–g(xq,nk)||2 (2.5)

dcosine[xs,nk, xq,nk] =
f [xs,nk]

T g[xq,nk]

||f [xs,nk]|| · ||g[xq,nk]||
(2.6)

Figure 2.13: Distance Metrics

2.4. Conclusion
In this chapter, the background concepts behind this thesis is introduced. Firstly, various
theories for description of emotions for affective computing tasks were introduced. The pa-
rameters that lead to the choice of the dimensional emotion model are discussed. Next, a
brief introduction to deep learning concepts and architectures is provided. An overview of vari-
ous activation functions used in this thesis is also given. This includes the typical structures of
popular architectures such as the Convolutional Neural Networks and Recurrent Neural Net-
works is presented. Finally, the paradigm of few-shot learning is presented. The mathematical
formulation of the N ×K few-shot learning is given within an abstract data space. Distance
learning methods are found to be useful methods for this thesis. This class of methods is
explained briefly. This concludes the background discussion.



3
Emotion Recognition

The emotion recognition problem is one of the most active fields of research in affective com-
puting. It is a problem of inferring emotions given a sample of data. This data can either be
unimodal or multimodal. It can be defined as a machine (or deep) learning problem where the
inputs are the features from the modalities and the labels of emotions are outputs. Emotion
Recognition research has traditionally focused on single modalities. Early research focused
on facial expressions using images; thereafter broadening to audio-visual modality. In the
past decade, efforts to collect and study emotion in different modalities resulted in a plethora
of multimodal datasets. Such datasets include audio-visual, textual, physiological, gesture,
human activity information. This literature forms the background for this chapter.

In this chapter, we present an overview of emotion recognition with IVAs using speech
and physiological modalities. In 3.1, an overview of speech emotion recognition literature is
provided. Firstly, we present the nuances of emotional expression in a speech in the sec-
tion 3.1.1, while also exploring elicitation methods. Then in section 3.1.2, audio features are
discussed in depth to provide the basis for recognition method pipelines. Finally, in section
3.1.3, classification methods for speech features are presented. This concludes the survey
on speech emotion recognition.

In section 3.2, an overview of physiological emotion recognition literature is provided. Here,
section 3.2.1 explains the biological background of emotions with physiology. Thereafter, sec-
tion 3.2.2 presents common physiological features for the selected signals of PPG and EDA.
Finally, in section 3.2.3, classification methods for physiological features are discussed. This
concludes the section on physiological emotion recognition.

Finally, in section 3.3, few shot emotion recognition literature is examined. This concludes
this chapter.

3.1. Emotion Recognition with Speech
Speech emotion recognition systems are widely studied in the literature. A typical pipeline
involves a series of steps as shown in Fig. 3.1. Firstly, audio samples are normalized and
cleaned for anomalies. Raw speech is also cleared for noise. This also involves the segmen-
tation of audio signals in frames of a typical length of 20-30ms. Thereafter, feature extraction
techniques are used to obtain meaningful representations of audio signals. These features
may comprise either numerical or image-based features (in the case of spectrograms). In
some cases, for a large number of features, some feature selection is also implemented using
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suitable algorithms. Finally, classification algorithms are used on the selected set of features
to learn a transformation function between the speech features and annotation labels. For
the case of emotion recognition, these labels are arousal and valence. In this section, these
steps are surveyed from literature and important features and classification techniques are
pointed out. Firstly, in section 3.1.1, emotional expressions from the speech are discussed,
presenting important speech attributes to be considered while conducting an emotion recogni-
tion task. Next, popular audio features are identified from literature in 3.1.2. Finally in section
3.1.3, classification methods for speech emotion recognition are provided.

Figure 3.1: Typical Speech Emotion Recognition Pipeline

3.1.1. Emotional Expressions in Speech
Communication by speech is characterized by verbal and nonverbal means. Verbal communi-
cation is linguistic; it communicates through both the meaning of the words and the way they
are said [7]. Language forms the basis of verbal communication. Nonverbal communication
is para-linguistic; it modifies verbal communication to convey the emotions of the speaker. Vo-
cal and non-vocal qualities such as prosody, stress, intonation add the para-linguistic part of
communication.

A study by Knapp and Hall [43] shows para-language as described by two distinct sets of
characteristics. These are voice qualities (such as pitch, rhythm, tempo, articulation and reso-
nance) and vocalizations (such as laughing, crying, sighing, belching, etc.). In another study,
Trager [98] presents classifications for vocalizations. These are - vocal characterizers com-
prising of non-language sounds; voice qualifiers of language such as pitch, intensity, extent;
and vocal segregators including fillers, silent pauses and hesitation.

Broadly, these non-verbal vocalizations correlate with different kinds of emotions. Prosody
features like pitch, rhythm, stress, and loudness are rich sources of affective state [3]. These
features are suprasegmental - their interpretation extends over segments or phonemes. Sev-
eral studies show the use of nonsensical utterances to add to the emotional context besides
the lexical and semantic effects [8] [85]. Natural conversations are filled with these character-
istic speech events which convey emotions subliminally.

So far, we identified several characteristic features which can act as emotional markers in
speech. These form the general set of features present in all kinds of speech. For this thesis,
we consider the specific case of the exhibition of emotion in conversations or natural speech,
therefore we first identify the possible elicitation methods suitable for our task. This forms the
basis of selecting datasets as will be described in Section 4.1.1.

Emotion Elicitation methods with Speech
Emotion elicitation is an important aspect of the emotion recognition task. It describes the
environment and methodology used to elicit and trigger emotions for an emotion recognition
dataset. This is why it is also a differentiating factor in performing emotion recognition ex-
periments. Three kinds of speech corpora are described in literature [29] [48]. These are
explained briefly –
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• Natural Speech: This is the real speech of an individual with spontaneous and natural
emotions. It is usually collected from real-life environments and the speech is neither
acted nor enforced. Emotional expression in such speech is usually mild and underlying.
Such a corpus usually has an imbalance in elicited emotion classes/space. Moreover,
its annotation is subjective.

• Simulated or Acted Speech: This kind of speech is professionally acted to express
emotions by deliberation. It is usually collected from trained actors and theatre artists.
Variations in the expression of emotions are performed to obtain the complete range
and space of emotions. While this speech may provide a more pronounced display of
arousal and valence, it does not resemble the true emotions conveyed. The annotation
of such speech is external.

• Elicited Speech: This speech is neither natural nor simulated. Here emotions are in-
duced using stimuli/context. Such interactions exhibit true emotions of the person if such
a trigger would naturally occur to the person. Speakers can be made to hold an emo-
tional conversation or provoked to provide a charged response. This kind of elicited
speech requires both self and external annotation to differentiate between felt and ob-
served emotion labels.

Inducing natural utterances in elicited speech is important to keep the emotions exhib-
ited, as true as possible. This may be achieved using a Wizard-of-Oz scenario [9], where
an external mediator induces interactions that can generate emotional responses between
a group of individuals whose speech is to be examined. Alternatively, there could be other
means to induce emotions, such as completing a task interactively with a computer, playing
video games with instructions, debating on a specific topic or holding conversations on a topic.
In the present problem, the goal is to perform emotion recognition on speech collected with
IVAs. Therefore, elicited corpora where conversations would naturally induce emotions would
closely resemble the nature of emotions that happen in interactions with IVAs.

Up to this point, we have considered qualitative features of speech that act as emotion
markers. Next, we examine these quantitatively and identify a concrete set of features for
our analysis of the few-shot emotion recognition task. In the next section, audio features are
discussed and commonly available feature sets are presented. Motivation for the selection
of features is also built around the specific task of few-shot learning, as features must exhibit
information from short segments of speech.

3.1.2. Audio Features
Speech (or Audio signal) is a time-series signal which represents the pressure changes in
the air that produce a sound. A typical audio sample is shown in Fig. 3.2 where the y-axis
represents the amplitude of the waveform and the x-axis represents time. An audio signal
can be represented as a complex signal made of multiple sinusoidal components. Audio is
not a wide-sense stationary signal. However, when considered in small segments – referred
to as frames, typically 20-30ms, it can be considered as wide-sense stationery. Typically,
speech features are quantified in frames or as a whole. This gives rise to local features which
describe frame-level changes and global features which are statistics across a set of frames
or an utterance. Most of the analysis of audio signals today is performed in the frequency
domain due to its superiority in describing and summarizing time-series signals efficiently.

The commercial success of intelligent voice assistants has spawned the field of conversa-
tional AI which aims at identifying semantics in a conversation with specific importance to situ-



3.1. Emotion Recognition with Speech 22

Figure 3.2: Audio Signal

ational context. Acoustic information embedded in time domain, frequency-domain, amplitude
domain and spectral energy domains [93] [61] and linguistic information embedded in prosody
features [48] [102]. In this thesis, the purpose of speech features is an efficient representation
of emotional content in speech irrespective of the underlying lexical content. Therefore, we
focus on non-lexical features. Literature shows numerous non-lexical audio features used for
emotion recognition with different levels of classification based on their domain [83] [1] [99].
Here three classes of speech features are discussed –

• Prosody features – Prosody features are such features that can be perceived by hu-
mans and describe most of the vocal affective expression. Prosody attributes like dura-
tion, intonation and intensity help differentiate between emotional overtones for the same
utterances. High arousal emotions such as anger, happiness or surprise are reflected
by increased energy of speech signal while disgust and sadness result with decreased
energy. Prosody features include the ensemble of features such as - pitch-related fea-
tures; formants features; energy-related features; timing features; articulation features
etc. Some of the important prosody features are the fundamental frequency of the signal,
pitch, duration, formant locations and their bandwidths and their derivatives.

• Spectral features – Spectral features represent attributes defined in the frequency do-
main. Spectral features are correlated to the shape of the vocal tract and the rate of
change of articular movements. Emotions are described through the embedded spec-
tral energy of the signal. There is a difference in energy distribution across frequency
when a person is happy – high energy at higher frequencies; and when an utterance is
sad – low energy at the same higher frequencies. Several spectral features have been
identified in the literature. Linear prediction coefficients (LPC), least-squares yule-walker
equations are some of the earliest known features. The linear prediction coefficients are
simply m-order all-pole models of the vocal tract [99]. Spectral band energies, spectral
slope and harmonic differences are some of the other spectral features found to have
strong correlations to affective arousal. Spectrograms, spectral centroid are the other
common descriptors in this class.
Cepstral features - An optimized representation is obtained if the speech signal is

band-passed to constrain the frequency to the audible range of humans. Thereafter,
the bandwidths of the filters are scaled to the nonlinear scale of Mel-frequency. This
process results in constraining frequency spectra to the auditory canal and thus cap-
tures accurately the human auditory perception. This creates a class of frequency co-
efficients and spectrograms called the Mel-Frequency Coefficients. Consequently, it is
possible to obtain the cepstral coefficients – coefficients from a fictional domain inverse
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of frequency - quefrency. This gives the popular Linear Predictor Cepstral Coefficients
(LPCC) and the Mel-Frequency Cepstral Coefficients. Gammatone Frequency Cepstral
Coefficients (GFCC) is obtained by applying the Gammatone filter-bank to the power
spectrum. Formants are the frequencies of the acoustic resonance of the vocal tract.
They are computed as amplitude peaks in the frequency spectrum of the sound.

(a) Power Spectrogram (b) Mel-frequency Spectrogram

Figure 3.3: Comparison of Spectrograms

The large number of features available for analysis makes the selection of features very
important in order to implement a speech emotion recognition pipeline. Literature also provides
a wide range of available feature sets for the task of speech emotion recognition. These
include eGeMAPS feature set, ComParE2016 feature set, and the InterSpeech Challenge
feature sets. In this thesis, we propose to use the eGeMAPSV02 feature set [33] from the
openSMILE toolkit [32]. This feature set is selected owing to its compactness and superiority
in describing arousal and valence dimensions of emotion. It has been shown to outperform
many of the classical feature sets across emotion recognition corpus’. These will be used in
the implementation of the feature processing part of the proposed pipelines.

While all the discussed features find relevance, emphasis is provided on selecting features
that have been shown to provide satisfactory classification discrimination. For this purpose,
classification architectures are surveyed briefly in the next section to identify suitable feature-
architecture combinations for the proposed architecture. In the next section, classification
techniques for speech emotion recognition are discussed briefly.

3.1.3. Classification Methods
Classificationmethods for speech emotion recognition have evolved over the past decade from
traditional supervised machine learning approaches such as Support Vector Machines(SVM)
and Gaussian Mixture Models (GMMs) to more sophisticated time-series representations us-
ing Hidden Markov models (HMMs) [99] [29] [48]. With the advancement in deep learning, ar-
chitectures using Long-short Term Memory (LSTMs), Convolutional Neural Networks (CNNs),
and Recurrent Neural Networks (RNNs) are becoming extremely popular [94] [63].

Each of the described methods has its pros and cons. Majority of the architectures utilize
either prosody or spectral features or a combination of the two for classification. But, their
ability to handle many modalities and capture important emotion dynamics make them useful.
Using CNNs, audio-visual modalities are combined to obtain useful information for emotion
recognition. With RNNs and HMMs, time-varying nature and fleeting emotion can be cap-
tured. GMMs provide a mechanism to estimate the probabilistic distribution of an utterance
across numerous emotions in a discrete space. Since the application in this thesis focuses on
non-lexical speech features, classification techniques that focus on textual interpretations of
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speech are not discussed here.
The household environment introduces noise from surroundings in IVAs. Noise robust-

ness is thus essential in emotion recognition methods implemented for IVAs. Methods with
noisy speech have been extensively studied. The literature presents numerous methods to
increase the robustness of the existing set of methods. In [42] authors describe the use of
histogram equalization on spectrograms to normalize segments with noise. Similarly, spectral
subtraction and filtering have been proposed to remove noise from spectrograms [20]. Several
techniques propose augmentation of MFCC features through nonnegative matrix factorization
[67], adaptive noise cancellation using channel equalization [95]. Alternatively, several meth-
ods operate on raw audio segments such as compressed sensing-based estimation[100], to
pre-processing with voice activity detectors [68].

Themethods and architectures discussed to provide a very brief and inexhaustive overview
of the speech emotion recognition landscape. Within this paradigm, the focus is to obtain
features that can adapt to few-shot learning architectures (presented in section 3.3). Before
proceeding to few-shot learning architectures, we briefly discuss physiological emotion recog-
nition systems in the next section.

3.2. Emotion Recognition with Physiological Signals
3.2.1. Emotional Expressions in Physiology
Identifying the neurophysiological origin of emotions is a field of active research in psychology
and neuroscience. Physiological responses are one of the three indicators of emotional state
together with evaluative reports (verbal confirmations and questionnaires) and overt actions
(facial expressions, vocal utterances, and bodily gestures) [51]. Everyday human interaction is
ingrained with visible (such as heavy breathing in a state of fear or anxiety) or invisible (such as
low skin conductance in a state of sadness, relief) physiological overtones. Numerous articles
in the literature refer emotions to be autonomic changes under stimuli [53] [49].

Figure 3.4: Taxonomy of Nervous System [55]

Literature from neuroscience points to the Peripheral Nervous System (PNS) as the seat
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of voluntary and involuntary control of the human body in conjunction with sensed information
from a stimulus [16]. This is besides the cognitive responses of the Central Nervous System
(CNS) which is responsible for originating an integrated response. Two components of the
PNS, branch out – the involuntary functions performed by the Autonomic Nervous System
(ANS) and the voluntary functions performed by the Somatic Nervous System (SNS). The
Autonomic nervous system (ANS) controls physiological signals. Correspondingly, the res-
piratory system, cardiovascular system, electrodermal systems and facial motor nucleus are
the regions of activation associated with emotional stimuli [44]. Since these are unconscious
responses, it makes them devoid of faking, that is there is no difference between the emotions
exhibited and experienced through these physiological signals. Further, the exhibited emo-
tion in speech might be deliberately subdued by the user while the emotion from physiological
reaction remains uninhibited.

The bulk of the emotion recognition research using physiological signals is found within
laboratory settings [13] [28]. Many of the existing studies focus on data collected in isolated
environments with clinical instruments. Such measurement methods constrain the collection
of physiological signals to a laboratory. While a laboratory setting permits collection of a large
volume of high-quality physiological data, it may not exactly allow the replication of natural
behaviour and physiology as present in the real-world setting. As established in our problem,
the goal of the proposed methods is to identify emotions in a real-world setting. Therefore, it
is apt to consider wearables to capture signals unobtrusively and without affecting the user’s
natural emotions. Therefore, we focus on physiological signals captured by wearables.

Further, as described in Section 1.2, the physiological signals relevant for this thesis are
blood volume pulse and electrodermal activity signals. Commercial devices such as the Em-
patica E4 can capture both these signals [31]. Apple’s and Samsung’s smartwatches are a
few of the mainstream devices that have started including both these sensors for their health
and fitness tracking applications [30] [4]. In the next section, physiological features from the
selected two signals are discussed briefly.

3.2.2. Physiological Features
Physiological signals are time-series signals. Unlike audio signals, they have the property
of being semi-periodic and partly stochastic. Thus, a small set of features can efficiently de-
scribe the characteristics of a time series. Physiological signals are sensitive to acquisition
procedures. Wearable-based sensing, adds another challenge to this problem. These signals
can be easily corrupted by thermal noise, measurement errors, electromagnetic interference,
and motion artifacts. Thus, special attention needs to be paid to the acquisition and pre-
processing of the signals to avoid adverse effects. This motivates pre-processing steps. It
involves smoothening the signals through low-pass filters, time synchronization and artifact
removal. For modern smartwatches and wearables, noise and artifact removal algorithms are
usually embedded within the device. Pre-processing and feature extraction steps are physio-
logical signal specific.

PPG-based Features
Photoplethysmography (PPG) signal is measured using a skin-contact based photosensor. An
LED illuminates the skin and the photo-diode measures the backscattered light from that patch
of skin. Indirectly, this measures the pulsatile component of the arterial blood flow. Since the
measurement is contact-based, there are possibilities of motion artifacts and drifts due to too
poor contact. This is removed using a high-pass filter or a Butterworth filter. Alternatively,
adaptive filters can correct the signal in real-time continuous acquisition scenarios. Typically,
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(a) Typical PPG Signal (b) Typical EDA signal

Figure 3.5: Typical Signals of PPG and EDA

commercial PPG sensors have sampling rates below 100 Hz. PPG-based features can be
classified based on the domain of the feature attributes as shown in table 3.1.

Table 3.1: Overview of PPG based features

Feature type Example
Temporal features statistical mean, median, heart rate (HR), heart rate variability (HRV),

statistical features of HRV, number and percentage of RR intervals
differing more than 20 ms (NN20, pNN20), Maxima, minima and cen-
troids of frames zero-crossing rate of HR.

Spectral features Frequency bands of HRV (Ultra Low Frequency, Very Low frequency,
Low Frequency, High Frequency), normalized LF/HF ratio, spectral
centroid, spectral spread, spectral skewness, spectral kurtosis, spec-
tral slope and spectral variation

Non-linear features 1st and 2nd order Standard Deviations from Poincare plot, sample
entropy, approximate entropy, recurrence rate, determinism

EDA-based Features
The electrodermal activity signal is measured using a pair of electrodes to measure the skin
resistance between the two bypassing constant current or constant voltage across the skin.
This measurement is a function of skin conductance and the number of active sweat glands
in the region of measurement. Common EDA sensors are placed at wrists or torso. The EDA
signal is a low-frequency signal, therefore some of the noise artifacts are removed by passing it
through a low-pass filter followed by smoothening. The EDA signal is made of two components
– the skin conductance level (SCL) referring to the baseline variations in skin conductivity.
This component is individual to the person and depends on the person’s autonomic response
to environmental factors. Another is the skin conductance response (SCR) referring to the
short term peaks. These are usually the responses of the sympathetic nervous system to
emotionally arousing events. Like the PPG/BVP signal, the EDA signal has several kinds of
features [90] [2] [27]. Table 3.2 summarizes the popular EDA based features from literature.

Deep Learning Features
An important factor in the derivation of features from physiological signals is the sampling
rate of the acquired signal. Low sampling rates may result in insufficient statistics and would
rather be uninformative in the emotion recognition task. Higher sampling rates lead to better
frequency domain and non-linear features. In this case, deep learning may help in learning
features directly from the processed signal.
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Table 3.2: Overview of EDA based features

Feature type Example
Temporal features number of SCR events, the sum of SCR startle magnitudes and re-

sponse duration, rise and recovery times.
Spectral features spectral power values in the low-frequency bands (0-2.4Hz)
Statistical features amplitude rise, mean, standard deviation, kurtosis, maxima and min-

ima of the signal frame

Deep Learning-based features are derived directly from raw PPG/BVP and EDA signals
quantized by the length of the frame of annotation label. Several architectures such as Recur-
rent Neural Networks (RNNs), Gated Recurrent Units (GRUs), Long-short Term Memory units
(LSTMs) and 1-Dimensional Convolutions can be used to generate embedded features [90].
These are of great interest owing to their ability to capture and preserve temporal stationarity
while learning discriminative characteristics from the signal itself. In addition to that, these can
be readily adapted to many common deep learning classification schemes, thus simplifying
the implementation of classifiers. Such embeddings map raw signals to hypothetical vector
feature space. These vectors can readily act as classifying features.

3.2.3. Classification Methods
Emotion Recognition and classification algorithms using physiological signals are extensively
found in the literature. Traditionally popular classifiers include Linear Discriminant Analysis
(LDA), Quadratic Discriminant Analysis (QDA), k-Nearest Neighbour (kNN), random forests
(RF), Support Vector Machines (SVMs) amongst others [28] [86] [90]. These classifiers re-
quire specific pre-processing and feature extraction procedures. Owing to a large number of
features available from various physiological signals, the selection is performed before clas-
sification. Usually, they are accompanied by hand-tailored features constructed with feature
optimization and reduction techniques like Sequential Forward Selection(SFS), Independent
Component Analysis(ICA) and Principal Component Analysis (PCA). Several of these meth-
ods may be applied together to obtain a reduced set of features that have higher discrimination
power than the original set of features.

Deep learning algorithms have become powerful classification algorithms with neural net-
works. Popular methods include Multilayer Perceptrons (MLPs), Long-short Term Memory
(LSTMs), Convolutional Neural Networks (CNNs) amongst many [89]. Many studies use a
combination of these techniques to create neural network architectures that can perform both
feature engineering and classification in an end-to-end manner [27]. Some of these have also
made the need for feature engineering obsolete and redundant. These methods can learn cor-
relations between multiple channels and modalities to construct discriminative abstractions of
features. Such methods as described here have been shown to perform with higher accura-
cies than traditional machine learning algorithms.

This and the previous section has analyzed the state-of-the-art features and methods for
emotion recognition using speech and physiological signals. These provide much of the mo-
tivations for the architectures proposed in this thesis later. These methods, however, are
implicitly dependent on large amounts of data for classification and do not fulfil the constraints
of the research questions. In lieu of this, we look at few-shot learning inspired methods. The
next section provides a brief literature review of these methods.
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3.3. Emotion Recognition using Few Shot Learning
As described in the previous chapter in section 2.3, few-shot learning is a class of methods
that use very few samples of data for a learning task. Similar to the trends in classic emotion
recognition, the focus has been on visual medium – facial expressions, images and videos.
Methods involving audio and physiological signals have not been examined in depth to the
tune of classical emotion recognition literature.

Facial emotion recognition with FSL models is widely studied. In Ciubotaru et al.[21], the
authors present one of the earliest approaches of facial emotion recognition with low shot
learning models. The authors use four distance metric learning approaches to perform few-
shot learning using several different embeddings architectures. This motivates one of the
key aspects of our method – optimized embeddings. Multidomain facial expressions pooling
is proposed in D. Kollias et al.. [46], with a novel CNN-based architecture FaceBehaviour-
Net. A few models proposed in literature also explore still images by exploiting information of
occlusion, pose and illumination [52] [50] [104]. The architectures used are Model Agnostic
Meta-Learning (MAML), Generative Adversarial Networks (GANs), respectively.

Table 3.3: State-of-the-art Methods for Few Shot Speech Emotion Recognition

Reference Architecture Dataset Performance
(Accuracy)

P. Arora et al..[6] Siamese Networks IEMOCAP 63.84%
Boigne et al..[12] Pre-trained embed-

dings with RNN
IEMOCAP 64.3 %

A. Naman et al..[64] MAML EmoFilm 69.71%
Feng et al.. [34] Siamese Networks eNTERFACE, CREMA-D,

RAVDESS, IEMOCAP
-

In contrast, few shot speech emotion recognition first appears in literature in P. Arora et
al.[6], where the authors propose the use of Siamese networks for the preservation of speaker
identity in speech emotion classification. Here, a series of modifications to the CNN embed-
ding functions are made to remove identifiable information using several transformations such
as perturbation and dimensionality reduction. In Boigne et al.[12], the authors use standard
pre-trained models useful for automatic speech recognition as their basis for identifying emo-
tions from audio-visual data. Here, transfer learning is used to adapt speech recognition prob-
lems to emotion recognition. Model Agnostic Meta-learning is proposed to perform speech
emotion recognition in A. Naman et al.[64]. Feng et al.[34], propose adaptive pair selection for
Siamese Network based speech emotion recognition. Here, the embeddings are generated
using time-frequency log spectrograms of speech frames. Table 3.3 summarizes the state-of-
the-art performances of Few shot speech emotion recognition methods in the literature.

In the works summarized above, the focus of the literature is on the classification of discrete
emotion spaces. Moreover, information from modalities other than speech, video and tex-
tual information has very rarely been explored with few-shot learning methods. Our research
question tries to fill in this gap. As described in the literature review on emotion recognition
in Sections 3.1 and 3.2, there are great benefits to the fusion of information from physiology
and speech. Moreover to our knowledge, to date, only one article [6] discusses FSL speech
emotion recognition approaches for voice-enabled communication systems. Thus, we aim
to investigate multimodal emotion recognition with few-shot learning techniques to obtain evi-
dence of the effect of additional modalities given limited samples of data.
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3.4. Conclusion
In this chapter, a brief overview of the emotion recognition literature landscape is provided with
a specific focus on the constraints of this thesis. While discussing speech emotion recognition,
we identify the important prosody, spectral and cepstral features useful in the discrimination
of emotions. The combination of these features effectively captures both time-domain and
frequency-domain features while emphasizing the functionalities of the human auditory system.
These features are later used in the thesis for the classification task. In addition, deep learning-
based classification methods are found to be extremely powerful in this task. We also find that
the use of elicited speech is most apt for the application considered in this thesis.

Next, physiological signals are examined for the emotion recognition task. With PPG and
EDA signals, we identify deep learning-based feature extractors to be power embedding func-
tions given the low sampling rate of the signals in question. In addition, the constraints of
wearable sensors highlight the need for better pre-processing techniques.

Finally, a few shot emotion recognition literature is discussed and presented. While much
of the work is unimodal and focuses on visual features (videos and images), we identify mo-
tivations for multimodal architectures (speech and physiological). In conclusion, this chapter
gives an overall summary of necessary emotion recognition literature for this thesis.



Part III - Datasets and Proposed
Methodology
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4
Datasets

In this chapter, the pertinent datasets used for the analysis of the research questions of this the-
sis, are presented. The chapter is divided into three sections. In section 4.1, a brief overview
of the available datasets for emotion recognition is summarized. Following, a selection cri-
terion is discussed based on the constraints and research questions presented in Sections
1.2 and 1.3. Subsequently, we present two selected datasets briefly discussing their salient
features. The datasets are distinct and present different settings and signal qualities and thus,
provide unique setups for analyzing the proposed architecture. In section 4.2, we discuss
the K-EmoCon dataset. This is followed by the RECOLA dataset in section 4.3. For each
of the datasets, we present the data pre-processing steps, feature extraction and embedding
generation together with performance metrics.

4.1. Datasets
A preliminary survey of possible emotion recognition databases is carried out based on numer-
ous surveys available in the literature. Several available datasets are analyzed for suitability.
First, we look at available modalities. Table 4.1 shows the emotion recognition datasets clas-
sified by available modalities. It may be noted that, for generating this list, existing surveys
for speech [1, 94, 83, 63, 29], physiological [86, 13, 28]and multimodal [89, 75, 69, 25] emo-
tion recognition are utilized. This is followed by cross-verification on the availability of the
databases online. Some of the existing databases, while found in the literature are now un-
available and hence they are eliminated from this list.

4.1.1. Selected Datasets
Off these datasets, we first shortlist the datasets by our selected modalities - namely audio
and physiological signals. These are highlighted as shown in Table 4.2. Further, the available
datasets of the selected modality are analyzed and compared for suitability to the research
problem. Of these datasets, we select datasets that satisfy the constraints in Section 1.2.
This means the emotion elicitation requirements are not induced but rather natural and spon-
taneous. In addition, the nearest simulation of interaction with IVAs is achieved in dyadic (2-
party) conversational datasets. This gives another criterion for selecting the datasets. Finally,
the availability of both self-reported and external annotations of emotion is the third criterion
for the selection of datasets. This is crucial to determine the gold standard and helps in the
comparison of the performance of models with a similar setting.
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Table 4.1: Overview of Emotion Recognition Databases found in Literature

Modality Datasets
Audio, Video, Physio RECOLA, K-EmoCon, MAHNOB-HCI, AMIGOS, VerbIO
Audio, Video, Text SEND, ICT-MMMO, MOUD, Youtube Database
Audio, Video CREMA-D, EmoReact, IEMOCAP, SEWA, SEMAINE, eNTER-

FACE, EMDB, RAVDESS, Belfast Natural Database, Chen-Huang
database, SAL Database,

Audio, Text EmoBank, Facebook posts, EmoLex, Affective Text, ISEAR, Wall
Street Journal 100

Video, Physio ASCERTAIN, DEAP, DECAF
Video RU-FACS-1, MMI Facial Expression, BU-3DFE, FABO, Cohn-

Kanade AU-Coded Facial Expression database
Audio Banse-Scherer database, Danish Emotional Speech, Berlin Corpus,

EU-Emotion Voice Database, Emotional Voice Database, TESS,
TURES, ISL Meeting corpus, CSC Corpus, AIBO DATABASE,
ESMBS, KISMET, BabyEasr, MPEG-4, SJTU Chinese Database,
FERMAUS III, BDFALA, ORESTEIA

Physio CLAS, DECAF, DREAMER, MPED, GAMEENO, PAFEW
Text IMDB Reviews, Amazon Database, Blogs database, STS-Test,

ANET
Images JACFEE, Affectuve Image Database, IAPS, GAPED,

Therefore, selected datasets must fulfil the following conditions - involve interaction be-
tween individuals, and where the emotions are naturalistic and obtained by that interaction.
The result of this selection criteria is the two datasets - K-EmoCon [70] and RECOLA [81]
owing to their similarity in experimental set-up and the activities in question, namely two-party
conversation.

Table 4.2: Emotion Recognition Databases with Audio, Video and Physiological Modalities found in Literature 1

Dataset Elicitation Method Participants Annotation Approach
RECOLA[81] Dyadic Interactions 46 S, E
K-EmoCon [70] Dyadic Interactions 32 S, P, E
MAHNOB-HCI [92] Individual video viewing 27 S
AMIGOS [62] Individual/Group Video viewing 40 S, E
VerbIO [107] Individual public speaking in VR 55 S

4.1.2. Noise Dataset
Analysis of few-shot emotion recognition tasks under real-world noise is a key research ques-
tion to be analyzed in this thesis. Therefore, in addition to the two datasets selected for the
emotion recognition task, a noise dataset is selected to impute the speech recordings with
real-world background noise. From a selection of papers on noisy speech emotion recognition
[42][100][95], the DEMAND dataset [97] is selected for imputation of noises. The DEMAND

1Explanation : Elicitation Method - Stimuli for emotions ; Annotation - S : Self, P : Partner, E : External annotator
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(Diverse Environments Multichannel Acoustic Noise Database) is a comprehensive database
with acoustic recordings from numerous settings. The recordings in the DEMAND dataset
are 16-channel signals at 48kHz and resampled and processed to provide with 16kHz signals.
The dataset consists of 6 categories of noises with 4 categories in indoor environments and
2 categories in outdoor environments. The categories of indoor environments are Domestic,
Office, Public and Transportation, while the categories for the outdoor environment are Street
and Nature.

The environment settings considered for the IVA in this thesis are indoors, particularly in a
household. Therefore, the Domestic and Office categories are selected for noise imputation.
Within the Domestic category, 2 specific sub-types of recordings are chosen namely – Kitchen
and Living room. In addition, from the office category, 2 other types of sub-types of recordings
are chosen namely Office and Hallway. These four categories are deemed to simulate the
background noises of a household where IVA interactions occur. Table. 4.3 summarizes the
properties of the selected noise signals.

Table 4.3: Noise Characteristics of selected samples from DEMAND Dataset

Noise Loudness(RMS value) Maximum dBFS Highest Amplitude
DLIVING 56 -34.995 583
DKITCHEN 266 -10.916 9324
OOFFICE 257 -9.856 10535
OHALLWAY 113 -22.578 2435

The original noise power of the environment is preserved by avoiding post-processing to
gain normalization. Out of the separate 15-channel recordings, noise samples are used only
from one of the channels to prevent the effect of variations in noise gain across the different
microphone channels, since these are independently recorded. For a fair comparison of the
effect of noise on performance, all the noise samples from different categories are selected
from the same microphone channel.

4.2. K-EmoCon
The K-EmoCon dataset [70] is a multimodal sensor dataset with continuous emotion recog-
nition specifically collected in naturalistic conversational settings. This dataset consists of 32
subjects in 16 pairs each with 2 subjects in a debate setting. The participants of the dataset
are students from the Korea Advanced Institute of Science and Technology. Of the 32 partic-
ipants, audio-visual recordings of 21 participants are available while no video information is
available for the rest 11.

The dataset consists of videos, speech audio, accelerometer and physiological data from
the subjects. The average duration of the debates is 10 minutes where each participant can
speak for two consecutive minutes. The signals in consideration for the thesis are speech,
BVP and EDA which have been captured using LookNTell head-mounted camera, Empatica
E4 and Polar H7 Bluetooth Heart sensor respectively. The wearable signals captured in the
dataset are summarized in Table. 4.4. The dataset records both valence and arousal based on
Russell’s Circumplex model on a discrete scale of 1-5. In addition, emotion states describing
subjective stress is collected on a discrete scale of 1-4. The annotations available from the
dataset are summarized in Table. 4.5. A robust 3-tier annotation is generated by self, partner
and 5 external observers. The granularity of the dataset annotation shall help in managing
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segments of multiple lengths if need be.

Table 4.4: Summary of signal modalities in K-EmoCon

Devices Collected Data Sampling Rate Signal range [min, max]

Empatica E4
Wristband

3-axis acceleration 32Hz [-2g, 2g]
BVP (PPG) 64Hz n/a

EDA 4Hz [0.01 µ S, 100 µ S]
Heart Rate 1Hz n/a

IBI n/a n/a
Body Temperature 4Hz [-40°C, 115°C

Neurosky MindWave
Headset

Brainwave 125Hz n/a
Attention and Meditation 1Hz [0,100]

Polar H7 Heart Rate Sensor HR (ECG) 2Hz n/a
LookNTell Head-Mounted Camera Audio and Video n/a n/a

The debate settings in this dataset can be thought of as simulated interactions that are
likely to occur in a household with an IVA. The debate interaction that occurs in this setting
is goal-oriented (to debate the topic) and involves a singular chain of thought. Further, emo-
tions are evoked by a spontaneous display of opinions of the opposite participant. Short ut-
terances from a diarized segment of a speaker, act as speech signals where emotions have
been evoked from interactions with people around the user naturally. The context of data col-
lection in K-EmoCon resembles the kind of interactions that would naturally occur between an
individual and his/her social group. This forms the basis for the first set of experiments where
we consider an IVA to passively listen to audio from a conversation and classify the emotions
of a specifically intended speaker who has the wearables. Further, this setting examines the
specific case of emotions that occur with pre-conceived beliefs. In this simulated set-up, we
examine the social interactions of the user while an IVA listens to the speaker and performs
emotion recognition without much intervention of the user.

For experiments, we use the self-annotated labels from the K-EmoCon dataset as it pro-
vides a relatively balanced distribution of labels across arousal and valence categories.

Table 4.5: Emotion Annotations in K-EmoCon

Emotion annota-
tion categories

Description Measurement Scale

Arousal/ Valence Two affective dimensions from
Russel’s Circumplex Model of Af-
fect

1: very low; 2: low; 3: neutral; 4:
high; 5: very high

Cheerful/ Happy/
Angry/ Nervous/
Sad

Emotion states describing sub-
jective stress state

1: very low; 2: low; 3: high; 4:
very high

4.2.1. Data Pre-Processing
While some pre-processing steps are already performed on the dataset, some additional pro-
cessing needs to be performed on the dataset to make it suitable for the intended experimental
setup.

The signals utilized for the experiments are debate audio recordings and physiological sig-
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nals – PPG and EDA. The dataset consists of 16-paired debates with 32 participants which
total 172.92 minutes of dyadic interactions. Physiological signals are captured for a longer
duration – slightly more before and after the debate duration. The debates are provided with
standard UTC +0-time stamps of their speech start and speech end. The authors provide a
check on data availability across various signals captured to mention any errors or mismatches
in the collected data. Physiological data from participants 2, 3, 6, 7, 26 is stated to be erro-
neous or absent and hence these participants are rejected from the study.

Since the debate recordings are paired speeches, there is a need for diarization of the
recordings to individual speakers to perform a participant-dependent study of emotion recog-
nition. Thus, separation of audios from the two speakers, as well as respective segments of
physiological data, need to be identified. The basis for this is Speech Diarization. The debate
audio is diarized using several off-the-shelf open-source diarization toolkits available in Python.
To ensure the correct split of audio, diarization is performed using multiple toolkits and their
qualitative performance is analyzed. These methods are described in the next sub-section.

Audio Diarization
Following are the speech diarization toolkits analyzed for selecting the diarization method :

1. Vox-Sort [103]: Vox-Sort is an off the shelf diarization tool that provides quick and easy
diarization from the source audio file. It provides satisfactory separation of speakers and
generates a time segment-based list showing the times the specific speaker spoke.

Figure 4.1: Sample Diarization with Vox-Sort

2. pyannote.audio [14]: pyannote.audio is an open-source speech diarization library in
python which uses pre-trained models for performing diarization on a speech sample. It
provides great accuracy in determining speaker changes to the accuracy of milliseconds.

Figure 4.2: Sample Diarization with pyannote.audio

3. pydiarization [77]: pydiarization is another open-source python library that gener-
ates an RTTM file from given audio/video files and diarizes them based on pre-trained
models.

To verify the performance of diarization qualitatively following diarizations from the above
three methods, manual verification is done with the available videos to check the accuracy
of speaker changes and assign the tags generated to participant numbers from the study. We
find Vox-Sort a reliable and quick diarization tool that provide a very robust segmentation of
speech samples from the debate together with separation of silent segments. Using Vox-Sort,
a segmentation file together with speaker code is obtained. A sample of this segmentation is
shown in Fig. 4.3. The speaker codes are mentioned as ‘1’ and ‘2’ while silence segments, as
well as non-speech sounds, are coded as ’128’ and ‘256’ respectively.
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Figure 4.3: Segmentation Results from Vox-Sort

Separation of specific participant audio and physiological data is performed using these
diarization results. Off-the-shelf audio-processing tool librosa is used for the selection of au-
dio segments according to the frame times from the diarization result after synchronizing them
with the debate time-stamps. Similarly, physiological data and the annotation labels are sep-
arated per participant using the diarization results after synchronizing with time-stamps from
the modalities with debate time-stamps. This way, out of 16 debate samples, 32 audio, physi-
ological signal and annotation label files are obtained from the corresponding 32 participants.
With the 32 participant data available, a cross-verification of audio segments with the debate
video recordings is made to verify the correct duration of the speech. Owing to the absence
of debate video recordings from participants 11, 12, 17, 18, 27, 28; it is not possible to assign
the correct diarization labels to debates involving these participants. These participants are
discarded from the experiments. Thus, processed data from 21 participants are available for
experiments. The resulting data are summarized in Table. A.1. Post the diarization and time-
synchronization of audio signals together with physiological signals, an additional set of audio
signals are generated with the imputation of noise, in line with the research questions to test
few-shot models in a noisy setting. This is discussed in the next sub-section.

Data Segmentation
To answer the research question on the length of audio segments suitable for the state of the
art performance of the proposed model, a suitable segment length must be selected. This is
based on the annotation length and the distribution of labels available. Since the unit anno-
tation label is available for a 5-second duration, a sub-split of 5 seconds is possible to lesser
duration while preserving the same annotation label. After checking various segment lengths,
we select 1s as the duration of the unit sample. This sample length generates enough sam-
ples to conduct a few-shot recognition set-up where only a fraction of the original data can be
used. Typical fractions of this data are usually 5-10% of the dataset size.

The available processed data from 21 participants, is segmented to 1s. The segmentation
involves a split of the audio signal, physiological signals and annotations. The annotation split
preserves the annotation from original labels – that is five 1s segments are created by splitting
the 5s segment with a specific annotation label. Post segmentation of data, to implement
participant-dependent models, a selection of participants is made based on the availability of
balanced samples across the two labels for the few-shot models. This is described in the next
sub-section.
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4.2.2. Selection of Participants
Following the segmentation of data, we perform a participant selection based on the availabil-
ity of sufficient annotation labels per class. As discussed in 1.4, this thesis aims to perform
binary emotion classification on arousal and valence labels. Therefore, the ground-truth self-
annotation labels are first converted from 5-level discrete class labels to binary labels with 0
depicting low arousal and valence and 1 depicting high values correspondingly. Here, the
neutral label of 3 is removed from the classification as its addition to either of the classes re-
sults in a huge imbalance between the two classes. Post the processing of labels across three
classes, four participants – 15, 23, 30, 31 – are identified with sufficient samples across the
arousal and valence labels to perform experiments on the generated segmentation.

A summary of the resulting selected participant data samples and their class annotations
are shown in Table. 4.6.

Table 4.6: Annotation statistics of selected participants for K-EmoCon

Participant Arousal Valence
0 1 0 1

15 105 111 131 69
23 42 181 109 62
30 83 67 101 67
31 205 110 50 242

4.3. RECOLA
RECOLA [81] stands for the REmote COLlaborative and Affective Interactions. It is a French
multi-modal database with 46 speakers and annotations for 5 social behaviours in addition
to valence and arousal. The participants are recruited from Freiburg University, Switzerland.
The data is collected in a setting where participant pairs are performing collaborative tasks in
a virtual environment and communicating with each other. A remote discussion takes place
between participants through a task that acts as the source of emotional manipulation. Dur-
ing the tasks, the participants are asked to perform decision making and strategizing on a
hypothetical task.

The dataset contains audio-visual information in addition to physiological data collected
with spontaneous interactions of subjects with the surroundings. A summary of available sig-
nals from the dataset is provided in Table. 4.7. Data records of physiological signals are filtered
at 250 Hz. From the collected ECG and EDA signals, HR, HRV and SCL, SCR signals are de-
rived respectively. Signals of interest are audio, ECG and EDA. The audio signal is collected
using a unidirectional headset while the ECG and EDA signals are collected using Biopac
MP36 unit. The annotation is performed by the participants themselves as well as 6 other
independent annotators using standard questionnaires such as SAM and PANAS. Table. 4.8
shows annotation details of RECOLA. The domestic-like setting of the experiments together
with an interactive user interface for collaborative tasks is similar to the setting proposed for
the thesis work and therefore motivates the selection of this dataset.

Like K-EmoCon, the interactions in RECOLA are spontaneous and dyadic. However, the
context of data collection here is that of a joint remote collaborative task. Therefore, the inter-
action amongst participant pairs in short spontaneous and occurs in bursts. The conversation
involves a back and forth of question-answer to arrive at a decision. Emotions are evoked
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Table 4.7: Summary of signal modalities in RECOLA

Devices Collected Data Sampling Rate Resampled Avail-
able data

AKG C520L + Audacity Audio 44.1Hz 22.05kHz
Logitech C270 HD Webcam Video n/a n/a
Biopac MP36 unit ECG, EDA 1kHz 250 Hz

due to the responses of the opposite participants. This setting is similar to an individual inter-
acting with an IVA with short commands for performing an activity. This forms the second set
of experiments for our study where the user actively engages with the IVA for performing an
activity. This also provides a test for examining fleeting and short-term emotions arising from
interactions as opposed to the stimulation of emotions based on long-occurring beliefs.

In the experiments with RECOLA, the annotation labels from the Gold Standard annotation
of external annotators provided with the dataset is used.

Table 4.8: Emotion Annotations in RECOLA

Emotion annota-
tion categories

Description Measurement Scale

Arousal/ Valence Continuous annotations on two
affective dimensions from Rus-
sel’s Circumplex Model of Affect

-1 to +1 with a step-size of 0.01
per 40ms

4.3.1. Data Pre-processing
The RECOLA dataset is constructed such that audio signals from each of the participants are
separately available together with their physiological signals and emotion labels. Separate
audio channels are provided for each participant during the interaction, thereby eliminating
the need for audio diarization. Further, the audio signals are time synchronized with the phys-
iological signals. This reduces the burden of pre-processing and outlier removal. Additionally,
the available dataset is without any erroneous values. Therefore it is readily available for use.

Data Segmentation
From the measured data shown in Table. 4.7, the sampling rate of physiological signals is 250
Hz, while the sampling rate of annotations as derived from Table. 4.8 is 25 Hz (with hop-size
of 40ms). To obtain a favourable segment size to perform classification, the signals and the
annotation labels are segmented at 400 ms. To do this, the gold standard annotation labels
provided in the dataset, are first converted to binary labels by a simple mapping function and
then averaged over 400 ms. It may be noted that 400ms is chosen since there are no changes
in the obtained binary annotation labels which have a change under this segment length. This
way the labels are preserved. The original quantization is that of 25 Hz, which is now converted
to 2.5 Hz. Thus, one sample consists of 400ms of data. Consequently, Physiological data
is also binned into samples of 400ms of data based on the provided timestamps. A cross-
verification of annotation labels is performed to ensure the correct assignment of labels. In
this way, adequate sample length is obtained without compromising on annotation accuracy.

Since the data from RECOLA is originally meant for a regression task, no further segmen-
tation is made since this would yield complexities in the assignment of annotation labels over
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different segment lengths.

4.3.2. Selection of Participants
The RECOLA dataset is provided with accurate data across modalities. Here for brevity, out
of the 27 participants across the dev, train and test sets, 18 are selected from dev and train
sets. Out of the 18 participants, the conversion to binary labels together with segmentation
as discussed in the previous section results in a data split between the valence and arousal
labels. this is summarized in Table. 4.9. Out of the available dataset, participants train3 and
train8 are rejected from the experiments owing to very few samples in one of the labels.

Table 4.9: Annotation statistics of selected participants for RECOLA

Participant 400ms Segmentation
Label Type Arousal Valence

Label 0 1 0 1
dev1 431 318 136 613
dev2 285 464 47 702
dev3 301 448 71 678
dev4 639 110 495 254
dev5 487 262 132 617
dev6 373 376 45 704
dev7 527 222 349 400
dev8 219 530 91 658
dev9 515 234 156 593
train1 524 225 304 445
train2 233 516 168 581
train4 338 411 214 535
train5 542 207 188 561
train6 324 425 56 693
train7 216 533 139 610
train9 202 547 47 706

4.4. Conclusion
This chapter introduced and presented the datasets used to explore the research questions
posited in this thesis. We first summarized the large proportion of emotion recognition corpora
present in literature across modalities. Thereafter, a subset of the datasets is selected and
analyzed for suitability to the tasks of this thesis. K-EmoCon and RECOLA are found to be the
most suited datasets which are useful in fulfilling the experimental requirements for answering
the research questions. Next, each of the datasets is described in detail. The necessary
preprocessing steps for the analysis are presented, together with filtering of participants with
erroneous data. This provides the two prepared datasets with two unique settings common to
IVAs in households. These datasets are used to train the proposed architecture discussed in
the next chapter.
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Proposed Architecture

We finally discuss the architecture of the proposed model. The motivation for multimodal
embeddings stems from the research questions and motivations developed in Section 1.3 and
Section 1.2. The architecture must operate in conjunction with an IVA online. The nature of
interactions is described in Section 1.1. Given the limited amount and atomicity of interactions
with the IVA, the proposed model utilizes few-shot learning techniques.

This chapter is organized as follows. First, in section 5.1 we describe an overview of the
proposed architecture of Multimodal Siamese Networks for Emotion Recognition. Then, we
discuss the few-shot learning backbone. Then, we present the individual feature embeddings
which form the core of the overarching embedding of Siamese Networks. Here, four embed-
dings from speech, EDA and PPG signals are presented. Then, we discuss the contrastive
loss used for the optimization of the model.

In the next section 5.2, the evaluation metrics used for the analysis of the results are briefly
presented together with the motivation of their use specifically for this thesis.

In the final section 6.1, the experimental setup for testing the proposed architecture on
the two datasets is presented in detail. This also involves the pre-processing steps for noise
imputation, feature generation and dataset splitting. A pipeline setup for the complete process
is described concluding with the implementation environment.

5.1. Proposed Architecture
The architecture proposed to solve the research questions posed in section 1.3, is devised
considering several problem characteristics and constraints. The original problem of emo-
tion recognition by IVAs using speech and physiological signals can be decomposed by input
sources. The audio is input either with IVAs or smartwatches, while the physiological signal is
input solely with smartwatches. Therefore, the application in question requires adaptation to
speech and physiological signals of any arbitrary sampling rate. The sampling rates of these
signals present the first design bottleneck since they are often low and non-uniform across de-
vices. On one hand, the audio recorded by the IVAs is of very high sampling rates of the range
of several kiloHertz (for example Amazon Alexa has a sampling rate of 44.1 kHz). While, on
the other hand, the physiological signals have quite low sampling rates of under 100 Hz (Sam-
sung Gear smartwatch sampling rates for PPG signal is 100 Hz). This differential sampling
rate requires the processing of samples of these two signals independently. Further, feature
extraction from both these signals must cater to the common embedding space desirable for
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emotion classification. In addition to the sampling rates, another important aspect of the input
signals is that the audio signals are available in short segments typically interactions with IVAs
and smartwatches last for 5-7 seconds or typically 4 commands per instruction as summarized
from the literature review presented in section 1.1. This constrains training size and the unit
data sample size. Therefore, an architecture must accommodate a sample length appropriate
to the sampling rates and duration described so far.

For a training set {Ds} for each of the N classes, K samples from each of the N classes
are used for training. The embedding model is optimized by maximizing the performance
of these classes. The rest of the samples are used to test the model. A good generalization
across all classes is achieved this way. Popular metric learning methods are shown in Fig. 5.1.
These are Siamese networks, prototypical networks, and matching networks. The metric of
each of these methods is the distance between input samples, however, the difference lies
in the optimization objective. For Siamese networks, contrastive loss minimization is the ob-
jective, while for Prototypical networks, the update and classification lie with the decision of
class prototypes generated based on the nearest neighbour mechanism. Matching networks
compare similar data samples individually from the support set to perform classification with
a sample on the query set. Prior work from the literature review of a few shot emotion recog-
nition algorithms in section 3.3 is the basis of using the Siamese network backbone. This is
explained briefly in the next sub-section.

(a) Siamese Network (b) Prototypical Network (c) Matching Network

Figure 5.1: Metric Learning Method Architectures (adapted from [111])

Siamese Networks
Siamese Networks [45] is one of the most popular Metric Learning Methods. These operate on
the principle of similarity between two samples and predict a probability of whether they belong
to the same class or not. A typical architecture is shown in Fig. 5.2. For two samples xs,1, xs,2
in a support set Dsupport, a mapping is generated using the same embedding function f . The
distance metric between the two embeddings is calculated using Euclidean distance given by
equation 2.5. Thereafter, this distance is used to optimize the network using a contrastive loss
function with the labels y given by –

L(y, dl2) =
1

2
(1–y) · d2l2 + y ·max(0,m− dl2)

2 (5.1)

Where m is the loss margin. The Contrastive loss is a distance-based loss that forces
similar data points (of the same class) to have a low Euclidean distance and dissimilar data
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points (from different classes) to have a higher Euclidean distance. Contrastive loss is further
discussed in the chapter in section 5.1.4. Siamese networks are the backbone of the proposed
multimodal Siamese network architecture. The proposed architecture extends the concept
from mono-modal (image) embeddings to multi-modal embeddings. In the next sections, we
describe the components step by step.

Figure 5.2: Siamese Network Architecture [45]

5.1.1. Multimodal Siamese Network
The proposed Multimodal Siamese Network is an extension of its single modality variant.
Specifically, the architecture makes use of the modality-specific embeddings introduced by
the authors in [38]. The authors introduce the concept of emotion embeddings. To reinforce
the concept of embeddings for few-shot learning, the independent embedding functions are
created per modality to create a final joint-multimodal embedding. In this network, 3 modalities
contribute to the emotion recognition task. After extracting audio and physiological descriptors
from the standardized pre-processing steps, three modality-specific embeddings are used to
project unimodal descriptors to a subspace which contributes to the final embedding in ques-
tion.

As already discussed earlier, Siamese networks are composed of a twin embedding struc-
ture with shared weights. The network arms have embedding functions to map the inputs to
a common sub-space. This embedding is a high-level feature abstraction of the input. The
embedding structure can be chosen to be any arbitrary function that optimizes this loss. This
idea is multiplexed across three modalities to create the desired multimodal embeddings in
question. This allows signals of any arbitrary sampling rate to be embedded in the desired
space as they are segmented to be simultaneously input to the architecture. Further, the in-
dependence of embeddings preserves the individual contribution of signal features. The two
twin networks have the same parameters and weight updates during training. The sharing
of weights between arms ensures that two similar inputs are not mapped to very disparate
locations in the sub-space.

Mathematically an embedding function fm for a modality m maps a sample input from
that modality onto a shared coordinate space RE . If x(·), e(·), and y(·) represent input feature,
embedding vector and output prediction of a unimodal input, then three different strategies of
feature fusion can be formed. For features from two input sample features x1 and x2, for early
feature fusion combines features as [x1;x2]; for decision level fusion a weighted averaging is
considered ( ay1,+by2; where a, b are weights over decisions y1, y2) and model level fusion
suggests a concatenation of embeddings [e1; e2]. Here we use the model level fusion strategy.
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As illustrated in Fig. 5.3, the arms comprise four different kinds of embeddings – two em-
beddings for two different sets of audio features, one embedding for the EDA signal and one
embedding for the PPG signal. We use Mel Frequency Spectrograms, the extended Geneva
Minimalistic Acoustic Parameter Set (eGeMAPS), raw EDA signal and raw PPG signal as in-
puts to the four feature embeddings. Each of the embeddings can be considered as a black
box that maps the input signal from a modality through a specific mapping. All the embed-
dings are independent of each other. Each of these embeddings generates a feature vector
of size 64. In the proposed model, we use model level fusion with the concatenation of embed-
dings to fuse information of different modalities. Thus, all individual embeddings of size 64 are
concatenated to generate a multimodal feature vector of size 256. This concatenated feature
vector represents the condensed information from all four modalities for a single sample set.

Following the generation of 2 such embeddings from the two arms of the Siamese Net-
work, the similarity between the two vectors is measured using Euclidean Distance Metric as
shown in Eq. 2.5. This distance measure is then converted to a prediction using a fully con-
nected layer with one output and a sigmoid activation. This converts the distance metric to a
probability distribution of the input over similarity (1) or dissimilarity(0).

The embedding functions are designed to take signals of any arbitrary length as inputs
and map them into feature vectors of size 64. This allows the model to work universally with
audio of any length. This model architecture is uniform across experiments with different audio
lengths, therefore allowing a comparison of performance based on audio length. In the next
sections, detailed architectures of each of the embeddings are discussed. The optimization
of the model is performed using the Contrastive Loss which is discussed in the later section.

5.1.2. Audio Embeddings
Audio embeddings for the proposed architecture consist of two types. These two embeddings
represent the features discussed in chapter 3 earlier - namely the prosody, spectral and cep-
stral features. The structure of the two audio embeddings is derived from prior work found in
the literature. The following sections discuss the two embeddings in detail.

eGeMAPS embedding

Figure 5.4: Embedding Architecture for eGeMAPS
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For the spectro-temporal features, the extended Geneva Minimalistic Acoustic Parameter
Set (eGeMAPS [33]) is extracted using the openSMILE toolkit [32]. This results in a set of 88
acoustic features per sample segment. The features for sample audio, generate a vector of
size 88 which acts as input to a fully connected neural network. This embedding consists of
two fully connected layers with 32 units each with a ReLU activation function followed by a
flattening layer. Another fully connected layer of size 64 maps the flattened input to a vector
of size 64. The architecture is shown in Fig. 5.4. This embedding summarizes the prosody,
spectral and amplitude features of the audio sample. Therefore, this embedding is comple-
mentary to the Mel-frequency spectrogram embeddings presented next. Since these features
are speech specific, they make the composite audio embeddings robust against background
noise.

Mel-frequency Spectrogram embedding
To capture the cepstral features of the audio sample, Mel-frequency spectrograms are used.
As shown in section 3.1.2, Mel-frequency spectrograms are superior to power spectrograms
in describing the frequency distribution of audio signals due to the Mel-band scale. Therefore,
the spectrograms thus generated are descriptors specific to the human auditory system. It may
be noted that this also preserves the audio features against disruption from noise as the noisy
features are dispersed across higher frequency bands which are omitted in the Mel-bands.
This makes the Mel-frequency spectrograms very powerful features for emotion recognition
from audio samples which have background noise.

The embedding function for Mel-frequency spectrograms is a Convolutional Neural Net-
work. Several popular embeddings are found in the literature for speech applications. These
include architectures adapted from AlexNet, VGG Net, Inception V3 and ResNet-50 [39] [87].
Each of these architectures has millions of weight parameters and require 10s of GPUs and pa-
rameters servers to compute and optimize embeddings. However, we consider embeddings
with a much smaller number of parameters and hence the proposed architecture of spectro-
gram embeddings is a smaller and less dense network. Owing to the limited amount of data,
it is also ideal to scale-down models to prevent over-fitting.

Mel spectrograms are used for speech emotion recognition by the authors in [66]. This
architecture is used as a base architecture for embedding with several modifications. In the
current architecture, three composite convolutional blocks are used followed by fully connected
blocks. Each of the convolutional blocks consists of a two-dimensional convolution operation
followed by batch normalization, activation and max-pooling layers. The activation function
used is ReLU. The first convolutional block contains 96 kernel units and a kernel size of 11 x
11 and a stride of 4 x 4 with a ReLU activation. This layer downsizes the input spectrogram
to its feature maps to learn details of the complete spectrogram. To average out the feature
generations, a max pool layer of pool size 2x2 and stride 2x2 follow is used in this block. The
second convolutional block consists of 256 filters of kernel size 5x5 and stride 1x1 with a ReLU
activation. This layer learns the finer details from the previously generated structural feature
maps. A max pool layer of size 2x2 and stride 2x2 averages the activation to a lower sized
map. Finally, the third convolution layer with 64 kernels of size 3x3 again down-samples the
finer feature maps from the previous layer to generate abstract feature maps. Next, the feature
maps thus generated are flattened to given a long vector of feature representations. Finally,
two fully connected blocks with 4096 and 500 units respectively follow the convolutional blocks.
These layers have a ReLU activation. These act as reinforces of the learned features to retain
leaned features and condense them to a smaller feature vector. Finally, a fully connected layer
of size 64 maps the complete vector to size 64 giving the final embedding. The architecture
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Figure 5.5: Embedding Architecture for Mel Spectrograms [modified from [66]]

discussed here is shown in Fig. 5.5. This simplified architecture generates a good feature
representation with far fewer parameter training.

5.1.3. Physiological Embeddings

Figure 5.6: Embedding Architecture for EDA and PPG signals

Physiological signals aremapped to embeddings using deep recurrent networks. The deep
physiological embedding is designed according to the physiological embeddings proposed by
the authors in Han et el. [38]. The authors use GRU networks as the basis of encoding raw
segmented physiological signals to embeddings. In the current work, both the embeddings
are identical. The embeddings consist of two GRU layers of 64 units each. These layers have
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a hyperbolic tangent activation function. This activation is used to stabilize the performance
of GRUs. Following the GRU encoding, the outputs are flattened to generate a unit dimen-
sional feature followed by a dense layer restricting the output to 64. The embedding directly
generated from the physiological signal is beneficial in this case, as the proposed framework
is constrained with signals of low sampling frequency. This prevents the use of statistical and
frequency-based features for short segments of signals. In Han et al. [38], the authors point
to the simplicity of GRUs over LSTMs with fewer parameters as an advantage while generat-
ing feature representations. The GRU layers are used to model physiological features from
signals that persist over time thus retaining the temporal characteristics of the signal. The
embedding structure is illustrated in Fig. 5.6.

5.1.4. Contrastive Loss
Contrastive Loss, introduced in Haskell et al. [37], is a similarity metric that uses the com-
parison of embeddings instead of actual labels to measure loss. It operates on a pair of data
points instead of individual ones. Consider a sample embedding ea whose label is known. For
another embedding ep, the pair [ea, ep] is said to be similar in a metric to be learned if their
corresponding class labels are the same. Consequently, for an embedding en, the pair [ea, en]
is said to be negative if the class labels of the two are different. The objective of the contrastive
loss function is to lean representations that yield a small distance d between similar pairs and
a large distance between dissimilar pairs. Effectively, this loss function forces the representa-
tions to give 0 distance between embedding pairs with the same labels and a distance greater
than a marginm for embedding pairs with different labels. The choice of the distance function
d can yield different results. Euclidean distance is most commonly found in literature and is
used here as the distance metric. For two embeddings e0 and e1 with a binary flag label y
which is 0 for a negative pair and 1 for a positive pair, this loss is given by –

L(e0, e1, y) = y ∥e0 − e1∥+ (1− y)max(0,m− ∥e0 − e1∥) (5.2)

Figure 5.7: Illustration of Contrastive Loss and margin between samples

In the proposed architecture, the embeddings e0 and e1 are the composite embeddings
generated because of the concatenation of the four embeddings discussed in the previous
sections. As shown in Fig. 5.3, the four embeddings of dimensions 64 × 1 form three modal-
ities are concatenated to generate a composite embedding of dimension 256 × 1. Euclidean
distance is used as the distance metric in the proposed architecture to compute the contrastive
loss between the two embeddings. The network outputs the prediction on the comparison of
the two embeddings giving a probability similarity flag (denoted by 1) or a dissimilarity. This
characteristic similarity is modelled for both arousal and valence identically. The same model
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can be used for both arousal and valence dimensions.

5.2. Evaluation Metrics
In this section, the evaluation metrics used to analyze the performance of the proposed ar-
chitecture are introduced. The focus of the discussion is metrics useful for the evaluation
of Siamese networks. In the following sections, we list the evaluation metrics used in the
experiments in this thesis. These are effective and widely-used criteria for assessing the per-
formance of few-shot learning methods in emotion recognition tasks in literature.

A. Residual Contrastive Loss Residual Contrastive loss is one of the basic measures of
performance for Siamese networks. This is because it directly provides a measure of similarity
depending on the decided margin set for the training of Siamese networks. Contrastive loss
of the query set compared against the support set gives the network’s ability to generalize and
minimize on new unseen samples. Contrastive loss is given by the equation 5.2.

B. Weighted Binary Accuracy As described in Chapter 4, the annotation labels of the
datasets are converted to binary labels to simplify the classification task to a binary one. The
small and imbalanced datasets require a weighted metric for the comparison of classification
performance. The datasets have a large disparity in distribution for both arousal and valence
dimensions along both high and low categories is non-uniform. Therefore we use weighted
binary accuracy as one of the metrics of measuring model performance. In the current work,
both support set and query set are evaluated for weighted binary accuracy.

C. Weighted Precision, Recall and F1 Score Some of the prior works ([64] [12] [6]) have
utilized the binary-weighted Precision, Recall and F1 score metric with their methods. In the
current work, these are used to provide a comparison of the performance of the model against
various noise compositions and support set sizes.

5.3. Conclusion
In this chapter, we presented the proposed architecture to answer the research questions of
this thesis. The Multimodal Siamese Network is presented with details of the embeddings
from various modalities and features. The four different embeddings which result in equidi-
mensional feature vectors are explained in detail. Finally, the concept of Contrastive loss is
discussed which is used as the loss metric for optimization of the Siamese Network.

Next, the evaluation metrics which will be used to assess the performance of the model
are discussed. These include contrastive loss, weighted binary accuracy, AUC score and
weighted F1 score. In the next chapter, the experiments involving the two datasets are de-
scribed in detail together with the results.
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6
Experiments and Results

This chapter presents the implementation details of experiments associated with the two se-
lected datasets on the proposed architecture and discusses the results obtained. Firstly the
experimental set-up of the complete pipeline is presented in section 6.1. This section details
the various steps associated with noise imputation in sub-section 6.1.1, followed by feature
extraction in sub-section 6.1.2. Next, the data set split process is explained in section 6.1.3.
Finally, the model implementation details are shown in 6.1.4.

In the subsequent section, we present the complete experiments and results with the K-
EmoCon dataset in Section 6.2. In section 6.2.1 the mean baseline results for this dataset
are discussed. The results of this dataset with imputed noise is presented in section 6.2.2. Fi-
nally, the results of individual participants are presented in section 6.2.3. Next, in Section 6.3,
the complete experimental setup and analysis of RECOLA are presented. The organization
of sections follows from the results of K-EmoCon. Firstly, in section 6.3.1 the mean baseline
results for this dataset are discussed. The results of this dataset with imputed noise is pre-
sented in section 6.3.2. Finally, the results of individual participants are presented in section
6.3.3. For consistency in the discussion, all the sub-section discussions are organized by the
specific performance metric in question.

Finally, in section 6.4, we compare the proposed model with the state-of-the-art models
found in the literature. This concludes the chapter on results.

6.1. Experimental Setup
The main research question posited in Section 1.3 revolves around the proposed Multimodal
Siamese Networks. The architecture suited for the problem was discussed in the previous
chapter. In this chapter, the related pertinent sub-questions are answered using the selected
datasets. This forms the ground hypothesis for the experimental setup. Here, several pa-
rameters need to be tested namely – the number of data samples to achieve state-of-the-art
performance, the effect of segment length and the impact of real-world noise. These condi-
tions are tested across two settings of the IVA with the two selected datasets.

Following the segmentation of datasets, noise imputation is carried out on the audio signals
to simulate the required noise settings of a household. Then, the feature extraction process
describes the procedure to create necessary inputs for the embeddings. Then, actual experi-
mental tasks are treated per dataset separately. This pipeline is shown in Fig. 6.1.This setup
is described in the following sections.

50
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6.1.1. Noise Imputation
To analyze the performance of few-shot emotion recognition in real-world settings, the signals
must be analyzed in conjunction with background noise. To simulate this setting, noise sam-
ples from the DEMAND dataset are imputed in audio signals. The length of the audio samples
from the DEMAND dataset is multi-channel, however, only a single channel is used to impute
the participant audio sample with noise. This setup is based on the conjecture that the noise is
a single source and unidirectional, and does not involve any cross-talk amongst multiple noise
sources. While this assumption does not capture the actual setting of an IVA, where multiple
background noises are present around the device, it simplifies the problem setup. Further, the
effect of cross-talk noise on the performance of the proposed model is beyond the scope of
the current study. The samples are of the length of 5 minutes. Since most participant audio
lengths are around 5 minutes, therefore, the noise sample can be overlayed directly to the au-
dio of the participants. The imputation is performed without applying power gain to the noise
signals. This is done using the pydub [78] python toolkit. This means the participant audio
signal is completely overlaid with the noise signal in an end-to-end manner. Four noise cat-
egories are used in this process, namely DKITCHEN, DLIVING, OOFFICE and OHALLWAY. This
process yields four audio signals per participant for each dataset, in addition to the processed
audio signal obtained from the dataset.

6.1.2. Feature Extraction
After the data pre-processing steps described in chapter 4, the corresponding signal features
are generated. Feature generation is performed on audio signal alone since the architecture
aims to generate GRU embeddings directly from PPG and EDA signals. For this, the phys-
iological signals (PPG and EDA) from the selected participants are padded to the specific
segment lengths directly from the raw data to generate the signal inputs for the embedding
architectures.

Audio features described in Section 3.1.2 are used in the proposed architecture. The
classes presented – prosody, spectral, and cepstral features are generated. Owing to the
superiority of mel-frequency spectrograms against power spectrograms to represent human
auditory responses, this cepstral spectrogram representation is used as one of the inputs for
the embeddings. Mel frequency spectrograms are generated for the sample length used in the
respective datasets. Mel-filter banks corresponding to an FFT window length of 2048 samples
with a hop-length of 512 samples is generated. The choice of Mel banks is made depending
on the segmentation of samples and to maximize the representation of the sample information
without leading to empty frames. This is summarized in Table. 6.1.

Table 6.1: Hyper-parameters for Mel Frequency Spectrograms

Dataset Sample length Mel-filter banks Optimal Value
K-EmoCon 1s [64, 128, 512, 1024] 512

RECOLA 0.4s [64, 128, 512, 1024] 128

For K-EmoCon, the number of Mel banks used is 512, while for RECOLA, the number of
Mel banks used is 128. The Mel filter banks generate a Mel-frequency spectrogram image.
To generate the mel-frequency spectrograms from the audio samples, the off-the-shelf audio-
processing library librosa [58] is used. The resulting image of the spectrogram is read using
imread as a 4 channel image to a numpy array representation of size [256 × 256 × 4]. This
image is used as feature input for the cepstral embedding of the proposed architecture.
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Aside from the cepstral embedding, the temporal and spectral information of the audio
signal is encoded through the encore of features discussed in Section 3.1.2. This includes
all the frequency-related parameters, energy-related parameters, temporal features, spectral
dynamics, and frequency bandwidths. These are complemented with the arithmetic mean,
coefficient variations and functional of each of the features. To capture all the mentioned
features, the audio feature-set described by the extended Geneva Minimalistic Acoustic Pa-
rameter Set (eGeMAPS) [33], from the openSMILE toolkit [32]. The eGeMAPS parameter set
consists of formerly discussed features together with their functional, arithmetic mean and co-
variance. This results in 88 features per sample. These parameter sets have been evaluated
for both the binary valence and arousal labels and have been found to perform substantially
well on the existing datasets. These form the spectro-temporal audio feature embedding of
the architecture. The complete list of the selected features is provided in the Appendix A.

The above featurization for audio signals is carried out for 5 different settings – one for the
participant audio signal as is, and four other signals with four categories of noises mentioned in
Section 6.1.1. This process is repeated for both datasets. Thus, for K-EmoCon, this process
results in 5 sets of features for analysis with the sample segmentation of 1s. For RECOLA,
there are 5 different sets of features with a sample segmentation of 400ms.

6.1.3. Dataset Split
The training and testing setup for both datasets consists of common steps. From the feature
generation process discussed in Section 6.1.2, participant dependent features are generated
for respective datasets. The four sets of data streams corresponding to the different modalities
– PPG, EDA, Mel-Frequency spectrograms and eGeMAPS feature set are constructed. These
are inputs for the four different embedding functions described in Chapter 5.

1. Support and Query Set Creation: For a given size of K shots for the Support set, K
samples of each of the features are selected from each of the label categories [0, 1].
This forms the N x K Support Set. The remaining data from the available feature set
per participant acts as the Query Set which is unseen in training. The selection of the
Support set samples is randomized to avoid bias in the model since the samples are
time-sequenced. A good generalization is obtained in this way by random sampling
across the whole duration of the audio signal. Following the proposed setup of 2.3.1, for
the binary emotion (specifically arousal or valence) classification task T , a feature set
D = {Ds, Dq}, is split into Support set Ds = {(xsupport, ysupport)} of size I and contains
I = N x K samples, and a Query set Ds = {(xquery, yquery)} of size D − I contains the
remaining D \ Ds samples. This also ensures, pair creation for the support and query
sets is independent.

2. Creation of Pairs: As proposed earlier, theMultimodal SiameseNetwork requires paired
data. For this, pairs are created within the support and query sets, with 2 different labels.
For samples having the same label i. e., either both 0 or 1, the feature pairs are labelled
1, while for samples with dissimilar labels, the feature sets are labelled 0. These newly
assigned labels are not to be confused with the original labels for valence and arousal
obtained from the dataset. The new labels of 1 and 0 are defined by convention popular
in literature and correspond to the similarity or dissimilarity of pairs, respectively. Multi-
modal feature pairs are constructed using the index of the generated sample. One input
training sample for the Multimodal Siamese network is a paired sample set obtained as
a result of the process described above.
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6.1.4. Model Implementation
The architecture for the experiments is implemented in Tensorflow v1.0 with the keras library.
The architectures are trained on a GeForce RTX 2080 Nvidia GPU. For each dataset, training
hyper-parameters are identified using a simple test described below. The hyper-parameters
include learning rate and batch size. The architectures are trained using the Adam optimizer.

Training Hyper-parameters
To find the most optimal learning rate and batch size, a learning rate scheduler is used based
on the learning rate range test presented in Smith [91]. Here the learning rate is gradually
increased over each batch of training on a logarithmic scale. The implementation is tuned to
evaluate contrastive loss values of the query set over the learning rate range to find the most
optimal architecture. This process is repeated for several batch sizes resulting in learning rate
plots for multiple batch sizes. The learning rate and batch-size corresponding to the minimum
query set loss is selected as the optimal set of values. This provides an objective way to
reduce the search space and find optimal parameters quickly.

6.2. Experiments with K-EmoCon
For the first task representing the scenario of IVA listening passively to conversations, experi-
ments are performed on K-EmoCon. As described in the previous sections, the pre-processing
of the K-EmoCon dataset gives 4 selected participants with 1s sample. The samples are pro-
cessed with the processes described in the previous sections to obtain the audio features.
Thereafter, the segmented dataset is split into support and query sets followed by pair gener-
ation within these sets.

Support Set Size
To answer the second research question, the support dataset size must be analyzed. This is
determined by the values of K. The rationale for the choice of K is based on the duration of
a unit interaction with an IVA/smartwatch obtained from the literature. As found in section 1.1,
this is found to be 5− 7s [101] [59]. For our experiments, this is rounded off to 10s to cater
to the design which is taken as the baseline interaction i. e., one shot of interaction. Further,
the range of shots is chosen to denote multiples of this interaction in the range [1, 2, 3, 4, 5, 6].
This duration also helps in designing the sample count of N ×K across the various values of
K chosen. Given the data samples shown in Table. 4.6, the value of the support set size i. e.,
K, with their relation to the interactions and the percentage of participant dataset is shown in
Table. 6.2. It is important to note that, for K-EmoCon, the processed dataset samples are of
duration 1s, and the setup described here, is suitable for this sample duration only. This value
of K is the basis for the first set of experiments performed on the selected participants. The
models are trained separately to predict binary valence and arousal classes.

Table 6.2: Support Set Size for K-EmoCon

Variable Values
K 5 10 15 20 25 30
N ×K 10 20 30 40 50 60
interactions 1 2 3 4 5 6
% of Data 6.67 13.33 20 26.67 33.33 40
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Learning rate Range Test for K-EmoCon
The results of the learning rate range tests for samples from K-EmoCon are summarized in
Table. 6.3. for arousal and valence respectively. The optimal batch size for both arousal and
valence models is 16.

Table 6.3: Hyper-parameter Tests for K-EmoCon

Model Hyper-
parameter

Range of Values
tested

Best value/ Opti-
mal Range

Arousal learning rate [1e−6, 1e−2] 2e−4

batch size [8, 16, 32, 64] 16

Valence learning rate [1e−6, 1e−2] 2e−4

batch size [8, 16, 32, 64] 16

• Arousal Model: The optimal batch size for arousal models is 16 as shown in Fig. 6.2.
The reason for choosing 16 as batch size for the Arousal model is that this batch size min-
imizes the contrastive loss for not only the query set which is the target of the algorithm
but also the support set, which is a visually objective metric for analysis.

• Valence Model: Similarly, this applies to Valence as well. The corresponding minima
of the trajectory are selected as the working learning rate. This is backed by the fact
that the model with 16 as batch size also has the maximum accuracy for both support
and query sets. As visible in Fig. 6.3 the graph for batch size 16 gives the minimum
contrastive loss amongst all the tried batch sizes.

Figure 6.2: K-EmoCon : Learning-rate Range Test for Arousal Model

Figure 6.3: K-EmoCon : Learning-rate Range Test for Valence Model

In the following sections, experiments for the four selected participants are discussed.
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6.2.1. Results with Baseline Case
In this section, we present the baseline results for the K-EmoCon dataset with our proposed
Multimodal Siamese Network. Table. 6.4 shows the results for the arousal and valencemodels.
The values shown here are the mean values obtained across the four participants for each
value ofK. The table includes the evaluationmetrics discussed earlier in section 5.2 - including
residual contrastive loss (for support set (Ls) and query set (Lq) pairs), binary classification
accuracy (for support set (As) and query set (Aq) pairs). The precision (P ), recall (R), f1 score
(F1) are calculated solely on the query set. Except for the residual contrastive loss, all the
other metrics are expressed in percentage. The detailed Baseline results for K-EmoCon are
shown in Section B.1.

Table 6.4: K-EmoCon : Performance Metrics for Baseline Models

Arousal Model Valence Model
K Ls Lq As Aq P R F1 Ls Lq As Aq P R F1

5 11.02 9.36 93.75 54.06 55.52 53.42 48.24 6.38 5.47 88.75 51.89 58.65 51.36 42.82
10 7.95 6.72 88.75 56.51 56.66 56.45 55.95 0.11 0.25 98.12 60.75 61.42 60.75 59.61
15 5.40 4.66 94.16 55.02 54.87 53.58 50.89 1.74 1.72 94.16 53.69 56.57 53.69 47.42
20 1.37 1.25 96.56 63.97 62.28 56.97 52.80 0.04 0.27 99.06 60.88 60.41 60.11 59.58
25 0.12 0.30 89.75 61.47 61.85 56.67 53.42 0.10 0.24 91.25 66.91 60.65 60.05 59.70
30 3.55 2.77 89.16 57.25 57.41 57.25 56.71 0.10 0.26 97.91 64.26 62.28 60.89 59.89

This baseline result is used to identify performance trends across the participants for vari-
ous values of K. This shall help in establishing possible suggestions towards answering the
research question for finding the optimum number of samples for state-of-the-art classification.
Table. 6.4 highlights the value of K that provides the best average binary classification accu-
racy on the query set for both arousal and valence models. Since these values are averaged
over the participants, these provide a general trend of the performance of the model for the
dataset. Several observations can be made from these results. To compare the mean per-
formances shown in Table. 6.4 across participants, these results are complemented with line
plots showing the aforementioned mean values with the confidence interval across the four
participants. These are discussed in the following sections.

Figure 6.4: K-EmoCon : Distribution of Query set Contrastive Loss (Lq) for Baseline Model across Participants
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A. Residual Contrastive Loss
Firstly, we observe the trends in mean residual contrastive loss across the value of K for the
query set, in Fig. 6.4. The figure shows a line plot showing the spread of contrastive loss
values across all the participants for the query set. As expected, an increase in the number
of samples K decreases the overall loss as well as the skewness of loss across participants
indicating homogeneous performance. An exception here is the arousal model for the values of
K = [30] with a larger spread in the loss. This reinforces that the model learns more and more
as the support set samples K are increased, for both the emotion dimensions - arousal and
valence. This plot also suggests that asK is increased, imbalances within the labels amongst
participants have little impact on the model’s ability to reduce the residual contrastive loss.

B. Binary Accuracy

Figure 6.5: K-EmoCon : Distribution of Query set Binary Accuracy (Aq) for Baseline Model across Participants

The mean binary classification accuracy of the arousal and valence models for the base-
line case, for the query set, are shown in Fig. 6.5. What stands out in this figure is the general
pattern of increase and subsequent decrease in binary classification accuracy for both the
arousal (with maxima at K = 20) and valence models (with maxima at K = 25). This drop
in accuracy, past maxima may be reasoned by the fact that as the number of input samples
increases, after a certain threshold, the model starts over-fitting on the query set. This sug-
gests the inadequacy of the proposed architecture for learning from the increased number of
samples. It is also visible, that the spread of accuracy values increases widely for higherK, as
against lower values of K. This spread is indicative of the differences in the label distribution
between the different participants. It can be concluded from these plots that residual con-
trastive loss cannot solely determine the model performance objectively, nor does it measure
the generalizability of the Siamese networks.

C. Precision, Recall and F1 Score
Finally, the line plot of precision, recall and f1 score for the baseline case are shown in Fig. 6.6.
It should be noted that the precision, recall and f1 score values plotted here are the mean
weighted scores across individual participants, and are thus unbiased of the underlying label
distributions of the participants. It is observed that the mean values of precision, recall and
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Figure 6.6: K-EmoCon : Distribution of Query set Precision (P ), Recall (R) and F1 Score (F1) for Baseline Model

f1 score, across the participants, remain largely around 55%. Despite the higher prediction
accuracies, the model shows discrepancies in learning across the (generated) pair labels. In
other words, the model predicts one of the labels, more correctly than the other. The spread
of the values also reiterates this discrepancy. In general, the models have high precision, as
compared to recall, which in turn is higher than the f1 score. Here, the F1 scores deviate
from lying between the precision and recall values since we use the weighted f1 score values
for each of the participant cases to accommodate the label imbalance. For both arousal and
valence variables, positive predictions tend to be more accurate, however, the actual relevant
prediction is lower. Moreover, the f1 score indicates objectively the poor performance of the
models for lower values of K. For instance, K = [5, 15], is a practically insufficient amount of
data, for reliable arousal and valence dimensional classification. Both the arousal and valence
models barely learn anything and perform similar to or worse than a random classifier with f1
scores less than or around 50%. The highest values of f1 scores are obtained for K = 30 for
both arousal and valence models (highlighted in red). It can be seen that both K = [25, 30]
result in favourable values of precision, recall and f1 score, denoting the generalized learning
capability of the model being achieved at around these values of K.

In the next section, we briefly present the performance of the proposed architecture with
different types of embedded noises.

6.2.2. Results with Embedded Noise
This section discusses the performances of the models for the prediction of arousal and va-
lence dimensions in presence of different types of noises. The audio samples are corrupted by
a noise sample at zero gain indicating that the overall power of the audio signal is maintained.
This section, therefore, provides the basis for comparing model performances while examin-
ing the effects of noise and support size, simultaneously. This analysis is presented similar to
the baseline results, focusing on contrastive loss, binary accuracy and the metric of precision,
recall, f1 score individually. Table. 6.5 summarizes the performances of the dataset with the
audio segments corrupted with the embedded noises. To concisely discuss and present the
results, the mean performances across all participants are described in the table. Mean per-
formances are described for each of the embedded noises separately. Line plots are used to
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compare and analyze performances across different embedded noises. A detailed look at all
the results for individual participants is available in Appendix B in Section B.2.

A comparative discussion of the impact of the different types of impregnated noises on the
model performances can now be presented. To cohesively present the results, line plots with
confidence bars are used representing the spread of the values (across participants) around
the mean values. The plots in the following sections are created using Table. 6.5. Throughout
the discussion, we again focus on the mean values of the performance metrics and discuss
the skewness of the values across this mean. This spread is the contribution of individual
participants.

Table 6.5: K-EmoCon : Performance Metrics for different embedded noises

Arousal Model Valence Model
K Ls Lq As Aq P R F1 Ls Lq As Aq P R F1

DKITCHEN

5 9.55 8.15 93.75 54.59 56.09 54.59 50.80 8.65 7.34 91.25 53.83 56.24 53.83 49.05
10 5.37 4.56 93.12 56.07 57.01 56.07 53.93 9.68 8.25 96.25 54.76 54.49 53.77 51.42
15 9.70 8.16 92.50 57.58 59.65 57.58 55.50 6.52 5.67 93.75 53.17 55.62 53.17 48.47
20 0.14 0.31 96.25 61.90 62.37 56.47 52.23 0.10 0.32 92.81 55.06 52.79 52.78 52.26
25 2.61 2.08 86.00 59.18 58.72 56.03 53.69 0.12 0.31 94.25 60.07 61.32 58.66 54.87
30 0.08 0.26 99.58 59.16 56.07 55.92 55.61 7.17 5.66 94.79 62.82 63.12 60.57 58.64

DLIVING

5 0.04 0.38 100.00 51.63 50.34 50.46 47.71 11.25 9.53 95.00 55.40 57.12 55.40 53.07
10 0.13 0.28 90.62 56.00 55.90 54.05 51.88 3.69 3.22 95.62 54.98 54.61 54.31 53.68
15 2.60 2.36 94.17 57.36 57.63 57.23 56.71 5.45 4.73 99.17 52.98 53.09 52.98 52.53
20 16.64 12.00 76.88 57.84 58.51 57.84 57.01 0.05 0.28 97.81 62.43 60.66 60.07 59.26
25 0.10 0.26 97.50 67.25 65.49 59.04 54.25 7.36 5.66 88.25 64.78 67.88 64.02 60.38
30 0.20 0.43 90.83 57.06 58.92 57.06 53.60 7.24 5.68 91.46 61.68 63.41 61.10 58.61

OHALLWAY

5 13.10 11.08 85.00 54.60 63.42 54.60 44.54 0.19 0.36 95.00 54.36 51.75 48.52 39.37
10 4.62 3.97 86.25 54.63 54.89 54.63 53.98 12.20 10.36 92.50 55.14 58.47 55.14 50.28
15 1.44 1.52 100.00 56.16 58.46 56.16 52.34 2.18 2.04 91.67 58.63 61.58 57.78 52.16
20 0.06 0.30 97.81 60.22 59.44 58.78 57.69 0.20 0.44 95.00 56.11 57.94 53.26 49.21
25 3.57 2.77 91.50 59.92 60.74 56.46 52.74 0.08 0.26 91.75 63.65 60.28 59.60 58.97
30 0.11 0.28 93.96 62.23 65.31 57.28 51.46 0.07 0.30 97.91 56.95 55.55 55.22 54.20

OOFFICE

5 6.35 5.35 90.00 56.72 56.77 56.20 55.02 3.81 3.39 90.00 53.15 55.41 53.15 47.49
10 6.37 5.42 92.50 56.11 56.38 56.11 55.62 3.13 2.72 86.25 53.84 56.21 53.27 48.77
15 10.03 8.46 90.42 56.21 57.45 56.21 54.64 7.64 6.65 95.41 53.22 55.86 53.22 47.43
20 0.10 0.27 94.69 57.45 56.22 55.81 55.10 0.10 0.33 93.12 55.38 55.34 54.65 53.38
25 0.07 0.28 98.00 61.02 59.55 57.09 53.53 0.08 0.23 91.50 66.52 64.04 63.59 62.78
30 0.09 0.26 96.46 59.73 59.69 59.16 57.58 0.05 0.30 98.75 58.40 57.08 56.97 56.70

A. Residual Contrastive Loss The residual contrastive loss shown in Fig. 6.7 gives an
overview of the learning behaviour of the arousal and valence models. The plot consists of
loss values for different cases including baseline and the different types of noises, plotted
against the values of K. A recurring observation for the residual contrastive loss values for
the arousal models is the gradual decrease in the loss values with an increase in K. This
decrease is smooth for the Baseline case, while with different noises the trend is disrupted.
The case with the noise of type OHALLWAY follows the Baseline closely. An unexpected
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Figure 6.7: K-EmoCon : Summary of Query Set Contrastive Loss (Lq) for different cases

observation is made with the noise of type DLIV ING, where the residual loss values follow
an inverted parabolic trend of increase and subsequent decrease. The minima of the loss
values for the arousal model is spread across different values of K = [20, 25, 30].

Now compared to this, the valence models have different behaviour with the residual loss
values. Firstly, the Baseline case again follows a decreasing trend in loss with an increase in
K. The Baseline case is the one with the least residual loss for the valence models, amongst
all the cases. A fluctuating trend of this residual loss with different values of K may indicate
the overall difficulty of generalization. As discussed earlier, the spread of the residual loss
indicates the effect of differential label distribution across participants. It may also be inferred
that the residual loss is not a sufficient metric for the comparison of models for different support
set sizes. The results of other performance metrics in conjunction with residual loss can be
used to comment on the classification performance of the models.

Figure 6.8: K-EmoCon : Summary of Query Set Binary Accuracy (Aq) for different cases

B. Binary Accuracy The line plots of variation of binary accuracy across the value of support
set K is shown in Fig. 6.8. It can be observed that the binary accuracy shows an upward
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trend with increasingK. The mean Baseline accuracy values, however, are not the maximum
values when compared with the different cases of noises. The maximum accuracy is achieved
with the inclusion of the noiseDLIV ING. Interestingly, the overall spread of accuracy values
across participants remains overlapping for different values ofK, across all the types of noises.
Further, maxima of binary accuracy across participants occur at K = 25. This indicates the
optimal support set size for the arousal models.

For the valence models, the line plots of binary accuracy show an almost knew-point be-
haviour for K = 15, above which the accuracies increase dramatically. This indicates the
minimum support set size for classification. Further, the maxima of accuracies throughout the
different cases occur at K = 25, echoing the behaviour of arousal models.

For different types of noises, the value of K at which the maximum accuracy occurs is
different. This indicates the impact of noise is dependent on the support set composition. If
we take a look at the skewness of the mean binary accuracy, the impact of K is readily visi-
ble. While lower values ofK appear to exhibit similar performances across all the participants,
larger values of K differentiate the participants greatly, since the support set composition is
skewed. This composition affects the performance of Siamese networks owing to pair-wise
comparison in the architecture and the contrastive loss function. The comparison of similarity
(or dissimilarity) of pairs, may result in a larger reduction of loss and subsequent higher accu-
racy for highly skewed label distribution. This is because a skewed label distribution results
in highly contrasting pairs - effectively increasing the ability of the network to discriminate the
pairs. Another observation, (in conjunction with residual contrastive loss values) is the optimal
value of K in presence of noise.

It is found that K = 25 achieves in general, the maximum binary accuracy with a reason-
able compromise on residual contrastive loss for the K-EmoCon dataset.

Figure 6.9: K-EmoCon : Summary of Query Set F1 score (F1) for different cases

C. F1 Score For brevity of discussion, we focus on the F1 score and not on precision and
recall. The f1 score line plots for the arousal and valence are shown in Fig. 6.9. As stated
earlier, the mean f1 scores provide an objective outlook at the performance of the proposed
model against different settings of K and noises. We first discuss the arousal model results.
Immediately visible is the poor scores of the arousal models for all cases for K = 5. This
strengthens the hypothesis presented earlier, regarding the inadequacy of this value of K to



6.2. Experiments with K-EmoCon 62

perform any meaningful classification. The performance is less than or close to 50% for all the
cases, except for the case of OOFFICE. Further, the skewness of the f1 score across the
mean is similar for all values of K. The models, throughout perform moderately with average
values existing around 50 - 55%, for all the cases, including baseline. Incidentally, theBaseline
case scores the least mean f1 score against all the noises for all values of K except 30. This
behaviour is rather unexpected and requires further investigation.

For the valence models, the f1 scores provide a generally upward trajectory, as opposed
to the behaviour observed with arousal models. Here, the Baseline case also has a maximum
f1 score over all the cases with different noises, over most of the values of K. The case with
the noise of type DLIV ING performs as closely as the Baseline case for higher values of K.
This indicates the ability of the model to overcome the degradation introduced by the musical
noise with higher support set size. It can also be seen that the valence models possess better
F1 scores than their arousal counterparts for the same values of K. This is a departure from
the usual trends in emotion recognition models, where the valence models perform poorly as
compared to the arousal models, owing to the limited contribution of the acoustic features
towards the valence dimension as compared to the arousal dimension.

Summary The examination of the average performance of all the participants of the K-
EmoCon dataset gives several important results. From the discussion presented earlier, it
can be concluded that the residual contrastive loss is not a clear indicator of performance
when comparing models for different support set sizes K. Next, a look at the binary accuracy
plots in Fig. 6.8, indicates the optimal support set size for this dataset. The maxima of accura-
cies occur atK = 25, for both the valence and arousal models, thus suggesting a near-optimal
value. Further, the subsequent drop in accuracy forK = 30may indicate the overfitting nature
of the model against the support set size. This behaviour calls for further inquiry with different
architectural hyper-parameters. From the plots of f1 score in Fig. 6.9, it is also visible that
the binary accuracy, is not the best indicator of the performance of this dataset, owing to the
individual label distributions across participants. Further, it also reinforces the optimumK with
an overall maximum at K = 25.

An interesting observation throughout the models is the fluctuation in binary accuracy and
f1 scores with K = [5, 10, 15]. This may be explained by the fact that the batch size of the
models is 16. This is because support set size ofK = 10 results in batches with the dispropor-
tionate count of samples - with 20 samples and batch size of 16, the two created batches have
16 samples and 4 samples respectively. This may result in impartial averaging across the two
batches resulting in a large increase in accuracy and f1 scores at K = 10, which stands out
against the other cases.

The large skewness of the performance metrics shown in the figures earlier implies the
need for participant-specific analysis. This may give deeper insights into the impacts of label
distribution across the various cases. In the next section, we briefly present the participant-
specific results of the K-EmoCon dataset across all the cases. The analysis of the results is
restricted to the metrics of binary accuracy, precision, recall and f1 score as these describe
the individual results concisely.

6.2.3. Results with Individual Participants
We next analyze the results of individual participants from the K-EmoCon dataset against
the various values of K and imputed noises. Here, a comparison of the models is made
for individual participants, therefore accurately describing the prediction abilities of the model
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for a single speaker. This section, therefore, highlights the variance in performance while
considering the compositions of the query set sizes in conjunction with the test parameters.
Table. 6.6 summarizes the best performing models of all the participants of the dataset across
various cases. The table shows the results of the best performing value of K for all the cases.
A detailed look at all the results for individual participants is available in Appendix B.

Table 6.6: K-EmoCon : Performance Metrics for Individual participants 3

Case Arousal Model Valence Model
K As Aq P R F1 K As Aq P R F1

Participant ID - 15

Baseline 25 79.00 57.74 57.99 57.74 57.40 25 96.00 70.06 62.11 62.10 62.10
DKITCHEN 20 95.00 56.08 57.04 56.08 54.52 25 98.00 74.04 69.88 69.87 69.87
DLIVING 10 82.50 55.87 56.14 55.87 55.38 25 97.00 65.58 66.49 65.58 65.11
OHALLWAY 20 93.75 55.52 57.18 55.52 52.80 25 92.00 62.10 60.27 58.92 57.52
OOFFICE 25 98.00 57.60 57.63 57.60 57.56 25 97.00 70.25 66.50 66.46 66.43

Participant ID - 23

Baseline 25 100.00 78.61 75.01 59.44 51.97 25 94.00 59.84 58.69 58.27 57.75
DKITCHEN 20 100.00 65.53 65.30 61.32 58.62 30 100.00 57.02 57.07 57.02 56.95
DLIVING 25 100.00 84.55 75.43 51.69 36.97 10 100.00 55.92 56.13 55.92 55.54
OHALLWAY 30 100.00 77.84 77.59 59.38 51.35 30 100.00 57.50 53.43 53.33 53.01
OOFFICE 25 98.00 66.67 68.18 66.67 65.96 25 74.00 55.24 56.12 55.24 53.57

Participant ID - 30

Baseline 25 84.00 56.88 61.71 56.88 51.92 20 100.00 57.63 56.13 55.34 53.86
DKITCHEN 15 100.00 57.79 65.13 57.79 51.96 30 100.00 57.83 52.18 52.17 52.12
DLIVING 25 91.00 60.45 60.53 60.45 60.39 20 92.50 57.31 59.05 57.31 55.15
OHALLWAY 20 100.00 55.60 55.88 55.60 55.08 25 100.00 56.91 50.43 50.41 49.66
OOFFICE 20 81.25 56.36 57.55 56.36 54.55 30 99.17 55.93 56.19 55.93 55.47

Participant ID - 31

Baseline 20 100.00 70.86 67.81 66.55 65.94 30 100.00 88.59 82.41 78.84 78.24
DKITCHEN 25 100.00 74.44 70.61 61.85 57.32 30 100.00 81.04 81.68 77.71 76.99
DLIVING 25 100.00 70.52 70.72 70.52 70.45 25 96.00 82.11 80.07 79.07 78.89
OHALLWAY 20 100.00 70.76 70.34 70.04 69.92 25 93.00 80.89 75.72 74.39 74.05
OOFFICE 30 100.00 68.92 66.91 66.60 66.45 25 97.00 85.91 78.17 77.98 77.94

For analysis of the performance of individual participants, we omit residual contrastive loss.
Within a single participant analysis, the distribution of the query set is uniform and therefore,
the residual contrastive loss does not inform any additional information of the model behaviour.
Therefore, we focus on binary accuracy and precision, recall and f1 scores for our analysis.

A. Binary Accuracy FromTable. 6.6, the binary accuracy of the query set indicates a remark-
able result. For the arousal model, we immediately see the better performing participants as
opposed to the weaker ones. With 78.61% and 70.86% on the Baseline case, participants
23 and 31 respectively, score dramatically higher accuracies, as compared to participants 15
and 30. This performance is sustained even with the inclusion of different types of noises, as

3Abbreviations :- As : Support Set Accuracy; Aq : Query Set Accuracy; P (%) : Precision (in %); R(%) : Recall
(in %); F1 : F1 Score (in %).
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clearly seen in the results (highlighted in red). Conversely, for the valence model, the best
performing participants are 15 and 31 with binary accuracies of 70.06% and 88.59% respec-
tively, on the baseline. Similar to the trend in the arousal model, these participants perform
better even in presence of noise.

B. Precision, Recall and F1 Score When we look at the precision, recall and f1 scores
amongst the participants, we can see a relatively different picture. While much of the trends are
similar to binary accuracy for all the participants, there are some deviations to this. The max-
imum f1 scores for arousal and valence models are with participants 31. However, amongst
other participants, the maxima of f1 scores for arousal and valence models are not consis-
tent with the binary accuracy values. This behaviour highlights the specificity captured by the
proposed architecture concerning differences in characteristics of individual participants. This
hypothesis, ties into the differences in binary accuracy amongst participants discussed earlier.

What is even intriguing is that the best performances for the two emotion dimensions -
arousal and valence may or may not reside with the same participants. This is evident from
the discussion above - while participant 31 has the best performances for both arousal and
valence dimensions, participants 15 and 23 fares superior only on one of the dimensions
- valence and arousal, respectively. It is suspected that the individual label distributions of
the participants contribute heavily to the accuracy of the arousal and valence models. This
observation requires further investigation of labels. This is discussed in the following section.

Investigation on Label Distribution

Table 6.7: Distribution of Labels across participants of K-EmoCon

Participant Arousal Valence
0 1 0 1

15 105 111 131 69
23 42 181 109 62
30 83 67 101 67
31 205 110 50 242

We take a look back at the distribution of labels in the K-EmoCon dataset. Upon analyzing
the obtained results with the label distribution shown in Table. 6.7, we can infer several impor-
tant observations. For instance, the better performing participants for the arousal dimension
are participants 23 and 31. Incidentally, the arousal labels for these two participants show
the maximum imbalance between the 0 (low) and 1 (high) labels. On the other hand, for the
valence models, participants 15 and 31 perform better than the others. Comparing their label
distributions, we see a significant imbalance in these participants against the others. To ob-
jectively reason the imbalance, we consider an imbalance when a participant has twice the
samples (or greater) in one label than the other. Another observation on these lines is the
variation of performance with this imbalance. Participant 31 which has the highest skewed
label distribution for the valence dimension, has the highest overall performance among the 4
participants.

This highlights the importance of the f1 score in performance analysis since the query set
deals with unbalanced label distributions. This imbalance in the ground labels of the samples
is sustained in the pair creation process. While, the pairs are generated such that there are an
equal number of pairs for each (pair) labels (pair labels of classifier being similarity denoted
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by 1 and dissimilarity denoted by 0), the model’s ability to predict this is affected by imbalance
presented in the query set.

(a) Participant 30 : Performance metrics

(b) Participant 31 : Performance metrics

Figure 6.10: Comparison of Performance metrics of Participant 30 and 31

To attest to this behaviour, we compare the precision, recall and f1 scores of two partici-
pants 30 and 31. While participant 31 has a large imbalance in the label distribution, participant
30 has an almost equitable distribution of labels. Fig. 6.10 compares these results for various
values of K for the two participants. It is visible that the precision, recall and f1 scores for par-
ticipant 31 are consistently higher than that of participant 30 for both the dimensions - arousal
and valence. Comparing all the performances across different noises, an inverted parabolic
behaviour is visible for arousal and valence dimensions. The confidence intervals across the
different cases narrow with the increase in K.
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6.3. Experiments with RECOLA
For the second task representing the scenario of IVA actively responding to short prompts from
the user, experiments are performed on RECOLA. The pre-processing of the RECOLA dataset
gives 18 selected participants with 400ms sample. In this section, for brevity, results from 4
participants are presented. These are [dev1, dev2, dev3, dev4]. The samples are processed
with the processes described in the previous sections to obtain the audio features. Thereafter,
the segmented dataset is split into support and query sets followed by pair generation within
these sets.

Support Set Size
Similar to the approach taken with K-EmoCon, here we select support set sizes after propor-
tionating the size of the dataset per participant. For the one-shot interaction of 5− 7s [101]
[59], and sample duration of 0.4s, the value ofK representing one-shot interaction is 10 equiv-
alent of 8s (slightly higher than the prescribed duration). The range of shots is chosen to be
multiple of this value in the range of [1, 2, 3, 4, 5, 6]. Given the data samples shown in Ta-
ble. 4.9, the value of the support set size i. e., K is selected as shown in Table. 6.8. The table
also summarizes the support set as a percentage of the participant dataset. This value ofK is
the basis for the first set of experiments performed on the selected participants. The models
are trained separately to predict binary valence and arousal classes.

Table 6.8: Support Set Size for RECOLA

Variable Values
K 10 20 30 40 50 60
N ×K 20 40 60 80 100 120
interactions 1 2 3 4 5 6
%Data 2.67 5.33 8 10.67 13.33 16

Learning rate Range Test for RECOLA
The results of the learning rate range tests for samples from RECOLA are summarized in
Table. 6.9. for arousal and valence respectively. For RECOLA, the large number of samples
available in the dataset for each participant allows the choice of large batch sizes as compared
to K-EmoCon. Thus here the range of batch sizes tested is large. The optimal batch size for
both arousal and valence models is 256.

Table 6.9: Hyper-parameter Tests for RECOLA

Model Hyper-
parameter

Range of Values
tested

Best value/ Opti-
mal Range

Arousal learning rate [1e−7, 1e−2] 2e−4

batch size [96, 128, 256] 256

Valence learning rate [1e−7, 1e−2] 2e−4

batch size [96, 128, 256] 256

• Arousal Model: The optimal batch size for arousal models is 256 as shown in shown
in Fig. 6.11. While the steepest descent in query set loss is achieved by other learning
rates, it still manages to reduce support set loss to a minimum. Further, it also achieves
the maximum accuracy of all the batch sizes.
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• Valence Model: For the valence model, batch size of 256 achieves a compromise be-
tween least support set loss and steepest descent in query set loss. This is visible in
Fig. 6.12. Since the learning goal is based on the reduction of contrastive loss, a proper
metric shall reduce both support set as well as the query set contrastive loss. In the case
of data for valence prediction, this is achieved by the batch size of 256.

Figure 6.11: RECOLA : Learning rate Range Test Contrastive Loss for Arousal Model

Figure 6.12: RECOLA : Learning rate Range Test Contrastive Loss for Valence Model

In the following sections, experiments for the four selected participants are discussed.

6.3.1. Results with Baseline Case
This section follows thematically from the Baseline results of the K-EmoCon dataset discussed
earlier in 6.2.1. In Table. 6.10, the baseline results of our proposed Multimodal Siamese Net-
work for the arousal and valence dimensions are presented. The values in this table represent
the mean values obtained from the four selected participants for each value of K. The results
are analyzed from the point of view of the following performance metrics - residual contrastive
loss (for support set (Ls) and query set (Lq) pairs), binary classification accuracy (for support
set (As) and query set (Aq) pairs). The precision (P ), recall (R), f1 score (F1) are weighted
for the labels. Again, for brevity, only the query set results are presented here. Except for the
residual contrastive loss, all the other metrics are expressed in percentage. A detailed look at
all the results for individual participants is available in Appendix B in Section B.3.

From Table. 6.10, we see that both the arousal and valence models perform relatively
poorly. We discuss the results presented in the table above in conjunction with line plots
showing the spread of metrics around the mean. This is explained in the following sections.



6.3. Experiments with RECOLA 68

Table 6.10: RECOLA : Performance Metrics for Baseline Models 3

Arousal Model Valence Model
K Ls Lq As Aq P R F1 Ls Lq As Aq P R F1

10 17.56 15.18 67.50 50.79 45.97 50.79 41.48 6.51 5.60 93.12 51.80 46.05 51.30 42.05
20 1.79 1.86 90.62 51.66 47.11 51.64 43.35 7.95 6.68 91.56 52.10 51.12 50.47 39.62
30 1.49 1.61 95.83 53.78 54.52 53.78 48.74 3.74 3.35 89.59 52.45 31.54 50.29 37.78
40 2.42 2.32 85.00 52.09 56.56 52.09 45.35 2.21 2.05 89.84 53.87 48.10 51.33 42.42
50 4.90 4.31 89.12 53.81 47.82 53.81 48.78 15.50 13.19 76.00 52.10 45.31 51.24 40.95
60 0.78 0.99 92.92 51.55 43.98 50.22 37.37 5.56 4.70 79.90 52.58 46.20 51.76 44.98

A. Residual Contrastive Loss

Figure 6.13: RECOLA : Distribution of Query Set Contrastive Loss (Lq) for different cases

The residual contrastive loss values tend to lower with an increase in the number of shots
K, however, there are exceptions to this trend with K = 50. Several reasons could be at-
tributed to this behaviour. Firstly, it is suspected that early-stopping with some participants
triggers the models to stop early in the training phase, thus resulting in a large residual loss.
This also indicates that the model fails to learn any substantial discriminating characteristics
past some early epochs. Further, we see in Fig. 6.13, that arousal and valence models exhibit
different trends in residual losses. There is a clear increase in loss value for largerK indicating
difficulties in learning. This higher loss value may also be due to the overfitting behaviour of
the model. Incidentally, the valence model has a larger spread of residual loss as compared to
arousal models throughout all the values of K. This may be indicative of the relative difficulty
in predicting the valence dimension.

B. Binary Accuracy
Fig. 6.14 shows the results of mean performances of the model for arousal and valence di-
mensions. Here, the variation in K results in an increase and subsequent decrease in bi-
nary accuracy values for both dimensions. Interestingly, the arousal model has two peaks at

3Abbreviations :- As : Support Set Accuracy; Aq : Query Set Accuracy; P (%) : Precision (in %); R(%) : Recall
(in %); F1 : F1 Score (in %).
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Figure 6.14: RECOLA : Distribution of Query Set Binary Accuracy (Aq) for different cases

K = [30, 50], while the valence model has a single peak at K = 40. However, it is also worth-
while to note that the mean values lie significantly in a very narrow range from 50 - 55%, for
either of the dimensions. Therefore, while the overall performance may be said to improve, the
quantum of improvement is very minimal. For individual participants, the performance of the
arousal and valence dimension predictions can be seen to remain within 50 - 58%, as visible
from the confidence intervals shown in Fig. 6.14. This indicates that the proposed architecture
struggles in learning from the support set, throughout the selected participants. The similarity
of this behaviour for both the emotion dimensions, suggests some performance bottleneck
associated with the dataset. This behaviour is notably different from the Baseline case for the
K-EmoCon dataset. This suggests some bottlenecks associated with the RECOLA dataset.

C. Precision, Recall and F1 Score

Figure 6.15: RECOLA : Distribution of Query Set Precision (P ), Recall (R) and F1 Score (F1) for different cases

Next, we take a look at the precision, recall and f1 scores of the arousal and valence
predictions for the Baseline case. These results are shown in Fig. 6.15. The line plots denote
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the mean weighted scores across individual (selected) participants of the RECOLA dataset.
The confidence intervals denote the span of these variables for individual participants. Unlike
the plots of binary accuracy, Fig. 6.15 indicatesmetric variables well below 50%. This indicates
that the actual predictive power of the algorithm is quite poor. The recall of the predictions
for both dimensions is higher in general as compared to the precision. This indicates that
the total positive rare (or sensitivity) of the predictions is better, however, over-predicts on
the positive class i. e., similarity label (1). In other words, the models are poor at learning
similarity of samples, than that of learning dissimilarity. The precision, however, improves
briefly for arousal prediction for K = [30, 40], before dropping again. Conversely, the valence
dimension lacks any such trend. The f1 scores further indicate the overall performance of the
proposed architecture across the two classes is poor, throughout the values ofK. The scores
are consistently below 50%, indicating a worse performance than a random classifier.

This indicates a case of possible ill-conditioning of the class precision and f1 score. In
several instances, one of the classes is never predicted, indicating that the model completely
fails at learning anything about that class. This underpins the idea that dissimilarity traits are
easily learned by the model as compared to similarity traits, in this specific dataset. This
behaviour contradicts heavily that of the K-EmoCon dataset. In the next section, the results
of the RECOLA dataset are tested with embedded noise.

6.3.2. Results with Embedded Noise
This section discusses the performances of the models for the prediction of arousal and va-
lence dimensions in presence of different types of noises. The audio samples are corrupted
by a noise sample at zero gain indicating that the overall power of the audio signal is main-
tained. This section, therefore, provides the basis for comparing model performances while
examining the effects of noise and support size, simultaneously. This analysis is presented
similar to the baseline results, focusing on contrastive loss, binary accuracy and the metric
of precision, recall, f1 score individually. Table. 6.11 summarizes the performances of the
dataset with the audio segments corrupted with the embedded noises. To concisely discuss
and present the results, the mean performances across all participants are described in the
table. Mean performances are described for each of the embedded noises separately. while
line plots are used to compare and analyze performances across different embedded noises.
A detailed look at all the results for individual participants is available in Appendix B in Section
B.4.

Line plots with confidence bars are used to represent the spread of the values (across
participants) around the mean values. The plots in the following sections are created using
Table. 6.11. Throughout the discussion, we again focus on themean values of the performance
metrics and discuss the skewness of the values across this mean.

A. Residual Contrastive Loss From Table. 6.11, the residual contrastive loss values for the
different embedded noises show the absence of any specific trends with K. This is quite an
important observation, as it indicates the inability of the model to meet the objective of reducing
contrastive loss across the board. While a general drop in residual loss may be seen in arousal
models, the same cannot be seen with valence models. Fig. 6.16 shows the line plots of the
mean values of residual loss together with the spread across participants. This provides a
comparison of the Baseline case with that including different embedded noises. The arousal
models show an overall trend of drop in residual loss with an increase in K until higher values
of K with some exceptions. The minima of loss, for various trails, occurs at K = [40, 50]. It is
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also where the loss becomes homogeneous across participants, indicating similar embedding
losses.

Table 6.11: RECOLA : Performance Metrics for different embedded noises 3

Arousal Model Valence Model
K Ls Lq As Aq P R F1 Ls Lq As Aq P R F1

DKITCHEN

10 12.24 10.44 82.50 52.55 54.10 52.55 46.14 11.35 9.63 88.12 52.28 55.97 52.28 43.85
20 16.08 14.05 78.44 51.99 47.34 51.99 41.33 7.12 6.01 89.38 51.28 46.31 50.96 40.35
30 15.03 13.20 82.92 50.97 39.02 50.88 39.98 11.16 9.36 76.66 52.84 54.87 52.84 47.96
40 0.28 0.49 99.37 52.82 37.99 49.95 36.74 3.78 3.39 85.78 51.30 51.56 51.30 48.46
50 7.42 6.28 82.00 53.09 52.81 52.99 47.45 3.55 3.18 87.12 53.57 45.62 51.36 43.89
60 4.64 4.09 84.59 52.77 51.03 52.40 46.89 15.77 13.71 82.08 53.38 49.02 51.77 42.69

DLIVING

10 0.54 0.81 98.75 52.98 47.96 52.17 42.20 12.68 10.86 88.12 52.00 53.14 51.74 45.06
20 1.52 1.64 96.56 54.59 48.67 54.37 46.84 4.87 4.37 88.44 53.49 54.15 53.23 49.88
30 16.97 14.69 78.54 51.05 47.18 51.05 40.74 3.71 3.15 83.12 53.77 40.34 52.16 41.82
40 1.52 1.65 90.31 52.82 57.58 52.82 46.63 1.66 1.67 92.34 51.67 52.68 51.67 45.28
50 1.35 1.48 93.38 55.75 56.14 55.75 54.62 14.19 12.12 78.00 52.12 55.15 52.12 45.59
60 8.09 6.93 70.21 50.59 56.44 50.59 36.64 5.97 5.07 77.92 53.38 47.31 52.17 44.99

OHALLWAY

10 22.68 19.41 70.00 50.86 46.38 49.90 37.90 4.49 4.02 89.38 54.53 56.08 54.53 50.81
20 0.99 1.15 96.25 56.17 51.58 54.33 46.30 1.65 1.62 93.44 53.79 48.67 53.12 45.11
30 1.21 1.23 95.42 55.26 47.41 52.41 45.20 4.63 4.03 85.21 54.47 56.78 53.89 47.34
40 3.66 3.20 86.88 53.04 46.85 52.74 47.54 18.47 15.88 80.94 52.50 57.63 51.54 40.90
50 0.78 0.96 97.25 54.78 33.29 51.78 38.93 1.51 1.66 91.38 54.12 54.85 53.29 49.98
60 10.73 9.24 84.79 53.72 56.25 52.62 43.95 2.60 2.37 87.19 52.99 45.63 51.77 46.05

OOFFICE

10 1.34 1.42 95.00 52.80 51.62 51.58 45.69 1.70 1.79 96.88 53.81 54.25 53.76 51.19
20 14.55 12.35 81.25 52.72 55.21 52.72 43.13 10.31 9.02 87.50 53.00 51.91 51.98 43.76
30 1.75 1.78 89.38 52.98 46.87 52.98 47.57 13.18 11.09 82.71 51.95 53.59 51.24 44.35
40 8.77 7.35 77.97 55.77 47.38 53.27 47.85 1.59 1.73 88.91 53.95 48.46 53.87 47.73
50 1.42 1.50 88.62 53.95 47.93 51.64 40.33 4.08 3.67 86.00 55.31 47.71 53.17 46.95
60 11.76 9.96 71.04 53.09 47.67 52.97 40.88 8.26 7.12 84.68 51.65 43.64 49.92 39.49

Contrasting this visible trend, are the results from the valence model, where the loss fluctu-
ates for all the different cases. Interestingly, similar to the observations made in the Baseline
case earlier, all the cases of embedded noises indicate a valley-like minimum at K = 40 ex-
cept for the noise of type DLIV ING, which has rather a maximum. While this is the mean
residual loss across participants, the spread of the loss values follows similarly and hence
this observation hold in general for any participant in this dataset. The cause of these val-
ues comparative of the Baseline is difficult to interpret and require further analysis. It may be
suspected that embeddings of this dataset are greatly affected by noise.

B. Binary Accuracy We analyze the mean binary accuracy across the various cases with
Fig. 6.17. Firstly, the arousal dimension prediction deviates dramatically with the inclusion
of the noise. Surprisingly, some of the cases of imputed noises result in increased binary

3Abbreviations :- As : Support Set Accuracy; Aq : Query Set Accuracy; P (%) : Precision (in %); R(%) : Recall
(in %); F1 : F1 Score (in %).
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Figure 6.16: RECOLA : Summary of Query Set Contrastive Loss (Lq) for different cases

accuracy for this dimension from the Baseline. For instance, from the plots shown, the binary
accuracy of the arousal model with the noise of type OHALLWAY is consistently better than
the Baseline. For higher values of K, the accuracies of other noise types also improve over
Baseline (as visible for the cases ofOOFFICE,DLIV ING). The accuracies drop atK = 60,
as seen in the Baseline case. The change of maximum mean accuracy from the Baseline
case with 53.81% is different across different noises. For instance, the accuracy is higher for
DLIV ING, OHALLWAY and OOFFICE cases at 55.75%, 56.17% 55.77% respectively.

The predictions on the valence dimension, have similar chaotic behaviour as observed with
the arousal dimension. Comparing the cases of different noises with the Baseline, there is no
particular uniformity. For the case of OHALLWAY , the overall mean accuracy drops, while
for DKITCHEN , it rises with the increase in K. For the remaining cases, DLIV ING and
OOFFICE, the variation of accuracy with K is inconclusive. Further, this is reflected across
participants by the visible confidence intervals about the mean. Compared to the Baseline
accuracy of 53.87%, the accuracy increased for the case of OHALLWAY and OOFFICE
with accuracies 54.53% and 55.31%.

Figure 6.17: RECOLA : Summary of Query Set Binary Accuracy (Aq) for different cases



6.3. Experiments with RECOLA 73

The results described above, while inconclusive of the trends of accuracy withK agree on
the overall low value of accuracy throughout the different cases. For both the emotion dimen-
sions, we see the accuracy span between 50 - 58% at most. This is a moderate performance
for the participants. The increased accuracy with imputed noise is rather unusual and sug-
gests that the added noise dramatically affects the audio samples. Alternatively, when talking
about embeddings, the artefacts of noise are accentuated with the audio samples rather than
being averaged out.

C. F1 Score Fig. 6.18 shows the f1 scores of the different cases compared to the Baseline
for the arousal and valence dimensions. The analysis of the arousal dimension predictions
shows two sets of behaviours. The Baseline case shows a trend of increase and subsequent
decrease in f1 scores with increasing K, which are followed closely by the cases with the
noise OHALLWAY , OOFFICE. This indicates the similarities in prediction patterns for the
different cases across the labels. Alternatively, the imputed noises do not skew the embedding
space thereby generating predictions consistent with the Baseline case. The other two cases
of noise DKITCHEN and DLIV ING, deviate from these cases. The f1 scores for these
cases drop and rise again with increasing K.

Figure 6.18: RECOLA : Summary of Query Set F1 Score (F1) for different cases

The f1 scores for the valence predictions are equally skewed. Compared to the Baseline,
all the noise cases have higher f1 scores. This indicates that the introduction of noise in
audio samples, in this case, wildly skew the resulting embedding space. The maximum mean
f1 score for the Baseline case occurs at K = 60, which differs from the other cases wildly.
For instance, the maximum mean f1 scores with imputed noise of type OHALLWAY and
OOFFICE occurs at K = 5.

Over and above the general observations discussed above, it is important to note that
the overall f1 scores obtained with the RECOLA dataset are extremely poor. Most of the
values occur well below 50%. As speculated earlier, these results could be stemming from
ill-conditioned precision and f1 scores. A direct reason for this could be that the model simply
does not learn to predict one of the labels at all for certain cases. This is specifically true for
cases where the precision is also considerably lower than the recall.
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Summary The discussion on the performance of the proposed architecture for the RECOLA
dataset provides specific insights. Firstly, we again see similar patterns of diminishing residual
loss with an increase in support sizeK for the arousal predictions. However, the same cannot
be seen with the valence predictions. The plots of residual contrastive loss on the query set in
Fig. 6.16 suggest a lot of chaotic behaviour in the models. The variance of the loss is very high
across the participants. Next, when we compare this with the binary accuracy plots in Fig. 6.17,
again, we see no specific trend in the distribution of mean accuracy across the various values
ofK. Whenwe look at the results at a larger scale, the accuracy improvesminimally over some
values ofK and then again drops at very highK. The change in binary accuracy observed for
both the emotion dimensions is gradual and minimal. However, we also see the spread of the
confidence interval across the 4 participants close to +/- 3-4%. This spread begs the question
of analysis of participants for identifying the cause of the poor performance. Finally, with the
f1 scores shown in Fig. 6.18, the differential performance observations are greatly enhanced
across the noise types. Visually the variation in f1 scores is around +-15-20% for both the
arousal and valence predictions. Since the values are derived from weighted scores across
labels, it is suspected that the models fail on one of the labels significantly more than the other.
Here, the labels in question are that of similarity (1) and dissimilarity (0). This punctuates
the mean performances observed so far quite oddly, as it indicates that individual participants
have greatly different responses to the proposed architecture.

A clear difference with this dataset from K-EmoCon is the absence of any major trends in
both the binary accuracy and f1 scores. Not only is this attributed in the Baseline, but is also
evident with the cases involving different noises. While some drop in performance is expected
with the introduction of noise, the absence of any trends with the increasing value ofK across
all the cases as comparably visible in Fig. 6.17 and Fig. 6.18 stipulates that the proposed ar-
chitecture only learn moderately from the dataset and significant distinguishing characteristics
of the individual samples are either not captured or incompatible with the architecture. To test
this stipulation, it is important to look at individual participants for more insights. IN the next
section, we briefly present the results of individual participants.

6.3.3. Results with Individual Participants
To dive deeper into the reason for the poor average performance of the proposed Multimodal
Siamese Network with the RECOLA dataset, we look at individual participants for insights. In
Table. 6.12, the results of the selected participants for the best performing values of K are
shown. To present the results concisely, the results from all the shots are not shown in the
table here. Appendix B lists the results of all the individual participants in-depth.

From Table. 6.12, a lot of the observations made so far in the discussion of the mean
performance metrics can be reasoned. Since the table presents results only with the best
performing values of K, we can compare the participants across this dimension as well. In
the next sections, we focus on binary accuracy and precision, recall and f1 scores to identify
the causes of the average performances.

A. Binary Accuracy A closer look at the query set binary accuracy values in Table. 6.12
shows that while the average performances of the models are moderate, the individual perfor-
mances are slightly better. For the prediction of arousal dimension, participant dev2 performs
significantly better than the rest with Baseline accuracy of 60.47%. The addition of noise
disrupts this accuracy only mildly, however, it changes the K for which the model achieves
accuracy, wildly. For instance, participant dev2, the case of DKITCHEN has maxima in ac-
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curacy atK = 50, similar to that of Baseline, however for DLIV ING and OHALLWAY , the
value drops to K = 20. Similarly, the best prediction on valence dimension is achieved with
participant dev3, with Baseline accuracy of 59.00%. Incidentally, the degradation in accuracy
with imputed noise is only minimal. But, like the variation in K observed in arousal models,
here too, the value of K fluctuates wildly for all the types of noises.

Table 6.12: RECOLA : Performance Metrics for Individual participants 3

Case Arousal Model Valence Model
K As Aq P R F1 K As Aq P R F1

Participant ID - dev1
Baseline 60 100.00 54.38 25.00 50.00 33.33 50 99.50 53.42 25.00 50.00 33.33
DKITCHEN 20 96.25 56.97 56.97 56.97 56.97 30 51.67 52.10 52.11 52.10 52.03
DLIVING 10 100.00 57.13 59.25 57.13 54.53 50 95.50 54.79 54.80 54.79 54.77
OHALLWAY 50 98.00 58.02 25.00 50.00 33.33 60 93.33 54.57 54.58 54.57 54.57
OOFFICE 40 78.75 57.30 57.32 57.30 57.28 20 97.50 54.08 25.00 50.00 33.33

Participant ID - dev2
Baseline 50 99.50 60.47 60.77 60.47 60.20 50 84.00 54.22 54.71 54.22 53.00
DKITCHEN 50 93.00 57.00 59.13 57.00 54.34 40 91.87 52.63 52.73 52.63 52.19
DLIVING 20 97.50 60.49 61.06 60.49 59.98 20 100.00 56.29 55.63 55.24 54.47
OHALLWAY 20 100.00 61.57 61.61 61.57 61.53 10 95.00 58.21 59.80 58.21 56.43
OOFFICE 60 88.75 61.66 62.64 61.66 60.90 40 90.62 57.69 58.88 57.69 56.22

Participant ID - dev3
Baseline 30 95.83 55.19 55.28 55.19 55.02 40 98.75 59.00 62.38 51.11 36.69
DKITCHEN 60 59.17 52.82 52.83 52.82 52.77 60 99.58 59.13 63.77 52.68 40.76
DLIVING 40 86.87 55.27 55.49 55.27 54.84 30 67.50 57.26 58.95 57.26 55.13
OHALLWAY 20 95.00 54.99 55.06 54.99 54.84 30 92.50 58.74 65.35 58.74 53.76
OOFFICE 40 78.12 52.53 53.48 52.53 49.02 50 100.00 58.55 25.00 50.00 33.33

Participant ID - dev4
Baseline 20 81.25 52.96 53.01 52.96 52.74 60 86.25 53.76 54.58 53.76 51.59
DKITCHEN 30 96.67 52.52 52.63 52.52 51.99 30 83.33 53.40 53.73 53.40 52.33
DLIVING 10 100.00 53.22 25.00 50.00 33.33 60 72.50 53.23 54.66 53.23 49.34
OHALLWAY 40 94.38 53.69 53.85 53.69 53.21 10 100.00 53.77 55.49 53.77 49.84
OOFFICE 30 94.17 53.46 53.90 53.46 52.10 20 93.75 54.51 54.58 54.51 54.36

This observation also helps in marking the reason for which the mean performances shown
in Fig. 6.17 are lower across allK. This is because the value ofK for which a participant model
achieves maxima varies with the different imputed noises. This suggests that the impact of
noise on a single sample is more pronounced and results in a larger variation in the embedding
space compared to a sample from the Baseline case. This results in a change in support set
size K for the same or altered achievable accuracy for the given participant.

B. Precision, Recall and F1 Score Similar to the observations made in the case of binary
accuracy, Table. 6.12 shows evidence of better precision, recall and f1 scores for some of the
participants. The best f1 scores for a participant has varying values ofK. For instance, in case

3Abbreviations :- As : Support Set Accuracy; Aq : Query Set Accuracy; P (%) : Precision (in %); R(%) : Recall
(in %); F1 : F1 Score (in %).
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of arousal model predictions, participant dev2 has the best Baseline precision, recall and f1
score [60.77%, 60.47%, 60.20%] atK = 50; and for participant dev1, the bestBaseline precision,
recall and f1 score [25%, 50%, 33.33%] occurs at K = 60. Interestingly, the best performing
f1 score for dev1 is less than 50%. This resounds the case of ill-conditioned precision and f1
score. Similarly, we can see that for several cases across participants, some of the values of
K resulted in ill-conditioned precision and f1 scores.

This discussion shows that while accurate discrimination of the similarity and dissimilarity
classes is possible with the proposed architecture, it may be deteriorated by the presence of
noise to the point where a class is not learned at all. Alternatively, the ill-conditioningmay result
from the inability of the proposed model to model the sample to embedding space, correctly.

6.4. Comparison with State of the Art
In the previous sections, we discussed in depth the results obtained with the two datasets
representing the two test cases of our research question. Here, we compare these results
with the state-of-the-art models. For the K-EmoCon dataset, the comparison is shown in Ta-
ble. 6.13. It can be seen that on this dataset, the proposed model performs better than the
existing works while relying on considerably less amount of support set. This value corre-
sponds to the optimal performance for K = 20. Similarly, the comparison for RECOLA. In
this case, we see that the performance of the proposed model fares moderately against the
state-of-the-art models. However, it can be argued that against the fraction of amount of data
used in the support set, the performance compares to achieve better valence prediction than
some of the state-of-the-art models.

Table 6.13: Comparison with State-of-the-art Methods

Dataset Reference Modalities Classes Ds : Dq Arousal Valence

K-EmoCon
J. Quan et al.[80] Audio High, Low 70:30 53.02% 54.80%
P. Gupta et al.[36] Physio 5 classes 90:10 56.30% 31.03%
Proposed Model EDA, BVP, Audio High, Low 25:75 63.97% 66.91%

RECOLA

M. Neumann et al.[65] Audio High, Low 80:20 60.77% 52.30%
X. Cai et al.[17] ECG, EDA, BVP, HR High, Low 84:16 64.20% 50.00%
J. Wu et al.[106] Audio High, Low 50:50 58.80% 34.80%
Proposed Model EDA, BVP, Audio High, Low 25:75 53.81% 53.87%
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7
Discussion and Future Work

In this final chapter, we present a discussion of the results of the experiments performed in
this thesis. The goal of the proposed model is to answer the research questions presented
in Section 1.3. We discuss the results of the experiments keeping these questions in mind in
the Discussion section 7.1. Next, we present some of the limitations of the current work and
motivate the possibilities of further exploration for production and deployment in Future Work
7.2. Finally, the thesis is concluded with the Conclusion section 7.3.

7.1. Discussion
In this section, we discuss the results obtained from our experiments with the two datasets
with the proposed Multimodal Siamese Network. The results are summarized to answer the
research questions posed in Section 1.3. The problem setting posed in Section 1.2 has several
challenges. While several attempts have been made to solve similar problems, the approach
presented in this thesis focuses on tackling problems associated with actual use-case set-
tings and therefore differs largely from many of the previous works explored in this domain.
We attempt to analyze the problem in a two-fold setting - with two datasets representing the
behaviour of two types of conversation contexts. The K-EmoCon dataset represents the case
where an IVA passively listens to the conversations, and the RECOLA dataset represents the
case where an individual is in active conversation with the IVA. The characteristic settings in
which the data is collected for each of these datasets is similar to the proposed settings. This
setup of the problem statement is unique compared to existing models. Further, a very small
amount of data is expected to be available for learning. Therefore, the proposed model in
the thesis relies on few-shot learning for the basis of classification, with a specific focus on
Siamese Networks.

We visit the various research questions with their respective objectives and analyse the
results of the observations made across the two datasets in this section. An analysis of the
proposed architecture is presented first while discussing the effect of certain choices on per-
formance. Next, we analyse the optimal value of support set size for the two datasets. The
analysis of optimality of sample duration is discussed next. This also provides other valuable
insights regarding the inherent characteristics of the datasets. Finally, we analyse how the
noise plays its effect on the proposed model and reason the robustness of the model against
four different noise types.
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7.1.1. Choice of Architecture
For analysing the performance of the emotion recognition pipeline on any dataset, it is impor-
tant to consider the architectural characteristics of the pipeline. One of the major goals of this
thesis is the fusion of modalities to augment system performance in realistic settings. We aim
to solve the problem of emotion recognition with audio from everyday household conversations
of individuals.

The first research sub-question deals with effective integration of physiological signals as
additional modality. Our proposed model uses Siamese networks with multimodal embed-
dings for this task. This architecture fundamentally eliminates the need for a large amount
of data for training. For the Siamese Networks, this problem becomes that of similarity and
dissimilarity of samples. Specifically, the architectures learn to discriminate between classes.
Further, multimodality is achieved with the concept of emotion embeddings. We create physio-
logical embeddings parallel to the audio embeddings to perform the task classification. Signals
obtained from wearable devices - BVP and EDA - are sources of physiological embeddings,
while two separate audio embeddings are created out of a feature set of eGeMAPS and Mel-
frequency spectrograms. These design choices are utilised to learn as much contextual infor-
mation about emotions.

The construction of the four embeddings used to create a branch of Siamese Networks
is equally important. To help in distilling discriminating features from each of the signals ef-
fectively, the embeddings focus on attributes of these signals. For instance, the temporal
features of EDA and BVP signals within a sample are embedded using GRU embeddings. As
already discussed, these embeddings are suited for use in multimodal context as these can
be used to map the input physiological signal to a common space while being computationally
more efficient than LSTM. However, it may be noted that LSTMs are useful in remembering
longer signal sequences. This factor is important to note when dealing with signals of different
sampling rates. If we analyze the results of the two datasets from this perspective, we may
find that contributions of the physiological embeddings may have been hindered by the use of
GRUs in the case of the RECOLA dataset. The K-EmoCon dataset has physiological signals
of a lower sampling rate - with BVP signal at 64 Hz and EDA signal at 4Hz. These result in
shorter sequences of signals per unit duration of length. On the other hand, RECOLA consists
of signals at 250 Hz. This means, for a given duration, a signal sample from RECOLA is a
considerably larger sequence than that of K-EmoCon. Consequently, an LSTM would appear
to be a better discriminator specifically for cases where physiological signals are sampled at
a large rate.

Aside from the physiological embeddings, the audio embeddings are the main modality for
emotion classification. Here, too, the choice of architectures is dependent on the feature target
space. The efficiency of mel-spectrograms in capturing emotional information from human
audio is utilized with the help of CNN embeddings. The architecture relies on previous work
and mimics the spectrogram embedding architectures similar to VGG-16. It may be noted that
the simplified architecture proposed in the current work follows from the constraints established
in the research questions - where the goal of the proposed solution is to be deployed on IVAs.
This imposes a bottleneck on the complexity of the overall architecture. A desirable model
achieves a good classification accuracy with limited computation power and prediction time.

Finally, it is worthwhile to note that this architecture allows the use of signals of any sam-
pling rate. Across the two datasets, the sampling rates of the physiological signals vary widely,
which is well accommodated by the architecture. For this purpose, the algorithm uses dynamic
allocation of input size for embeddings.
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7.1.2. Optimality of Number of Samples
The second research sub-question aims at identifying the optimal number of shots K for the
sample set for the adequate performance of the proposed model against the state of art. The
observations for this research question differ wildly for the two datasets.

For the K-EmoCon dataset, the mean Baseline performances indicate that the proposed
model achieves optimal prediction accuracy forK = 25 for the arousal and valence dimensions
respectively. Comparing this mean Baseline with individual participants, it can be observed
that the results are largely consistent with this observation. Three out of four participants at-
tain maxima in accuracies at K = 25. While statistically, this is not a significant analysis, we
analyze the qualitative homogeneity of the results across individual participants. The agree-
ment of optimality of K = 25, suggests the existence of optima across other participants of
this dataset.

For the RECOLA dataset, the results of mean Baseline performances are somewhat in-
conclusive. The maxima for this case is at K = 50 & 40 respectively for arousal and valence
dimensions respectively. However, this is only slightly better than the performances at other
values of K. More importantly, it is difficult to differentiate optimal performances from the
mean values. When we take a look at the individual participants, the results are again quite
skewed. For two of the participants the maxima for valence prediction performance occurs
with K = 50, while with the other participants, it is lower with K = 30 & 40. The arousal pre-
diction performance is even more confusing, with the maxima spread over multiple values of
K. Therefore, optimality is wildly dependent on individual participants.

The observations made above also reveal the subjective differences presented by the type
of audio in question. As described in Chapter 4, the K-EmoCon dataset involves continuous
speech segments in a debate setting, while the RECOLA dataset contains spontaneous inter-
actions between individuals. The poor performance on RECOLA reveals that the proposed
model is unable to capture the emotional information from such spontaneous interactions and
is perhaps better suited to decipher continuous speech.

7.1.3. Effect of Segment Length
The third research sub-question aims at comparing the effect of sample length on perfor-
mances of the proposed model. This analysis requires a comparison of the performances
of the model across the two datasets. As discussed earlier, the sample duration for the K-
EmoCon dataset is 1s and for the RECOLA dataset, it is 0.4s. It is important to note that the
experiments described in this thesis are limited and do not provide an objective measure of
comparison of sample length. This is because the characteristics of the two datasets vary
wildly. The differences in the sampling rate of physiological signals between the two datasets
themselves render this comparison futile. However, we compare the results qualitatively and
comment only on the probable impact of the contributions of audio embeddings towards the
performance. To objectively compare the results, experiments need to be performed within a
single dataset.

We compare the two datasets by matching the support set size of the support set Ds. In
other words, the amount of training data is the same for a given instance of comparison despite
having different sample duration. This is represented by the following values of support set
size (per class) KKEmoCon = 20 and KRECOLA = 50. Both of these cases result in the
total support set duration of 40s. The mean performances of the respective datasets on their
selected participants are shown in Table. 7.1.

From Table. 7.1, a notable difference in the mean performances of the two datasets is
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Table 7.1: Qualitative comparison of mean Baseline performance across datasets

Dataset Duration Arousal Model Valence Model
K As Aq P R F1 As Aq P R F1

K-EmoCon 50s 20 96.56 63.97 62.28 56.97 52.80 99.06 60.88 60.41 60.11 59.58
RECOLA 50s 50 89.12 53.81 47.82 53.81 48.78 76.00 52.10 45.31 51.24 40.95

visible. Incidentally, even the support set accuracies achieved by the two datasets show that
K-EmoCon performs better than RECOLA. Qualitatively, higher performances are obtained
with K-EmoCon as compared to RECOLA for the same amount of support set size of the
50s. Remarkably, K-EmoCon performs better than RECOLA, even though the physiological
signals of RECOLA have a higher sampling rate, implying larger data points to learn from. This
comparison also throws light on the comparative contributions of the different embeddings
on the resultant composite embedding of the Multimodal Siamese network. It may suggest
that audio embeddings are relatively dominant contributors towards learning discriminative
features than physiological embeddings. As previously stated, this could also be stemming
from the architectural shortcomings of the proposed multimodal network. It is also important
to note that for experiments with K-EmoCon, self-annotated labels are used as opposed to
aggregate external annotations which are used for the experiments with RECOLA. Therefore,
despite the observable differences in support set accuracy, it is not completely suggestive
that unit sample duration affects the performance of the emotion recognition algorithm. This
hypothesis requires substantial experimentation with several control conditions.

7.1.4. Robustness against Noise
Finally, we examine the final research question which aims at the analysis of the model robust-
ness against noise. Several architectural, as well as feature choices, may have contributed
to model robustness. When examining the effect of noise on the embeddings, the sources of
disruption of the Baseline embedding space are mel-frequency spectrogram embeddings as
well as the eGeMAPS embeddings.

The eGeMAPS embeddings are selectively affected by the impact of most of the noise
artefacts. The extended Geneva Minimalistic Acoustic Parameter Set (eGeMAPS), which
contribute to the eGeMAPS embedding, are designed to capture dynamic characteristics of
audio samples and selectively distil parameters for voiced and unvoiced regions. Some of
the temporal features such as mean length and standard deviation of voiced and unvoiced
regions, together with some of the cepstral features such as Mel-Frequency Cepstral Coef-
ficients (MFCC) 1-4, Spectral flux and Formant bandwidths, may have contributed to height-
ened differentiation of speech in presence of noise. This is because most of the noise types
are non-verbal in nature. Therefore, the contributing effects of these noises are selective on
the parameters of eGeMAPS.

The mel-frequency spectrogram embeddings typically contribute to the chaotic behaviour
of the proposed model in presence of noise. This is because of the mel-scale which mirror hu-
man perception of audio. Therefore, the effects of noise are distinctly unique on mel-frequency
spectrograms. Fig. 7.1 shows the Mel-Frequency spectrograms of the four types of noise used
in the experiments for a duration of 5s. It is visible that each noise has specific artefacts which
contribute directly to the spectrogram embeddings. However, when we analyse each of these
spectrograms carefully, we can see some temporal as well as spectral statistics of the noise.
Typically, theDKITCHEN type of noise appears to be spread evenly across higher frequen-
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(a) DKITCHEN (b) OHALLWAY

(c) DLIV ING (d) OOFFICE

Figure 7.1: Characteristic Mel-Frequency Spectrograms of the noises

cies as compared to lower frequencies. In contrast, the contributions ofOOFFICE is mainly in
the lower frequencies, although the artefacts are not temporally constant. The OHALLWAY
noise has a sparse distribution of noise across the lower frequencies with some unique non-
temporal instances. Finally, the most coloured of all noises is DLIV ING. This distribution
of noise is observably stationary as can be seen from the repeated patterns - owing to the
presence of musical tones.

The analysis of these spectrograms immediately provides some insight into the behaviour
of the spectrogram embedding in presence of noise. In addition to the robustness of the
selected audio features of the embeddings, it may also be pointed out that the architecture
of Siamese networks presents an inherent quality of robustness. Particularly, the principle
of pair comparison (for similarity and dissimilarity), partly contributes to the elimination of ef-
fects of noise, since the objective of the twin networks is neither learning specific artefacts
in spectrograms, nor patterns in the eGeMAPS parameter set. It is rather the contrast in the
pairs, which contributes to the learning of the model. For a noise, such as DKITCHEN
and OHALLWAY which exhibits properties of statistically stationarity, the contributions for
the label pairs of dissimilarity are effectively cancelled across the two arms of the Siamese
Network.

Further, if we compare the effects of noise on the two datasets, it is readily visible, no
why the two datasets behave differently with imputed noise. Fig. 7.2 shows a sample of mel-
frequency spectrogram from the two datasets for a duration of 5s. These spectrograms show
dramatically different characteristics. Participant 15 from the K-EmoCon dataset exhibits a
continuous audible speech signature while for participant dev1, the speech is short and spon-
taneous. The verbal speech presence is present throughout the 5 seconds of duration for the
former, while it is only partly present for the latter. It indicates that the per-frame contribution
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(a) Participant 15 (with mel-banks = 512) (b) Participant dev1(with mel-banks = 128)

Figure 7.2: Comparison of Mel-Frequency Spectrograms of datasets

of the former is more than the latter. This behaviour may also reflect on why the average
performance of the K-EmoCon dataset is higher than that of RECOLA, in addition to the rea-
sons suggested earlier. This is a fundamental deduction on the performance of the proposed
model. It implies that the nature of interaction in a given audio signal may greatly affect the
performance of the model.

7.2. Future Work
This thesis explored a novel methodology of Multimodal Siamese Networks for emotion recog-
nition. While a lot of prior research work has focused on improving emotion recognition models
with numerous datasets, this work comprises one of the first comprehensive experiments ex-
amining the few-shot emotion recognition problem while analysing the optimality of support
set size as well as the effects of noise. This work attempts to investigate few-shot learning
principles within realistic settings. The research contributions of this work reflect the ability of
the proposed architecture to perform as good as the state-of-the-art architectures while only
using a fraction of data for training. Further, to the best of our knowledge, this also marks the
first study to compare the performance of a model against two different settings of data - one
with continuous speech and the other with spontaneous speech. While the results obtained
with the proposed model compared to be better than state-of-the-art for at least one of the
datasets, it may still improve on the performance for the other dataset. In this section, we
reflect on the gaps in the current work and present possibilities of future research work.

Analysis on Extended Dataset The current work presents the results of experiments con-
ducted on four participants from each dataset. The K-EmoCon dataset presents a bottleneck
for testing all the participants as we do not have the necessary number of samples for each
of the classes. Alternatively, we restrict the number of participants for RECOLA to remain
consistent with the participant count of the K-EmoCon dataset. This makes the results of
the current work statistically skewed for the selected participants. The mean performances
presented here, therefore do not reflect the behaviour of the complete dataset. The perfor-
mance of the model can only be considered consistent on individual participants. Therefore,
additional tests on the performance of the existing model with other datasets which contain
sufficient samples of data may help in comparing the proposed architecture concretely against
the state-of-the-art. Several available datasets have already been suggested in Chapter 4.
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Ablation of the Physiological Embeddings It has been postulated earlier that the relative
contributions of the audio embeddings are more than that of the physiological embeddings.
This hypothesis could benefit from an ablation study of the physiological embeddings. In the
current work, the concatenation of the embeddings from the different signals and features
produces the final contrastive embeddings from the two arms of the network. Since the em-
beddings are independent of each other, an ablation of physiological embeddings could point
out the sources of the contribution of these embeddings as well as the degree to which they
affect the performance of the architecture. This study also provides useful insights into the
production viability of the integration of physiological signals from wearable devices with IVAs.

Analysis of Effect of sample duration While the analysis of the effect of sample duration
on the performance of the arousal and valence prediction is presented qualitatively here, it
requires in-depth experimentation to concretely comment on the effects of sample duration.
This work requires several control variables to be maintained while experimenting on a single
dataset. The chosen dataset requires annotations at different scales, or perhaps a scheme to
summarize annotations for a given sample duration.

Novel Architectures The proposed model relies on contrastive loss from pairs of labelled
data to predict the class similarity or dissimilarity. This approach of pair comparison, do not
account for the degree of exhibited emotion in the sample. When dealing with more than two
classes of emotions on a dimensional emotion model, the degree of emotion exhibited may be
used to differentiate similar samples more readily than others. This can be performed using
other types of metric learning methods. For instance, a variant of the Siamese network - the
Triplet network, uses the same architecture, with three embeddings generated from triplets of
samples - one representing an anchor, another representing a positive sample and the third
representing a negative sample. This architecture may be used to augment the capabilities
of the current architecture. Additionally, the proposed architecture may be optimized by the
ranking of pairs using a statistical score of the samples. Samples exhibiting stronger similarity
may be ranked to obtain better pairs for training. Similarly, prototypical networks may be
used to aggregate embeddings with similar cosine distances, thereby performing a clustering
scheme for classification.

Privacy While affective computing in the wild opens doors for numerous applications in mon-
itoring emotions and well being individual privacy is an important concern. In the current study,
the data from the users are openly available for scientific research. However, for algorithms
and systems in production, the continuous capture of audio and physiological data by IVAs
and smartwatches poses a threat of misuse and malpractice. Therefore, techniques of pri-
vacy preservation should be accounted for in the commercialization of such algorithms. To
provide sufficient data for model training while keeping the user identity anonymous, several
techniques are possible. Firstly, audio anonymization using identity-removing transformations
such as dimensionality reduction, the multiplicative perturbation may be applied intermediately
to the inputs. Alternatively, several metric learning methods may also apply homomorphic en-
cryption to the datasets.
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7.3. Conclusion
The goal of this thesis has been the exploration of few-shot emotion recognition algorithms for
IVAs in a domestic setting. While several of the works in the literature have attempted to solve
this problem, many of these rely on extensive amounts of training data with high sampling
rates. Further, many approaches consider laboratory settings of data collection which are
obtrusive and may affect the emotions exhibited by the individual. Our approach departs from
these methods and can operate with audio samples which reflect actual interactions with IVAs.

The proposed model achieves the research objectives laid down in this thesis, with spe-
cific architectural design and training strategies with the help of an adaptive Siamese Network
architecture with multimodal embeddings. The architecture readily accepts raw physiological
signals to transform them into physiological feature embeddings. Further, it uses spectro-
grams and eGeMAPS feature sets to capture audio statistics for the respective embeddings.
These multimodal embeddings are concatenated to generate a composite embedding used for
the comparison of sample pairs. Finally, the contrastive loss is used as the optimization objec-
tive for the algorithm. This architecture answers the first research question on the integration
of physiological networks in the few-shot domain. We test the proposedmodel on two datasets
representing two specific cases of IVA interactions. The K-EmoCon dataset represents a case
of an IVA listening passively to a user, while the RECOLA dataset represents a case where the
user interacts actively with IVAs. With each dataset, we test the 6 different support set-sizes.
The support set represents the training set available for the model. The second research ques-
tion can be answered with these tests, with K = 25 for K-EmoCon. Although the value of K
for RECOLA is inconclusive, moderately high performance is obtained for K = 40 across par-
ticipants. For each of the datasets, observations show moderate to high-performance scores.
The performances on the K-EmoCon dataset are 63.97% and 66.91% for arousal and va-
lence dimensions. For RECOLA, the performances are 53.81% and 52.87% for the arousal
and valence dimensions. This performance is comparable to the state of the art models. The
third research question is answered quantitatively by comparing the performances of the two
datasets, represented by two different sample duration. While this discussion is not concretely
built on quantitative analysis, an overall comparison across participants, definitely suggests
the superiority of higher sample duration on prediction performance for the two emotion dimen-
sions. The fourth research question is examined with the experiments of the datasets with the
imputation of various types of noise. It is observed that the models sustainingly perform better
for the K-EmoCon dataset, however, there is some degradation in accuracy for RECOLA. This
is analysed further to find the source of the performance bottleneck.

The proposed work provides insights into the effects of sample duration, noise as well train-
ing set size on the proposed few-shot emotion recognition algorithm. While it lacks evaluation
across all the participants of the dataset, it provides a potent direction to study these parame-
ters in conjunction with the emotion recognition problem. These parameters are fundamentally
important to determine ways to optimize the existing emotion recognition pipelines. Further,
comparisons from the two datasets also provide insights on the kind of interaction on which
better emotion recognition is possible. We believe this work contributes towards the design of
emotionally intelligent IVAs.
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Supplementary Material

A.1. List of Features in the eGeMAPSv02
1. F0semitoneFrom27.5Hz_sma3nz_amean'
2. F0semitoneFrom27.5Hz_sma3nz_stddevNorm
3. F0semitoneFrom27.5Hz_sma3nz_percentile20.0
4. F0semitoneFrom27.5Hz_sma3nz_percentile50.0
5. F0semitoneFrom27.5Hz_sma3nz_percentile80.0
6. F0semitoneFrom27.5Hz_sma3nz_pctlrange0-2
7. F0semitoneFrom27.5Hz_sma3nz_meanRisingSlope
8. F0semitoneFrom27.5Hz_sma3nz_stddevRisingSlope
9. F0semitoneFrom27.5Hz_sma3nz_meanFallingSlope
10. F0semitoneFrom27.5Hz_sma3nz_stddevFallingSlope
11. loudness_sma3_amean
12. loudness_sma3_stddevNorm
13. loudness_sma3_percentile20.0
14. loudness_sma3_percentile50.0
15. loudness_sma3_percentile80.0
16. loudness_sma3_pctlrange0-2
17. loudness_sma3_meanRisingSlope
18. loudness_sma3_stddevRisingSlope
19. loudness_sma3_meanFallingSlope
20. loudness_sma3_stddevFallingSlope
21. spectralFlux_sma3_amean
22. spectralFlux_sma3_stddevNorm
23. mfcc1_sma3_amean
24. mfcc1_sma3_stddevNorm
25. mfcc2_sma3_amean
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26. mfcc2_sma3_stddevNorm
27. mfcc3_sma3_amean
28. mfcc3_sma3_stddevNorm
29. mfcc4_sma3_amean
30. mfcc4_sma3_stddevNorm
31. jitterLocal_sma3nz_amean
32. jitterLocal_sma3nz_stddevNorm
33. shimmerLocaldB_sma3nz_amean
34. shimmerLocaldB_sma3nz_stddevNorm
35. HNRdBACF_sma3nz_amean
36. HNRdBACF_sma3nz_stddevNorm
37. logRelF0-H1-H2_sma3nz_amean
38. logRelF0-H1-H2_sma3nz_stddevNorm
39. logRelF0-H1-A3_sma3nz_amean
40. logRelF0-H1-A3_sma3nz_stddevNorm
41. F1frequency_sma3nz_amean
42. F1frequency_sma3nz_stddevNorm
43. F1bandwidth_sma3nz_amean
44. F1bandwidth_sma3nz_stddevNorm
45. F1amplitudeLogRelF0_sma3nz_amean
46. F1amplitudeLogRelF0_sma3nz_stddevNorm
47. F2frequency_sma3nz_amean
48. F2frequency_sma3nz_stddevNorm
49. F2bandwidth_sma3nz_amean
50. F2bandwidth_sma3nz_stddevNorm
51. F2amplitudeLogRelF0_sma3nz_amean
52. F2amplitudeLogRelF0_sma3nz_stddevNorm
53. F3frequency_sma3nz_amean
54. F3frequency_sma3nz_stddevNorm
55. F3bandwidth_sma3nz_amean
56. F3bandwidth_sma3nz_stddevNorm
57. F3amplitudeLogRelF0_sma3nz_amean
58. F3amplitudeLogRelF0_sma3nz_stddevNorm
59. alphaRatioV_sma3nz_amean
60. alphaRatioV_sma3nz_stddevNorm
61. hammarbergIndexV_sma3nz_amean
62. hammarbergIndexV_sma3nz_stddevNorm
63. slopeV0-500_sma3nz_amean
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64. slopeV0-500_sma3nz_stddevNorm
65. slopeV500-1500_sma3nz_amean
66. slopeV500-1500_sma3nz_stddevNorm
67. spectralFluxV_sma3nz_amean
68. spectralFluxV_sma3nz_stddevNorm
69. mfcc1V_sma3nz_amean
70. mfcc1V_sma3nz_stddevNorm
71. mfcc2V_sma3nz_amean
72. mfcc2V_sma3nz_stddevNorm
73. mfcc3V_sma3nz_amean
74. mfcc3V_sma3nz_stddevNorm
75. mfcc4V_sma3nz_amean
76. mfcc4V_sma3nz_stddevNorm
77. alphaRatioUV_sma3nz_amean
78. hammarbergIndexUV_sma3nz_amean
79. slopeUV0-500_sma3nz_amean
80. slopeUV500-1500_sma3nz_amean
81. spectralFluxUV_sma3nz_amean
82. loudnessPeaksPerSec
83. VoicedSegmentsPerSec
84. MeanVoicedSegmentLengthSec
85. StddevVoicedSegmentLengthSec
86. MeanUnvoicedSegmentLength
87. StddevUnvoicedSegmentLength
88. equivalentSoundLevel_dBp
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A.2. Participant Data

Table A.1: Results from Vox-Sort Diarization of K-EmoCon

Audio File Speaker Diarized Audio (s)

P1.P2 Participant 1 5:56
Participant 2 7:22

P3.P4 Participant 3 6:02
Participant 4 4:04

P5.P6 Participant 5 5:50
Participant 6 4:06

P7.P8 Participant 7 4:25
Participant 8 5:38

P9.P10 Participant 9 6:49
Participant 10 5:10

P11.P12 Participant 11 5:17
Participant 12 4:50

P13.P14 Participant 13 5:07
Participant 14 4:42

P15.P16 Participant 15 5:09
Participant 16 4:25

P17.P18 Participant 17 6:05
Participant 18 4:03

P19.P20 Participant 19 4:24
Participant 20 5:20

P21.P22 Participant 21 4:16
Participant 22 5:21

P23.P24 Participant 23 5:29
Participant 24 5:32

P25.P26 Participant 25 4:46
Participant 26 5:39

P27.P28 Participant 27 4:39
Participant 28 5:29

P29.P30 Participant 29 4:38
Participant 30 5:09

P31.P32 Participant 31 4:38
Participant 32 4:40
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B.1. K-EmoCon : Detailed Baseline Results
Table B.1: Performance Metrics for K-EmoCon - Baseline

Id K Arousal Model Valence Model
As(%) Ap(%) P (%) R(%) F1(%) As(%) Ap(%) P (%) R(%) F1(%)

15

5 85.00 52.18 53.34 52.18 47.67 90.00 52.37 50.63 50.26 41.79
10 95.00 53.02 53.06 53.02 52.83 97.50 62.57 62.74 62.57 62.44
15 90.00 52.39 54.19 52.39 46.69 93.33 53.53 58.50 53.53 45.57
20 97.50 54.78 54.97 54.78 54.33 96.25 53.66 53.66 53.66 53.65
25 79.00 57.74 57.99 57.74 57.40 96.00 70.06 62.11 62.10 62.10
30 72.50 52.76 52.84 52.76 52.41 98.33 55.44 51.77 51.70 51.19

23

5 100.00 53.76 54.94 51.17 39.67 95.00 52.48 52.68 52.48 51.62
10 72.50 56.07 55.83 55.83 55.83 95.00 56.21 56.30 56.21 56.06
15 88.33 54.02 55.27 54.02 51.12 100.00 56.34 56.63 56.34 55.85
20 100.00 76.32 71.51 52.63 39.32 100.00 56.72 57.12 56.72 56.09
25 100.00 78.61 75.01 59.44 51.97 94.00 59.84 58.69 58.27 57.75
30 90.83 52.94 53.43 52.94 51.21 95.83 55.93 57.66 55.93 53.30

30

5 90.00 54.58 54.64 54.58 54.41 90.00 52.52 56.26 52.52 44.16
10 87.50 53.76 54.35 53.76 52.14 100.00 54.67 57.12 54.67 50.40
15 98.33 54.92 49.18 49.18 49.13 95.00 54.32 59.57 54.32 47.05
20 88.75 53.91 54.83 53.91 51.63 100.00 57.63 56.13 55.34 53.86
25 84.00 56.88 61.71 56.88 51.92 77.00 52.78 52.78 52.78 52.77
30 93.33 55.21 55.21 55.21 55.20 97.50 57.08 57.27 57.08 56.81

31

5 100.00 55.74 59.14 55.74 51.20 80.00 50.18 75.04 50.18 33.73
10 100.00 63.18 63.40 63.18 63.02 100.00 69.53 69.54 69.53 69.52
15 100.00 58.74 60.85 58.74 56.64 88.33 50.57 51.57 50.57 41.20
20 100.00 70.86 67.81 66.55 65.94 100.00 75.49 74.72 74.71 74.70
25 96.00 52.63 52.69 52.63 52.39 98.00 84.94 69.03 67.07 66.20
30 100.00 68.08 68.18 68.08 68.03 100.00 88.59 82.41 78.84 78.24
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B.2. K-EmoCon : Detailed Results with different types of noise
Table B.2: Performance Metrics for K-EmoCon with noise - DKITCHEN

Id K Arousal Model Valence Model
As(%) Ap(%) P (%) R(%) F1(%) As(%) Ap(%) P (%) R(%) F1(%)

15

5 100.00 51.45 52.24 51.45 46.75 80.00 52.89 56.68 52.89 45.12
10 95.00 52.55 54.55 52.55 46.69 85.00 55.28 55.54 55.28 54.75
15 91.67 53.74 54.56 53.74 51.58 93.33 54.09 58.79 54.09 47.02
20 95.00 56.08 57.04 56.08 54.52 96.25 52.76 50.36 50.31 48.44
25 76.00 54.55 54.68 54.55 54.21 98.00 74.04 69.88 69.87 69.87
30 98.33 54.91 55.49 54.91 53.68 79.17 55.37 61.55 55.37 48.48

23

5 75.00 52.58 53.24 52.58 50.05 100.00 54.66 58.74 54.66 48.67
10 77.50 55.85 56.10 55.85 55.41 100.00 54.28 50.35 50.33 49.66
15 78.33 53.33 53.43 53.33 53.02 93.33 52.11 52.12 52.11 52.09
20 100.00 65.53 65.30 61.32 58.62 98.75 54.81 48.12 48.15 47.97
25 88.00 53.85 55.25 53.85 50.55 94.00 54.00 59.47 54.00 46.24
30 100.00 60.63 57.20 57.18 57.16 100.00 57.02 57.07 57.02 56.95

30

5 100.00 52.86 55.60 52.86 46.28 100.00 55.66 56.50 55.66 54.19
10 100.00 56.11 57.41 56.11 54.08 100.00 51.69 53.54 51.69 44.43
15 100.00 57.79 65.13 57.79 51.96 88.33 54.61 58.03 54.61 49.20
20 92.50 53.54 51.22 50.88 47.29 95.00 56.02 56.02 56.02 56.01
25 80.00 53.88 54.33 53.88 52.67 91.00 54.44 59.15 54.44 47.70
30 100.00 55.15 51.03 51.03 51.02 100.00 57.83 52.18 52.17 52.12

31

5 100.00 61.48 63.30 61.48 60.11 85.00 52.12 53.03 52.12 48.24
10 100.00 59.76 59.99 59.76 59.53 100.00 57.79 58.52 57.79 56.86
15 100.00 65.45 65.49 65.45 65.43 100.00 51.89 53.54 51.89 45.57
20 97.50 72.46 75.93 57.61 48.51 81.25 56.64 56.66 56.64 56.62
25 100.00 74.44 70.61 61.85 57.32 94.00 57.79 56.78 56.35 55.66
30 100.00 65.96 60.58 60.58 60.58 100.00 81.04 81.68 77.71 76.99
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Table B.3: Performance Metrics for K-EmoCon with noise - DLIVING

Id K Arousal Model Valence Model
As(%) Ap(%) P (%) R(%) F1(%) As(%) Ap(%) P (%) R(%) F1(%)

15

5 100.00 51.93 51.93 51.93 51.92 100.00 58.68 61.13 58.68 56.29
10 82.50 55.87 56.14 55.87 55.38 85.00 54.14 54.62 54.14 52.94
15 100.00 54.52 54.15 53.99 53.54 100.00 52.91 52.97 52.91 52.64
20 83.75 55.31 56.47 55.31 53.20 100.00 62.28 58.03 57.78 57.46
25 99.00 53.49 55.27 53.49 49.20 97.00 65.58 66.49 65.58 65.11
30 88.33 53.73 56.67 53.73 47.98 100.00 58.94 56.67 56.62 56.54

23

5 100.00 52.34 46.36 47.66 42.52 80.00 54.04 58.40 54.04 47.18
10 90.00 55.88 49.11 49.26 46.96 100.00 55.92 56.13 55.92 55.54
15 90.00 53.57 53.76 53.57 52.98 96.67 51.04 51.11 51.04 50.31
20 67.50 58.02 58.05 58.02 57.99 98.75 55.11 55.47 55.11 54.36
25 100.00 84.55 75.43 51.69 36.97 70.00 55.81 63.03 55.81 48.71
30 81.67 54.24 56.34 54.24 50.09 94.17 55.51 55.58 55.51 55.37

30

5 100.00 51.43 52.17 51.43 46.87 100.00 53.77 53.77 53.77 53.77
10 90.00 53.46 53.46 53.46 53.46 97.50 54.33 51.67 51.67 51.66
15 86.67 55.28 55.57 55.28 54.70 100.00 53.82 53.82 53.82 53.81
20 75.00 56.58 56.67 56.58 56.44 92.50 57.31 59.05 57.31 55.15
25 91.00 60.45 60.53 60.45 60.39 90.00 55.60 61.91 55.60 48.82
30 93.33 54.81 56.98 54.81 51.00 71.67 53.95 62.92 53.95 44.27

31

5 100.00 50.82 50.91 50.82 49.52 100.00 55.12 55.17 55.12 55.03
10 100.00 58.81 64.89 57.63 51.74 100.00 55.51 56.01 55.51 54.58
15 100.00 66.08 67.05 66.08 65.60 100.00 54.15 54.45 54.15 53.36
20 81.25 61.47 62.83 61.47 60.42 100.00 75.00 70.08 70.08 70.08
25 100.00 70.52 70.72 70.52 70.45 96.00 82.11 80.07 79.07 78.89
30 100.00 65.46 65.68 65.46 65.34 100.00 78.31 78.45 78.31 78.28
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Table B.4: Performance Metrics for K-EmoCon with noise - OHALLWAY

Id K Arousal Model Valence Model
As(%) Ap(%) P (%) R(%) F1(%) As(%) Ap(%) P (%) R(%) F1(%)

15

5 90.00 50.73 53.45 50.73 38.62 80.00 53.42 39.53 39.74 39.43
10 92.50 54.04 54.93 54.04 51.87 82.50 53.04 62.77 53.04 41.99
15 100.00 53.72 56.76 53.72 47.87 90.00 55.56 58.27 55.56 51.58
20 93.75 55.52 57.18 55.52 52.80 91.25 54.94 58.18 54.94 49.98
25 82.00 54.91 55.75 54.91 53.21 92.00 62.10 60.27 58.92 57.52
30 80.83 54.60 63.37 54.60 45.70 100.00 61.11 58.44 58.33 58.20

23

5 90.00 51.88 59.59 51.88 39.77 100.00 53.09 57.13 53.09 45.34
10 65.00 58.45 58.53 58.45 58.36 95.00 55.84 55.85 55.84 55.84
15 100.00 53.08 53.11 53.08 52.94 86.67 52.11 59.93 52.11 40.38
20 97.50 58.99 54.35 53.97 52.94 97.50 54.44 50.41 50.37 49.26
25 100.00 77.12 76.07 63.28 58.14 82.00 54.69 54.70 54.69 54.66
30 100.00 77.84 77.59 59.38 51.35 100.00 57.50 53.43 53.33 53.01

30

5 60.00 50.71 75.18 50.71 34.89 100.00 55.06 60.33 51.27 37.57
10 87.50 52.65 52.73 52.65 52.29 97.50 52.35 55.67 52.35 44.18
15 100.00 52.80 56.83 52.80 44.64 90.00 53.19 55.95 53.19 47.06
20 100.00 55.60 55.88 55.60 55.08 98.75 54.55 52.27 52.27 52.27
25 86.00 52.80 55.82 52.80 45.78 100.00 56.91 50.43 50.41 49.66
30 95.00 55.39 59.48 55.39 50.00 93.33 52.56 53.44 52.56 49.34

31

5 100.00 65.08 65.45 65.08 64.87 100.00 55.85 50.00 50.00 35.13
10 100.00 53.39 53.39 53.39 53.38 95.00 59.34 59.57 59.34 59.10
15 100.00 65.03 67.13 65.03 63.93 100.00 73.67 72.15 70.27 69.62
20 100.00 70.76 70.34 70.04 69.92 92.50 60.51 70.91 55.45 45.34
25 98.00 54.85 55.33 54.85 53.82 93.00 80.89 75.72 74.39 74.05
30 100.00 61.11 60.78 59.77 58.80 98.33 56.64 56.88 56.64 56.26
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Table B.5: Performance Metrics for K-EmoCon with noise - OOFFICE

Id K Arousal Model Valence Model
As(%) Ap(%) P (%) R(%) F1(%) As(%) Ap(%) P (%) R(%) F1(%)

15

5 80.00 50.49 50.55 50.49 48.93 100.00 53.68 54.06 53.68 52.58
10 82.50 52.81 52.98 52.81 52.12 97.50 52.46 60.44 52.46 41.23
15 71.67 55.65 58.29 55.65 51.81 90.00 52.29 56.88 52.29 42.72
20 100.00 56.78 55.66 55.65 55.62 96.25 54.29 54.89 54.29 52.85
25 98.00 57.60 57.63 57.60 57.56 97.00 70.25 66.50 66.46 66.43
30 95.00 52.13 53.15 52.13 47.95 100.00 67.81 66.47 66.44 66.42

23

5 100.00 57.98 57.90 55.87 52.84 100.00 52.17 54.89 52.17 44.46
10 90.00 57.11 57.18 57.11 56.99 85.00 54.25 52.23 51.96 50.48
15 96.67 53.59 53.81 53.59 52.91 98.33 54.55 55.18 54.55 53.11
20 97.50 53.49 53.76 53.49 52.67 92.50 52.26 52.34 52.26 51.83
25 98.00 66.67 68.18 66.67 65.96 74.00 55.24 56.12 55.24 53.57
30 99.17 65.41 65.80 65.41 65.19 96.67 52.82 52.96 52.82 52.26

30

5 80.00 52.86 52.86 52.86 52.86 80.00 55.70 56.18 55.70 54.82
10 97.50 54.17 54.38 54.17 53.61 97.50 53.69 53.70 53.69 53.66
15 93.33 54.44 54.50 54.44 54.27 98.33 53.19 54.82 53.19 48.87
20 81.25 56.36 57.55 56.36 54.55 85.00 55.77 57.69 55.77 52.82
25 96.00 55.61 52.83 52.80 52.68 98.00 54.69 55.38 54.69 53.18
30 91.67 52.48 52.88 52.48 50.73 99.17 55.93 56.19 55.93 55.47

31

5 100.00 65.57 65.79 65.57 65.45 80.00 51.06 56.53 51.06 38.10
10 100.00 60.34 60.96 60.34 59.77 65.00 54.95 58.46 54.95 49.72
15 100.00 61.15 63.20 61.15 59.58 95.00 52.84 56.58 52.84 45.03
20 100.00 63.18 57.91 57.76 57.56 98.75 59.22 56.42 56.27 56.02
25 100.00 64.18 59.55 51.31 37.91 97.00 85.91 78.17 77.98 77.94
30 100.00 68.92 66.91 66.60 66.45 99.17 57.02 52.69 52.69 52.66
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B.3. RECOLA : Detailed Baseline Results
Table B.6: Performance Metrics for RECOLA - Baseline

Id K Arousal Model Valence Model
As(%) Ap(%) P (%) R(%) F1(%) As(%) Ap(%) P (%) R(%) F1(%)

dev1

10 57.50 50.07 55.02 50.07 33.73 95.00 51.03 52.24 51.03 43.38
20 92.50 50.07 25.00 50.00 33.33 90.00 51.05 54.31 51.05 39.66
30 97.50 50.51 51.09 50.51 42.83 64.17 51.16 51.16 51.16 51.15
40 88.13 53.25 54.18 53.25 50.50 96.88 52.30 25.00 50.00 33.33
50 96.50 50.00 25.00 50.00 33.33 99.50 53.42 25.00 50.00 33.33
60 100.00 54.38 25.00 50.00 33.33 57.92 50.85 51.10 50.85 47.94

dev2

10 40.00 49.86 24.97 49.86 33.27 90.00 50.89 52.37 50.89 41.79
20 88.75 50.42 56.93 50.42 35.21 100.00 53.28 50.71 50.21 39.56
30 100.00 58.85 58.86 58.85 58.85 99.17 53.73 25.00 50.00 33.33
40 67.50 50.37 50.81 50.37 42.59 93.75 53.52 54.20 53.52 51.56
50 99.50 60.47 60.77 60.47 60.20 84.00 54.22 54.71 54.22 53.00
60 93.33 50.08 75.02 50.08 33.51 97.92 53.26 25.00 50.00 33.33

dev3

10 82.50 51.44 52.03 51.44 47.59 87.50 53.28 54.58 53.28 49.71
20 100.00 53.17 53.48 53.17 52.12 81.25 51.13 52.54 51.13 43.21
30 95.83 55.19 55.28 55.19 55.02 98.33 54.90 25.00 50.00 33.33
40 94.38 54.15 54.42 54.15 53.44 98.75 59.00 62.38 51.11 36.69
50 69.50 52.90 53.34 52.90 51.31 70.50 50.75 51.55 50.75 43.49
60 99.17 50.94 25.00 50.00 33.33 77.50 52.45 54.14 52.45 47.04

dev4

10 90.00 51.78 51.85 51.78 51.33 100.00 51.99 25.00 50.00 33.33
20 81.25 52.96 53.01 52.96 52.74 95.00 52.95 46.91 49.51 36.07
30 90.00 50.58 52.85 50.58 38.26 96.67 50.00 25.00 50.00 33.33
40 90.00 50.59 66.82 50.59 34.88 70.00 50.67 50.83 50.67 48.10
50 91.00 51.88 52.16 51.88 50.27 50.00 50.00 50.00 50.00 33.99
60 79.17 50.78 50.88 50.78 49.30 86.25 53.76 54.58 53.76 51.59
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B.4. RECOLA : Detailed Results with different types of noise
Table B.7: Performance Metrics for RECOLA with noise - DKITCHEN

Id K Arousal Model Valence Model
As(%) Ap(%) P (%) R(%) F1(%) As(%) Ap(%) P (%) R(%) F1(%)

dev1

10 62.50 50.07 52.80 50.07 33.96 80.00 51.30 58.13 51.30 38.37
20 96.25 56.97 56.97 56.97 56.97 95.00 51.26 25.00 50.00 33.33
30 99.17 50.36 25.00 50.00 33.33 51.67 52.10 52.11 52.10 52.03
40 99.37 56.54 25.00 50.00 33.33 76.88 50.51 50.72 50.51 46.67
50 94.00 50.00 45.27 49.62 34.58 80.00 51.60 53.01 51.60 45.17
60 96.67 50.00 40.30 48.51 34.69 99.58 51.71 51.83 51.71 50.91

dev2

10 95.00 56.31 58.65 56.31 53.14 92.50 55.00 58.22 55.00 50.11
20 80.00 50.77 56.05 50.77 37.05 88.75 51.26 54.93 51.26 40.11
30 37.50 49.86 24.96 49.86 33.27 80.83 50.79 54.57 50.79 37.95
40 98.12 51.04 52.64 50.22 35.45 91.87 52.63 52.73 52.63 52.19
50 93.00 57.00 59.13 57.00 54.34 85.00 50.53 50.92 50.53 44.62
60 97.50 56.41 57.39 56.41 54.90 79.58 52.67 55.46 52.67 45.75

dev3

10 90.00 52.54 52.57 52.54 52.38 90.00 50.89 54.94 50.89 38.24
20 41.25 49.93 24.98 49.93 33.30 87.50 50.91 52.41 50.91 41.89
30 98.33 51.15 53.49 51.15 41.32 90.83 55.08 59.07 55.08 49.53
40 100.00 52.65 49.33 49.56 44.85 88.13 51.33 51.35 51.33 51.13
50 67.00 52.92 54.39 52.92 48.61 96.00 58.86 25.00 50.00 33.33
60 59.17 52.82 52.83 52.82 52.77 99.58 59.13 63.77 52.68 40.76

dev4

10 82.50 51.30 52.38 51.30 45.10 90.00 51.92 52.57 51.92 48.67
20 96.25 50.28 51.36 50.28 37.99 86.25 51.69 52.89 51.69 46.07
30 96.67 52.52 52.63 52.52 51.99 83.33 53.40 53.73 53.40 52.33
40 100.00 51.04 25.00 50.00 33.33 86.25 50.74 51.46 50.74 43.85
50 74.00 52.43 52.46 52.43 52.29 87.50 53.29 53.55 53.29 52.43
60 85.00 51.86 53.61 51.86 45.21 49.58 50.00 25.00 50.00 33.33
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Table B.8: Performance Metrics for RECOLA with noise - DLIVING

Id K Arousal Model Valence Model
As(%) Ap(%) P (%) R(%) F1(%) As(%) Ap(%) P (%) R(%) F1(%)

dev1

10 100.00 57.13 59.25 57.13 54.53 100.00 51.85 51.85 51.85 51.82
20 97.50 56.62 56.62 56.62 56.61 96.25 52.53 52.62 52.53 52.11
30 45.00 49.64 24.91 49.64 33.17 70.00 51.37 52.42 51.37 45.49
40 90.62 54.00 54.00 54.00 53.99 86.87 50.44 50.71 50.44 45.27
50 97.00 55.80 56.43 55.80 54.69 95.50 54.79 54.80 54.79 54.77
60 45.00 50.39 52.55 50.39 37.09 69.58 51.87 52.05 51.87 50.76

dev2

10 100.00 50.34 55.52 50.34 35.13 90.00 50.96 55.90 50.96 37.97
20 97.50 60.49 61.06 60.49 59.98 100.00 56.29 55.63 55.24 54.47
30 95.00 50.22 58.39 50.22 34.19 100.00 54.66 25.00 50.00 33.33
40 90.62 50.67 67.48 50.67 35.05 93.75 51.03 51.88 51.03 44.74
50 99.50 60.44 60.53 60.44 60.36 83.00 50.75 52.29 50.75 40.76
60 83.33 50.39 61.46 50.39 34.61 72.92 53.57 57.53 53.57 46.55

dev3

10 95.00 51.23 52.06 51.23 45.82 100.00 55.13 54.46 54.10 53.17
20 92.50 50.35 52.02 50.35 37.45 96.25 54.00 55.23 54.00 51.12
30 78.33 53.60 53.62 53.60 53.56 67.50 57.26 58.95 57.26 55.13
40 86.87 55.27 55.49 55.27 54.84 95.63 55.15 57.91 55.15 50.85
50 94.50 54.82 55.11 54.82 54.19 52.50 50.22 60.77 50.22 34.09
60 96.25 51.02 54.60 51.02 39.19 96.67 54.84 25.00 50.00 33.33

dev4

10 100.00 53.22 25.00 50.00 33.33 62.50 50.07 50.37 50.07 37.30
20 98.75 50.92 25.00 50.00 33.33 61.25 51.13 53.13 51.13 41.82
30 95.83 50.72 51.81 50.72 42.03 95.00 51.81 25.00 50.00 33.33
40 93.12 51.33 53.37 51.33 42.66 93.12 50.07 50.22 50.07 40.25
50 82.50 51.96 52.50 51.96 49.24 81.00 52.74 52.74 52.74 52.73
60 56.25 50.54 57.14 50.54 35.68 72.50 53.23 54.66 53.23 49.34



B.4. RECOLA : Detailed Results with different types of noise 108

Table B.9: Performance Metrics for RECOLA with noise - OHALLWAY

Id K Arousal Model Valence Model
As(%) Ap(%) P (%) R(%) F1(%) As(%) Ap(%) P (%) R(%) F1(%)

dev1

10 52.50 49.66 24.91 49.66 33.18 80.00 51.65 54.51 51.65 42.52
20 100.00 57.33 25.00 50.00 33.33 100.00 52.67 25.00 50.00 33.33
30 99.17 54.62 55.34 54.62 53.04 100.00 52.89 51.75 50.58 40.64
40 92.50 54.02 54.51 54.02 52.73 93.75 51.03 51.19 51.03 49.37
50 98.00 58.02 25.00 50.00 33.33 87.50 51.90 51.99 51.90 51.30
60 49.58 50.16 58.37 50.16 33.95 93.33 54.57 54.58 54.57 54.57

dev2

10 77.50 50.69 57.99 50.69 36.08 95.00 58.21 59.80 58.21 56.43
20 100.00 61.57 61.61 61.57 61.53 81.25 53.57 57.71 53.57 46.38
30 100.00 61.43 57.65 53.84 47.26 75.00 54.86 57.14 54.86 50.93
40 98.75 51.19 25.00 50.00 33.33 71.88 50.51 61.80 50.51 34.96
50 92.50 57.12 58.15 57.12 55.72 96.00 57.62 58.75 57.62 56.20
60 100.00 61.24 61.08 60.77 60.49 92.08 54.88 25.00 50.00 33.33

dev3

10 50.00 50.48 54.19 50.48 36.40 82.50 54.51 54.54 54.51 54.45
20 95.00 54.99 55.06 54.99 54.84 96.25 58.01 60.44 58.01 55.40
30 99.17 53.82 25.00 50.00 33.33 92.50 58.74 65.35 58.74 53.76
40 61.87 53.26 54.04 53.26 50.90 99.37 58.41 63.96 54.57 45.39
50 99.50 51.83 25.00 50.00 33.33 99.00 54.98 56.69 51.66 40.47
60 100.00 51.40 49.26 49.38 47.29 75.42 50.46 50.75 50.46 45.12

dev4

10 100.00 52.61 48.44 48.77 45.95 100.00 53.77 55.49 53.77 49.84
20 90.00 50.77 64.67 50.77 35.50 96.25 50.92 51.55 50.92 45.31
30 83.33 51.16 51.66 51.16 47.17 73.33 51.37 52.89 51.37 44.05
40 94.38 53.69 53.85 53.69 53.21 58.75 50.07 53.59 50.07 33.89
50 99.00 52.13 25.00 50.00 33.33 83.00 51.97 51.97 51.97 51.97
60 89.58 52.09 56.29 50.16 34.08 87.92 52.04 52.20 52.04 51.17
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Table B.10: Performance Metrics for RECOLA with noise - OOFFICE

Id K Arousal Model Valence Model
As(%) Ap(%) P (%) R(%) F1(%) As(%) Ap(%) P (%) R(%) F1(%)

dev1

10 87.50 56.79 57.03 56.79 56.42 95.00 52.95 53.05 52.95 52.55
20 56.25 50.28 52.00 50.28 36.68 97.50 54.08 25.00 50.00 33.33
30 94.17 50.00 25.00 50.00 33.33 88.33 51.81 48.91 48.99 48.07
40 78.75 57.30 57.32 57.30 57.28 94.38 51.63 52.41 51.63 47.33
50 86.50 55.18 55.29 55.18 54.96 82.00 52.20 54.78 52.20 44.75
60 50.83 50.23 53.06 50.23 35.29 98.33 52.25 46.21 48.76 38.41

dev2

10 97.50 50.41 50.00 50.00 33.70 92.50 54.65 54.67 54.65 54.61
20 100.00 59.34 60.05 59.34 58.61 90.00 52.94 52.95 52.94 52.91
30 98.33 58.26 58.29 58.26 58.22 67.50 51.36 57.45 51.36 38.86
40 99.37 60.01 25.00 50.00 33.33 90.62 57.69 58.88 57.69 56.22
50 99.00 59.27 25.00 50.00 33.33 79.50 57.51 58.07 57.51 56.75
60 88.75 61.66 62.64 61.66 60.90 100.00 53.42 25.00 50.00 33.33

dev3

10 97.50 51.92 46.63 47.47 44.00 100.00 56.90 57.96 56.90 55.42
20 100.00 50.63 51.79 50.63 41.12 68.75 50.49 75.12 50.49 34.42
30 70.83 50.22 50.30 50.22 46.63 78.33 50.51 53.70 50.51 36.88
40 78.12 52.53 53.48 52.53 49.02 76.88 56.17 57.57 56.17 54.04
50 84.00 51.22 56.38 51.22 38.85 100.00 58.55 25.00 50.00 33.33
60 47.92 50.00 50.00 50.00 34.01 68.33 50.23 52.65 50.23 35.52

dev4

10 97.50 52.06 52.81 52.06 48.62 100.00 50.75 51.31 50.55 42.17
20 68.75 50.63 56.98 50.63 36.10 93.75 54.51 54.58 54.51 54.36
30 94.17 53.46 53.90 53.46 52.10 96.67 54.12 54.31 54.12 53.59
40 55.62 53.26 53.73 53.26 51.76 93.75 50.30 25.00 50.00 33.33
50 85.00 50.15 55.04 50.15 34.20 82.50 52.98 52.98 52.98 52.98
60 96.67 50.47 25.00 50.00 33.33 72.08 50.71 50.71 50.71 50.70
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