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ABSTRACT

To fully utilize carrier phase measurements in high-precision interferometric positioning systems, such as global navigation
satellite systems (GNSS), the corresponding integer ambiguities must be successfully resolved. Since the phase ambiguities
are biased by non-integer phase delays, only specific combinations are allowed to serve as valid inputs for Integer Ambiguity
Resolution (IAR) methods. Consequently, the resultant ambiguity-resolved phase data may not improve position precision as
significantly as when all the ambiguities are resolved. The goal of this contribution is to study the role of phase biases in
IAR and quantify the effect of bounding such biases in the ambiguity-resolved positioning performance. By identifying the
interrelationship of the model’s solutions, we show how constraining the phase biases has the potential to improve the precision
of both the position and the ambiguities. With the aid of simulated results, it is illustrated that one can leverage the boundedness
property of phase biases to obtain positioning results that are considerably more accurate than those obtained when the bias
constraint is discarded.

I. INTRODUCTION

High-precision interferometric positioning systems such as Global Navigation Satellite Systems (GNSS) (Hofmann-Wellenhof
et al., 2008; Teunissen and Montenbruck, 2017), interferometric wireless networks (Maréti et al., 2005; Wang et al., 2015),
and opportunistic navigation with nonconventional sensors (Shamaei and Kassas, 2019) rely on the provision of carrier phase
measurements. To fully exploit these ultra-precise measurements, the corresponding offsets must be successfully resolved
during the estimation process. The offsets consist of arbitrary cycle counts, called integer ambiguities, and fractional phase
biases caused by each of the transmitter and receiver clocks. Due to the linear dependency between the integer ambiguities
and the phase biases, only certain combinations of the ambiguities satisfy the integer-estimability conditions (Teunissen and
QOdijk, 2003; Teunissen, 2019), the conditions that dictate whether or not the solution of such combinations can serve as an
admissible input to Integer Ambiguity Resolution (IAR) methods like LAMBDA (Teunissen, 1993; Teunissen et al., 1997). As
a consequence, a subset of the ambiguities cannot be resolved as they are absorbed by the corresponding estimable phase biases.
Depending on the strength of the underlying measurement model, solutions of the remaining integer-estimable ambiguities may
then be successfully mapped to their correct integers, thus essentially constructing ambiguity-resolved carrier phase data to
enable high-precision model parameter solutions. The decision whether or not such integer-mapping is deemed successful is
determined by the probability of correct integer estimation, the so-called ambiguity success-rate (Teunissen, 1999). When the
ambiguity success-rate is not sufficiently large, it is likely that the output of the IAR method does not represent the sought-for

Proceedings of the 2025 International Technical Meeting, 47 https://doi.org/10.33012/2025.19988
ION ITM 2025, January 27-30, 2025



integer-estimable ambiguities, seriously deteriorating the precision of the remaining parameter solutions. In that case, one may
resign oneself to the float solution of the integer-estimable ambiguities, i.e., a real-valued ambiguity solution for which the
integer property of the ambiguities is discarded. With the float ambiguity solution on the other hand, the parameters of interest
(e.g., GNSS-derived position coordinates) fail to experience significant precision improvement (Khodabandeh and Teunissen,
2018).

In this contribution we aim to investigate the role of non-integer phase biases in influencing the model’s ambiguity success
rate, thereby addressing whether or not constraining such biases can help improve the precision of the positioning parameter
solutions. In the literature, estimable forms of the phase biases are either estimated along with the other model parameters or
eliminated from the model through, e.g., forming double-differences of the carrier phase measurements (Hofmann-Wellenhof
et al., 2008). It has not yet been addressed if the IAR performance can benefit from the information about the extreme values
that such phase biases can take on. Therefore, we study the condition under which bounding the stated biases increases the
ambiguity success-rate. In doing so, we employ the recently developed integer-search method of BEAT (Khodabandeh, 2022)
S0 as to incorporate the phase-bias constraint into the IAR process. To have the results generally applicable to the measurement
systems with frequency-varying carrier phase signals like GLONASS or Low-Earth-Orbiting (LEO) communication satellites,
we make use of the integer-estimable formulation (Khodabandeh and Teunissen, 2023). By ‘frequency-varying’, we mean
that the signal frequencies are assumed to vary from transmitter to transmitter, while they remain unchanged over time. The
(linearized) rank-deficient observation equations of such frequency-varying signals take the following form

a

—
E(y) =A (¢+ Bd)+Cec, (yeR™, z€Z", § € R, c e RP) (D)

where the symbol E(-) denotes the expectation operator, and y is the random vector of observables with [A, C] being the
augmented design matrix of full-column rank. The system (1) is rank-defect because the phase-bias vector ¢ is not separable
from the integer ambiguity vector z. The corresponding full-column rank matrix B links ¢ to the real-valued ambiguity vector
a = z+ BJ. A prime example of (1) is given by the linearized model of GNSS observation equations, with y containing the
carrier phase and pseudorange (code) observables and c containing estimable forms of the remaining unknown parameters, such
as e.g., position coordinates, atmosphere parameters, receiver and satellite clock parameters, and code delays.

Let us now assume that the phase-bias design matrix can be expressed as B = ZyH for some H € R?*9, in which the n x ¢
matrix Zs, together with the n x (n — ¢) matrix Z;, forms an admissible integer transformation Z = [Z1, Z3]. Therefore, by
definition, the entries of both Z and its inverse Z 1 = [Zl, ZQ]T are integer-valued (Teunissen, 1995). The inverse matrix Z -1
would then decompose the original ambiguity vector z € Z" into two parts, 1) the integer-estimable part zZ; = Z T2 and 2) the
integer-inestimable part Zo = ZQT z,thatis, z = Z1Z1 + Z3Z>. This follows by pre-multiplying the ambiguity vector z by both
sides of the matrix identity I,, = [Z7, Z)] [Zl, ZQ}T. As a result, the full-rank, integer-estimable parametrized version of (1)
can be given as (Khodabandeh and Teunissen, 2023)

a

——

E(y) = A (Z12 + Zob)+Cec, (5 €Z" D beRI) 2)

where b = b+ Z,, in which b = H§ represents the phase bias vector § in the Z-transformed domain. The real-valued ambiguity
vector a = z + Z5 b can now be equivalently expressed as a = 71 z1 + Z5 b. The vector b represents the estimable version of
b. The integer-estimable ambiguity vector Z; is separable from b, but at the expense of lumping the integer-inestimable part Zo
with b. Our goal is to compare the IAR performance of (2) with its bias-bounded version (Khodabandeh and Teunissen, 2024)

E(y) = AZ1 51+ AZy (b+ 2)+Ce, (51 €29, 5 € Z9, ||b]| < h) 3)

b
In comparison to (2), the bias-bounded model (3) is augmented with an extra piece of information, namely, the constraint
[|b]| < h which states that the magnitude of the unknown phase bias vector b is not larger than a positive scalar k. Imposing this

extra constraint is to enable one to resolve, next to Z1, also the integer-inestimable ambiguity vector Z5. As far as the precision
of the position solution is concerned, resolving the extra ambiguity vector zZo would only be beneficial if

o the float solution of Z,, say Zs, is correlated with that of the positioning parameters, that is, mapping %9 10 35 improves
position precision; and/or

e the float solution Z, is correlated with that of the existing integer-estimable ambiguities z, that is, mapping Zy 10 Zo
improves the precision of Z1, thereby helping realize successful resolution of z; .
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We identify a condition under which the above two propositions are valid. When bias is present, but bounded, we take recourse
to simulation to study the positioning precision improvement brought by the constraint ||b|| < h.

The remainder of this paper is organized as follows. In Section II, we take the system of GNSS short-baseline observation
equations as leading example, briefly reviewing the corresponding full-rank integer-estimable parametrized model. Since the
applicability of the model also holds for frequency-varying signals, the role of the GNSS receivers can be taken by a pair
of software-defined radios tracking signals of Low Earth Orbit (LEO) communication satellites (Khalife and Kassas, 2023).
Although the carrier-phase measurements of such satellites have not yet been publicly available so as to rigorously evaluate their
statistical characteristics, here we assume that the Iridium LEO satellites have GNSS-like L-band precise measurements (Pratt
et al., 1999; Kassas et al., 2019) and use simulated measurements to conduct an early feasibility study. Next to GPS and
GLONASS examples, we therefore also give an example of the admissible transformation Z = [Z, Z3] and Z~1 = [Zl, ZQ]T
forming integer-estimable and -inestimable ambiguities of Iridium frequency-varying phase measurements. In Section III, we
derive analytical expressions for the parameter solutions of the short-baseline model, addressing how constraining the unknown
phase-bias b can improve the positioning performance. The biased-constrained Integer Least-Squares (ILS) estimation and its link
to the well-known ILS estimation for resolving both the integer-estimable and -inestimable ambiguities z; and Z; are reviewed.
Section IV is devoted to numerical results. We study how the ‘bias-constrained integer least-squares estimation’ and its search
method of BEAT leverage the bias constraint ||b|| < h of the observation equations (3), significantly improving the ambiguity
success-rate for different values of the phase-bias bound h, and for certain frequencies of the carrier phase measurements.
Provided that the phase-bias constraint is correctly specified, it is illustrated that more accurate ambiguity-resolved positioning
solutions can be obtained. Finally, concluding remarks will be provided in Section V.

II. INTEGER-ESTIMABILITY IN SHORT-BASELINE MODELS

Suppose that a pair of GNSS receivers or software-defined radios collect carrier-phase and pseudorange (code) measurements
from m transmitters. The corresponding observed-minus-computed, between-receiver single-differenced (SD) phase and code
measurements are cast in the n-vectors ¢ and p, respectively. If the distance between the receivers is sufficiently short to neglect
the presence of SD atmospheric delays experienced in the measurements, a full-rank model for the corresponding linearized
observation equations can then be formed as (Khodabandeh and Teunissen, 2023)

) A G e T
E = 4
([ p P lo e o] a @
S—— S—— —_—
Y A c c
where the diagonal matrix A = diag(A1, ..., A,) contains the transmitter-specific wavelengths A; (s = 1,...,n). Then x 3
matrix G contains the transmitter-to-receiver line-of-sight unit vectors, and the n-vector of ones is denoted by e = [1,. .., 1]T.

The full-rank model (4) is a special case of (2), i.e. m = 2n, in which the role of vector c is given by a 4 x 1 vector (p = 4)
containing the 3 x 1 baseline position increment vector x and the estimable SD receiver clock offset dt. Here, the word
“estimable’ is emphasized to indicate that the scalar dt does not represent the original SD receiver clock offset, but a version that
is biased by the SD receiver code delays. This is why the SD receiver code delays are absent in (4). Here and in the following,
potential code inter-channel biases are assumed to be absent or a-priori calibrated, see e.g., (Wanninger and Wallstab-Freitag,
2007; Sleewaegen et al., 2012; Aggrey and Bisnath, 2016; Henkel et al., 2016; Banville et al., 2018). The model is solvable for
the unknown parameters x, dt and a, if the n x 4 matrix [G, €] is of full-column rank. The necessary condition is to have at
least 4 transmitters, i.e. n > 4.

The full-rank model (4) can be directly used for positioning and navigation with ‘frequency-varying’ carrier phase observables.
For the single-epoch case, i.e. when measurements of only one time-instance are considered, the phase data ¢ are fully reserved
for the unknown estimable ambiguities a, meaning that it is only the code data p that contribute to the estimation of the position
x. This is because the number of unknown ambiguities a is as many as that of the phase data ¢. To involve ¢ in the estimation
process, one should impose the integer constraint z € Z" on a = z + B d. For the special case of the baseline model (4), the
full-rank matrix B reduces to the n-vector B = A~ le, in which the scalar § indicates the SD receiver phase delay expressed
in units of length. Thus, ¢ = 1. To have the representation B = Z3H and identify the corresponding Z5- and H-matrices,
one needs to assume that the transmitter frequencies fs, s = 1,...,n, are integer multiples of a base frequency fy, that is,
fs =15 fo (rs € Z). An illustrative example is the set of frequencies under which GLONASS FDMA operates, the ratios of
which are currently given by

rs = 2848 + kg, ks € [—T,+6] 5)

with fo = 9/16 MHz and f; = 7/16 MHz for the L1 and L2 bands, respectively. For the CDMA case in which all the
frequencies are identical, i.e. f; = fy, these ratios are simply set to ry; = 1 (s = 1,...,n). In the case of Iridium L-band
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signals, the satellite frequencies are related to their base frequency fy as

fs=rsfo, (fo=100Hz) with r,€{16261042,16261458,16262708,16263958,16264375} (6)

With the aid of the relations f, = 7 fo and Ay = ¢,/ fs (with ¢, being the speed of light in vacuum), substitution of

Ml=r.)tintoa =2+ A~ed gives

)
a=ztJe (1) )
e
in which the base wavelength is given as \g = ¢,/ fo, with R = diag(r1,...,7,). Thus, Zo = [r1,...,7,]7 and H = (1/)¢).
In (7), we assume that the greatest common divisor (GCD) of the ratios r, is one. For the cases where the GCD is larger
than one, the ratios can be down-scaled by being divided by their GCD. Under this assumption, the integer vector Re can act
as the column Z; of the admissible transformation Z = [Z;, Z5] (Teunissen, 2019). Given the input vector Zy = Re, the
integer-sweeping algorithm returns the sought-for integer matrices Z; and Z~! = [Z;, Z5|T as output. These outputs are used

to form the integer-estimable parameterized version of (4). This version follows by substituting a = Z12; + b into (4), that is

¢, [ AZL ] ARe ] - G e x
E({p}){ 0 }Zl+[ 0 ]bjL{G e}|:dt:| ®)
~—— ———— ——— —_———— ——
y AZ, AZ> c c

With the above alternative full-rank model, one can involve the phase data ¢ in the estimation of the position increment x
through resolving the integer-estimable ambiguities 7; = Z7 z. In the next section, we present analytical expressions for the

float solutions of model (8), addressing if information about the size of the transformed phase bias b in b = b + Z; can enhance
the precision of the solutions.

To conclude this section, we make a remark about the admissible transformation Z = [Z;, Z5] and its inverse Z ! = [Z 1 ZQ]T.
Depending on the values that the frequency ratios r5 (s = 1,...,n) take on, the n x (n — 1) matrix 7, dictates that the float
solution of only certain integer combinations of the original ambiguities z is permitted to serve as an admissible input to IAR
methods, while the integer vector Zs represents a combination of z which is to be absorbed by the estimable phase bias b.
The n x (n — 1) matrix Z; is used to structure the full-rank ambiguity design matrix AZ;. To show numerical examples of
such matrices, we employed the ‘integer-sweeping’ algorithm of (Teunissen and Khodabandeh, 2022, pp. 5) for three different
satellite constellations of GPS, GLONASS and Iridium. The results are given in Table 1. For the GPS case, as one would
expect, the algorithm returns the columns of Z; as between-satellite differences. This is because the GPS signals follow the
CDMA strategy, having identical frequencies. For this case, the integer-estimable ambiguities z; = ZlT z are the well-known
double-differenced (DD) ambiguities. Likewise, the ambiguity of the first (pivot) satellite is chosen as the corresponding integer-
inestimable ambiguity z; = Zg z. Comparing the Z; -matrix of GPS with those of GLONASS and Iridium, one recognizes that
the integer-estimable ambiguities z; = Z T2 of these two satellite systems are not formed by the traditional DD combinations
as their corresponding Zs-vector is different from the vector of ones e. The large entries of the bias design matrix AZ5 indicate
that the float solution of the estimable bias b can become considerably more precise compared to the solutions of Z;. In the next
section, we will make use of this very property and discuss its consequence when imposing the bias constraint |b| < h.

III. THE INTERRELATIONSHIP OF THE FLOAT SOLUTIONS

Although the full-rank model (8) enables one to perform IAR even for frequency-varying phase measurements, thereby forming
the basis of FDMA ambiguity-fixing (Teunissen, 2019), several studies have reported that ‘full’ ambiguity resolution may not
be always successfully carried out, restricting one to choose the option of partial ambiguity resolution, see e.g., (Teunissen
and Khodabandeh, 2019; Brack et al., 2021; Zaminpardaz et al., 2021). To gain some insight into why such a restriction holds
for existing frequency-varying phase measurements (e.g. those of GLONASS), let us compare the Z;-matrix of the GPS case
with its frequency-varying versions in Table 1. Due to the structure of the GLONASS and Iridium signal frequencies, their
corresponding Z;-matrix contains relatively large entries. As a consequence, the float ambiguity solution Z1 contains poorly
precise entries, hindering full IAR (Teunissen, 2019).

By switching to partial IAR on the other hand, the resultant ambiguity-resolved phase data do not improve position precision

as impactful as their full IAR counterparts do. Considering the bias term b = b + Z» in (8), one may be tempted to find a way
to eliminate the unwanted bias parameter b in order to incorporate the float solution of the extra ambiguity Zo into the IAR
process, hoping to improve position precision. This is because, in the absence of b, the estimable bias b reduces to the remaining

50



Table 1: Examples of the admissible integer transformation Z = [Z1, Z2] € Z™*™ and its inverse Z~' = [Z1, Zo]" € Z™ ™ for three
different satellite constellations of GPS, GLONASS and Iridium, in which the number of satellites is set to n = 5. With the integer vector
Zy = Re = [r1,...,r,]7 as input, the ‘integer-sweeping’ algorithm delivers the remaining matrices Z, Z1 and Z, see e.g., (Teunissen and
Khodabandeh, 2022).

232 = Re 2?1 2?1 232

1 00 00 -1 -1 -1 -1 1

1 10 0 0 +1 0 0 0 0

GPS: 1 01 00 0 +1 O 0 0
1 0010 0 0 +1 O 0

1 0 0 01 0 0 0 +1 0
2849 1 1424 0 1 1 0 0 0 F 0

2841 0 1420 0 1 3 -3 3 1420 +1

GLONASS: 2846 0 1422 0 1 0 -2 -1 -1 +1
2852 0 1425 1 1 0 0 1 0 0
2843 0 1421 0 1 -4 5 =3 -—1418 | —2 |
16261042 1 39089 0 8130521 39063 —625 O 1 [ 1 ]

16261458 1 39090 0 8130729 —39053 833 1 -4 0

Iridium: 16262708 1 39093 0 8131354 -9 -208 -2 5 -2
16263958 1 39096 1 8131979 0 0 1 0 0
16264375 1 39097 0 8132187 0 0 0 -2 | 1 |

ambiguity Zo. Khodabandeh and Teunissen (2024) numerically illustrated that the bias term b, for the GLONASS FDMA case,
is indeed small and bounded for several short baselines. An overview of the results is shown in Figure 1, in which the left
and right panels represent the phase-bias estimates collected on 31st of March, and 30th of April 2023, respectively. As the
figure indicates, while the estimates are bounded, their distribution may change over time. Instead of neglecting or calibrating
such phase biases, one can impose the bounding constraint |b| < h on the model. Would the boundedness property, shown in
Figure 1, also carry over to other frequency-varying carrier-phase signals like those of the LEO satellites, quantifying the role
of the constraint || < h in their underlying IAR performance is then worthwhile.

1. Bias-bounded Integer Least-Squares

In quantifying the role of |b| < h, one may employ the bias-bounded Integer Least-Squares (ILS) estimation to solve the
short-baseline model (8) for the involved parameters using the bias constraint |b| < h. The minimization problem underlying
the general bias-bounded model (3) reads (Khodabandeh and Teunissen, 2024)

||y_AZ121_AZ2(22+b)_CCHéyy (9)

min
Z1 €L~ ) 25 €Z9,cERP,||b]|<h

with the short-hand notation || - HQQW = (1)"Q,, (), and Q, being the variance matrix of the observation vector y. If the

bias constraint ||b|| < h is lifted and replaced by b € R?, problem (9) would not have a unique solution. This is because
the unconstrained version of (3) is an under-determined system of equations where the number of unknowns is more than the
number of equations. To have a unique minimizer for the above objective function, the non-negative scalar h is required to be
smaller than certain values. For example, for the short-baseline model (8), h should not exceed half a cycle, that is, h < 0.5
(Khodabandeh, 2022).

As shown in Equations (12) and (13) of (Khodabandeh and Teunissen, 2024), for the case of (8), solving the minimization
problem (9) leads to the following biased-bounded ILS solution for position x

a':zi‘—QqeélQ:_l (51— %1) (10)

zZ1z1

Matrix @ : denotes the variance matrix of the float ambiguity solution Z1, while Q 23, denotes the covariance matrix between

the float solutions Z and §1. Here, thevnotation * is used to distinguish bias-bounded ILS solutions from their float versions
indicated by . The ambiguity solution z; is searched as the integer minimizer of the following problem

Zy=arg min {||21 — 4y, . + P(5)} (11)
2162"71 zZ121
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Figure 1: Boxplots of estimated values of the GLONASS FDMA phase bias b = §/A¢ corresponding to 6 IGS zero/short-baselines: BL1
(ZIM2-ZIM3), BL2 (UNBD-UNBD?3), BL3 (YARR-YAR?2), BL4 (YARR-YAR3), BL5 (YEL2-YELL), and BL6 (YEL2-YEL3). The red and
green boxes correspond to L1 and L2 frequency bands, respectively. The left and right panels represent the estimates collected on 31st of
March, and 30th of April 2023, respectively, cf. (Khodabandeh and Teunissen, 2024).

in which the function P(Z;) is specified as

min  [b(Z1) — 3o — b2 (12)

P > =
(1) 2,€7,|b|<h

1
2
o)
The scalar 03 denotes the variance of the conditional bias solution 5(21). By ‘conditional’, we mean that the solution is
conditioned on the assumption Z; = Z; (see the next subsection for its expression). Note, for the unconstrained case b € R, that
the function P(Z;) vanishes as the bias can be simply set to b = b(Z;) — Z, for any Z, € Z. For this case, i.e., when P(%;) = 0,

the integer minimizer (11) reduces to the well-known ILS solution of Z; (Teunissen, 1999). For the constrained case |b| < h,
the task of the function P(Z1) is to downweight potential integer candidates Z; € Z"~! if their corresponding conditional bias

solution b(%) is further away from Zy(%1) + b(Z1), where Z5(Z,) and b(Z,) are the minimizers in (12). Thus, the bounded
solution 5(51) will have a better accuracy performance, since the function P(Z;) penalizes out-of-bound solutions.

To carry out the integer search (11) and compute the bias-bounded ILS solution (10), one can employ the method of BEAT
(Khodabandeh, 2022). To solve (11), BEAT utilizes the LAMBDA method (Teunissen, 1993) and sequentially searches for the

minimizer z; inside a dual-ellipsoid encompassing region. For a detailed description of the search strategy, the reader is referred
to (Khodabandeh, 2022). Before presenting numerical results regarding the performance of bias-bounded ILS, we first derive

expressions for the conditional solution 5(21) and its variance o3, addressing how they govern the function P(Z;) in (12).

2. Canonical Differencing Transformation

To derive b(Z;), we first show the dependency of the float solutions & and Z; on the estimable bias b. This can be achieved by
making use of the Canonical Differencing (CD) transformation (Khodabandeh and Teunissen, 2018). Accordingly, we transform
the system of observation equations (8) into four uncorrelated parts. The CD transformation, denoted by the invertible matrix
T, establishes the relation y = T ~!(T'y) such that the variance matrix of the corresponding transformed observable vector Ty
becomes block-diagonal. Let the joint variance matrix of the phase and code observation vectors ¢ and p be given by

D 10) B QJinl 0 13
({p})_ 0 202 W1 (13)

The symbol D(-) denotes the dispersion operator. The zenith-referenced standard deviations of the undifferenced (UD) phase
and code data are denoted by o4 and o, respectively. Note that both the phase and code data generally become less precise
the smaller the satellite elevation becomes. Therefore, the n x n diagonal weight matrix W models the elevation-dependency
of the data. The presence of the number 2 in (13) indicates that the variance of the SD measurements is twice that of their UD
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Figure 2: A diagram showing how the float solution of the position & propagates into the remaining float solutions of the short-baseline
model (8), cf. the transformed model (14). The necessary and sufficient condition for the bias solution b to become ‘uncorrelated’ with 7 is
that [T L~ DTG = 0, that is, when b does not functionally depend on Z.

counterparts, assuming that the measurements of the two receivers are uncorrelated. Given the variance matrix, the sought-for
transformation reads 7' = [D, e*T]T, where the (n — 1) x n matrix DT performs between-satellite differences, while the 1 x n
vector et = (1/eTWe)eT W performs weighted-averaging. Therefore, D”e = 0 and e*e = 1. Since the vector A Z is parallel
to e (cf. 7), we also have the identities DT AZ, = 0 and et AZy = \g. Post-multiplying each of the phase and code data ¢ and
p, in (8), with the transformation matrix 7', would then give the following four uncorrelated parts

(DE(D"p) = [D"G) =, (2)E(etp) = [et Gl + dt

(G)E(DT¢) = [DTGlz+ Lz,  (4)E(ete) = [e"Gla+dt + 17z + Aob

(14)

with L = DTAZ, and I = et AZ;. A closer look at (14) reveals that only model @ has redundancy, in which the number
of DD observations D”p is more than the number of involved estimable parameters (i.e. =) when n > 4. The other three
models have no redundancy. In model @, the observation e™p is reserved for the estimable clock parameter dt. In model

@, the DD observations D?' ¢ are reserved for the integer-estimable ambiguities Z;. And finally in model @, the observation

et is reserved for the estimable bias b. As a result, least-squares estimation is only applied to @ so as to obtain the
position’s float solution as & = (DTG)* DT p, with the least-squares matrix (DTG)* = (GTDWDTG)*GT DW, where
W = (DTW~1D)~!. The remaining solutions follow then by the forward substitution of # into @, @ and @

A diagram showing how the position’s float solution & propagates into the other solutions is presented in Figure 2. Since the
transformed observations of the four models in (14) are mutually uncorrelated, checking the presence of correlation between the
solutions has been made straightforward. For instance, the correlation between the clock solution df and the position solution &
is only felt through the 1 x 3 vector e* G. Therefore, df and 7 would have been uncorrelated if et G = 0, i.e., if the (weighted)
average of the satellite line-of-sight unit vectors is zero. Since visible satellites are above the horizon (by definition), having
positive values for the up-component of their corresponding unit vectors, the condition et G = 0 never holds. Therefore, the
position solution & is always correlated with the receiver clock solution df.

For the objective of this study, we are interested in knowing if the float solutions & and Z; are correlated with the bias solution

b to verify the validity of the two propositions stated above on Page 2. According to Figure 2, the position solution % is not

correlated with b when (T L1 DTG = 0, that is, when b does not depend functionally on Z. To have b also uncorrelated with §1,
the condition {7 L~! = 0 (or equivalently [ = 0) should hold. Therefore, with [ = 0, both the position solution # and ambiguity

solution Z; would have been uncorrelated with the bias solution b. Under this condition, constraining the transformed phase bias
b (like b = 0) to resolve the extra ambiguity Z, does not pay off. However, equality [ = 0 does indeed never occur (Appendix),
meaning that at least the second proposition stated on Page 2 always remains valid for model (8), irrespective of the signal
frequencies of the transmitters. However, the extent to which the bias constraint |b| < h can be beneficial for ambiguity-resolved
positioning depends on the model’s strength (e.g., number of transmitters) and the structure of the involved signal frequencies.
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Figure 3: Skyplots of three satellite configurations as used in this study. The GPS and GLONASS configurations are with respect to IGS
station ABMF (located in France), whereas the Iridium configuration is respect to IGS station ALRT (located in Canada), on 26 June 2024.

Before discussing how to incorporate |[b| < h into the model, we first highlight the role of the float ambiguity solution Z1 in
governing the correlation between the position solution Z and the bias solution b. As shown in Figure 2, the dependence of bon

2 is sensed only through the presence of Z1. If the integer-estimable ambiguity vector Z; is known, the bias solution b would be
replaced by the conditional version

b)) = Aio{<e+<¢—p>> Tz (15)

Since the conditional bias solution (15) is a function of the observations e*¢ and e p, it is uncorrelated with the position

solution Z (see Figure 2). An application of the variance propagation law to (15) gives the variance of 5(21) as
2 02402
Ug _ ¢ P

= — 16
A eTWe (16)

Despite being uncorrelated with &, the conditional bias solution b(Z; ) and its variance o3 can play a decisive role in penalizing
possible outcomes of the IAR process, allowing for higher success rates of resolving z;. According to (12), the role of function
P(Z;) becomes more pronounced if the variance o3 is considered small relative to the ambiguity variance matrix Q 22, Asog
is inversely proportional to the base wavelength )\ (see 16), the bias constraint |b] < h can therefore be more decisive through
the function P(Z;), the larger the wavelength )y becomes. In the GPS case, we have Ay ~ 19 [cm] for the L1-frequency.
In the GLONASS FDMA case however, the base wavelength takes a much larger value of Ay ~ 533 [m], leading to a much

more precise conditional bias solution 5(21) The GLONASS IAR performance is therefore expected to benefit more from the
constraint || < h than that of its GPS counterpart.

IV. BIAS-BOUNDED ILS AT WORK

To gain initial insight into the role of the constraint |b| < h, we first consider an extreme case in which the phase bias b is assumed
to be zero, thatis, b = Z5. Under this assumption, the estimable ambiguity vector a, in (8), is integer, i.e. a = Z1 21+ 23 22 = 2.
To verify whether or not resolving the extra ambiguity Z, can improve the IAR performance, one would therefore need to compare
the following two ambiguity-fixing strategies

1-FullIAR :  a=Zy % + Zs %o, (3, €2V, 3, € 7)

. . h s ~ 7
2-Partial IAR : a = Z, % + Zs %, (2, € Z" D, 5, € R)

Resolving the full set of ambiguities [2{ , Z5]7 may lead to a lower ambiguity success-rate, particularly when the float solutions of

Z1 and Z, are weakly correlated. This means that imposing the bias constraint b = 0 may not always enhance ambiguity-resolved
positioning performance and could, in some cases, degrade it. To see if switching to full IAR is preferred over its partial TAR
version in (17), let us compare their performances in terms of Ambiguity Dilution Of Precision (ADOP). ADOP measures the
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Figure 4: ADOP values as function of the satellite elevation mask, corresponding to the three satellite configurations in Figure 3. The black
lines correspond to the SD case of z = Z1Z1 + Z22Z2, and the gray lines correspond to the integer-estimable case of Z;. The solid and
dashed lines indicate single- and quadruple-epoch cases, respectively. The zenith-referenced code and phase measurement standard deviations
(undifferenced) are, respectively, set to 0, = 0.3 [m] and o4 = 0.003 [m]. The sine-squared function of the satellite elevation is used to form
the diagonal entries of the weight matrix W in (13).

average precision of the float ambiguity solution (Teunissen, 1997). From the ADOP, one can roughly infer the bootstrapped
ambiguity success-rate. The smaller the ADOP, the higher the the stated success-rate becomes. As a rule of thumb, when the
ADORP is smaller than 0.14 cycles, the stated success-rate is larger than 99% (Odijk and Teunissen, 2008). We compare such
ADOP values for three different satellite configurations (Figure 3). The results are presented in Figure 4. The ADOP values
are shown as a function of the satellite elevation mask. As the elevation mask increases from 5 to 35 degrees, the number of
tracked satellites decreases, leading to a weaker model in the sense of having fewer redundant measurements. Consequently,
ADOP increases the higher the elevation mask. As the number of tracked GLONASS satellites becomes less than the minimum
required value of n = 4, no ADOP values are shown when the elevation mask is larger than 20 [degrees]. As shown in
Figure 4, apart from the GPS single-frequency case (L1), the ADOP values of the SD case (black lines) are smaller than their
versions obtained for the integer-estimable case (gray lines). This shows that imposing the bias constraint b = 0 can improve
the TAR performance. However, the size of the stated improvement differs notably across different satellite systems. While the
GLONASS and Iridium ADOPs can experience a considerable reduction in their values, the GPS dual-frequency case (L1/L2)
slightly decreases. As stated previously, this is due to the much larger base wavelengths of the GLONASS and Iridium signal
frequencies (see 16 and 12). The figure also compares single-epoch ADOP values (solid lines) with their quadruple-epoch
versions (dashed lines), where a measurement sampling-rate of 1 second is considered. As indicated, ADOP decreases as more
redundant measurements are collected at multiple epochs.

To better understand the bias-bounded ambiguity-resolved positioning performance, we simulate normally-distributed measure-
ments for the Iridium satellite configuration in Figure 3. Four simulated cases are considered: 1) the phase bias is known
to be zero over two epochs, 2) the phase bias is known to be zero over four epochs, 3) the phase bias b is constant over two
epochs with constraint |b| < 0.02, and 4) the phase bias b is constant over four epochs with constraint |b| < 0.02. For each
simulated case, 10,000 normally-distributed simulated samples are generated. For the nonzero bias cases, the time-constant
bias b is different in each simulation and varies from —0.02 to 0.02 [cycles]. The corresponding positioning results are shown
in Figure 5. The figure compares the float positioning solutions (blue dots) with their z;-fixed (gray dots), and bias-bounded
ILS versions (black dots). In terms of root-mean-squared-errors (RMSE), the performance of the bias-bounded ILS solutions
(black dots) is shown to be better than that of the Z;-fixed solutions (gray dots). While these solutions are more accurate than
their float counterparts, the bias-bounded ILS solutions, particularly for the up-component, outperform the z; -fixed solutions in
terms of accuracy. It is also important to note that the decrease in the RMSE of the float solutions does not follow the 1-over-v/k
rule (k: number of epochs), as one often observes for high-rate GNSS cases (Teunissen, 1997). This is due to the rapid change
in the receiver-to-LEO satellite line-of-sight unit vectors on which both the G- and W -matrices are based, see (4) and (13).

Next to the rather small bias value of 0.02 [cycles], we also examine the effect of different bias values in Figure 6. The figure
shows the empirical Cumulative Distribution Function (CDF) of the position error-magnitude corresponding to the GLONASS
(left) and Iridium (right) satellite configurations. As the bound h increases, the constraint is loosened, the bias-bounded ILS
solutions (gray curves) tend to behave more similar to their z;-fixed versions. For the extreme case of h = 0.5 [cycles], the
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Figure 5: Short-baseline positioning errors (East-North scatters and Up-time series) corresponding to the Iridium satellite configuration in
Figure 3. The blue, gray and black dots correspond to float, Z;-fixed, and bias-bounded ILS solutions, respectively. Four simulated cases are
considered: 1) the phase bias is known to be zero over two epochs (top-left), 2) the phase bias is known to be zero over four epochs (top-right),
3) the phase bias b is constant over two epochs with constraint [b| < 0.02 (bottom-left), and 4) the phase bias b is constant over four epochs
with constraint |b| < 0.02 (bottom-right). For each simulated case, 10,000 normally-distributed simulated samples are generated. For the
nonzero bias cases, the time-constant bias b is different in each simulation and varies from —0.02 to 0.02 [cycles]. The RMSE values [cm] of
each case are distinguished by their corresponding colors.

results get identical to the z; -fixed solutions (Khodabandeh and Teunissen, 2024). Compared to their float versions (blue curves),
the bias-bounded ILS solutions exhibit a smaller position error-magnitude when the bound % is way smaller than 0.5 [cycles].
For instance, for the GLONASS case, only 40% of the float results have a sub-meter position error-magnitude, while only 30%
of the corresponding Z;-fixed solutions have such an error-magnitude. By imposing the constraint |b| < 0.05 cycles, more than
57% of the bias-bounded ILS solutions have a sub-meter error-magnitude. In the case of Iridium, over 90% of the bias-bounded
ILS solutions have an error-magnitude smaller than 20 [cm] using the same bias constraint. However, it is important to remark
that such outcomes are expected when the phase bias b is bounded and smaller than A. When the bias constraint [b| < h is
misspecified, bias-bounded ILS may give less accurate solutions than those of the z;-fixed case (Khodabandeh and Teunissen,

2024).

V. CONCLUDING REMARKS

In this contribution we investigated the role of non-integer phase biases in influencing the model’s IAR performance, showing
how the bias constraint ||b|| < h can improve the ambiguity-resolved positioning performance. After reviewing the integer-
estimable parametrized model for short-baslines (8), we first addressed the interrelationship between the involved float solutions,
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Figure 6: Empirical CDF of the position error-magnitude (quadruple-epoch case) corresponding to the GLONASS, L1-only (left) and Iridium
(right) satellite configurations for different bias bounds & [cycles], cf. Figure 3. The blue and gray curves correspond to float and bias-bounded
ILS solutions, respectively. For each of the bias constraints || < h, 10,000 normally-distributed samples are simulated. The time-constant
bias b is different in each simulation and varies from —h to +h [cycles].

i.e. the solutions for which the integerness of the phase ambiguities z in @ = z + Reb is discarded (Figure 2). It is shown
how the float position solution propagates into the remaining solutions, making them correlated. Importantly, the nonzero

correlation between the bias solution b and the position & and ambiguity solution %1 indicates that information about b = b+ Z,

can potentially improve the precision of both # and Z;. Precision improvement in the float ambiguities Z; leads to a higher
ambiguity success-rate, thereby enhancing the the performance of corresponding ambiguity-resolved positioning.

Would the boundedness property of the GLONASS FDMA phase-biases (Figure 1) carry over to other frequency-varying
carrier-phase signals like those of LEO satellites, it is then worthwhile to quantify the extent to which imposing the constraint
|b| < h can bring position precision improvement. We therefore employed the bias-bounded ILS estimation (cf. 9) and showed
how the function P(2;) is aimed to penalize possible outcomes of the IAR process. With the aid of simulated results, it was
illustrated that one can leverage both the bias constraint |b| < h and the number of epochs to obtain positioning results that are
considerably more accurate than their both float and z; -fixed counterparts.

VI. APPENDIX

We prove why the 1 x (n — 1) vector [T = eTAZ; cannot be a zero vector. We confine our proof to the case W = I,,. Let
us assume that [ = 0. Thus e*AZ; = 0. Substitution of e* = (1/n)e”, together with A = \g R, gives e’ R™1Z; = 0.
Therefore, the column-space of the integer matrix Z; must be orthogonal to the vector R~'e. As a result, this matrix can be
expressed as Z1 = RDX for some integer matrix X € Z(n=x(n=1) " Ag an admissible integer transformation, matrix [Z7, Zs)|
(where Z; = Re) has a determinant equal to =1 (Teunissen, 1995), that is, det([RD X, Re]) = £1. Post-multiplying [Z1, Z2]
with [D,u1]T R~! and taking the determinant of the product give

B DTDX 07, -
idet(R) = det([ WIDX 1 ]) = det(D" D) det(X) (18)
where u; = [1,0,...,0]T € Z™. The first equality in (18) follows as matrix [D, u1]” is itself an admissible integer transforma-

tion, i.e., det([D,u1]) = £1 (Khodabandeh and Teunissen, 2019). The second equality follows because the determinant of a
lower block-triangular matrix is the product of the determinants of its diagonal sub-matrices. Using the identity det(DT D) = n,

we obtain from (18) that det(X) = i#t(l%) ¢ 7. This contradicts the integerness of matrix X.
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