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Abstract

Tumorigenesis is a multi-step process in which normal cells transform into malignant tumors following the accumulation of
genetic mutations that enable them to evade the growth control checkpoints that would normally suppress their growth or
result in apoptosis. It is therefore important to identify those combinations of mutations that collaborate in cancer
development and progression. DNA copy number alterations (CNAs) are one of the ways in which cancer genes are
deregulated in tumor cells. We hypothesized that synergistic interactions between cancer genes might be identified by
looking for regions of co-occurring gain and/or loss. To this end we developed a scoring framework to separate truly co-
occurring aberrations from passenger mutations and dominant single signals present in the data. The resulting regions of
high co-occurrence can be investigated for between-region functional interactions. Analysis of high-resolution DNA copy
number data from a panel of 95 hematological tumor cell lines correctly identified co-occurring recombinations at the T-cell
receptor and immunoglobulin loci in T- and B-cell malignancies, respectively, showing that we can recover truly co-
occurring genomic alterations. In addition, our analysis revealed networks of co-occurring genomic losses and gains that are
enriched for cancer genes. These networks are also highly enriched for functional relationships between genes. We further
examine sub-networks of these networks, core networks, which contain many known cancer genes. The core network for
co-occurring DNA losses we find seems to be independent of the canonical cancer genes within the network. Our findings
suggest that large-scale, low-intensity copy number alterations may be an important feature of cancer development or
maintenance by affecting gene dosage of a large interconnected network of functionally related genes.
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Introduction

Tumor development is generally thought to be a process in

which healthy cells transform into malignant tumor cells through

the step-wise acquisition of oncogenic alterations [1,2]. This

implies that certain changes have to occur together for effective

oncogenic transformation of a normal cell. There are a multitude

of (epi-)genetic lesions that cause deregulated expression of

oncogenes and tumor suppressor genes. Co-operative deregulation

of cancer genes has indeed been observed in several different

settings. Retroviral insertional mutagenesis screens in mice have

shown preferential co-mutation of specific combinations of genes

within the same tumor [3]. Likewise, in a study where a thousand

individual tumors were screened for mutations in 17 different

oncogenes, preferential co-mutation of the PIK3CA and KRAS

genes was observed [4].

Besides single basepair mutations or retroviral integrations, the

activity of genes can also be perturbed by DNA copy number

alterations that arise as a result of genomic instability, which is

frequently observed in tumor cells [1]. Whether genomic

instability is important for tumor initiation is controversial, but

its contribution to tumor progression is undisputed [5,6]. Loss of

DNA is a mechanism for the tumor to eliminate copies of tumor

suppressor genes, which prevent cancer formation. Conversely,

DNA copy number gain or amplification may lead to activation of

oncogenes that promote tumor development. We aimed to find

genomic regions of gains and losses that are preferentially gained

or lost together. We could subsequently link genes that lie in co-

occurring regions to each other, allowing us to find functional

interactions that reveal the mechanisms underlying tumor

development.

DNA copy number alterations (CNAs) may be measured on

microarray platforms [7]. Array-based comparative genomic

hybridization (aCGH) of differentially labeled tumor and normal

(2n) DNA is performed on oligonucleotide- or Bacterial Artificial

Chromosome (BAC) based microarray platforms. For each probe

on the microarray, the ratio of signal intensities of tumor versus

normal DNA is a measure of the relative DNA copy number of the
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corresponding genomic region in the tumor sample. Platforms

designed to identify single nucleotide polymorphisms (SNPs) can

also infer CNAs by comparing the raw probe intensity values

measured in a tumor sample with a reference sample.

In order to extract those DNA copy number aberrations that

preferentially occur together, we developed an analysis framework.

The basic premise of our analysis is to define a pair-wise score for

any given pair of genomic locations present in the dataset. This

scoring index will only be high if both genomic locations are

recurrently aberrated in multiple independent samples within the

tumor panel, and if they co-vary similarly over the different

samples (Figure 1). Using a Gaussian kernel convolution method

we look for aggregates of high scores in the 2D genomic pair-wise

space (Figure 2). The top peaks in the convolved score matrix can

be mapped back to two distinct co-mutated genomic locations.

The genes that reside in these genomic locations can then be

functionally related to each other.

The raw data consist of non-discrete measurements of the

average DNA copy number of the population of cells present in

the measured sample. The signal consists of a measurement of a

heterogeneous population of tumor cells, which may contain many

populations potentially carrying different mutations and copy

number alterations, as well as normal (diploid) cells. To reduce

heterogeneity as much as possible we choose to analyze a

collection of hematopoietic tumor cell lines, which on a per-

sample basis can be considered clonal. There were several other

reasons for analyzing this particular dataset. First, it is a high

resolution dataset of well-characterized, clinically relevant samples.

Although these samples are cell lines, they are widely used as a

model system for the diseases from which they have been derived.

Second, this collection of samples includes cell lines derived from

T- and B-cell leukemias carrying rearranged T-cell receptor and

immunoglobulin loci, respectively. We therefore should be able to

separate these two distinct lymphoid malignancies based on co-

occurring DNA copy number losses at the T-cell receptor and

immunoglobulin loci. During T- and B-cell development, these

loci undergo DNA recombination and gene deletion in a process

known as V(D)J-recombination. The human genome contains

three specific T-cell receptor loci (alpha/delta, beta and gamma)

on two different chromosomes that determine their variability. B-

cells have three different loci (IgG kappa, IgG lambda and the IgG

heavy chain) on three different chromosomes that undergo

recombination to generate a diverse repertoire of immunoglobu-

lins. Since T- and B-cells only undergo recombination of their

respective loci after lineage commitment, it is unlikely that T-cell

receptor loci are recombined in B-cells and vice-versa. If our

approach is successful at finding co-occurring losses, it should

identify the co-occurring rearrangements at the T-cell receptor

alpha/delta and beta/gamma loci in T-cell leukemias. Similarly,

we should be able to pick up co-occurring losses at the IgG kappa,

lambda and heavy chain loci in B-cell malignancies.

Results

Defining a continuous co-occurrence score
A classic example of finding associations in a large (binary)

dataset is association rule mining. Identification of cooperating

events in continuous data requires a different approach than

binary association rule mining. First we developed a method to

score for co-occurrence between two continuous measurements

(Figure 1). We then applied this score in a framework that is able

to find co-occurrences in genome-wide measurements. This

framework is shown in Figure 2 and is detailed in the Materials

and Methods.

DNA copy number measurements at two different genomic loci

can be visualized in a 2D space, with each axis representing

measurements at a certain genomic locus. A point in this space

represents a sample in which both loci were measured. Figure 1a

shows four hypothetical combinations of measurements. We

sought to score for co-occurring high or low values in the DNA

copy number data; in other words, regions that display similar

patterns of large-amplitude amplification and deletion across the

tumor set. This situation is shown in the third panel Figure 1a.

The other panels show other potential situations that may arise

when comparing two continuous measurements. To score for co-

occurring gains all negative values are set to zero (Figure 1b). To

score for co-occurring losses all positive values need to be set to

zero and the absolute values of the measurements need to be used.

We use the covariance of the two measurements to score for co-

occurring loci. This score only rewards a high value to a truly co-

occurring and co-varying pairs of measurements (Figure 1c, right

panel). However, a high covariance alone is not sufficient, since it

is possible that a high covariance occurs while at least one of the

loci never reaches a high amplitude (see Figures 1e and 1f).For this

reason we multiply the covariance score with the sum of the

individual valued in each sample. This method of scoring only

rewards a high value to a co-varying pair of measurements with a

large aberration amplitude across the tumors (Figure 1c, right

panel).

A framework for genome-wide co-occurrence scoring
The co-occurrence scores can be computed for every pair of

genomic loci (Figure 2c). By performing a two-dimensional

Gaussian kernel convolution on these scores in the co-occurrence

space we can take local neighborhood effects into account. This

operation is performed for different kernel widths in order to

capture scale dependent effects, resulting in a Convolved Co-

occurrence Matrix (CCM) as shown in Figure 2d. High values in

this matrix represent candidate co-occurring regions in the data. A

peak in the CCM can be mapped back to two specific loci, the size

of which is determined by the s parameter of the Gaussian

function used to convolve the score matrix (Figure 2e). The genes

that are located in the loci associated with a peak in the CCM are

subsequently investigated. We examined both enrichment for

Author Summary

It is generally accepted that a normal cell has to acquire
multiple mutations in order to become a malignant tumor
cell. Considerable effort has been invested in finding single
genes involved in tumor initiation and progression, but
relatively little is known about the constellations of cancer
genes that effectively collaborate in oncogenesis. In this
study we focus on the identification of co-occurring DNA
copy number alterations (i.e., gains and losses of pieces of
DNA) in a series of tumor samples. We describe an analysis
method to identify DNA copy number mutations that
specifically occur together by examining every possible
pair of positions on the genome. We analyze a dataset of
hematopoietic tumor cell lines, in which we define a
network of specific DNA copy number mutations. The
regions in this network contain several well-studied cancer
related genes. Upon further investigation we find that the
regions of DNA copy number alteration also contain large
networks of functionally related genes that have not
previously been linked to cancer formation. This might
illuminate a novel role for these recurrent DNA copy
number mutations in hematopoietic malignancies.

Co-Occurrence in Tumor DNA Copy Number Aberrations
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known cancer genes in these gene lists and we investigated

functional relationships between the genes derived from the two

loci (Figure 2f). Additional details can be found in the Materials

and Methods section.

Co-occurrences in hematological cell lines
We ran our analyses on the aCGH profiles of 95 hematological

tumor cell lines analyzed on the Affymetrix Genome-Wide

Human SNP Array 6.0. See the supplemental data (Dataset S1)

for a list of the cell lines that were analyzed. The data was

generated by the Cancer Genome Project (Wellcome Trust Sanger

Institute, Hinxton, UK). We employed three scale parameters:

2Mb (s= 1/3 Mb), 10Mb (s= 5/3 Mb) and 20Mb (s= 10/

3 Mb). In the remainder of this text we will refer to these as Scales

2, 10 and 20. These scales roughly determine the size of the

aberrant regions we expect to find. By employing a small, medium

and large scale we maximize the chance of detecting co-occurring

changes of all possible sizes. To remain conservative we limited

our primary analysis to the top 50 peaks in the Convolved Co-

occurrence Matrix (CCM) for each of the scales and each of the

comparisons (gain-gain, loss-loss, loss-gain). This resulted in 9 top-

50 lists of co-occurring regions retrieved from this dataset.

Co-occurrences involving the T-cell receptor and IgG loci
A substantial fraction of the 95 cell lines are derived from T- or

B-cell lymphomas with functionally rearranged T-cell receptor or

IgG genes. We therefore expected to identify co-occurring losses at

the T-cell receptor alpha/delta and beta/gamma loci in the T-cell

leukemias. Similarly, our method should identify co-occurring

losses at the IgG kappa, lambda and heavy chain loci in B-cell

malignancies. Because the recombination loci for both the T-cell

receptor and the IgG genes are both relatively small (in the 1Mb

Figure 1. Co-occurrence score for paired continuous variables. a. Four possibilities of pairs of hypothetical DNA copy number change
measurements are shown, for a set of samples. Each of the four hypothetical measurement pairs is plotted in scatter plot, giving each sample in the
set an x- and y-coordinate. The random pair (first panel) is a noisy pair containing no effect. The constitutive member pair (second panel) consists of
one measurement that is continuously high, paired with a measurement that varies between two noisy levels. The co-occurring signal (third panel)
consists of two noisy measurements that alternate between a high and a basal level, but show concerted change. The mutual exclusive pair (fourth
panel) also alternates between two levels but one measurement excludes the other from also reporting a high value. b. In this example we show
scoring for co-occurring gains. Therefore we set all negative values to zero. To score for loss-loss pairs we would need to set all positive value to zero
and continue using the absolute values. For loss-gain analysis we would set the positive values of the x (y) axis to zero and use the absolute values in
the x (y) direction. c. The first panel shows the resulting scores of the four pairs of measurements if only the sum of the minimum is used. The second
panel shows the score when the covariance is included.
doi:10.1371/journal.pcbi.1000631.g001
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range) we expected to retrieve these co-occurring losses in the

small (2 Mb) scale analyses. Since we disregarded co-occurrences

on the same chromosome we expected to find five co-occurring

losses. Indeed, four of the five expected co-occurring losses are

present in the top 50 peaks of the Scale 2 analyses (Table 1).

Figure 3 shows two examples from the top 50 lists of co-occurring

loci. The separation of T- and B-cell lines is immediately apparent.

T-cell lines are strongly associated with losses in the T-cell receptor

loci. A large subset of B-cell lines are associated with losses in the

IgG loci. However, a subset of the B-cell lines is not associated

with any loss of these loci. In this particular subset of lines the IgG

loci seem to be gained. It is known that the IgG loci are favorite

partners for oncogenic translocations [8]. Whether this is the cause

of the amplification of these loci is not known.

Cancer gene enrichment in co-occurring loci
While the recovery of the V(D)J-related recombination loci as

co-occurring losses serves as a positive control for our analysis

approach, we are mainly interested in identifying cooperating

genes or regions that might play a role in cancer. To see whether

the locations we recover are linked to this disease, we analyzed

whether the co-occurring genomic loci are enriched for genes

known to play a role in cancer. As a reference gene set we used the

Cancer Gene Census list [9]. The results of this analysis are shown

Figure 2. Schematic overview of co-occurrence analysis. a. Overview of aCGH data. Both �yyi and �yyj are vectors of genomic grid points spanning
a chromosome arm (see Materials and Methods). The genomic grid is constructed from aCGH probe measurements, as explained in the Materials and
Methods section. b. The combinations of �yyi and �yyj are used to construct a genomic pair-wise space in which all further calculations are performed. In
this panel a schematic view of the genomic pair-wise space is shown. Each pair of genomic grid points between �yyi and �yyj is a point in this space and
each point contains two values. A pair-wise genomic matrix exists for each tumor in the data set. c. To score for co-occurrence, the minimum value of
the pairs of genomic grid points are summed over the tumors and the co-variance over tumors of all genomic grid points is calculated. This results in
two equally sized matrices which are multiplied element wise to produce the co-occurrence score matrix. This matrix is again represented in the
genomic pair-wise space (Sco-oc). d. The co-occurrence score matrix is convolved with a Gaussian matrix to find local enrichment of high co-
occurrence scores in the pair-wise space. Peaks in the convolved co-occurrence matrix are translated back to two genomic regions (in and jn) that are
annotated as being co-aberrated across the tumor set. e. For the n-th peak in the Convolved Co-occurrence Matrix (CCM) two gene sets, An and Bn ,
are defined, based on a 2s window centered on the peak. f1. Using a protein-protein interaction database the interactions between gene sets
derived from a single co-occurrence peak are analyzed, producing a set of interactions (IAnBn ). f2. Using the Cancer Gene Census we inspect the
resulting gene sets for presence of known tumor-suppressor genes and oncogenes.
doi:10.1371/journal.pcbi.1000631.g002
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in Table 2. As can be seen, the co-lost loci are mainly enriched for

tumor suppressor genes, and the gain-gain regions for oncogenes.

Since one expects loss of tumor suppressors and gain of oncogenes,

this is a logical result, further increasing our confidence that our

approach identifies truly relevant genomic loci.

Discovering functional relationships between
co-occurring loci

While finding enrichment for cancer genes is an encouraging

result, this does not explain the possible cooperation between two

loci. We expect that the co-occurring loss of two regions points to a

functional relationship between the constituents of the genomic loci.

A co-occurrence between two genomic regions can point to many

different kinds of interactions between the genes residing in both

regions, e.g. biochemical interactions of the protein products or

functional collaboration of two cancer genes in tumorigenesis. We

therefore decided to employ interaction data to shed further light on

the genes present in the co-occurring regions. We translated the co-

occurring pairs of genomic loci to pairs of gene sets, and we

investigated the functional relationships of their protein products

using the STRING database [10] (version 8.1). The STRING

model weighs functional associations between genes based on

several different sources of evidence, among which: biochemical

interaction, joint presence in a pathway, high-throughput interac-

tion experiments, text mining and interactions of homologs in other

species. To find a functional relationship between two co-occurring

Figure 3. Two co-occurring losses detected in the 2Mb scale analysis. Raw aCGH data of two co-occurring losses corresponding to four genomic
loci are shown. The y-axis of the heatmaps contains the samples, ordered through standard hierarchical clustering. The x-axis contains the probes present
in the four genomic loci, ordered by genomic location. The sample information bar contains the names of the cell lines analyzed, the disease of origin and
the whether the sample has a T-cell or B-cell lineage. These representations are based on the results of the analysis on the 2 Mb scale.
doi:10.1371/journal.pcbi.1000631.g003

Table 1. Occurrence of T-cell and B-cell related co-occurring
losses.

Cell lineage Loci of interaction
Rank in interaction
list (scale 2)

B-cell IgG kappa – IgG lambda 7

IgG kappa – IgG heavy chain 6

IgG lambda – IgG heavy chain 3950

T-cell TCR beta – TCR alpha/delta 1

TCR gamma – TCR alpha/delta 2

doi:10.1371/journal.pcbi.1000631.t001

Co-Occurrence in Tumor DNA Copy Number Aberrations
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regions we looked for a direct interaction in the STRING database

between the two gene-sets defined by our co-occurrence analysis.

To determine whether the number of observed interactions is

significant, we compared the number of direct interactions found

between genes located in the top 50 co-occurring regions to a set of

randomly chosen pairs of genomic loci. The metric we used to

determine significance is the ratio between the number of

interacting genes and the total number of genes found on the

genomic loci. A p-value for enrichment for direct interactions was

calculated using a two-tailed Fisher’s exact test. Results are shown in

Figure 4. As can be seen, the only analysis that resulted in an

enrichment of functional interactions is Scale 20, for all three

situations. We found no enrichment for interacting protein coding

genes on Scale 2 (not shown) and Scale 10. Since we evaluated gene

sets in a window one-third the size of the analysis-scale we may be

under-estimating the size of the co-occurring loci and the larger

Scale 20 actually captures the size of the aberrations best.

In order to keep control of the complexity, we considered in our

co-occurrence analysis only radially symmetric kernels, i.e.

Gaussian kernels with diagonal, equal variance covariance matrices.

This implies that asymmetric co-occurring regions – where a small

locus co-occurs with a large locus – will not be optimally detected.

Since an asymmetric co-occurring region typically consists of a

series of symmetric co-occurring regions detected on a smaller scale

(just like a rectangle can be constructed from a collection of squares),

we set out to construct larger co-occurring regions from the results

of the smaller scales using a hierarchical clustering approach. For

details see Supplemental Figure S1.

Briefly, we collected the loci involved in the top 500 co-

occurrences of the Scale 2 analysis. This resulted in 1000 genomic

loci. For each pair of loci, we calculated the genomic distance in

base pairs. The distance between two loci on different chromosome

arms was set to a default high value (1 * 108). This resulted in a

100061000 distance matrix. On this distance matrix we performed

single linkage hierarchical clustering. The resulting dendrogram was

cut at 1 * 107 bp (5 kernel widths). The resulting clusters are unique

genomic loci and were represented as nodes in a graph. Clusters

were then linked if a co-occurrence was found between individual

loci of different clusters. These links are represented as edges in a

graph. The result of the clustering analysis is shown in Figure 5.

Table 2. Enrichment for Cancer Gene Census genes in top 50 co-occurring genomic loci.

Comparison Analysis Scale (Mb) Genes present in co-occurring loci CGC2 – Oncogenes (n – pvalue1) CGC2 – Suppressor (n – pvalue1)

Loss-loss 2 198 2 - 0.56901 2 - 0.03481

10 1151 18 - 0.35721 7 - 0.0546

20 1912 31 - 0.27088 11 - 0.039637

Gain-Gain 2 221 10 - 0.00050472 0 - 1

10 755 17 - 0.034575 2 - 0.51641

20 1192 28 - 0.0065355 4 - 0.43198

Gain-Loss 2 86 2 - 0.1373 2 - 0.0037163

10 785 15 - 0.12887 4 - 0.15322

20 1479 31 - 0.021555 5 - 0.44561

1p-value determined by Fishers’ Exact test, p,0.05 is marked in bold script, p,0.01 is marked in bold italic script.
2Cancer Gene Census.
doi:10.1371/journal.pcbi.1000631.t002

Figure 4. Significance of finding direct interactions in co-occurring genomic loci. For two scales the top 50 co-occurring gene lists for the
gain-gain, loss-loss and loss-gain situations were compared to a random set of 100 pairs of genomic loci. For each genomic pair two gene sets were
queried for direct interactions using the STRING database. Significance was ascertained using Fisher’s exact test on the ratios between all genes and
the interacting genes for the co-occurrence gene sets versus the random gene set.
doi:10.1371/journal.pcbi.1000631.g004
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Figure 5. Networks of co-occurring gain and loss. The networks that result from hierarchical clustering of Scale 2 results are shown in different
panels. Each panel represents either the gain-gain, loss-loss or gain-loss analysis. The resultant network is visualized using the Cytoscape software
package (www.cytoscape.org). Edge thickness scales according to the number of co-occurrence links found between the two genomic loci. The size
of the nodes is proportional to the highest rank found among the different individual loci that constitute a node. If only one genomic location is
present in a node, i.e. this location did not cluster with any other locations, it is colored gray. The cancer gene enrichment among all genes mapping
to the locations described by the nodes is shown in the top right hand corner. P-values are determined by Fisher’s Exact test. The functional
interaction enrichment of all genes between nodes that are linked with an edge is represented in the lower right hand corner of each panel. P-values
are determined using Fishers’ Exact test, with randomly generated pairs of loci representing the null hypothesis.
doi:10.1371/journal.pcbi.1000631.g005

Co-Occurrence in Tumor DNA Copy Number Aberrations
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A network view of co-occurring copy number changes
As can be seen in Figure 5 we were able to construct a network

of co-occurring copy number changes for the gain-gain, loss-loss

and gain-loss situations. As expected, the gain-gain and loss-loss

networks show enrichment for oncogenes and tumor suppressor

genes, respectively. The gain-loss network only shows enrichment

for tumor suppressors. The percentage of genes involved in

functional interactions between the nodes that are linked in the

graph vastly exceeds the functional interaction enrichment found

in the single scale 20 Mb analyses. At least 11% of the genes

present in the genomic locations - represented by the nodes in the

graphs - have high confidence (.0.9) annotated functional

interactions along the edges as revealed by STRING analysis.

The thickness of the edges in the graphs shown in Figure 5 indicates

how often a co-occurrence was found in the top 500 of the Scale 2

analysis. Several edges were strongly supported by co-occurrences in

the top 500. These strongly supported edges were always associated

with loci that were ranked high in the co-occurrence list (as indicated

by node size). The nodes that are associated with these highly

represented edges seem to form an important subgraph. To reveal

these subgraphs, we removed all edges supported by less than 5% of

the top 500 co-occurrences. For brevity and simplicity we only

consider the gain-gain and loss-loss networks. This resulted in the two

core networks shown in Figures 6 and 7.

The gain-gain core network
The edge thickness of the gain-gain core network shown in Figure 6

represents the number of functional interactions found using the

STRING database between genes that map within the loci described

by the nodes. To determine the common denominator among the

interacting genes, we employed Ingenuity Pathway Analysis (IPA;

Ingenuity Systems) to perform a functional enrichment analysis on all

genes residing within the gain-gain core network. This revealed

strong enrichment for processes involved in cancer (Figure 6b). From

Figure 6a it is immediately apparent that most of the functional

interactions are found between 1q and 7p/q. If we remove the 1q

node from the entire network described in Figure 5 the enrichment

for functional interaction drops dramatically (Figure 6c). Therefore,

we hypothesize that the co-occurring gain between 1q and 7p/q is the

most important effect in the gain-gain analysis in this dataset. This is

strengthened by the fact that almost all known oncogenes within the

entire network map to 1q, 7p or 7q (Figure 6a). The well-studied

canonical oncogene MYC maps to 8q and is not a determining hub in

the gene interaction network as constructed by STRING.

Figure 6. The gain-gain core network. a. The reduced core network for the gain-gain analysis obtained by pruning all edges with less than 5%
support in the top 500 list of the Scale 2 analysis. Edge thickness and label represent the number of functional interactions between genes associated
with the nodes being connected based on the STRING database. The oncogenes as defined by the Cancer Gene Census that map within the regions
defined by the nodes are shown in rectangular insets. b. Representation of the 10 most enriched Ingenuity terms associated with the entire collection
of genes in the core network that have a STRING interaction along the edges. The x-axis shows the 2log transformed p value, corrected by the
Benjamini Hochberg procedure as implemented in the Ingenuity software. c. Functional interaction enrichment is shown as a bar graph, which
represent the ratio of interacting genes with respect to the total number of genes. P-values are determined using a Fishers’ Exact test with randomly
selected pairs of loci representing the null hypothesis.
doi:10.1371/journal.pcbi.1000631.g006

Co-Occurrence in Tumor DNA Copy Number Aberrations
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The loss-loss core network
The loss-loss core network is shown schematically in Figure 7a.

A loss of approximately 18 megabases on chromosome 17p

appears to be a central hub, which is co-lost with several other

genomic loci. These loci show a very high enrichment of genes

that interact with 17p, and of the six loci, four contain multiple

known tumor suppressor genes. A functional enrichment analysis

of all genes residing on loci co-lost with 17p, reveals many cancer-

related processes (Figure 7b), suggesting that the interacting genes

are most likely also the cancer-relevant genes. If we remove 17p

from the original network we see a large decrease in the

percentage of genes involved in functional interactions (Figure 7c)

confirming the importance of 17p in the loss-loss network.

The co-occurring losses involving 17p might target
non-canonical cancer genes

One of the most intensively studied cancer genes, TP53, resides

in the 17p locus. Furthermore, the canonical cancer gene RB1 and

the CDKN2A/B locus are present in two of its co-lost regions. Since

these are well known tumor suppressors, and therefore the subject

Figure 7. The loss-loss core network. a. The reduced core network for the loss-loss analysis determined by pruning all edges with less than 5%
support in the top 500 list of the Scale 2 analysis. Edge thickness and label represent the number of functional interactions between genes associated
with the nodes being connected based on the STRING database. The tumor suppressor genes as defined by the Cancer Gene Census that map within
the regions defined by the nodes are shown in rectangular insets. b. Representation of the 10 most enriched Ingenuity terms associated with the
entire collection of genes that have a STRING interaction between the 17p region and 9p, 9q, 13q, 16q or 22q as determined by the Ingenuity
software. The x-axis shows the 2log transformed p value, corrected by the Benjamini Hochberg procedure as implemented in the Ingenuity software.
c. Functional interaction enrichment is shown as a bar graph, which represent the ratio of interacting genes with respect to the total number of
genes. P-values are determined using a Fishers’ Exact test with randomly selected pairs of loci representing the null hypothesis. d. A functional
interaction network around the nuclear co-repressor NCOR1 (also known as TRAC1) is shown. This network is a part of the network of interactors
derived from the 17p interacting regions after removal of the canonical cancer genes TP53, RB1, CDKN2A and CDKN2B from the analysis. e. Illustration
of the retroviral insertions mapped near CBFA2T3, recovered in a large screen of MuLV retroviral mutagenesis [11]. Insertions are shown as triangles.
Blue triangles indicate insertions in the direction of transcription (plus), red triangles indicate insertions in the anti-transcription direction (minus).
Insertions linked by dashed boxes are bi-allelic integrations recovered from the same tumor.
doi:10.1371/journal.pcbi.1000631.g007
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of thousands of research papers, they might constitute the bulk of

the functional relationships in our analysis. To test this hypothesis,

we excluded these four genes and repeated the interaction analysis

of the core network. As can be seen in Figure 7c, the enrichment is

only slightly lower without the canonical genes, suggesting that the

functional relationship between the co-occurring losses on 17p and

the other loci are driven by other genes.

We investigated the remaining 113 interactors for any

interesting interactions that might be a target of this collection of

co-occurring losses. Within the total network of interactors we

found a sub-network centered on the nuclear co-repressor NCOR1

(TRAC1) (Figure 7d). This interaction network included – besides

NCOR1 – the peroxisome proliferator-activated receptor alpha

(PPARA), the MAPK pathway suppressor GPS2, the nuclear co-

activator (and known tumor-suppressor) p300 and a gene of

unknown function, CBFA2T3. All interactions found are based on

physical binding and co-occurrence in Pubmed abstracts.

Combining co-occurrence data with insertional
mutagenesis data

To see whether we could find more information regarding the

putative tumor suppressor function of the different interactors, we

tested if we could corroborate our findings with data from a large

retroviral insertional mutagenesis (IM) screen where hematopoietic

tumors were induced through Murine Leukemia virus (MuLV)

infection of wild-type mice or Trp53 or p19-ARF deficient mice

[11]. An illustration of the retroviral insertions sites near Cbfa2t3 is

shown in Figure 7d. Although Cbfa2t3 was not flagged as a

common integration site, several viral integrations near this gene

were found. Remarkably, two individual tumors harbored a bi-

allelic integration near the transcription start site of Cbfa2t3,

suggesting functional inactivation of this candidate tumor

suppressor gene. Indeed, bi-allelic integration is thought to be a

hallmark of tumor suppressor genes in IM screens [12].

Given that we find this sub-network of interactors in a co-

occurring network of DNA copy number losses and the recovery of

inactivating insertions in a retroviral IM screen, we conclude that

this network might be a putative tumor suppressor network.

Discussion

In this study we present a genome-wide analysis for finding

collaborating DNA copy number changes on different chromo-

somes. Using our 2D kernel convolution framework we can score

and find co-occurring DNA copy number changes in a high

quality, high resolution aCGH dataset. Using a dataset of

hematological cell lines we are able to recover DNA copy number

alterations specific to the cell lineage of the samples. Furthermore

we uncover cancer-related networks of co-occurring DNA copy

number changes.

Previous work on co-occurring copy number changes
Several studies have investigated concerted copy number

changes in aCGH data. In studies on lung cancer [13] and

ovarian cancer [14] the authors performed a post-hoc co-

occurrence analysis on genomic locations that were found to be

significantly altered in a one-dimensional analysis. A more

integrated effort to analyze relations between CNAs in brain

cancer was published recently [15]. Although this study scores

systematically for co-aberration, it is limited in resolution as it

employs cytobands as the genomic unit within which aberrations

are scored. Cytobands are relatively arbitrarily determined entities

and are quite heterogeneous in size. Furthermore this approach is

dependant on converting the continuous-valued copy number data

to discrete copy number calls. This results in loss of important

information since it removes the possibility of weighting the

intensity of a CNA. In contrast, our approach is able to correct for

unequal probe distances, enabling us to perform our analysis on a

very high (20 kbp) resolution. In addition, our scoring method not

only incorporates the sign of the copy number change, but also its

intensity and the concomitant CNAs within the immediate

genomic neighborhood.

Determining significance of co-occurrences
The output of our analysis does not include a measure of

significance. Constructing a background distribution based on

permutations of the DNA copy number data would mean re-

running our analysis thousands of times, a task which remains

computationally infeasible at this stage. Furthermore, the multiple-

testing problem would have to be properly addressed, given that

the number of tests is the square of the number of grid points in

the 2D space. Due to the complexity of the analysis procedure

(minimum operation and kernel smoothing) the definition of an

analytical null distribution has remained elusive. Therefore, we

have chosen to work with top n results, residing in the extremes of

the results distribution, thus minimizing the chance of including

false positives. The top n lists allowed us to generate workable

results which we have validated extensively with other sources of

evidence.

Analytical challenges
While we were able to use a distributed computing solution for

our analysis, we were fortunate to have the required computa-

tional architecture at our disposal. Since the problem basically

consists of repeating the same action many times it could be well-

suited to software optimization or a hardware based solution

where the most time-consuming actions are handled by a

dedicated processing unit.

When looking for areas in the 2D pair-wise space highly

enriched for co-occurrence scores we convolve this space with a

2D-Gaussian kernel. The sigma parameter of this function is a

representation of the size of the aberrations we expect to recover.

Currently we make the implicit assumption that the co-occurring

aberrations have the same size by using a symmetric kernel for the

convolution. This could be relieved by allowing for an asymmet-

rical (ellipsoid) Gaussian kernel for all combinations of scales used.

Clearly, this comes at the cost of increased computational

complexity. Here we resolve this issue by concatenation of the

results obtained in a small scale. In this way we can recover co-

occurring losses of different sizes that give a better enrichment for

functional interactions when combined with the single peaks

obtained in a higher scale analysis.

Gene dosage effects on a large number of genes
In our analysis of a set of cell lines derived from hematological

malignancies we found enrichment of cancer related genes and

functional interactions in co-occurring DNA copy number

changes. Our results suggest that tumorigenesis requires elimina-

tion of multiple gatekeeper genes and gain of multiple oncogenes

as demonstrated by the presence of many functional interactions

between the loci in the gain-gain and loss-loss core networks.

Haploinsufficiency is a well known characteristic of several

tumor suppressor genes, where simple reduction of gene dosage by

loss of gene copies at the DNA level can already promote

oncogenic transformation [16]. It is conceivable that changes in

gene dosage of multiple interconnected genes involved in cancer-

related processes such as cell cycle, DNA repair and signaling can

also weaken a cells defense against uncontrolled cell proliferation.
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In this case, heterozygous loss or gain of large genomic regions,

such as the ones identified in this study, might effectively sensitize

cells to become tumorigenic.

17p as a central player in co-occurring losses
We show that the 17p loss and its co-lost regions are highly

enriched for functional relationships, which are not fully explained

by the presence of the TP53 gene, often thought to be the single

target of this deletion [17–19]. Although TP53 is no doubt an

important target of the DNA copy number loss, our analysis

indicates that the concomitant loss of other genes near TP53, as

well as co-occurring losses on the other genomic loci may together

account for the full tumorigenic effect.

Loss of the loci on 17p, 9p, 9q, 13q, 16q and 22q has been

reported previously for several types of hematological malignan-

cies represented in our dataset [20–23]. The picture that emerges

from this analysis of collaborative aberrations is that many of the

reported losses collaborate with the frequently occurring 17p loss

as a central hub. We don’t recover co-occurring losses among the

spoke loci in the core network. This could suggest that the non-17p

regions form subsets of co-occurring losses with 17p, whose

interconnections themselves do not occur frequently enough in the

top 500 co-occurring losses we investigated.

NCOR1 and its interactors
Not all of the gene-gene interactions defined by the 17p network

involve the well-known canonical cancer genes TP53, RB1 and

CDKN2A (INK4a/ARF). We found one sub-network of genes

around NCOR1 which might be an example of other tumor

suppressor genes that are affected by the concerted loss of these

genomic loci.

The hub of this interaction network, NCOR1, is a well-known

transcriptional co-repressor that associates in a ligand-independent

manner with nuclear receptors [24]. It is responsible, together with

the closely related factor SMRT, for recruitment of HDAC

proteins to the DNA to induce transcriptional silencing. Its role in

cancer is not well-established. NCOR1 null mice die in early

embryogenesis [25]. A dominant-negative mutant of NCOR1 is

known to increase proliferation in hepatocytes [26] and more

recently it has been shown that NCOR1 decreases AKT

phosphorylation, thus countering its pro-survival signal [27]. It

would seem that specific loss - or at least decrease in gene dosage

of NCOR1 - might increase proliferation and promote survival.

All interactions between NCOR1 and its partner genes (PPARA,

GPS2 and CBFA2T3) have been based on co-occurrence in

PubMed abstract and true physical binding [28–31]. CBFA2T3 is a

close relative of ETO, which is a target of the recurrent AML1-

ETO translocation that occurs in acute myeloid leukemia. It has

been shown that the fusion gene AML1-ETO actually interferes

with the CBFA2T3-NCOR1 interaction, and that its oncogenic

effect derives from that inhibition [31]. In a retroviral insertional

mutagenesis screen in mice, Cbfa2t3 is recurrently targeted by bi-

allelic retroviral integrations, which are predicted to cause

functional inactivation of Cbfa2t3 [11]. PPARA is a member of

the Peroxisome proliferator-activated receptors, and has been

implicated in hepatocellular carcinoma development in rodents

[32]. Since other members of this family, such as PPARG, exhibit a

tumor suppressor-like phenotype, it is possible that PPARA can act

as a tumor suppressor in hematological malignancies. GPS2 is a

known suppressor of JNK signaling [33], which is one of the

constituents of the MAP kinase signaling pathway. Deregulation of

this pathway is a well-known phenomenon in cancer [34]. Taken

together with the association between NCOR1 and the known

tumor suppressor p300, our data suggest a selective advantage for

loss of multiple constituents that interact with NCOR1 since they all

may have tumor suppressor-like activities.

Many studies focus on a single hematological malignancy in

which a single combination of aberrations might be important

[19,35,36]. Since we examine a large panel of samples derived

from many different hematological malignancies, our results might

not specifically apply to any single type of lymphoma or leukemia.

They might hint at more general processes that are important for

the tumors to arise and maintain themselves. However, one should

not forget that this analysis is based on a panel of cell lines, which

may have adapted to in vitro tissue culture conditions by acquiring

additional aberrations that are rarely found in real tumors in

patients. Furthermore, given the fact that we examine copy

number changes it might be worthwhile to analyze a highly

genomically unstable tumor type, such as BRCA1/2-related breast

cancer.

Conclusions
We have developed a method for genome-wide analysis of

collaborating DNA copy number changes and their corresponding

networks. Using this approach we have identified a loss-loss

network centered around a region on human chromosome 17p.

This network is highly enriched for functional relationships and

hints at a more complex system of tumor suppression in which

many different genes are affected simultaneously to induce cancer.

We show one example of a sub-network around the nuclear co-

repressor NCOR1 that may be a novel network of tumor suppressor

genes that are affected by the observed co-occurring losses. The

observation that DNA copy number changes may affect gene

dosage of larger numbers of cancer-relevant genes deviates from

the classical view where mutations in a few (5–7) cancer genes lead

to tumor development. Our data support the notion of cancer-

related networks or pathways, where multiple collaborating genes

are deregulated simultaneously to induce oncogenesis. Such a

network view of oncogenesis is an important step towards

developing effective drug targets because it increases the number

of potential targets. However, this view also implies that multiple

molecules need to be targeted simultaneously in order to achieve

optimal therapy response and to reduce the risk of therapy

resistance.

Materials and Methods

Transformation of probe-measurements to genomic grid
Datasets consisting of array-based copy number measurements

are continuously increasing in size. If probe level interactions are

evaluated, the analysis space is of dimensionality N2 for N probes

on the genome. As a result, the analysis time and memory usage

will also increase quadratically with the number of probes. Instead

of a grid positioned at the genomic positions of the probes, we

employ an equally spaced genomic grid as a basis for all

subsequent steps. The distance between grid-points is a user-

defined variable, and will determine the finest resolution of the

outcome and computational efficiency. We have performed all

analyses using a genomic grid with a grid spacing of 20 Kb. Given

a genome of G base pairs and a grid spacing of D, this results in

NG grid positions, with NG~tG=Ds, where tzs represents the

integer part of the real number, z. The grid positions can be

represented in the following row vector: �xx~fxkjk~1,2,:::,Ngg,
where xk~kD.

Let the aCGH profile of the tth tumor be represented by the

following row vector of probe measurements: �aat~fat,kj k~1,2,:::,pg,
with p being the number probes. Let the midpositions of the probes be

located at �zz~fzkjk~1,2,:::,pg. To employ the genomic grid we need
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to compute, for each aCGH array, the value of the aCGH profile on

the grid points. We achieve this by performing, for the kth grid position,

xk, a kernel-weighted regression of all probe values situated in the

range ½xk{D; xkzD�~½D(k{1);D(kz1)�, employing a triangular

kernel centered at xk, with maximal amplitude of 1 and width of 2 D.

More specifically, the interpolated copy number aberration at the kth

grid position is given by:

bt,k~

P
j[Jk

at,k
:(1{

xk{zj

�� ��
D

)

P
j[Jk

(1{
xk{zj

�� ��
D

)

ð1Þ

Here the set Jk is the set of probe positions such that Jk~

fjj xk{zj

�� ��ƒD, j~1 . . . pg. The interpolated copy number profile

of the tth tumor is represented by the row vector: �bbt~

fbt,kj k~1,2,:::,Ngg. The complete dataset of T tumors is re-

fopresented by the matrix B~f�bb1,�bb2,:::,�bbTg, where the probe values

of the tth tumor constitute the tth row of matrix B.

Separating gains and losses
Negative and positive log2 values respectively denote loss or

gain of DNA in the test sample versus the reference sample. We

regard both situations separately, which prevents the negative and

positive values cancelling each other through summation later in

the algorithm. We separate gains and losses by only retaining grid

positions with positive values for the gains or negative values for

the losses. The absolute values of the separated matrices are then

used in the downstream steps. The remaining grid positions are set

to zero. More specifically, the gains matrix, Bz is given by

Bz~fbz
t,kjt~1,2,:::,T , k~1,2,:::,Ngg, with

bz
t,k~

bt,k, if bt,kw0

0 otherwise

�
ð2Þ

Similarly, the loss matrix, B{ is given by B{~

fb{
t,kjt~1,2,:::,T , k~1,2,:::,Ngg with

b{
t,k~

jbt,kj, if jbt,kjv0

0 otherwise

�
ð3Þ

Because we treat gains and losses separately we have four different co-

occurrence situations to be considered given two loci on the genomic

grid: i) gain/gain, ii) gain/loss, iii) loss/loss and iv) loss/gain. So, when

evaluating the co-occurrence of loci i and j, we will evaluate the

behavior of i) columns Bz
.,i and Bz

.,j for gain/gain; ii) columns Bz
.,i

and B{
.,j for gain/loss; iii) columns B{

.,i and B{
.,j for loss/loss and iv)

columns B{
.,i and Bz

.,j for loss/gain. (Here X.,i is the ith column of

matrix X ). All subsequently described steps will be performed for

these four situations separately, where �yyi~fyt,ijt~1,2,:::,Tg and

�yyj~fyt,j jt~1,2,:::,Tg will be employed as shorthand for the

abovementioned column vectors of interpolated copy number values

associated with genomic grid positions i and j, respectively.

Co-occurrence score
The first component of the co-occurrence score is the

continuous variant of the AND Boolean logic function: the

minimum operation. For two grid points, i and j, the sum across

all tumors of the minimal probe value per tumor at i and j, smin
i,j , is

calculated as follows:

smin
i,j ~

XT

t~1

min(yt,i,yt,j) ð4Þ

These values are aggregated in a matrix, Smin~

fsmin
i,j ji,j~1,2,:::,Ngg. If we only use the minimum as a scoring

function, those grid positions that are ubiquitously aberrated will

always receive a high score, regardless of the aberration pattern in

the other grid position. Two regions that are aberrated

ubiquitously in all tumors are undoubtly important to the tumor

but they are not necessarily functionally related. They might be a

hallmark of the particular disease under study, but show no direct

functional interaction. To prevent these ubiquitously aberrated

regions from dominating the analysis and to detect those regions

that represent functional co-occurrences, we weigh the minimum

score computed above with the covariance of the interpolated

probe values at the two grid positions i and j,

scov
i,j ~cov(�yyi,�yyj)~

1

T

XT

t~1

(yt,i{mi)(yt,j{mj) ð5Þ

where mi and mj are the expected values of the probe values

at grid position i and j across tumors, respectively (i.e. mi~

1

T

XT

t~1

yt,i and mj~
1

T

XT

t~1

yt,j ). These values are aggregated in a

matrix, Scov~fscov
i,j ji,j~1,2,:::,Ngg. We combine both the

minimum matrix and the co-variance matrix by element-wise

multiplication to form the co-occurrence score matrix, Sco-oc~

fsco{oc
i,j ji,j~1,2,:::,Ngg, with

sco{oc
i,j ~smin

i,j
:scov

i,j ð6Þ

Kernel convolution
Since we believe the co-occurrence score to be a smooth

variable, and since neighboring co-occurrence values can therefore

be employed to reduce the noise locally, we convolve the co-

occurrence score matrix with an isotropic 2D Gaussian kernel

function. In practice this implies sampling the 2D Gaussian kernel

function on a square grid consisting of M6M genomic grid

positions and then performing the convolution of this sampled

kernel function with the co-occurrence score matrix. The sampled

isotropic 2D Gaussian function is defined as G~fgi,j ji,j~
½{M,{(M{1),:::,{1,0,1,:::,(M{1),M�g, with

gi,j~e
{ Dið Þ2z Djð Þ2½ �

2s2 ð7Þ

The standard deviation of the isotropic Gaussian, s, determines

the scale of the analysis. Since the Gaussian quickly decays we set

M~t
3s

D
s, allowing contributions from +3s, convolving with a

finite kernel with minimal loss in accuracy. The scale of an analysis

is therefore defined as 6s. The scales employed in this study are:

2 Mb (s = 1/3 Mb), 10Mb (s = 5/3 Mb) and 20Mb (s = 10/

3 Mb). Before the convolution step, we pad the co-occurrence

matrix by mirroring the true data at each chromosome boundary

and each centromere. By convolving the appropriately padded co-

occurrence score matrix and the sampled 2D Gaussian function

the Convolved Co-occurrence Matrix (CCM) is obtained:

C~G � Sco{oc ð8Þ
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with C~fci,j ji,j~½1,2,:::,Ng�g, � as the convolution operator and

ci,j~
XM

l~{M

XM
m~{M

gl,msco{oc
izl,jzm ð9Þ

This matrix is a representation of the amount of co-occurrence

between two locations on the genome. We calculate a CCM-

matrix for each possible combination of chromosome-arms and for

each of the four combinations of gains and losses listed above.

Distributed computing
With 39 unique chromosome arms in the human genome

(disregarding the p-arms of the acrocentric chromosomes and the

sex chromosomes), three different scales and 4 triangular pair-wise

matrices to evaluate (loss-loss, gain-gain, gain-loss and loss-gain)

we compute 8892 different CCMs. To solve this problem

computationally we used a large distributed computing cluster.

Our choice of resolution of the genomic grid was bounded by the

memory present on the nodes. We set D to 20000 base pairs,

which is the lowest value still allowing the largest chromosome-

arm pair to be successfully computed on one computing node.

Downstream analyses
For each CCM we determine the top N peaks for each

combination of gains and losses. The nth peak represents two co-

occurring loci, in and jn, and the location of the peak is defined by

two co-ordinates on the genomic grid: (xin ; xjn ). For each locus, we

define a region of interest of size 2s centered on xin and xjn ,

respectively. We define this small region of interest to only select

regions that are very near to the actual peak. To investigate the co-

occurrence for functional relationships, we extract, for each of the

co-occurring loci, the genes present in the regions of interest. More

specifically, we define, for loci in and jn, the associated gene sets An

and Bn, where

An~fgjxin{sƒqgƒxin zs,Vgg ð10Þ

and

Bn~fgjxjn{sƒqgƒxjnzs,Vgg ð11Þ

Where qg is the position of gene g, which we chose to be the mid-

position of the gene. The genesets were established by a BioMart

query from the Ensembl database. We restricted ourselves to the

bio type ‘protein_coding’.

Cancer Gene Census (CGC) enrichment
The list of CGC genes was obtained from the CGC website

(http://www.sanger.ac.uk/genetics/CGP/Census/). The refer-

ence list of all genes was retrieved from the Ensembl website,

with a filter to keep only genes with bio-type = ‘protein_coding’.

This left 18840 genes. All CGC genes that could not be mapped

back to the reference gene set were excluded. The CGC genes that

were annotated as ‘recessive’ were used as the tumor-suppressor

genes and ‘dominant’ as oncogenes. Enrichment for all CGC

genes, the tumor-suppressor subgroup and the oncogene subgroup

in the gene sets determined by the co-occurrence analysis was

calculated using a Fisher’s exact test.

Analysis of functional relationships
The set of pairs of interacting genes which are such that one

gene is associated with locus in and the other gene of the pair with

locus jn is then defined as

IAnBn ~ffgk,glgjgk[An, gl[Bn, IC(gk,gl)w0:9g ð12Þ

Where IC(gk,gl) represents the confidence of interaction, according

to the STRING database, between genes gk and gl. We then

determine all gene lists of interactors for the top N peaks of a given

co-occurrence analysis, i.e.:

IN~
[N
n~1

IAnBn ð13Þ

For each of the top N co-occurring loci, we also determine the total

number of genes in the regions of interest of those loci. So, for loci in
and jn we define the set:

GAnBn ~ffgk,glgjgk[An,gl[Bng ð14Þ

The total number of genes associated with the top N co-occurring

loci is then given by

GN~
[N
n~1

(GAnBn ) ð15Þ

The interaction ratio, RN
I , is then defined as

RN
I ~
jIN j
jGN j ð16Þ

where aj j denotes the cardinality of set a. As a control we randomly

pick size-matched locations for all co-occurring regions (in,jn) in the

top N and repeat the process for recovering interactions. For 100

randomly chosen co-occurring regions we calculate the resulting

RRAND
I . A Fisher’s exact test is then used to asses the significance of

enrichment of RN
I versus RRAND

I .

Hierarchical clustering of co-occurrence loci
For all pairs of co-occurring loci, (in,jn), present in the top N of

an analysis,

LN~f(in,jn)jn~1,2,:::Ng

let the set of loci representing the first and second member of the

co-occurrence locus be defined as

LN
I ~finjn~1,2,:::Ng

and

LN
J ~fjnjn~1,2,:::Ng

respectively. Given that the pairs of genomic locations corre-

sponding to the top N co-occurring loci are given by

XN~f(xin ; xjn )jn~1,2,:::,Ng

we define the set of genomic locations loci involved in co-

occurrences as
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X
0

N~fxkjk[(LN
I |LN

J )g

For each possible pair of locations (m,n) in X
0

N the genomic

distance is aggregated in matrix D:

D~fdm,njm,n~½1,2,:::,2N�g ð18Þ

Where dm,n is defined as:

dm,n~
xm{xnj j,if xm and xn are on the same chromosome arm

1:108 otherwise

�
ð19Þ

We perform hierarchical clustering on matrix D using single

linkage hierarchical clustering. Leaf nodes are assigned to clusters

using a distance cutoff of 107 bp (10Mb). Clusters are represented

as nodes in a graph. Edges between nodes are drawn if any co-

occurrence relationship is found between loci present in the nodes.

Data description
The case we subjected to analysis was a dataset containing 105

cell-lines derived from hematological origin. The aCGH mea-

surements were done on 1.8 million probe Affymetrix SNP 6.0

arrays. After data pre-processing we were left with 95 samples.

These cell lines are a subset of the Cancer Genome Project cancer

cell line project (http://www.sanger.ac.uk/genetics/CGP/CellLines/).

A list of the cell lines included in this dataset can be found in

Dataset S1.

Supporting Information

Figure S1 Hierarchical clustering of small scale CCM peaks. a.

All peaks present in the top 500 that report a co-occurrence

between these chromosome arms can be represented as a table of

1000 genomic loci, with 500 pairwise co-occurrence relationships.

b. The 1000 genomic loci are individually clustered based on their

genomic distance. The distance between two loci is the absolute

difference in basepairs if both are mapped to the same

chromosome arm and a high constant value if not. Single linkage

is used to grow a dendrogram from these distances. Clusters of

genomic loci are defined by aggregating all children under a

certain set cutoff distance, 10Mb in this case. c. The clusters

defined in b. are represented as nodes in a network. Edges are

drawn between nodes if a co-occurrence relationship exists

between any genomic loci assigned to the clusters.

Found at: doi:10.1371/journal.pcbi.1000631.s001 (1.14 MB EPS)

Dataset S1 This file contains information about the cell lines

used in this study.

Found at: doi:10.1371/journal.pcbi.1000631.s002 (0.03 MB XLS)
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