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Abstract
In this contribution, we introduce, in analogy to penalized ambiguity resolution, the concept of penalized misclosure space
partitioning, with the goal of directing the performance of the DIA-estimator towards its application-dependent tolerable risk
objectives. We assign penalty functions to each of the decision regions in misclosure space and use the distribution of the
misclosure vector to determine the optimal partitioning by minimizing the mean penalty. As each minimum mean penalty
partitioning depends on the given penalty functions, different choices can be made, in dependence of the application. For the
DIA-estimator, we introduce a special set of penalty functions that penalize its unwanted outcomes. It is shown how this set
allows one to construct the optimal DIA-estimator, being the estimator that within its class has the largest probability of lying
inside a user specified tolerance region. Further elaboration shows how these penalty functions are driven by the influential
biases of the different hypotheses and how they can be used operationally. Hereby the option is included of extending the
misclosure partitioning with an additional undecided region to accommodate situations when it will be hard to discriminate
between some of the hypotheses or when identification is unconvincing. By extending the analogy with integer ambiguity
resolution to that of integer-equivariant ambiguity resolution, we also introduce the maximum probability estimator within
the similar larger class.

Keywords Detection-Identification-Adaptation (DIA) · Misclosure partitioning · Minimum mean penalty partitioning ·
DIA-estimator · DIA-penalty function · Influential bias · Maximum probability estimators

1 Introduction

DIA-estimation captures the overall problem of detection,
identification and adaptation (DIA) as oneof estimation (Teu-
nissen 2018). As its structure is similar to that of mixed
integer estimation, one can cast its parameter solution in a
similar form. In case of GNSS mixed integer estimation, the
integer map I : R

n �→ Z
n defines the ambiguity pull-in

regions as Pz∈Zn = {u ∈ R
n | z = I(u)}, resulting in the

integer ambiguity-resolved baseline b̌ = ∑
z∈Zn b̂(z)pz(â),

with â the ambiguity-float estimator, b̂(z) the conditional
baseline estimator, and pz(.) the indicator function of Pz .
Similarly for DIA-estimation, the hypothesis mapH : Rr �→
[0, 1, . . . , k] defines the partitioning of misclosure space as
Pi∈[0,...,k] = {t ∈ R

r | i = H(t)} and results in the DIA-
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estimator x̄ = ∑k
i=0 x̂ i pi (t), with t the misclosure vector,

x̂ i the hypothesis-conditioned BLUE, and pi (.) the indicator
function of Pi .

This analogy is extended in this contribution to penalized
ambiguity resolution (Teunissen 2004). By assigning penalty
functions to each of the decision regions in misclosure space,
Pi∈[0,...,k] ⊂ R

r , the mean penalty of any chosen misclosure
space partitioning can be determined and compared. As a
result, we determine and study the optimal DIA-estimator,
being the estimator that within its class has the highest prob-
ability of lying inside a user defined tolerance region.

Although the presented theory is non-Bayesian through-
out in the parameters, we also show how distributional
information on the biases can be incorporated if available.
The theory is applicable to a wide range of applications, for
example, quality control of geodetic networks (DGCC 1982;
Zaminpardaz and Teunissen 2019; Yang et al. 2021), geo-
physical and structural deformation analysis (Lehmann and
Lösler 2017;Nowel 2020;Zaminpardaz et al. 2020), different
GNSS applications (Perfetti 2006; Yu et al. 2023), and vari-
ous configurations of integrated navigation systems (Gillis-
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sen and Elema 1996; Teunissen 1989; Salzmann 1991). For
all these different applications, user-derived penalties can
be set to direct the DIA-estimator perform according to its
application-dependent tolerable risk objectives.

This contribution is organized as follows: After a brief
review of DIA-estimation in Sect. 2, we introduce in Sect. 3,
in analogy with penalized ambiguity resolution, the concept
of penalized testing for estimation. As any testing procedure
is unambiguously described by its partitioning of misclosure
space, we show how the mean penalty of such partitionings
can be evaluated, thus giving users the tool to compare dif-
ferent testing procedures using their own assigned penalties.
We also determine the partitioning of misclosure space that
results in the minimum mean penalty. Its operational use
under known and unknown biases is discussed, and it is
shown how the penalties need to be chosen to recover the
misclosure space partitioning of classical multi-hypotheses
datasnooping (Baarda 1968a; Teunissen 2000; Lehmann and
Lösler 2016).

In Sect. 4, we focus attention to the consequences of test-
ing decisions, rather than only to the correctness of the
decisions. This is particularly of importance when the goal
is not per se the correct identification of the active hypoth-
esis, but rather being able to direct the performance of the
DIA-estimator towards its application-dependent tolerable
risk objectives. For that purpose, we introduce a special DIA-
penalty function that penalizes unwanted outcomes of the
estimator. We show how this penalty function maximizes the
probability P[x̄ ∈ Ωx ], thereby enabling the construction of
the optimal DIA-estimator. By extending the analogy with
integer estimation to that of integer-equivariant estimation,
we also introduce and derive the maximum probability esti-
mator in the similar larger class.

Further elaboration of the DIA-penalty functions is con-
ducted in Sect. 5, thereby showing the prominent role played
by the influential biases. Hereby we also present different
operational simplifications of the penalty functions and asso-
ciated minimum mean penalty partitionings. This includes
the optionof having an additionalundecided region to accom-
modate situations where one lacks confidence in the decision
making. In such cases, one may rather prefer to state that a
solution is unavailable, than providing an actual, but possibly
unreliable, parameter estimate. The theory is illustrated and
supported by several worked out examples. Finally in Sect. 6,
a summary and conclusions are given.

The following notation is used: E(.) and D(.) stand for
the expectation and dispersion operator, respectively, and
Np(μ, Q) denotes a p-dimensional, normally distributed
random vector, with mean (expectation) μ and variance
matrix (dispersion) Q. We denote a random variable or ran-
dom vector with an underscore. Thus, y is random, while x is
not. If the same symbol is used with and without underscore,
then the latter is a realisation of the former. Thus, x̂0 is an out-

come or realisation of the random x̂0. The probability of an
eventA is denoted as P[A], a proportional to b as a ∝ b, and
the logical characters for and/or as ∧/∨. For the probability
of Hα-hypothesis occurrence, we use the shorthand nota-
tion πα = P[Hα] = P[H = Hα]. The probability density
function (PDF) of a random vector t is denoted as ft (t). The
noncentral Chi-square distributionwith p degrees of freedom
and noncentrality parameter λ is denoted as χ2(p, λ) and its
δ-percentage critical value asχ2

δ (p, 0).Rp andZp denote the
p-dimensional spaces of real- and integer numbers, respec-
tively.Rr≥0 denotes the space of r -vectors having nonnegative
entries and er is the r -vector of ones. ||x ||2Q = (x)T Q−1(x)
denotes the squared Q-weighted norm of vector x and δiα the
Kronecker-delta, with δiα = 1 if i = α and δiα = 0 if i 
= α.
The identity matrix is denoted as I and the projector that
projects orthogonally, in the metric of Q, on the range space
of matrix M as PM = M(MT Q−1M)−1MT Q−1, where
P⊥
M = I − PM . The range space of a matrix M is denoted as

R(M).

2 A brief DIA review

In this section, we give a brief review of DIA-estimation and
its properties.

2.1 Hypotheses, BLUEs andmisclosure vector

Westart by formulating our null-hypothesisH0 and k alterna-
tive hypotheses Hi , i = 1, . . . , k. The null-hypothesis, also
referred to as working hypothesis, consists of the model that
one believes to be valid under normal working conditions.
We assume it to read

H0 : y ∼ Nm(Ax, Qyy) (1)

with A ∈ R
m×n the given design matrix of rank n, x ∈ R

n

the to-be-estimated unknown parameter vector, and Qyy ∈
R
m×m the given positive-definite variance matrix of y. The

redundancy of H0 is r = m − rank(A) = m − n.
Although every part of the assumed null-hypothesis can be

wrong, we assume that if a misspecification in H0 occurred
that it is confined to an underparametrization of the mean
of y. The alternative hypotheses will therefore only differ
fromH0 in their mean of y. The i th alternative hypothesis is
assumed given as:

Hi : y ∼ Nm(Ax + Cibi , Qyy) (2)

for some unknown vector Cibi ∈ R
m\{0}, with [A,Ci ] ∈

R
m×(n+qi ) a known matrix of full rank n+qi . Through Cibi

one may model, for instance, the presence of one or more
outliers in the data, satellite failures, antenna-height errors,
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cycle-slips in GNSS phase data, neglectance of atmospheric
delays, or any other systematic effect that one failed to take
into account underH0. We will use the lowercase ci , instead
of Ci , when qi = 1, i.e. when bi is a scalar.

For our further considerations, it is useful to first bring (1)
in canonical form. This is achieved by means of the Tienstra-
transformation and its inverse,

T = [A+T , B]T and T −1 = [A, B+T ] (3)

in which A+ = (AT Q−1
yy A)−1AT Q−1

yy and B+ = (BT Qyy

B)−1BT Qyy are the BLUE-inverses of A and B, respec-
tively, and B is an m × r basis-matrix of the null space of
AT , i.e. BT A = 0 and rank(B) = r . Application of T to y
gives under the null hypothesis (1),

[
x̂0
t

]

= T y
H0∼ Nm

([
x
0

]

,

[
Qx̂0 x̂0 0
0 Qtt

])

(4)

in which x̂0 = A+y ∈ R
n is the best linear unbiased

estimator (BLUE) of x under H0 and t = BT y ∈ R
r

is the misclosure vector of H0, having variance matrices
Qx̂0 x̂0 = (AT Q−1

yy A)−1 and Qtt = BT Qyy B, respectively.
As the misclosure vector t is zero-mean under the null-
hypothesis and stochastically independent of x̂0, it contains
all the available information useful for testing the validity of
H0.

Under the alternative hypothesis (2), T y becomes dis-
tributed as:

[
x̂0
t

]

= T y
Hi∼ Nm

([
In A+Ci

0 BTCi

] [
x
bi

]

,

[
Qx̂0 x̂0 0
0 Qtt

])

(5)

Thus, x̂0 and t are still independent, but now have different
means than under H0. Due to the canonical structure of (5),
it now becomes rather straightforward to infer the BLUEs of
x and bi underHi . As x̂0 and t are independent and the mean
of x̂0 underHi depends on more parameters than only those
of x , the estimator x̂0 will not contribute to the determination
of the BLUE of bi . Hence, it is t that is solely reserved for
the determination of the BLUE of bi , which then on its turn
can be used in the determination of the BLUE of x underHi .
The BLUEs of x and bi under Hi are therefore given as

x̂ i = x̂0 − A+Ci b̂i
b̂i = (BTCi )

+t (6)

inwhich (BTCi )
+ = (CT

i BQ−1
t t BTCi )

−1CT
i BQ−1

t t denotes
the BLUE-inverse of BTCi . The result (6) shows how x̂0 is
to be adapted when switching from the BLUE of H0 to that
of Hi .

Fig. 1 Misclosure space partitioning R
r = P0 ∪ P1 for the binary

testing of H0 : E(y) = Ax against H1 : E(y) = Ax + C1b1

2.2 Testing andmisclosure space partitioning

Which of the possible parameter solutions to deliver, x̂0 or
one of the x̂i ’s, is decided through hypothesis testing, and as
mentioned, it is the misclosure vector

t
Hi∼ Nr (Cti bi , Qtt ),with Cti = BTCi (7)

that forms the input to hypothesis testing. Would one only
have a single alternative hypothesis (k = 1), onewould likely
use the uniformlymost powerful invariant (UMPI) test statis-
tic (Arnold 1981; Teunissen 2000),

T qi = ||PCti
t ||2Qtt

Hi∼ χ2(qi , λi = ||Cti bi ||2Qtt
) (8)

where PCti
= Cti (C

T
ti Q

−1
t t Cti )

−1CT
ti Q

−1
t t , to acceptH0 when

Tqi ≤ χ2
α(qi , 0) and otherwise reject H0 in favour of Hi .

Such binary decision making can be visualized through a
corresponding binary partitioning of misclosure space. With
the partitioning

P0 = {t ∈ R
r | Tqi = ||PCti

t ||2Qtt
≤ χ2

α(qi , 0)}
Pi = R

r\P0 (9)

one would then choose forH0 if t ∈ P0 and forHi if t ∈ Pi ,
see Fig. 1. If qi = 1, then Tqi can be expressed in Baarda’s
w-statistic (Baarda 1968a) as Tqi=1 = w2

i , with

wi = cTti Q
−1
t t t

√
cTti Q

−1
t t cti

(10)
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We note that the UMPI test statistic (8) can also be
expressed in the BLUE of bi under Hi as Teunissen (2000)

T qi = ||b̂i (t)||2Qb̂i b̂i

Hi∼ χ2(qi , λi = ||bi ||2Qb̂i b̂i
) (11)

where Qb̂i b̂i
= (CT

ti Q
−1
t t Cti )

−1. Here we have written the

BLUE of bi as b̂i (t) to explicitly show its dependence on the
misclosure vector t , cf. (6). Expression (11) shows that the
binary test between H0 and Hi can therefore also be inter-
preted as a significance test: choose H0 if the bias-estimate
is considered insignificant, else choose Hi .

In the multiple alternative hypotheses case (k > 1),
one cannot generalize the above binary decision making
and expect the UMPI property to remain valid. However,
although for now it is not yet clear how the actual multi-
ple hypotheses decision making should look like, the idea
of partitioning misclosure space for the purpose of such
decision making can easily be generalized from the case
k = 1 to k > 1, this in analogy with the pull-in regions
of integer estimation and integer aperture estimation (Teu-
nissen 2003a). Therefore, if we let the multiple hypotheses
testing procedure be captured by the unambiguous mapping
H : Rr �→ {0, 1, . . . , k}, the regions

Pi∈[0,...,k] = {t ∈ R
r | i = H(t)}, (12)

form a partitioning of the r -dimensional misclosure space,
i.e. ∪k

i=0Pi = R
r and Pi ∩ P j = ∅ for i 
= j . Hence, by

specifying (12), one would have automatically and unam-
biguously defined themultiple testing procedure as selecting
Hi if t ∈ Pi .

Formulation (12) is a very general one and applies in
principle to any unambiguous multiple hypotheses testing
problem. How the mapping H, or its partitioning Pi , i =
0, . . . , k, is defined determines how the actual testing proce-
dure is executed. The following example shows howBaarda’s
datasnooping (Baarda 1968b), being one of the more famil-
iar outlier testing procedures, fits into the above partitioning
framework.

Example 1 (Detectionand1-dim identification)Let the design
matrices [A,Ci ] of the k hypotheses Hi (cf. 2) be of order
m × (n + 1), with i = 1, . . . , k, denote Ci = ci and
BT ci = cti , and write Baarda’s test-statistic (Baarda 1968a;
Teunissen 2000) as |wi | = ||Pcti t ||Qtt . Then,

P0 = {t ∈ R
r | ||t ||Qtt ≤ τ ∈ R

+}
Pi 
=0 = {t ∈ R

r\P0 | i = arg max
j∈{1,...,k} |w j |} (13)

form a partitioning of misclosure space, provided not two or
more of the vectors cti are parallel. The inference induced by
this partitioning is thus that the null-hypothesis gets accepted

Fig. 2 Misclosure space partitioning inRr=2 (cf. Example 1): elliptical
P0 for detection, with Pi∈[1,2,3] for outlier identification

if in the detection step the overall model test gets accepted,
||t ||Qtt ≤ τ , while in case of rejection, the largest value of the
statistics |w j |, j = 1, . . . , k, say |wi |, is used for identifying
the i th alternative hypothesis. In the first case, x̂0 is provided
as the output estimate of x , while in the second case, x̂0 is
adapted to provide the output as x̂i , cf. (6). In case k = m and
the ci are canonical unit vectors, the above testing reduces to
Baarda’s single-outlier data-snooping, i.e. the procedure in
which the individual observations are screened for possible
outliers (Baarda 1968a; DGCC 1982; Kok 1984).

Figure2 illustrates the geometry of partitioning (13) for
the case A = [1, 1, 1]T , Qyy = I3, c1 = [1, 0, 0]T , c2 =
[0, 1, 0]T , and c3 = [0, 0, 1]T , cf. (1) and (2). With

BT =
[
1 −1 0
0 1 −1

]

(14)

the inverse variance matrix of the misclosure vector follows
as

Q−1
t t = (BT Qyy B)−1 =

[
2 −1

−1 2

]−1

= 1
3

[
2 1
1 2

]

(15)

This matrix determines the shape of the elliptical detection
region ||t ||2Qtt

= t T Q−1
t t t < τ 2. The fault lines along which

the E(t |Hi ) = BT cibi move when bi varies, i = 1, 2, 3,
have direction vectors ct1 = BT c1 = [1, 0]T , ct2 = BT c2 =
[−1, 1]T , and ct3 = BT c3 = [0,−1]T . ��
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2.3 The DIA-estimator and its PDF

Once testing has been concluded, one has either accepted the
null-hypothesis H0 and provided x̂0 as the parameter esti-
mate of x , or identified one of the alternative hypotheses,
say Hi , i = 1, . . . , k, and provided x̂i as the parameter esti-
mate of x . The first happens when t ∈ P0, while the second
when t ∈ Pi 
=0. This shows that the whole of the detection,
identification and adaptation (DIA) procedure to come to a
final solution for the unknown parameter vector x , is a com-
bination of estimation and testing, whereby the uncertainty
of both would need to be accommodated for in the quality
description of the final result. The actual estimator that DIA
produces is therefore not x̂0 nor x̂ i , but

x̄DIA =
{
x̂0 if t ∈ P0

x̂ i if t ∈ Pi 
=0

}

=
k∑

i=0

x̂ i pi (t) (16)

in which pi (t) denotes the indicator function of Pi , (i.e.
pi (t) = 1 for t ∈ Pi and pi (t) = 0 elsewhere). The DIA-
estimator (16) represents a class of estimators, with each
member in the class unambiguously defined through its mis-
closure space partitioning. Changing the testing procedure
will change the partitioning and consequently also the DIA-
estimator.

The structure of (16) resembles that of mixed integer
estimation. As mentioned in Teunissen (2018) p.67, this sim-
ilarity can be extended further to mixed integer-equivariant
estimation. This is achieved if onewould replace the indicator
functions pi (t) of (16), with misclosure weighting functions
wi (t) : Rr �→ R, satisfying ωi (t) ≥ 0, i = 0, . . . , k, and∑k

i=0 ωi (t) = 1. As a result, we obtain, in addition to the
DIA-class, a second class of estimators, namely

x̄WSS =
k∑

i=0

x̂ iωi (t) (17)

which we will call the weighted solution-separation (WSS)
class.Note, since the indicator functions satisfy the properties
pi (t) ≥ 0, i = 0, . . . , k, and

∑k
i=0 pi (t) = 1, that the DIA-

class is a subset of the WSS-class, just like the integer-class
is a subset of the integer-equivariant class (Teunissen 2003b).

We have named estimators from the class (17) ’weighted
solution-separation’ estimators, since they can alternatively
be represented as

x̄WSS = x̂0 +
k∑

i=1

(x̂ i − x̂0)ωi (t) (18)

thus showing how x̄WSS is obtained through a weighted
solution-separation sum adjustment of the H0-solution x̂0.
Note, as t is independent of x̂0 and the solution separations

x̂ i − x̂0 are functions of the misclosure vector t only (cf. 6),
that theweighted solution-separation sumof (18) is also inde-
pendent of x̂0. With formulation (18) one should be aware,
however, that the k weights ωi (t) sum up to 1 − ω0(t) and
not to 1.

Tobe able to determine and judge the parameter estimation
quality of (16) and (17), we need their probability density
function. As (16) can be considered a special case of (17),
the use of the subscripts ’DIA’ or ’WSS’ will only be used in
the following if the need arises. We have the following result
(Teunissen 2018).

Theorem 1 (PDF of x̄) The probability density function of
(17) is given as

fx̄ (x) =
∫

Rr
fx̂0(x + 
(τ)) ft (τ )dτ (19)

where 
(t) = ∑k
i=1 Li tωi (t) and Li = A+Ci [BTCi ]+. �

Proof We first express x̄ in the two independent vectors x̂0
and t . With

∑k
i=0 ωi (t) = 1, substitution of x̂ i = x̂0 − Li t

(cf. 6) into (17) gives x̄ = x̂0 − 
(t). Application of the
PDF transformation rule to the pair x̄ = x̂0 − 
(t), t , rec-
ognizing the Jacobian to be 1, gives then for their joint PDF
fx̄,t (x, t) = fx̂0,t (x + 
(t), t). The marginal (19) follows
then from integrating t out and recognizing that x̂0 and t are
independent. ��

The above result shows how the impact of the hypotheses is
felt through the shifting over 
(τ) of the PDF of x̂0, and thus,
how it can bemanipulated, either through the choice of pi (t),
i.e. the choice of misclosure space partitioning, or through
the choice of the misclosure weighting functions ωi (t). Note
that (19) can be expressed in terms of an expectation as

fx̄ (x) = E
(
fx̂0(x + 
(t))

)
(20)

thus showing that the PDF equals the average of random
shifts 
(t) of the PDF of x̂0. This expression is useful
when one wants to Monte-Carlo simulate fx̄ (x) or integral-
values of it Robert and Casella (2004). For example, to
compute P[x̄ ∈ Ω ⊂ R

n] = ∫
Rn fx̄ (x)iΩ(x)dx , with

iΩ(x) being the indicator function of Ω , we first express
the probability in terms of an expectation, P[x̄ ∈ Ω ⊂
R
n] = VΩ

∫
Rn fx̄ (x)ux (x)dx = VΩE( fx̄ (x)), with volume

VΩ = ∫
Ω
dx and PDF ux (x) = iΩ(x)

VΩ
being the uniform

PDF over Ω . Then one may use the Monte-Carlo approxi-
mation P[x̄ ∈ Ω ⊂ R

n] ≈ VΩ

kx

∑kx
j=1 fx̄ (x j ), in which x j ,

j = 1, . . . , kx , are the kx samples drawn from the uniform
PDFoverΩ ⊂ R

n . This, togetherwith a similarMonte-Carlo
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approximation of (20), gives then

P[x̄ ∈ Ω ⊂ R
n] ≈ VΩ

kt kx

kt∑

i=1

kx∑

j=1

fx̂0(x j + 
(ti )) (21)

in which ti , i = 1, . . . , kt , are the kt samples drawn from the
PDF ft (t). Standard Monte-Carlo simulation can be further
improved with importance sampling and other variance-
reduction techniques, see, e.g. Kroese et al. (2011).

An important difference between (16) and (17) is the use of
binaryweights pi (t) in the DIA-estimator. It is through these
binary weights that the DIA-estimator is unambiguously
linked to hypothesis testing. In fact, the testing procedure
is the defining trait of the DIA-estimator. No such link
exists, however, when theWSS-estimator is based on smooth
misclosure weight functions ωi (t). In that case, a weighted
average of all k + 1 parameter solutions x̂i is taken, instead
of the single ’winner-takes-all’ solution of (16). Although
an explicit testing procedure is absent in case of the WSS-
estimator with smooth weights, the estimator does reveal its
hypothesis-preference through its choice of weighting func-
tions. As the weight ωi (t) can be seen to be a measure of
preference that is given to solution x̂i for a given t , it may be
interpreted as the conditional probability P[i = i |t]. For the
binary weight ωi (t) = pi (t), it would then be the 1−0 prob-
ability of selecting the BLUE x̂ i given the outcome of the
misclosure vector being t . For the conditional and uncon-
ditional expectations of the random weight ωi (t) we then
have E(ωi (t)|H j ) = P[i = i |H j ] and E(ωi (t)) = P[i = i],
thus showing how the expectation of the weights can be read
as probabilities assigned to the hypotheses. In case of the
DIA-estimator, having the binary weight ωi (t) = pi (t), the
expectations specialize to E(pi (t)|H j ) = P[t ∈ Pi |H j ] and
E(pi (t)) = P[t ∈ Pi ], which are the probabilities with which
the hypotheses are identified by the testing procedure.
In our description of DIA-estimation, we so far assumed that
always one of the estimates x̂i , i = 0, . . . , k, was provided
as output, even, for instance, if it would be hard to discrimi-
nate between some of the hypotheses or when identification
is unconvincing. However, when one lacks confidence in the
decisionmaking, onemay rather prefer to state that a solution
is unavailable, than providing an actual, but possible unreli-
able, parameter estimate. To accommodate such situations,
one can generalize the procedure and introduce an additional
undecided region Pk+1 ⊂ R

r in the misclosure space parti-
tioning. This is similar in spirit to the undecided regions of
the theory of integer aperture estimation (Teunissen 2003a).
With the undecided region Pk+1 in place, the DIA-estimator
generalizes to

x̄ =
{

x̂ i if t ∈ Pi , i = 0, . . . , k
unavailable if t ∈ Pk+1

(22)

As parameter estimates are now only provided when t ∈
R
r\Pk+1, the evaluation of the DIA-estimator would now

need to be based on its conditional PDF fx̄ |t /∈Pk+1(x), the
expression of which can be found in Teunissen (2018).

In practice one is quite often not interested in the complete
parameter vector x ∈ R

n , but rather only in certain functions
of it, say θ = FT x ∈ R

p. As its DIA-estimator is then
computed as θ̄ = FT x̄ , we need its distribution to evaluate
its performance. In analogy with Theorem1, the PDF of θ̄ is
given as fθ̄ (θ) = ∫

Rr f
θ̂0

(θ + FT 
(τ)) ft (τ )dτ . Although

we will be working with x̄ , instead of θ̄ , in the remaining
of this contribution, it should be understood that the results
provided can similarly be given for θ̄ = FT x̄ as well.

We also note, although all our results are formulated
in terms of the misclosure vector t ∈ R

r , that they can
be formulated in terms of the least-squares residual vector
ê0 = y − Ax̂0 ∈ R

m as well. This follows, since t = BT ê0.

3 Penalized testing

3.1 Minimummean penalty testing

TheDIA-estimator (16) represents a class of estimators, with
each member in the class unambiguously defined through its
misclosure partitioning. Any change in the partitioning will
change the outcome of testing and thus also the quality of the
testing procedure and its decisionmaking.As, like in (22), the
number of subsets of the partitioning need not be equal to the
number of hypotheses, we put in the following no restriction
on the number of subsets and thus let misclosure spaceRr be
partitioned in l+1 subsetsPi , i = 0, . . . , l, thereby assuming
that each subset is unambiguously linked to a decision, i.e.
decision i is made when t ∈ Pi . To be able to compare the
quality of different partitionings, we introduce a weighting
scheme that weighs the envisioned risk of a decision i . This is
done by assigning to decision i , a nonnegative risk penalizing
function riα(t), with t ∈ Pi , for each of the k+1 hypotheses
Hα , α = 0, . . . , k. Note that we allow the penalty of the
invoked risk depend on where t is located within Pi . Using
the indicator function pi (t) ofPi , we canwrite the hypothesis
Hα-penalty function, for all t ∈ R

r , as

rα(t) =
l∑

i=0

riα(t)pi (t) (23)

As the misclosure vector t is random, the function values
rα(t) may now be considered outcomes of a random risk
penalty variable r conditioned onHα . We therefore have the
conditional means

E(r|Hα) =
∫

Rr
rα(t) ft (t |Hα)dt
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E(r|t) =
k∑

α=0

rα(t)P[Hα|t] (24)

and the unconditional mean

E(r) =
k∑

α=0

E(r|Hα)P[Hα] =
∫

Rr
E(r|t) ft (t)dt (25)

where

P[Hα|t] = ft (t |Hα)P[Hα]
∑k

β=0 ft (t |Hβ)P[Hβ ] (26)

Would we change the partitioning of Rr , i.e. change the val-
ues of t for which decision i is made, then the mean penalty
E(r) would change as well. Hence, we can now think of a
best possible partitioning, namely one that would minimize
the mean risk penalty.

To minimize E(r) in dependence on the l + 1 subsets Pi ,
i = 0, . . . , l, we make use of the following lemma:

Lemma 1 (Optimal constrained partitioning) Let the l + 1
subsets Pi ⊂ R

r , i = 0, . . . , l, form a partitioning of Rr ,
i.e. ∪l

i=0Pi = R
r and Pi ∩ P j = ∅ for i 
= j , and let

fi (t) : Rr �→ R be l + 1 given non-negative functions. If P0

is known, then the P0-constrained subsets thatminimize the
sum

S =
l∑

i=0

∫

Pi

fi (t)dt (27)

are given as

Pi∈[1,..,l] = {t ∈ R
r\P0 | i = arg min

j∈[1,..,l] f j (t)} (28)

�

Proof From writing the sum S as

S =
∫

P0

f0(τ )dτ +
l∑

i=1

∫

Pi

fi (τ )dτ (29)

and recognizing that the l subsetsPi , i = 1, . . . , l, now form
a partitioning of Rr\P0, it follows that the second term of
(29) is minimized when each of the subsets Pi covers that
part of the domain R

r\P0 for which fi attains the smallest
function values. As a result, the l subsets are to be chosen as
given by (28). ��

Note, by assuming the l subsets Pi of (28) to form a
partitioning of Rr\P0, implicit properties are asked of the
functions fi (t). Such partitioning would for instance not be
realized if all functions fi (t) would be equal. Also note that

in the unconstrained case, i.e. if P0 is also unknown, Rr\P0

needs to be replaced byRr in (28) and [1, . . . , l]by [0, . . . , l].
We will have use for both the constrained and unconstrained
cases in the sections following. In fact, expression (28) is
also very useful for the unconstrained case, since it shows,
once the unconstrained minimizerP0 is found, that the func-
tion f j=0(t) need not be considered anymore in the search
for the remaining unconstrained minimizers Pi∈[1,...,l]. This
will allow us, as we will see in the sections following, to
provide compact and transparent formulations of the various
misclosure partitionings. Finally note, to maximize the sum
S, the minimization in (28) needs to be replaced by a maxi-
mization. With the minimum and maximum, one can bound
the sum S as Smin ≤ S ≤ Smax.

We now apply Lemma1 so as to find the misclosure space
testing partitioning that minimizes the mean penalty E(r).

Theorem 2a (Minimum mean penalty testing) The misclo-
sure space partitioning Pi∈[0,...,l] ⊂ R

r that minimizes the
mean penalty

E(r) =
l∑

i=0

∫

Pi

k∑

α=0

riα(t) ft (t |Hα)P[Hα]dt (30)

is given by:

Pi∈[0,...,l] = {t ∈ R
r |i = arg min

j∈[0,...,l]
k∑

α=0
r jα(t)Fα(t)}

(31)

where Fα(t) = ft (t |Hα)P[Hα].
Proof From writing the mean penalty as

E(r)
(25)=

k∑

α=0

E(r|Hα)P[Hα]

(24)=
k∑

α=0

∫

Rr
rα(t) ft (t |Hα)dtP[Hα]

(23)=
l∑

i=0

∫

Pi

fi (t)dt (32)

with fi (t) = ∑k
α=0 riα(t) ft (t |Hα)P[Hα], the result follows

when applying Lemma1. ��
Note that the minimizer in (31) is invariant to a scaling of

its objective function with an arbitrary nonnegative function
of t . At various places in the following use will be made of
this property. For instance, by using a common scaling, the
values of the penalty functions may all be considered to lie
between 0 and 1. Also note, by normalizing the objective
function of (31) with the marginal PDF of the misclosure
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vector t , ft (t) = ∑k
α=0 ft (t |Hα)P[Ha], and recognizing the

result as E(r j |t) = ∑k
α=0 r jα(t)P[Hα|t], that the optimal

partitioning (31) can be written as

Pi∈[0,..,l] = {t ∈ R
r | i = arg min

j∈[0,..,l] E(r j |t)} (33)

thus showing that each decision i , i.e. each subset Pi , is
having the smallest possible conditional mean penalty.

Expressing the minimum mean penalty partitioning in
E(ri |t) is also insightful in case one of the penalty functions
is simply equal to a constant.

Corollary 1 (A constant penalty function) Let decision i = l
has the constant penalty functions rlα(t) = ρ for α =
0, . . . , k. Then, the minimum mean penalty partitioning fol-
lows from (31) as

Pl = {t ∈ R
r | ρ < min

j∈[0,...,l−1] E(r j |t)}
Pi∈[0,..,l−1] = {t ∈ R

r\Pl | i = arg min
j∈[0,..,l−1] E(r j |t)}

(34)

�

As an application, one can think of decision i = l being
the decision to not identify one of the hypotheses, thereby
declaring the parameter solution unavailable, cf. (22). The
solution would then be declared unavailable when the small-
est misclosure-conditioned mean penalty is still considered
too large, i.e. larger than ρ.

Finally note thatwe considered the occurrence of hypothe-
ses as a discrete random variable, with its probabilities of
occurrence given by the function P[Hα] (a stricter, but longer
notation would have been P[Hα = Hα]). Specifying these
probabilities may not be easy and may require extensive
experience on the actual frequencies of their occurrence. In
the absence of such experience however, guidance may be
taken from considerations of symmetry or complexity. For
instance, if there is no reason to believe that one alternative
hypothesis is more likely to occur than another, then with
P[H0] = π0, the probabilities of the alternative hypotheses
are given as P[Hα] = (1 − π0)/k for α = 1, . . . , k. Also,
with reference to the principle of parsimony, one could con-
sider describing the probabilities of occurrence as decreasing
functions of the bias-vector dimensions, qα . For instance, in
case ofmultiple outlier testing, it seems reasonable to attach a
lower probability to the simultaneous occurrence of a higher
number of outliers. As an example, having π � 1−π as the
probability of a single-outlier occurrence, one could model
the probability of occurrence of anm-observation, qα-outlier
hypothesis as

P[Hα] ∝ πqα (1 − π)m−qα (35)

Although the assignment of probabilities P[Hα] may in gen-
eral not be an easy task, some consolation can perhaps be
taken from the following two considerations. First note, as
the PDF (19) can be computed rigorously for any partition-
ing, that the hypothesis-conditioned quality description of
the corresponding DIA-estimator will not suffer from inac-
curacies in specifying P[Hα]. Second we note, as P[Hα] in
(31) occurs in a product with r jα(t), that any inaccuracies in
the probability assignment may be interpreted as a variation
in the risk penalty assignment.

We now give four simple examples to illustrate the work-
ings of (31). We often make use of the simpler short-hand
notation πα = P[Hα].
Example 2 (Detection-only) Let k = l = 1, r10 = r11 = ρ,

E(y)
H0∼ Nm(Ax, Qyy) and H1 
= H0. Then (31) simplifies

toP0 = {t ∈ R
r | r00F0(t)+r01F1(t) < ρ(F0(t)+F1(t))},

from which follows

P0 = {t ∈ R
r | E(r0|t) < ρ}

P1 = R
r\P0 (36)

In this case the null-hypothesis would only be accepted if its
misclosure-conditioned mean penalty is small enough. This
case is referred to as ’detection-only’ as no identification of
particular alternative hypotheses is asked for Zaminpardaz
andTeunissen (2023).Rejection of the null-hypothesiswould
thus automatically lead to an unavailability of a parameter
solution for x . ��
Example 3 (The k = l = 1 case, with varying penalties)
Without the assumption of the same penalty r10 = r11 for
decision i = 1, (31) simplifies, with r00 < r10, to

P0 = {t ∈ R
r | ft (t |H0) > c ft (t |H1)}

P1 = R
r\P0 (37)

with c = r01−r11
r10−r00

1−π0
π0

. Note that P0 increases in size when
π0 gets larger at the expense of π1 = 1−π0 and/or when the
relative penalty ratio r01−r11

r10−r00
gets smaller. This is also what

one would like to happen: for a larger occurrence probability
of the null-hypothesis, a larger acceptance region, with in the
limit no rejection at all when π0 → 1. Similarly, also with a
decreasing relative risk of making the wrong decision i = 0
while H1 is true, one would like the acceptance region to
increase in size. ��
Example 4 (k = l = 2 and P0 is given) In this case we
have three hypotheses and three decisions.We assume (r21−
r11)π1 = (r12 − r22)π2. Then, with c = π0

(r21−r11)π1
> 0,

the partitioning for the three hypotheses reads

P0 = given
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P1 = {t ∈ R
r\P0| ft (t |H1)

ft (t |H0)
+ c r20 >

ft (t |H2)

ft (t |H0)
+ c r10}

P2 = R
r\{P0 ∪ P1} (38)

This shows that if r20 gets larger, i.e. the penalty of choosing
H2 whileH0 is true gets larger, then the regionP1 gets larger
at the expense of P2. ��
Example 5 (k = 1, l = 2,with undecided andP0 is given) In
this case, we have two hypotheses and three decisions. The
partitioning for the three decisions follows then from (31),
with r21 > r11, as

P0 = given

P1 = {t ∈ R
r\P0 | ft (t |H1) > c ft (t |H0)}

P2 = R
r\{P0 ∪ P1} (39)

with c = r10−r20
r21−r11

π0
1−π0

and P2 the undecided region �

3.2 Creating an operational misclosure partitioning

Partitioning (31) is only operational if the PDFs ft (t |Hα)

would be completely known. In our case, however, we also
have to deal with the bias vectors bα of Hα , cf. (5), and
therefore, we only have the PDFs

ft (t |bα,Hα), bα ∈ R
qα (40)

available. We can now discriminate between the following
three cases:

(a)bα known

(b)bα random,with known PDF

(c)bα unknown (41)

Case (a): When all the bias vectors are known, also the PDFs
ft (t |Hα) := ft (t |bα,Hα) are known and partitioning (31)
can be applied directly.

Case (b): When the bias vectors are considered random
with known PDF fbα

(bα|Hα), the marginal PDF ft (t |Hα)

can be constructed from the joint PDF ft,bα
(t, bα|Hα) =

ft |bα (t |bα,Hα) fbα
(bα|Hα) as

ft (t |Hα) =
∫

Rqα
ft |bα (t |β,Hα) fbα

(β|Hα)dβ (42)

where ft |bα (t |β,Hα) := ft (t |β,Hα). Using (42), partition-
ing (31) can again be applied directly. For example, if it is
believed that the distributional information on the biases can
be captured by fbα

(b|Hα) = Nqα (0, Qα), then the marginal
PDF (42) becomes ft (t |Hα) = Nr (0, Qtt + Ctα QαCT

tα ),
thus showing that the prior on the biases results under Hα

in a variance-inflation of ft (t |Hα) in the hypothesized fault-
direction R(Ctα ). Would, alternatively, the PDF of bα be
so peaked that it becomes equal to a Dirac delta-function,
fbα

(β|Hα) = δ(β − bα), with bα known, then substitution
into (42) gives

ft (t |Hα) = ft |bα
(t |bα,Hα) := ft (t |bα,Hα) (43)

thus recovering (40), but now with bα known.

Case (c): As the above two cases, bias-known or bias-
random, may generally not be applicable, one will have to
work with an alternative approach to cope with the unknown
bias vectors. We present two such approaches. If ft (t |Hα) in
(30) is replaced by ft (t |bα,Hα), themean penalty is obtained
as function of the unknown biases, E(r|b1, . . . , bk). To cope
with the unknown biases we try to capture the characteris-
tics of the function by using its average Ē(r) or by using an
estimate Ê(r). The first approach is realized if we replace
ft (t |bα,Hα) in E(r|b1, . . . , bk) by its average

f̄t (t |Hα) = 1
|Gα |

∫

Gα

ft (t |β,Hα)gα(β)dβ (44)

in which |Gα| = ∫
Gα

dβ. To determine this average, we
still need to choose the function gα(β). As we generally do
not know more about the biases bα ∈ R

qα than that they
can occur freely around the origin, it seems reasonable to
choose the function gα(β) as a flat function, symmetric about
the origin, and having sufficient domain to include all the
practically sized biases. In the unweighted case, this would
be the function gα(β) = |Gα| over the domain Gα .

In the second approach, we use the bias-estimates b̂α to
estimate the mean penalty as Ê(r) = E(r|b̂1, . . . , b̂k). This
approach is generally simpler than constructing the average
Ē(r). Furthermore, as the following Lemma shows, it pro-
vides a strict upper bound on the mean penalty function.

Lemma 2 (Maximum mean penalty): Let the mean penalty
be estimated as Ê(r) = E(r|b̂1, . . . , b̂k), where b̂α =
arg max

β∈Rqα
ft (t |β,Hα), α = 1, . . . , k. Then

Ê(r) = max
b1∈Rq1 ,...,bk∈Rqk

E(r|b1, . . . , bk) (45)

�

Proof The proof follows by noting that the bias-dependent
functions ft (t |bα,Hα) occur in a decoupled form in the non-
negative linear combinations of E(r|b1, . . . , bk). Hence, its
joint bias-maximizer is provided by the bias-maximizers of
the individual functions ft (t |bα,Hα). ��

The relevance of this result is that by replacing in the
mean penalty function the unknown bias vectors with their
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estimates b̂α , we automatically obtain a strict upperbound on
the mean penalty, i.e. for none of the possible values that the
bias vectorsmay takewill themean penalty be larger than this
upperbound. Hence, by working with Ê(r) instead of Ē(r),
one is assured of a conservative approach. As this property
may be considered attractive in case of safety-critical appli-
cations, we will work in the following, when the biases are
unknown, with Ê(r). From using the above Lemma, its best
partitioning is obtained as follows.

Theorem 2b (Minimum mean penalty testing) The misclo-
sure space partitioning Pi∈[0,...,l] ⊂ R

r that minimizes the
mean penalty upperbound

Ê(r) =
l∑

i=0

∫

Pi

k∑

α=0

riα(t) ft (t |b̂α(t),Hα)P[Hα]dt (46)

where b̂α(t) = arg max
β∈Rqα

ft (t |β,Hα), is given by

Pi∈[0,...,l] = {t ∈ R
r |i = arg min

j∈[0,...,l]

k∑

α=0

r jα(t)F̂α(t)}

(47)

where F̂α(t) = ft (t |b̂α(t),Hα)P[Hα]. �

Note that all the results obtained so far in this section do not
require themisclosure vector to be normally distributed. Also
in the sections following we provide results that generally do
not require such assumption. However, in all the examples
following, we will assume the misclosure vector to be nor-
mally distributed as (7) and therefore that the bias-maximizer
of ft (t |bα,Hα) is given as b̂α = (Ctα )

+t , cf. (6). The results
of (31) and (47) then specialize to the following.

Theorem 2c (Minimum mean penalty testing) Let the PDF
of the misclosure vector be given as

ft (t |bα,Hα)
Hα∝ exp{− 1

2 ||t − Ctαbα||2Qtt
} (48)

Then, the misclosure space partitionings of (31), for known
bias bα , and (47), for estimated bias b̂α(t), specialize to

Pi∈[0,..,l] =

{t ∈ R
r |i = arg min

j∈[0,..,l]

k∑

α=0

r jα(t) exp{+ 1
2Tα(t)}} (49)

where

Tα(t)

⎧
⎨

⎩

(31)= Tqα (t) − ||b̂α(t) − bα||2Qb̂α b̂α
+ ln π2

α

(47)= Tqα (t) + ln π2
α

(50)

with Tqα (t) = ||PCtα
t ||2Qtt

= ||b̂α(t)||2Qb̂α b̂α
, Tqα=0(t) = 0,

and πα = P[Hα]. �
Proof As ||t−Ctαbα||2Qtt

= ||P⊥
Ctα

t ||2Qtt
+||b̂α(t)−bα||2Qb̂α b̂α

and ||P⊥
Ctα

t ||2Qtt
= ||t ||2Qtt

− ||b̂α(t)||2Qb̂α b̂α
, we have

||t − Ctαbα||2Qtt
= ||t ||2Qtt

− ||b̂α(t)||2Qb̂α b̂α

+||b̂α(t) − bα||2Qb̂α b̂α
(51)

and therefore

Fα(t) = πα exp{− 1
2 ||t − Ctαbα||2Qtt

}
= exp{− 1

2 ||t ||2Qtt
} exp{+ 1

2Tα(t)} (52)

which upon substitution into (31) proves the result. ��
Note, if r(31)

iα (t) = r(47)
iα (t) exp{+ 1

2 ||b̂α(t) − bα||2Qb̂α b̂α
},

with r(31)
iα (t) and r(47)

iα (t) being the penalty functions of (31)
and (47), respectively, that the bias-known case transforms
into the bias-estimated case, thus showing that the switch
from the bias-known to the bias-estimated case, cf. (50), can
also be interpreted as a use of different penalty functions.

We now give two simple examples to show the workings
of (49).

Example 6 (Detection only): Let k = l = 1, with H1 being
the most relaxed alternative hypothesis, E(t) ∈ R

r\{0}.
Then Tq1=r = ||t ||2Qtt

, from which it follows with (49), and
rαα(t) < riα(t), i 
= α, that

P0 = {t ∈ R
r | ||t ||2Qtt

< τ 2}
P1 = R

r\P0 (53)

with τ 2 = ln
[
r10(t)−r00(t)
r01(t)−r11(t)

π0
π1

]2
. This shows how the overall-

model test statistic Tq1=r = ||t ||2Qtt
is used in the acceptance

or rejection ofH0. ��
Example 7 (Undecided included): Let k = 1, l = 2 and
assume that P0 is a-priori given. Thus we have two hypothe-
ses and three decisions. As alternative hypothesis, we take
H1 : E(t) = C1b1 
= 0. Then Tq1 = ||PC1 t ||2Qtt

=
||b̂(t)||2Qb̂b̂

, from which it follows with (49), and r11(t) <

r21(t), that

P1 = {t ∈ R
r\P0 | ||b̂1(t)||2Qb̂b̂

> τ 2}
P2 = R

r\{P0 ∪ P1} (54)

with τ 2 = ln
[
r10(t)−r20(t)
r21(t)−r11(t)

π0
π1

]2
. The misclosure space parti-

tioning is shown in Fig. 3 for q1 = 1 and r = 2. Note how
the size of the undecided region P2 is driven by r20 and r21.
If both get larger then P1 gets larger and P2 smaller. �
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Fig. 3 Misclosure space partitioning in Rr=2: P0 for detection, P1 for
identifying H1, and P2 for unavailability decision of Example 7

3.3 Maximizing the probability of correct decisions

Theminimummean penalty partitioning of misclosure space
simplifies if an additional simplifying structure is given to the
set of penalty functions. This is the case for instance when
l = k and all correct decisions are given the same penalty
and the penalties for incorrect decisions are symmetrized.

Corollary 2a (Symmetric penalties) For symmetric and iden-
tical correct-decision penalties, riα(t) = rαi (t) and
ri i (t) = r(t), i, α ∈ [0, . . . , l = k], the minimum mean
penalty misclosure partitionings of (31) and (49) simplify,
respectively, to

Pi∈[0,...,k] = {t ∈ R
r |Fi (t) > Fj (t) + gi j (t),∀ j 
= i}

(55)

and

Pi∈[0,...,k] = {t ∈ R
r |Ti (t) > Tj (t) + hi j (t),∀ j 
= i}

(56)

with

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

gi j (t) =
k∑

α=0,
=i,
= j
μi jα(t)Fα(t)

hi j (t) = ln[1+
k∑

α=0,
=i,
= j
μi jα(t) exp{+ 1

2 (Tα(t)−Tj (t))}]2
(57)

where μi jα(t) = riα(t)−r jα(t)
ri j (t)−r(t) , ri j (t) > r(t) for i 
= j . �

This result shows how the g- and h-functions drive the
difference between the individual partitioning subsets. For
instance, if gi j (t) > 0 and hi j (t) > 0, then Pi can expected
to be smaller thanP j for when their probability of hypothesis

occurrence is equal. This happens when the penalties of deci-
sion i are larger than those of decision j , riα(t) > r jα(t).

A further simplification is reached when all penalties for
incorrect decisions are taken to be equal, since then the g-
and h-functions of (55) and (56) vanish, gi j (t) = hi j (t) ≡
0. As an example consider the case that rαα(t) = rα and
riα(t) = 1 for i 
= α. Then the penalty functions become

riα(t) = 1 − δiα(1 − rα), i, α = 0, . . . , k (58)

with δiα = 1 for i = α and δiα = 0 otherwise, from which
the mean penalty follows as

E(r) =
k∑

i=0

k∑

α=0

riα(t)P[t ∈ Pi ,Hα]

= 1 −
k∑

α=0

ραP[t ∈ Pα,Hα] (59)

with reward ρα = 1 − rα . Minimizing the mean penalty is
now the same as maximizing a reward-weighted probability
sum of correct decisions. This simplification also translates
into the solution of the testing partitioning.

Corollary 2b (Maximum correct decision probability) Let
l = k and the penalty functions be given as (58). Then (31)
and (49) simplify respectively to

Pi∈[0,..,k] = {t ∈ R
r | i = arg max

α∈[0,...,k] ραFα(t)} (60)

and

Pi∈[0,..,k] = {t ∈ R
r |i = arg max

α∈[0,...,k](Tα(t) + ln ρ2
α)}

(61)

with ρα = 1 − rα . �

Note, since Fα(t) = πα ft (t |Hα), that through products
ραπα , α = 0, . . . , k, credence is given to hypotheses. The
larger ραπα gets, themore credence is given toHα . Although
the reward ρα = 1− rα and the hypothesis occurrence prob-
ability πα both come together as a product, and therefore,
as such, can create the same effect on Pα , it is important to
realize that they have a different origin, i.e. the reward ρα is
user-driven, while the probability πα is model-driven. Fur-
thermore, the πα’s have to sum up to 1, while such is not
required for the ρα’s.

Toprovide a clearer description of the detection and identi-
fication steps in the above testing procedure, wemay separate
the conditions for P0 and Pi∈[1,...,k]. For (61) this gives,

P0 = {t ∈ R
r | max

α∈[1,...,k]

(
Tα(t) + ln ρ2

α

)
< ln[ρ0π0]2}
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Fig. 4 Misclosure space partitioning in R
r=2 for single-outlier data

snooping (cf. Example9)

Pi∈[1,...,k] = {t ∈ R
r\P0|i = arg max

α∈[1,...,k]

(
Tα(t) + ln ρ2

α

)
}

(62)

This shows, given the misclosure vector t , that the detection
step consists of computing the maximum of Tα(t) + ln ρ2

α

over all k alternative hypotheses and checking whether this
is smaller than the constant ln[ρ0π0]2. If it is, then the null-
hypothesis is accepted. If not, then the maximum determines
which of the alternative hypotheses is identified as the reason
for the rejection of the null-hypothesis.

In the following examples, we illustrate how the above
determined testing partitioning compares or specializes to
some of the testing procedures used in practice.

Example 8 (Bias known vs. bias unknown) In this example,
we illustrate the role the bias plays in the transition from (60)
to (61). From the decomposition

||t − Ctαbα||2Qtt
= ||P⊥

Ctα
t ||2Qtt

+ ||b̂α(t) − bα||2Qb̂α b̂α
(63)

it follows, with Fα(t) = πα ft (t |Hα) ∝ exp{− 1
2 ||t −

Ctαbα||2Qtt
, that the objective function ραFα(t) of (60) is

driven by two different measures of inconsistency: the incon-
sistency of t with the range space of Ctα as measured by
||P⊥

Ctα
t ||2Qtt

and the difference between the estimated and

known bias, as measured by ||b̂α(t)−bα||2Qb̂α b̂α
. This second

discrepancy measure disappears in case of (61), as then the
unknown bias is replaced by its estimate, thus giving

||t − Ctα b̂α||2Qtt
= ||P⊥

Ctα
t ||2Qtt

= ||t ||2Qtt
− Tqα (64)

and therefore (61). Note, as alternative to the conservative
approach (cf. Lemma2), that one may also consider using
the approximation ||t−Ctαbα||2Qtt

≈ ||P⊥
Ctα

t ||2Qtt
+qα , since

E(||b̂α − bα||2Qb̂α b̂α
|Hα) = qα . ��

Example 9 (Datasnooping with P0 known) In this example,
we consider the detection subset P0 to be given and equal to
the acceptance region of the overall model test,

P0 = {t ∈ R
r |||t ||2Qtt

≤ τ 2} (65)

Furthermore, we consider the case that the C-matrices of
all alternative hypotheses are one-dimensional, i.e. qα = 1,
Cα = cα for α = 1, . . . , k. This is the case, for instance,
when only single blunders in the k = m observations are
considered. As there are no differences in the complexities
of the k alternative hypotheses and no reason for assuming
certain alternative hypotheses to be more likely than others,
the choice πα = constant, α = 1, . . . , k, seems a reasonable
one. Additionally, we assume that no penalties are assigned
to correct decisions, i.e. rα = 0, α = 1, . . . , k. Then, Tα =
Tqα + constant, which, together with Tqα = w2

α , gives for
(61),

Pi∈[1,..k] = {t ∈ R
r\P0 | i = arg max

α∈[1,...,k] |wα|} (66)

This is the partitioning corresponding to Baarda’s standard
datasnooping procedure (Baarda 1968b) in case k = m and
the cα are equal to the canonical unit vectors.

The above partitioning, cf. (65) and (66), is shown in Fig. 4
for the same B-matrix and same Qtt -matrix as used in Exam-
ple1. In this case, however, k = 4 with c1 = [1, 0, 0]T ,
c2 = [0, 1, 0]T , c3 = [0, 0, 1]T and c4 = [1, 2, 3]T . Further-
more, so as to view misclosure space in the standard metric,
the misclosure vector was transformed with

R =
[−√

2/2 −√
2/2

−√
6/6 +√

6/6

]

(67)

such that the transformedmisclosure vector t̄ = Rt has iden-
tity variance matrix, Qt̄t̄ = I2. The detection-region P0

shows therefore as a circle instead of an ellipse, cf. Fig. 2.
The ct̄ -vectors are then given as ct̄i = RBT ci , i = 1, 2, 3, 4.

��
Example 10 (Datasnooping with P0 unknown) In this exam-
ple, the same settings are used as in the previous example,
except that now the detection subsetP0 is assumed unknown.
Using πα = 1

k (1−π0), α = 1, . . . , k, and ||Pctα t ||2Qtt
= w2

α ,
P0 follows from the first expression of (61) as

P0 = {t ∈ R
r | max

α∈[1,...,k] w
2
α ≤ a} (68)
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Fig. 5 Misclosure space partitioning in R
r=2 for single-outlier data

snooping, showing the detection region P0 as a polygon (cf. Exam-
ple10)

with a = ln
(

kπ0
1−π0

)2
. The k corresponding subsets Pi are

given by (66).
Expression (68) shows that P0 is determined as the inter-

section of k pairs of (k−1)-dimensional hyperplanes, having
the direction vectors ctα , α = 1, . . . , k, as their normals. The
distance of the origin to these hyperplanes is governed by

the constants ln
(

kπ0
1−π0

)2
, α = 1, . . . , k. These distances,

and thereby the volume of P0, get larger when k and/or π0

increases. Hence, the acceptance region P0 increases in size
when the probability of H0-occurrence increases and/or the
number of alternative hypotheses increases.

The above partitioning is shown in Fig. 5 for the same
model and hypotheses as used in Example9. Compare this
geometry with that of Fig. 4. ��

3.4 Including an undecided regionPk+1

We now extend Corollary2b so as to also include an unde-
cided region.

Corollary 2c (Maximum correct decision probability) Let
l = k + 1, the penalty functions be given as (58) and the
undecided penalties as rk+1,α(t) = uα , α = 0, . . . , k. Then
(31) and (49) simplify, respectively, to

Pi∈[0,..,k] = {t ∈ R
r\Pk+1 | i = arg max

α∈[0,...,k] ραFα(t)}
Pk+1 = {t ∈ R

r | max
α∈[0,...,k] ραFα(t) ≤ G(t)} (69)

and

Pi∈[0,..,k] = {t ∈ R
r\Pk+1|i = arg max

α∈[0,...,k]

(
Tα(t) + ln ρ2

α

)
}

Pk+1 = {t ∈ R
r | max

α∈[0,..,k]

(
Tα(t) + ln ρ2

α

)
< H(t)}

(70)

where ρα = 1 − rα , μα = 1 − uα , G(t) = ∑k
α=0 μαFα(t)

and H(t) = ln[∑k
α=0 μα exp{+ 1

2Tα(t)}]2. �

Note, when the detection region P0 would be a-priori
given, that (69) would change to

⎧
⎪⎪⎨

⎪⎪⎩

Pi∈[1,..,k] = {t ∈ R
r\{P0 ∪ Pk+1} |

i = arg max
α∈[1,...,k] ραFα(t)}

Pk+1 = {t ∈ R
r\P0 | max

α∈[1,...,k] ραFα(t) ≤ G(t)}
(71)

with a similar change to (70). Also note, when comparing
Corollary2c with Corollary2b, that the defining conditions
for Pi∈[0,...,k] look the same, cf. (60) vs (69), but are actu-
ally not the same, since they apply, in case of Corollary2c,
to the restricted space Rr\Pk+1, i.e. misclosure space with
the undecided region excluded. The characteristics of the
undecided region Pk+1 ⊂ R

r are driven by the undecided
penalties uα one assigns to the hypothesesHα ,α = 0, . . . , k.
One can expect Pk+1 to be empty if one assigns the maxi-
mum penalty to all. And indeed, if uα = 1 for α = 0, . . . , k,
then the inequality in (69) will never be satisfied, imply-
ing Pk+1 = ∅. Similarly, if no penalty at all is put on an
undecided decision and thus uα = 0 for α = 0, . . . , k,
then the inequality of (69) is trivially fulfilled, implying that
Pk+1 = R

r . Hence, in this case no other decision than an
undecided decision will be made.

If all the undecided penalties are equal, uα = u, and all the
rewards equal one, ρα = 1, α = 0, . . . , k, then division by
ft (t) = ∑k

α=0 πα ft (t |Hα) of both sides of (69)’s inequality,
gives for the undecided region the inequality

max
α∈[0,...,k] P[Hα|t] < 1 − u (72)

As the probability P[Hα|t] for t ∈ Pα tends to decrease
towards the boundaries of Pα , one can expect the undecided
region to be located at the boundaries of these regions and
therefore indeed provide an undecided decision if identifia-
bility between two hypotheses becomes problematic.

Example 11 (Two hypotheses and three decisions) As an
application of Corollary2c, let k = 1, l = 2, and assume
μα = μ for α = 0, 1. The two hypotheses considered

are t
H0∼ Nr (0, Qtt ) and t

H1∼ Nr (Ct1b1, Qtt ). For the
three decisions, we need to determine the partitioning R

r =
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P0 ∪ P1 ∪ P2. For P0 and P1, we obtain from (70),

{
P0 = {t ∈ R

r\P2 | T0(t) + ln ρ2
0 > T1(t) + ln ρ2

1 }
P1 = R

r\{P0 ∪ P2}

which can be rewritten as

{
P0 = {t ∈ R

r\P2 | ||PCt1
t ||2Qtt

< ln
[

ρ0π0
ρ1π1

]2}
P1 = R

r\{P0 ∪ P2}
(73)

We now determine the undecided region P2. According to
(70), P2 is defined by the two inequalities

{
T0(t) + ln ρ2

0 < ln[μ exp{ 12T0(t)} + μ exp{ 12T1(t)}]2
T1(t) + ln ρ2

1 < ln[μ exp{ 12T0(t)} + μ exp{ 12T1(t)}]2

which can be rewritten as

||PCt1
t ||2Qtt

> LB and ||PCt1
t ||2Qtt

< UB (74)

with the bounds given as

LB = ln
[
1−μ/ρ0
μ/ρ1

ρ0π0
ρ1π1

]2
, UB = ln

[
μ/ρ0

1−μ/ρ1

ρ0π0
ρ1π1

]2
(75)

It follows from (74) that P2 is empty if LB > UB, in which
case P0 and P1 follow from (73) as

{
P0 = {t ∈ R

r | ||PCt1
t ||2Qtt

< ln
[

ρ0π0
ρ1π1

]2}
P1 = R

r\P0

(76)

Since LB > UB if μ < ( 1
ρ0

+ 1
ρ1

)−1, it follows that Pk+1 is
empty if μ is small enough.

The undecided region P2 is nonempty if LB < UB. As
both inequalities of (74) need then to be satisfied, its com-
plement Rr\P2 requires that only one of the following two
inequalities need to be satisfied,

||PCt1
t ||2Qtt

< LB or ||PCt1
t ||2Qtt

> UB (77)

Since LB < ln
[

ρ0π0
ρ1π1

]2
and UB > ln

[
ρ0π0
ρ1π1

]2
if LB < UB,

it follows from (73) and (77) that in caseP2 is nonempty, the
three subsets are given as

⎧
⎪⎨

⎪⎩

P0 = {t ∈ R
r | ||PCt1

t ||2Qtt
< LB}

P1 = {t ∈ R
r | ||PCt1

t ||2Qtt
> UB}

P2 = {t ∈ R
r | LB < ||PCt1

t ||2Qtt
< UB}

(78)

An illustration of this misclosure partitioning is given in
Fig. 6. Compare this with the partitioning of Example7 and
Fig. 3. ��

Fig. 6 Misclosure space partitioning of Example11: P0 for detection,
P1 for identifying H1, and P2 for unavailability decision

Example 12 (Datasnooping with P0 given and undecided
included) Consider the null- and alternative hypotheses

y
H0∼ Nm(Ax, Qyy) and y

Hα∼ Nm(Ax + cαbα, Qyy), with

πα = 1−π0
k , α = 1, . . . , k, and assume the penalty functions

(58) with rα = 1 − ρ, together with the undecided penal-
ties uα = 1 − μ. As the a-priori chosen detection region we
take the acceptance region of the overall model test. Then the
misclosure space partitioning follows from Corollary2c, cf.
(71), as

P0 = {t ∈ R
r | ||t ||2Qtt

< τ 2}
Pk+1 = {t ∈ R

r\P0| max
α∈[1,...,k] w

2
α(t) < h(t)}

Pi∈[1,...,k] = {t ∈ R
r\{P0 ∪ Pk+1}|i = arg max

α∈[1,...,k] w
2
α(t)}

(79)

where

h(t) = ln[μ
ρ
exp{ 12a} + μ

ρ

∑k
α=1 exp{ 12w2

α(t)}]2
a = ln

[
kπ0
1−π0

]2 (80)

Compare this partitioning with that of Example9. Would the
undecided region Pk+1 be empty, then the above partition-
ing reduces back to that of Example9, cf. (65) and (66).
The undecided region is empty, Pk+1 = ∅, if the undecided
reward is zero,μ = 1−u = 0. ThePk+1-defining inequality
can then never be satisfied. Also note that h(t) gets larger if
the undecided reward μ = 1 − u gets larger, which then,
as expected, also increases the size of the undecided region
Pk+1.

With the above partitioning, the testing would proceed
as follows. First one would execute the detection-step by
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Fig. 7 Misclosure space partitioning in R
r=2 for single-outlier data

snooping, with an undecided region P5 included (cf. Example12)

checking whether or not t ∈ P0. If so, then H0 would be
accepted. If not, then one would proceed to check whether or
not t ∈ Pk+1. This is done by computing the largest w2

α(t),
α = 1, . . . , k, sayw2

i (t), and checking whether it is less than
h(t). If not, then Hi is the identified hypothesis. If so, then
t ∈ Pk+1 and the decision is made that no parameter solution
can be provided.

Note that the i th alternative hypothesis is identified if
w2
i (t) ≥ w2

α(t), ∀α, while w2
i (t) ≥ h(t) and w2

i (t) >

τ 2 − ||P⊥
cti
t ||2Qtt

. The latter two conditions ensure that such
identification only happens if the in absolute value largest
w-statistic is also sufficiently large.

The above partitioning is shown in Fig. 7 for the same
model and hypotheses as used in Example9. Compare this
geometry with that of Fig. 5 and note how the undecided
regionP5 separates the regionsPi∈[0,...,4] when the biases are
large enough to be detected, but yet too small to be identified.

��

Example 13 (Datasnooping with P0 given and alternative
undecided region included) This example is to illustrate
that the liberal definition of penalty functions in Sect. 3.1
allows one to interpret existing testing procedures in terms
of assigned penalties. In Teunissen (2018), p.66, the follow-
ing partitioning was considered,

P0 = {t ∈ R
r |||t ||2Qtt

< τ 2}
Pk+1 = {t ∈ R

r\P0| ||t ||2Qtt
− max

α∈[1,...,k] w
2
α(t) > τ̄ 2}

Pi∈[1,...,k] = {t ∈ R
r\{P0 ∪ Pk+1}|i = arg max

α∈[1,...,k] w
2
α(t)}

(81)

Fig. 8 Misclosure space partitioning in R
r=2 for single-outlier data

snooping, with an alternative undecided region P5 included (cf. Exam-
ple13)

Its geometry is shown in Fig. 8 for the same model and
hypotheses as used in Example9. The idea behind this cho-
sen undecided region Pk+1 is that the sample of t should lie
close enough to a fault line ctαbα for that hypothesis to be
identifiable.

We can now use the results of Corollary2c, cf. (70), to
show the penalties that result in partitioning (81). If we
assume ρα = 0 and take the undecided rewards as

μα(t) = 1

k + 1
exp{+ 1

2

(
||P⊥

Ctα
t ||2Qtt

− ln π2
α − τ̄ ′2)}

(82)

it follows with ||P⊥
Ctα

t ||2Qtt
= ||t ||2Qtt

− Tα(t) + ln π2
α , from

(70) that

Pk+1 = {t ∈ R
r\P0| ||t ||2Qtt

− max
α∈[1,...,k] Tα(t) > τ̄ ′2} (83)

which indeed reduces to that of (81) if qα = 1, πα = (1 −
π0)/k and τ̄ ′2 = τ 2 − ln 1−π0

k . Hence, to obtain the linearly
structured undecided region of (81), its k+1 reward functions
need to be chosen as exponentially increasing functions of
the squared-distances ||P⊥

ctα
t ||2Qtt

to the respective fault lines.
��

Example 14 (Datasnooping with undecided included) The
same assumptions are made as in Example12, with (80),
except that nowP0 is not assumed to be a-priori given. Then,
the misclosure space partitioning of Rr follows from Corol-
lary2c as

Pk+1 = {t ∈ R
r | max

α∈[1,...,k] w
2
α(t) < h(t) ∧ a < h(t)}
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P0 = {t ∈ R
r\Pk+1| max

α∈[1,...,k] w
2
α(t) < a}

Pi∈[1,...,k] = {t ∈ R
r\{P0 ∪ Pk+1}|i = arg max

α∈[1,...,k] w
2
α(t)}
(84)

Note that this partitioning reduces to that of Example10 in
case the undecided region Pk+1 would be empty. This hap-
penswhen the undecided reward is equal to zero,μ = 1−u =
0.

With the above ordering of the partitioning, one would
first check whether a parameter solution would be avail-
able by checking whether or not t ∈ Pk+1. Only when
t /∈ Pk+1 would one then check on the acceptability of the
null-hypothesisH0. As in themajority of our applications the
occurrence-probability of the null-hypothesis, P[H0] = π0,
will be high, as well as the probability of its correct accep-
tance, P[t ∈ P0|H0], it is more advantageous to seek an
ordering in the partitioning that starts with P0 rather than
with Pk+1. This can be achieved by noting that the comple-
ments of Pk+1 and P0 are given as:

R
r\Pk+1 = {t ∈ R

r | max
α∈[1,...,k] w

2
α(t) > h(t) ∨ a > h(t)}

R
r\P0 = {t ∈ R

r | max
α∈[1,...,k] w

2
α(t) > a ∨ h(t) > a} (85)

Combining this result with that of (84) allows us to write the
partitioning in the following order:

P0 = {t ∈ R
r | max

α∈[1,...,k] w
2
α(t) < a ∧ h(t) < a}

Pk+1 = {t ∈ R
r\P0| max

α∈[1,...,k] w
2
α(t) < h(t)}

Pi∈[1,...,k] = {t ∈ R
r\{P0 ∪ Pk+1}|i = arg max

α∈[1,...,k] w
2
α(t)}
(86)

With this ordering, we can now also compare the partitioning
directly with that of Example12, cf. (79), thus clearly show-
ing how they differ in their definition of the detection region
P0.

The above partitioning is shown in Fig. 9 for the same
model and hypotheses as used in Example9. ��

4 Maximum probability estimators

In the previous section, we have shown how the choice of
penalty functions leads to corresponding minimum mean
penalty partitionings of misclosure space. One such choice
leads to a partitioning maximizing the probability of correct
decisions. Although this property is attractive indeed from
the perspective of testing, it may not be sufficient from the

Fig. 9 Misclosure space partitioning in R
r=2 for single-outlier data

snooping, with an undecided region P5 included (cf. Example14)

viewpoint of estimation. Afterall, having amaximized proba-
bility of correct hypothesis identification does not necessarily
imply good performance of the DIA-estimator. The first is
driven by the misclosure vector t , while the second is also
driven by the x̂ i ’s. Thus instead of focussing on correct deci-
sions, one would be better off focussing on the consequences
of the decisions made. In this section we will therefore intro-
duce penalty functions that penalize unwanted outcomes of
the DIA-estimator. As a result two new estimators with cor-
responding misclosure space partitionings are identified and
derived. They are the optimal DIA-estimator and the optimal
WSS-estimator.

4.1 The optimal DIA-estimator

To determine an appropriate penalty function for the DIA-
estimator x̄ , we should think of one that penalizes its
unwanted outcomes when a decision i is made under hypoth-
esis Hα . As decision i corresponds with an outcome of x̂ i
and since such outcome is unwanted when it lies in the com-
plement of the tolerance or safety region, Ωc

x = R
n\Ωx , we

would like the probability of such outcomes happening under
Hα to be small. We therefore introduce this probability, for
a given misclosure vector t , as our penalty function. Then,
if the probability of such an unwanted outcome is large, the
penalty will be large as well.
Definition (DIA-penalty function):Thepenalizing function
of the DIA-estimator x̄DIA = ∑k

i=0 x̂ i pi (t) is defined as:

r̄iα(t) = P[x̂ i ∈ Ωc
x | t,Hα] for i, α ∈ [0, . . . , k] (87)
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We will now show how this penalty function can be used to
find the optimal DIA-estimator, i.e. the DIA-estimator that
within its class has the largest probability of lying inside its
safety region,P[x̄DIA ∈ Ωx ], or equivalently, has the smallest
integrity risk, P[x̄DIA ∈ Ωc

x ]. We have the following result.

Theorem 3 (Optimal DIA-estimator) Let P̄i∈[0,...,k] ⊂ R
r

denote the misclosure space partitioning that of all such
partitionings maximizes the DIA-estimator’s probability
P[x̄DIA ∈ Ωx ]. Then,

P̄i∈[0,...,k] := arg max
Pi∈[0,...,k]

P[x̄DIA ∈ Ωx ] (88)

where

P̄i∈[0,...,k] =

{t ∈ R
r | i = arg min

j∈[0,...,k]

k∑

α=0

r̄ jα(t) ft (t |Hα)P[Hα]}

(89)

��
Proof We first proof that the mean penalty (30) becomes
identical to the integrity risk if the penalty functions are cho-
sen as (87),

E(r) = P[x̄DIA ∈ Ωc
x ] if riα(t) = r̄iα(t) (90)

We have

E(r) =
k∑

i=0

∫
Pi

k∑

α=0
riα(t) ft (t |Hα)P[Hα]dt

(a)=
k∑

i=0

∫
Pi

k∑

α=0
P[x̂ i ∈ Ωc

x | t,Hα]P[Hα|t] ft (t)dt
(b)=

k∑

i=0

∫
Pi

P[x̂ i ∈ Ωc
x | t] ft (t)dt

(c)=
k∑

i=0

∫
Rr P[x̂ i ∈ Ωc

x | t]pi (t) ft (t)dt
(d)=

k∑

i=0

∫
Rr P[x̄DIA ∈ Ωc

x | t]pi (t) ft (t)dt
(e)= ∫

Rr P[x̄DIA ∈ Ωc
x | t] ft (t)dt

( f )= P[x̄DIA ∈ Ωc
x ]

Step (a) follows from substituting riα = r̄iα , cf. (87),
and recognizing that ft (t |Hα)P[Hα] = P[Hα|t] ft (t). Step
(b) follows from recognizing that P[x̂ i ∈ Ωc

x | t] =
∑k

α=0 P[x̂ i ∈ Ωc
x | t,Hα]P[Hα|t]. Step (c) introduces the

indicator function pi (t) of Pi . Step (d) recognizes, since
x̄DIA = ∑k

i=1 x̂ i pi (t), the conditional probability equality
P[x̂ i ∈ Ωc

x | t] = P[x̄DIA ∈ Ωc
x | t] for t ∈ Pi . Step (e)

follows from using
∑k

i=1 pi (t) = 1 and step ( f ) from the
continuous version of the total probability rule.

Having established (90), the result (88) follows from
applying Theorem2a, cf. (31). ��

In analogy with (33), also the partitioning (89) can be
given an insightful probabilistic interpretation. As P[x̂ i ∈
Ωc

x |t] ft (t) = ∑k
α=0 P[x̂ i ∈ Ωc

x |t,Hα] ft (t |Hα)P[Hα], we
have

P̄i∈[0,...,k] = {t ∈ R
r | i = arg min

j∈[0,...,k] P[x̂ j ∈ Ωc
x |t]} (91)

thus showing that each of the defining regions P̄i of the opti-
mal DIA-estimator is characterized by having the smallest
misclosure-conditioned integrity risk.

If we also include a no-identification or undecided region
for which the DIA-estimator is said to be unavailable, cf.
(22), then we have, for the case of a constant unavailability
penalty r̄(k+1)α(t) = u, in analogy with Corollary1, cf. (34),
the following optimal partitioning.

Corollary 3 (Unavailability included) Let the DIA-penalty
function (87) be extended with the unavailability penalty
r̄(k+1)α(t) = u. Then the minimum mean penalty partition-
ing follows from (31) as

P̄k+1 = {t ∈ R
r | u < min

j∈[0,...,k] P[x̂ j ∈ Ωc
x |t]}

P̄i∈[0,..,k] = {t ∈ R
r\P̄k+1 | i = arg min

j∈[0,..,k] P[x̂ j ∈ Ωc
x |t]}
(92)

��
Hence, a no-identification or unavailability decision is made
when the smallest misclosure-conditioned integrity risk is
still considered too large.

4.2 DIA-penalty function and the choice forÄx

TheDIA-penalty function r̄iα(t) is defined in (87) as a condi-
tional probability of x̂ i ∈ Ωc

x under the alternative hypothesis
Hα . The following Lemma shows how this probability can
be computed directly from the distribution of x̂0 under H0.

Lemma 3 (DIA-penalty function): The required probability
for the DIA-penalty function (87) can be computed underH0

for a general x-centred region Ωx ⊂ R
n as

r̄iα(t) = P[x̂0 ∈ Ωc
x+Δxiα(t)|H0]

Δxiα(t) = A+[Ci b̂i (t) − Cαbα] (93)

and specifically for the ellipsoidal region

Ωx = {v ∈ R
n | ||v − x ||2Qx̂0 x̂0

< τ 2} (94)
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as

r̄iα(t) = 1 − P[χ2(n, λiα(t) < τ 2]
λiα(t) = ||A+[Ci b̂i (t) − Cαbα]||2Qx̂0 x̂0

(95)

��

Proof We first prove (93). We have

r̄iα(t) = P[x̂ i ∈ Ωc
x | t,Hα] =

(a)= P[x̂0 − A+Ci b̂i (t) ∈ Ωc
x | t,Hα]

(b)= P[x̂0 − A+Ci b̂i (t) ∈ Ωc
x | Hα]

(c)= P[x̂0 + A+[Cαbα − Ci b̂i (t)] ∈ Ωc
x | H0]

(96)

from which (93) follows. Step (a) follows from substituting
x̂ i = x̂0 − A+Ci b̂i (t) and recognizing that the conditioning
on t makes b̂i (t) nonrandom. Step (b) follows by recognizing
that t is independent of x̂0, cf. (4), and for step (c) we made
use of the relation x̂0|Hα = x̂0|H0 + A+Cαbα .

For the special ellipsoidal case, we have r̄iα(t)
(93)= 1 −

P[x̂0 ∈ Ωx+Δxiα(t)|H0] = 1 − P[||x̂0 − x − Δxiα||2Qx̂0 x̂0
<

τ 2|H0], fromwhich, with x̂0
H0∼ Nn(x, Qx̂0 x̂0), (95) follows.

��

Note that the evaluation of the DIA-penalty function requires
knowledge of the biases. Although there are important appli-
cations forwhich such biases are known (e.g. when the biases
form a set of a-priori known corrections), the case for which
they are unknown is treated further in Sect. 5.

One may wonder whether the above penalty computation
would become simpler if instead of using (87), the mean of
r̄iα(t) would be used, thereby eliminating its dependence
on t . However, since E(r̄iα(t)|Hα) = P[x̂ i ∈ Ωc

x |Hα] and
x̂ i has a variance matrix different from Qx̂0 x̂0 , already the
evaluation with the ellipsoid (94) would fail to reduce to
straightforward Chi-square distributions, but instead would
require the usage of more complicated distributions of gen-
eral quadratic forms in normal random variables (Mathai and
Provost 1992).

Lemma3 shows how the penalty function r̄iα(t) can be
computed for any arbitrary safety region Ωx , as well as for
the special case when this region is ellipsoidal and defined
through the variance matrix of x̂0, cf. (94). With this latter
choice the computations simplify to evaluations of noncen-
tral Chi-square distributions. Although the choice of Ωx is
user-driven andmay vary from application to application, the
ellipsoidal choice (94) is relevant for applications in which
one wants to judge the DIA-performance relative to the pre-
cision of x̄DIA|H0 = x̂0, for instance, when the working
hypothesisH0 has been specifically designed to meet certain
precision requirements on x̂0.

Note that the penalty function (95) is an increasing func-
tion in λiα(t) = ||Δxiα(t)||2Qx̂0 x̂0

, i.e. the penalties get larger

as the noncentrality parameter gets larger. With reference to
Anderson’s theorem (Anderson 1955), this property remains
true in general for the penalty function of (93), provided the
Ωx ’s are chosen as convex sets symmetric about x . Depend-
ing on the decision made and on which hypothesis is valid,
the noncentrality parameter can be further discriminated as:

λiα(t) =

⎧
⎪⎪⎨

⎪⎪⎩

||A+Cαbα||2Qx̂0 x̂0
, i = 0, α 
= 0

||A+Ci b̂i (t)||2Qx̂0 x̂0
, i 
= 0, α = 0

||A+[Cαbα − Ci b̂i (t)]||2Qx̂0 x̂0
, i 
= 0, α 
= 0

(97)

This shows how the noncentrality parameter, and thus its
corresponding penalty, is driven by the actual and estimated
biases. When the null-hypothesis Hi=0 is accepted and thus
x̂ i=0 is selected, it are the actual bias vectors bα of the
hypotheses that drive the penalty r̄0α(t). However, when
the null-hypothesis Hα=0 is true, it are the estimated bias
vectors b̂i (t) that drive the penalty r̄i0 when x̂ i is selected.
And in case H0 is neither selected nor true (i 
= 0, α 
= 0),
the difference of the actual and estimated biases drives the
penalty.

Note that the probability of the Chi-square distribution in
(95) is amonotonous decreasing function in the noncentrality
parameter λiα(t). Hence, in order to avoid the required cal-
culation of the probability, one may also decide to choose the
penalty function equal to the noncentrality parameter itself,
riα(t) = λiα(t). Although this will of course negate the opti-
mality property of Theorem3, it will still provide aminimum
mean penalty misclosure space partitioning that is based on
penalizing incorrect parameter solutions.

4.3 The optimalWSS-estimator

As with the optimality in the DIA-class, one may won-
der which estimator would be optimal in the WSS-class.
A natural estimator in this class would be one where one
would choose the weight ωi (t) as the conditional probability
P[H = Hi |t] (cf. 26), i.e. the probability of Hi -occurrence
given the outcome of themisclosure vector being t . Although
perhaps a natural choice, this choice of weighting is not one
that is directly derived from the impact the weighting has on
the probabilistic properties of the WSS-estimator x̄WSS. In
order to achieve that, we will therefore again, just as in The-
orem3, aim for an estimator that maximizes the probability
P[x̄WSS ∈ Ωx ]. This time, however, the maximization is not
done with respect to indicator functions, as was the case with
the optimalDIA-estimator (cf. 88), but insteadwith respect to
weighting functions satisfying ωi (t) ≥ 0, i = 1, . . . , k and
∑k

i=0 ωi (t) = 1. To simplify and to make a direct compari-
son with (95) of Lemma3 possible, we will assumeΩx given
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as in (94). Assuming estimable weights, the resulting maxi-
mum probability estimator within the WSS-class is given as
follows.

Theorem 4 (Optimal WSS estimator) Let the weight vector
ω̄(t) = (ω̄0(t), . . . , ω̄k(t))T ∈ R

k+1 be the vector of mis-
closure weight functions, that of all such vector functions
maximizes the WSS-estimator’s probability P[x̄WSS ∈ Ωx ]
for Ωx = {u ∈ R

n| ||u − x ||2Qx̂0 x̂0
≤ τ 2}. Then

ω̄(t) := arg max
eTk+1ω=1,ω∈Rk+1

≥0

P[x̄WSS ∈ Ωx ] (98)

where

ω̄(t) = arg max
eTk+1ω=1,ω∈Rk+1

≥0

k∑

α=0

Π(λα(t, ω))Fα(t) (99)

with Π(λ) = P[χ2(n, λ) ≤ τ 2], Fα(t) = ft (t |Hα)P[Hα],
and

λα(t, ω) = ||A+[Cαbα −
k∑

i=1

Ci b̂i (t)ωi ]||2Qx̂0 x̂0
(100)

��
Proof FromP[x̄WSS ∈ Ωx |t,Hα] = P[χ2(n, λα(t, ω(t))) ≤
τ 2] and P[x̄WSS ∈ Ωx ] = ∫

Rr

∑k
α=0 P[x̄WSS ∈ Ωx |t,Hα]

Fα(t)dt , it follows that

P[x̄WSS ∈ Ωx ] =
∫

Rr

k∑

α=0

Π(λα(t, ω(t)))Fα(t)dt (101)

As the k+1 functionsΠ(λα(t, ω(t)))Fα(t) are non-negative
for every t ∈ R

r , the maximum of (101) is obtained if for
every t ∈ R

r , a feasible ω ∈ R
k+1 is chosen such that the

sum
∑k

α=0 Π(λα(t, ω))Fα(t) ismaximized. This proves that
the sought for maximizing vectorial weight function is given
by (99). ��
Note that the above estimator can indeed be seen to be a gen-
eralization of the optimal DIA-estimator. If the weights ωi

are restricted to be only 1 or 0, the noncentrality parameter
λα(t, ω) (cf. 100) becomes equal to λ jα(t) = ||A+[Cαbα −
C j b̂ j (t)]||2Qx̂0 x̂0

for some j ∈ [0, . . . , k], and (99) can be

rewritten as (89) with (95), thus leading to a recovering of
the optimal DIA-estimator. A complication of this general-
ization is, however, that the optimal WSS-estimator is far
more difficult to compute than the optimal DIA-estimator.
The objective function of (99), which needs to be maximized
over the feasible set of ω, is, as a linear combination of log-
concave functions Π(λα) in the inhomogeneous quadratic

forms (100), a multimodal function. This implies that gra-
dient ascent algorithms will only converge to the required
maximum if the chosen initial value of the weight vector ω

is already close enough to the sought for maximizer. If that
is the case, one can show that a relatively simple fixed-point
algorithm can be devised that converges to the maximum.
However, to achieve convergence independent of the feasi-
ble initialization’s quality, methods of global maximization
need to be employed. As the algorithmic details of how this
can be achieved are not the focus of the current contribution,
we will address the required methodology for the numerical
solution of the above maximization problem in a separate
forthcoming contribution.

5 Operational DIA-estimators

As mentioned earlier, the computation of the DIA-penalty
functions, (93) and (95), requires knowledge of the noncen-
trality parameters and therefore of the biases bα . Under H0

these are known, but this is generally not the case under
the alternative hypotheses. Does this mean that if this infor-
mation is lacking usage of these penalty functions becomes
obsolete? No, certainly not. First we have to remember
that whatever operational choice is made for the penalty
functions, their corresponding mean penalty, or its sharp
upperbound, will be minimized through the optimal mis-
closure partitionings of (31) and (49), respectively. Thus to
any choice of penalty functions belongs an optimal testing
procedure. Second, somewhat in analogy with the conser-
vative approach of Lemma2, one may take a ’minmax’
approach by taking the bias-values that minimize the prob-
ability P[x̄DIA ∈ Ωx ] of the optimal DIA-estimator. Third,
the results of Lemma3 and the structure of the DIA-penalty
functions, cf. (93) and (95), also provide a guide for helping
to formulate operational penalty functions. For instance, even
if the evaluation of the DIA-estimator would be done with a
nonellipsoidal shaped safety region, the choice of the testing-
defining penalty functions could, instead of (93), fall on the
cheaper-to-compute functions (95). And also with respect
to the handling of the bias dependency, the structure of the
above DIA-penalty functions provides a guide. In the next
subsections, different such proposals will be made.

5.1 Estimated DIA-penalty functions

If the bias vectors bα , α = 1, . . . , k, are unknown, one may
decide to estimate them so as to obtain an approximation to
the optimal DIA-estimator. When we replace the unknown
biases in (93) and (95) by their estimates b̂α(t), we obtain
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the estimated DIA-penalty functions as

ˆ̄riα(t) = P[x̂0 ∈ Ωc
x+Δx̂iα(t)|H0]

Δx̂iα(t) = A+[Ci b̂i (t) − Cα b̂α(t)] (102)

Note that Δx̂iα(t) is now anti-symmetric in its indices,
Δx̂iα(t) = −Δx̂αi (t). This implies, whenΩx is convex sym-
metric about x , i.e. x ∈ Ω0 ⇔ −x ∈ Ω0, that the estimated
penalty function is symmetric in its indices, ˆ̄riα(t) = ˆ̄rαi (t).
This can be seen as follows:

ˆ̄riα(t) = P[(x̂0 − x) − Δx̂iα(t) ∈ Ω0]
(a)= P[(x − x̂0) + Δx̂iα(t) ∈ Ω0]
(b)= P[(x − x̂0) − Δx̂αi (t) ∈ Ω0]
(c)= P[(x̂0 − x) − Δx̂αi (t) ∈ Ω0]
= ˆ̄rαi (t)

(103)

where (a) is due to the symmetry with respect to origin of
Ω0, (b) due to the anti-symmetry ofΔx̂iα = −Δx̂αi , and (c)

due to x̂0 − x
H0∼ x − x̂0.

Note that Δx̂iα(t) of (102) can also be written as the
difference of the parameter solutions under Hα and Hi :
Δx̂iα(t) = x̂α(t) − x̂i (t). Thus, in this case it will be the
solution separations of the hypothesized models that drive
the penalty functions. The corresponding estimated noncen-
trality parameters, cf. (97), read then

λ̂iα(t) =

⎧
⎪⎨

⎪⎩

||x̂0(t) − x̂α(t)||2Qx̂0 x̂0
, i = 0, α 
= 0

||x̂i (t) − x̂0(t)||2Qx̂0 x̂0
, i 
= 0, α = 0

||x̂i (t) − x̂α(t)||2Qx̂0 x̂0
, i 
= 0, α 
= 0

(104)

This shows, for instance, the closer x̂α(t) is to x̂0(t), the
smaller the penalty ˆ̄r0α(t) is.

5.2 Influential bias driven DIA-penalty functions

Any observational bias Cαbα can be decomposed into its
influential and testable component (Teunissen 2018),

Cαbα = PACαbα
influential

+ P⊥
A Cαbα
testable

(105)

where PA = AA+ and P⊥
A = Im − AA+. The component

P⊥
A Cαbα is referred to as testable as precisely this compo-

nent propagates into the mean of the misclosure vector under
Hα: E(t |Hα) = BTCαbα = BT (P⊥

A Cαbα), since BT A = 0.
The influential component PACαbα = A(A+Cαbα), on the
other hand, is non-testable as it lies in the range space of
A and propagates directly into the parameter solution x̂0.
This implies that for the performance of the DIA-estimator
it is of importance that one can keep the influences of the
non-testable biases PACαbα at bay. It is therefore fitting

Fig. 10 Ratio of the influential and testable bias: tan φ(bα) =
||PACαbα ||Qyy /||P⊥

A Cαbα ||Qyy

to recognize that the assigned penalties of the DIA-penalty
functions are indeed driven by the influential biases, cf. (97).

Although the required penalties for the DIA-estimator
to become optimal cannot be computed if the biases are
unknown, it is possible to aim for a protection against influ-
ential biases thatmay slip testing unnoticed. To determine the
sizes of such influential biases, we can of course not use the
minimummean penalty testing that we are aiming to design.
But what we can do is to determine the influential biases as
if a global overall model test would be executed. Since

||t ||2Qtt

Hα∼ χ2(r , ||P⊥
A Cαbα||2Qyy

) (106)

it follows that P[||t ||2Qtt
< c|Hα] = constant for all

α ∈ [1, . . . , k] if ||P⊥
A Cαbα||2Qyy

= constant
say= λ0 for

all α ∈ [1, . . . , k]. Hence, by using the same yardstick λ0
for all alternative hypotheses, we can now compute for each
individual alternative hypothesis the bias vector that would
have the largest influence,

max
bα∈Rqα

||PACαbα||2Qyy
s.t . ||P⊥

A Cαbα||2Qyy
= λ0 (107)

As this is the maximization of a quadratically constrained
quadratic form, its solution is provided by solving a general-
ized eigenvalue problem:

max
||P⊥

A Cαbα ||2Qyy
=λ0

||PACαbα||2Qyy
= λ0λα,max (108)

with

λα,max = ||PACαbα,max||2Qyy

||P⊥
A Cαbα,max||2Qyy

(109)

in which bα,max is the eigenvector that corresponds with
the largest eigenvalue of the generalized eigenvalue prob-
lem Mb = λNb, with M = CT

α Q−1
yy PACα and N =
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Table 1 Penalty matrices: maximized probability of correct decisions (left); influential bias dominated (middle); influential bias dominated with
undecided penalties uα included (right)

[riα]
(k+1)×(k+1)

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

r0 1 1 . . . 1 1
1 r1 1 . . . 1 1
1 1 r2 . . . 1 1
.
.
.

.

.

.
. . .

.

.

.
.
.
.

1 1 1 . . . rk−1 1
1 1 1 . . . 1 rk

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, [riα]
(k+1)×(k+1)

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 r01 r02 . . . r0(k−1) r0k

0 0 r . . . r r
0 r 0 . . . r r
.
.
.

.

.

.
. . .

.

.

.
.
.
.

0 r r . . . 0 r
0 r r . . . r 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, [riα]
(k+2)×(k+1)

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 r01 r02 . . . r0(k−1) r0k

0 0 r . . . r r
0 r 0 . . . r r
.
.
.

.

.

.
. . .

.

.

.
.
.
.

0 r r . . . 0 r
0 r r . . . r 0
u0 u1 u1 . . . uk−1 uk

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

CT
α Q−1

yy P
⊥
A Cα . Figure10 provides a geometric interpreta-

tion of (109). Note, since Q−1
b̂α b̂α

= CT
α Q−1

yy P
⊥
A Cα and

Q−1
b̂α(x)b̂α(x)

= CT
α Q−1

yy Cα , that (109) can also be expressed
as

λα,max =
[ ||bα,max||2Q

b̂α(x)b̂α(x)

||bα,max||2Q
b̂α b̂α

− 1

]

(110)

thus showing how the precision of b̂α , and the precision of
its x-constrained version, b̂α(x), contribute to the influential
bias.

Once the generalized eigenvectors bα,max, α = 1, . . . , k,
are known, they can be used to construct the influential bias
protecting penalty functions by replacing the bα’s in (93) and
(95).

5.3 Simplified DIA-penalty functions

Instead of using the full structure of the penalty functions,
one can also decide to use a simplified structure, thereby
simplifying the evaluation of the corresponding misclosure
space partitionings. One such simplification we already met
in Sect. 3.3, when discussing the maximization of the proba-
bility of correct decisions. Its corresponding penalty structure
is shown in the form of a penalty matrix in Table1 (left). This
structure, however, is not really suited for our DIA-estimator
as it penalizes and rewards decisions irrespective of their con-
sequences. The structure that we propose as simplification is
given as (see Table 1, middle):

⎧
⎪⎪⎨

⎪⎪⎩

(a) under H0, no penalties
(b) for correct decisions, no penalties
(c) for i = 0, influential bias related penalties
(d) r(t) penalty for remaining decisions

(111)

This choice is motivated as follows. Giving zero penalties to
correct decisions is clear. But we also give zero penalties to
incorrect decisions under the null hypothesis. The rationale
for this choice is that in those cases estimation takes place
under larger models than that ofH0,R([A,Ci 
=0]) ⊃ R(A).
As a consequence, the DIA-output will be conditionally

distributed as x̂ i
H0∼ Nn(x, Qx̂i ,x̂i ). Hence, the solution

will then still be unbiased, albeit with a poorer precision,
Qx̂i x̂i > Qx̂0 x̂0 . In contrast to the zero penalties for incorrect
decisions under H0, we find the incorrect acceptance of the
null-hypothesis a more severe mistake and therefore fully
penalize it with influential-bias related penalties, indicated
by r01(t) through r0k(t) (cf. Sects. 5.1 and 5.2). Finally the
remaining incorrect decisions are all given the same penalty
function.

The following theorem shows how the above proposal
works out for the optimal misclosure space partitionings.

Theorem 5a (A proposed penalty structure) Let the penalty
function riα(t) be structured as

⎧
⎨

⎩

ri0(t) = 0 for i ∈ [0, . . . , k]
r0α(t) = r0α(t) for α ∈ [1, . . . , k]
riα(t) = (1 − δiα)r(t) for i, α ∈ [1, . . . , k]

(112)

Then (31) and (49) simplify, respectively, to

⎧
⎨

⎩

P0 = {t ∈ R
r | max

α∈[1,...,k] Fα(t) < a0(t)}
Pi∈[1,...,k] = {t ∈ R

r\P0 | i = arg max
α∈[1,...,k] Fα(t)}

(113)

and

⎧
⎨

⎩

P0 = {t ∈ R
r | max

α∈[1,...,k] Tα(t) < b0(t)}
Pi∈[1,...,k] = {t ∈ R

r\P0 | i = arg max
α∈[1,...,k] Tα(t)}

(114)

with

a0(t) =
k∑

α=1

(
1 − r0α(t)

r(t)

)
Fα(t)

b0(t) = ln[
k∑

α=1

(
1 − r0α(t)

r(t)

)
exp{+ 1

2Tα(t)}]2
(115)

�
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Proof First we determine P0. Application of (31), using the
penalty structure (112), gives for P0 the k inequalities

Fα(t) <

k∑

β=1

(1 − r0β(t)
r(t) )Fβ(t), α ∈ [1, . . . , k] (116)

from which the first equation of (113) follows. Similarly,
application of (31), using the penalty structure (112), gives
for Pi∈[1,...,k] the k inequalities

Fi (t) > Fα(t), α ∈ [1, . . . , k]\{i}

Fi (t) >

k∑

β=1

(1 − r0β(t)
r(t) )Fβ(t) (117)

As the last inequality of this inequality set is automatically
satisfied for t ∈ R

r\P0 (cf. 28), we obtain (113). Finally,
(114) is obtained by replacing Fα(t) in (113) by (52). ��

Compare the above results with that of Corollary2b and note
that the main difference lies in the formation of the detection
region P0. In (62) the upperbound on the maximum is a
constant, whereas in the above Theorem the upperbounds
vary in dependence of themisclosure vector t . In case of (113)
and (114) the shape of the detection region P0 is driven by
the influential-bias related penaltiesr0α(t).Would we assign
for the decision to accept the null-hypothesis the maximum
penalty under all alternative hypotheses, i.e. r0α

r = 1 for all
α ∈ [1, . . . , k], then a0(t) (cf. 115) is identically zero and
the detection region would be empty, P0 = ∅, i.e. one would
then never accept H0. If on the other hand, r0α

r = 0 for
all α ∈ [1, . . . , k], then the inequalities of (113) and (114)
are trivially fulfilled and one would always accept the null-
hypothesis, i.e. P0 = R

r . For the intermediate cases, we
learn from the expressions of (113) and (114) that the shape
of the detection region would open up in the direction of Pβ

if its influential-bias based penalty r0β reduces in size. This
is also what one wants to achieve: the less harm there is in
accepting H0 under Hβ , the larger the acceptance region of
H0 can be for misclosure vectors originating fromHβ . This
behaviour is illustrated in the following example.

Example 15 (Simplified DIA-penalties) Consider the null-

and alternative hypotheses y
H0∼ Nm(Ax, Qyy) and y

Hα∼
Nm(Ax + cαbα, Qyy), with πα = 1−π0

k , α = 1, . . . , k,
and assume the penalty functions (112). Application of (114)
gives then

P0 = {t ∈ R
r | max

α∈[1,...,k] w
2
α(t) < b′

0(t)}
Pi∈[1,...,k] = {t ∈ R

r\P0| i = arg max
α∈[1,...,k] w

2
α(t)|} (118)

Fig. 11 Misclosure space partitioning (cf. Example15)

with b′
0(t) = ln[∑k

α=1(1 − r0α(t)
r(t) ) exp{+ 1

2w
2
α(t)}]2. This

partitioning is shown in Fig. 11 for the same model and
hypotheses as used in Example9. The functions r0α(t) and
r(t) were chosen to be constant. As r04 was chosen smaller
than r01 = r02 = r03, P0 is elongated in the ct̄4 direction.��
We now generalize the above results by also including the
possibility of deciding that no parameter solution will be
made available. Thus instead of working with the second
penalty matrix of Table1, we now work with the third.

Theorem 5b (Undecided included) Let the penalty struc-
ture (112) be extended with the undecided penalty function
r(k+1)α(t) = uα(t), α = 0, . . . , k. Then (31) and (49) sim-
plify, respectively, to

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

P0 = {t ∈ R
r | max

α∈[1,...,k] Fα(t) < a0(t) ∧ ak+1(t) < a0(t)}
Pk+1 = {t ∈ R

r\P0 | max
α∈[1,...,k] Fα(t) < ak+1(t)}

Pi∈[1,...,k] = {t ∈ R
r\{P0 ∪ Pk+1} | i = arg max

α∈[1,...,k] Fα(t)}
(119)

and

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

P0 = {t ∈ R
r | max

α∈[1,...,k] Tα(t) < b0(t) ∧ bk+1(t) < b0(t)}
Pk+1 = {t ∈ R

r\P0 | max
α∈[1,...,k] Tα(t) < bk+1(t)}

Pi∈[1,...,k] = {t ∈ R
r\{P0 ∪ Pk+1} | i = arg max

α∈[1,...,k] Tα(t)}
(120)

with

ak+1(t) =
k∑

α=1

(
1 − uα(t)

r(t)

)
Fα(t) − u0(t)

r(t) F0(t)
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Fig. 12 Misclosure space partitioning (cf. Example16)

bk+1(t) = ln

[
k∑

α=1

(
1 − uα(t)

r(t)

)
exp{+ 1

2Tα(t)} − u0(t)π0
r(t)

]2

(121)

�

Proof From application of (49), using the defined functions
a0(t), cf. (115), and ak+1(t), cf. (121), the set of inequalities
for the three types of misclosure regions follow as:

P0 :
{
Fj < a0(t) for all j ∈ [1, . . . , k]
ak+1(t) < a0(t)

Pk+1 :
{
Fj (t) < ak+1(t) for all j ∈ [1, . . . , k]
a0(t) < ak+1(t)

Pi∈[1,...,k] :
⎧
⎨

⎩

Fj (t) < Fi (t) for all j ∈ [1, . . . , k]\{i}
a0(t) < Fi
ak+1(t) < Fi

(122)

from which (119) follows. Finally, (120) is obtained by
replacing Fα(t) in (119) by (52). ��

One can expect that the decision of unavailability will be
made if no penalties at all are set for such decision. And
indeed, if uα = 0 for all α ∈ [0, . . . , k], then we have for all
t ∈ R

r that a0(t) < ak+1(t) and Fj < ak+1(t) for all j ∈
[1, . . . , k], implying that Pk+1 = R

r . At the other extreme,
we have that Pk+1 = ∅ and the above results reduce to that
of Theorem5a if one of the following three cases hold true

for all α ∈ [1, . . . , k]:

(a) uα = r ,
(b) uα = r0α,

(c) uα > r0α, u0 = 0
(123)

In case (a), we have ak+1(t) = − u0(t)
r(t) F0(t) < 0 and there-

fore Pk+1 = ∅. In case (b), we have ak+1(t) = a0(t) −
u0(t)
r(t) F0(t) and thus ak+1(t) < a0(t), which also results in
Pk+1 = ∅. And in case (c), we again have ak+1(t) < a0(t),
thus giving Pk+1 = ∅. Under either one of the three condi-
tions of (123) we will thus always have a parameter solution
available.

Example 16 (SimplifiedDIA-penaltieswith undecided included)
Consider the situation of the previous example, but now
with an additional undecided region included. Application
of (120) gives then

P0 = {t ∈ R
r | max

α∈[1,...,k] w
2
α(t) < b′

0(t) ∧ b′
k+1(t)

< b′
0(t)}

Pk+1 = {t ∈ R
r\P0| max

α∈[1,...,k] w
2
α(t) < b′

k+1(t)}
Pi∈[1,...,k] = {t ∈ R

r\{P0 ∪ Pk+1}| i
= arg max

α∈[1,...,k] w
2
α(t)|} (124)

with b′
k+1(t) = ln[∑k

α

(
1 − uα(t)

r(t)

)
exp+ 1

2w
2
α(t) − π0u0k

1−π0
]2.

This partitioning is shown in Fig. 12 for the same model and
hypotheses as used in Example15, whereby the undecided
penalties of the four alternative hypotheses have been cho-
sen equal and constant, u1(t) = u2(t) = u3(t) = u4(t) =
constant. ��
Example 17 (An undecided region to combat poor separabil-
ity) In this example, we again workwith the two partitionings
(118) and (124), but now for the case inwhich twohypotheses
are poorly separable. We use the same model and same first
three alternative hypotheses as Example9, but now with the
c-vector of the fourth alternative hypothesis on purpose given
as c4 = [0, 1, 10−3]T . As c2 and c4 are almost parallel, the
two hypotheses,H2 andH4, become poorly separable (Zam-
inpardaz and Teunissen 2019), in particular if their biases are
relatively small. Figure13 shows how inclusion of an unde-
cided region allows one to avoid decision making between
poorly separable hypotheses. In this case this was realized
by having the two hypotheses H2 and H4 be assigned the
smallest undecided penalties. ��
Example 18 (Poor GNSS pseudorange outlier separability)
Poor detectability and/or poor separability of pseudorange
outliers also occurs with certain GNSS receiver-satellite
geometries (Teunissen 1991; Almaqbile and Wang 2011;
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Amiri-Simkooei et al. 2012; Teunissen 2017). In Fig. 14 (at
right), one such example is shown for a six-satellite Galileo
skyplot configuration (the lines of sight to satellites E01, E04,
E21 and E31 all nearly lie in a plane, passing through the
receiver, and the lines of sights to E09 and E19 are about per-
pendicular to this plane). In this case, outliers in the E09 and
E19 pseudoranges are poorly separable, resulting in almost
coinciding faultlines in the misclosure space. To avoid their
misidentification, an example undecided region, following
from Theorem5b, is shown in Fig. 14(Left).

6 Summary and conclusions

By recognizing that members from the class of DIA-
estimators are unambiguously defined by their misclosure
space partitioning, one can design DIA-estimators with
certain favourable properties through a proper choice of par-
titioning. In this contribution we introduced, in analogy to
penalized integer ambiguity resolution, the concept of penal-
ized testing with the goal of directing the performance of
the DIA-estimator towards its application-dependent toler-
able risk objectives. The presented theory is illustrated by
means of examples, thereby also showing how it compares

Fig. 13 Misclosure space partitioning without (left) and with (right) an undecided region (cf. Example17)

Fig. 14 Example18: misclosure space partitioning with dashed undecided region P7 (left) and corresponding six-satellite Galileo skyplot (right)
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and/or specializes to existing testing procedures, such as, for
instance, classical data snooping.

In analogy with the aperture pull-in regions of penalized
integer ambiguity resolution, we assigned penalty functions
to each of the partitioning decision regions in misclosure
space. With the use of the distribution of the misclosure
vector, the mean penalty of each chosen misclosure space
partitioning can then be determined and compared. By mini-
mizing themean penalty, the optimal partitioning formultiple
hypothesis testing was derived, the results of which are given
in Theorem 2. The results are given for different cases: the
biases under the alternative hypotheses may be known or
unknown, and the misclosure distribution may be normal
or not. Although in most of our applications the biases are
unknown, the bias-known case applieswhen onewants to test
for certain hypothesized biases. We also included results for
constrainedminimummean penalty misclosure partitioning.
This will allow users to work with a-priori chosen decision
regions, such as, for instance, the detection region of the
overall model test.

As each minimum mean penalty partitioning depends on
the given penalty functions, different choices can be made,
in dependence of the application. So will the emphasis be on
testing rather than estimation, if the data processing objective
is solely to identify the correct hypothesis. In that case a
logical objective is to maximize the probability of correct
decisions, the results ofwhich are given inCorollary 2, and of
which classical data snooping is shown to be a special case.
However, maximizing the probability of correct decisions
may not be the proper objective in case the emphasis is on
estimation, rather than testing.

As the quality of the DIA-estimator is not only driven
by the misclosure vector t , but also by the hypothesis-
dependent parameter estimators x̂ i , one would be better off,
in case parameter estimation is the objective, to focus on
the consequences of the testing decisions rather than only
on their correctness. For that purpose we introduced a spe-
cial DIA-penalty function that penalizes unwanted outcomes
of the DIA-estimator. It is then shown in Theorem3 how
this penalty function allows one to construct the optimal
DIA-estimator, being the estimator that within its class has
the largest probability of lying inside a user specified toler-
ance or safety region. By extending the analogy with integer
estimation to that of integer-equivariant estimation, we also
introduced and derived in Theorem4, similar to that of the
maximum probability DIA-estimator, the optimal estimator
within the larger WSS-class. We indicated its computational
complexities, showing that its algorithmic realization is quite
more involved than that of the optimal DIA-estimator.

By a further elaboration of the DIA-penalty functions, it
is shown in Lemma3 how they are driven by the influen-
tial biases of the different hypotheses. This important insight
then provided means for defining simplified and operational

penalty functions. Two such sets were introduced. The first is
based on using the BLUEs of the biases to obtain an estimate
of the DIA-penalty function. The second set is constructed
on the basis of the idea that the to-be-used influential biases
should reflect the relative strengths of the different hypothe-
ses, i.e. a smaller penalty should be assigned if the model
is better capable to withstand the bias-propagation into the
parameter solution. Using this principle, we used the largest
influential biases of the overall model test when it is con-
strained to have an equal power for all alternative hypotheses.

For both sets of penalty functions, a further practical sim-
plification was suggested by giving prominence to missed
detections and refraining from penalizing false alarms. The
resulting minimum mean penalty partitionings are given in
Theorem 5. We hereby also included the option of having
an additional undecided region to accommodate situations
when it will be hard to discriminate between some of the
hypotheses or when identification is unconvincing. In such
situations,when one lacks confidence in the decisionmaking,
one may rather prefer to state that a solution is unavailable,
than providing an actual, but possibly unreliable, parameter
estimate.
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