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ABSTRACT 

 

Dikes and levees play a crucial role in flood protection. The main causes of levee failures are of 

geotechnical nature. Geotechnical failure modes are also the main contributors to the probability 

of failure of flood defenses such as levees due to the large uncertainties in ground conditions. 

Hence, information on ground conditions and soil properties is crucial in safety assessments and 

retrofitting designs of levees. The experience in practice with designs and risk assessments is that 

even with a substantial amount of site investigation and laboratory testing the uncertainties in 

soil properties often remain large. One way to further reduce uncertainties is to include past 

performance information. 

 The present papers shows how information of survived loads in the past can be 

incorporated in reliability assessments by means of Bayesian posterior analysis using the same 

(physics-based) performance models as the prior reliability assessments. The incorporation of 

survival information leads to reduced uncertainties and probabilities of failure. Furthermore, an 

approximate approach using fragility curves is proposed, mainly to make problems with 

computationally expensive performance functions tractable. 

 After briefly recapping Bayesian reliability updating, we provide examples for slope 

stability of (flood protection) dikes. The examples illustrate that posterior analysis enables us to 

reduce the large prior uncertainties in soil strength parameters by “eliminating” implausible 

samples or regions of the joint PDF of the strength properties using the evidence of survived load 

conditions (i.e. water levels).  The results suggest that the effect of updating the probability of 

failure with survival evidence can be considerable, especially when the uncertainty in the 

strength properties dominates the reliability. Dominant strength uncertainties are rather typical in 

geotechnical engineering, as opposed to, for example, structural engineering, implying that using 

the method is promising also for other geotechnical applications. 
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INTRODUCTION 

 

Dikes and levees play a crucial role in flood protection. The main causes of levee failures are of 

geotechnical nature; geotechnical failure modes are also the main contributors to the probability 

of failure of flood defenses such as levees due to the large uncertainties in ground conditions. 

Hence, information on ground conditions and soil properties is crucial in safety assessments and 

retrofitting designs of levees. The experience in practice with designs and risk assessments is that 

even with a substantial amount of site investigation and laboratory testing the uncertainties in 

soil properties often remain large. One way to further reduce uncertainties is to include past 

performance information. 

Past performance refers to any kind of observation of the structural response to loading or 

ageing which can provide information to assess the future performance of the same structure, as 

also demonstrated by, for example, Baecher and Ladd (xx), Zhang et al. (2011) or Li et al. 

(2015). The present paper focuses on flood defenses and the survival of significant loadings in 

the past. We show how such information can be incorporated in reliability assessments using the 

same (physics-based) performance models as the prior reliability assessments and we 

demonstrate how this leads to reduction of uncertainties and updated probabilities of failure. 

The key ingredient of the approach is Bayesian posterior analysis and the reliability 

updating method can be applied with virtually any standard reliability method. However, for 

some failure modes, the performance functions are computationally quite expensive to use these 

sampling methods directly, for which case we propose an approximate method using fragility 

curves. These can be determined a-priori using the original performance functions to generate an 

overall distribution of the resistance. 

After briefly recapping Bayesian reliability updating, we introduce the approximate 

approach with fragility curves. Subsequently, we illustrate the approach with fragility curves 

using simplified examples before providing more realistic examples for slope stability of (flood 

protection) dikes. 

 

BRIEF RECAP OF RELIABILITY UPDATING 

 

Probability of failure (prior analysis). We define the probability of failure as  ( )  

 ( ( )   ), where   is the failure event,   is the performance (or limit state) function and   is 

the vector or random variables. The probability of failure is commonly also expressed in terms of 

the reliability index      (   ( )), where     in the inverse standard normal CDF.  

 

Bayes’ rule and reliability updating. Reliability updating as discussed in this paper is based on 

Bayes’ rule (Bayes 1763) and often called Bayesian updating. In essence, there are two ways to 

apply Bayesian updating in a reliability context: (1) the ‘indirect method’, in which we update 

the probability distribution of the random variables first and then re-calculate the reliability 
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estimate with the updated distribution; (2) the ‘direct method’, in which we apply Bayes’ rule in 

the following form: 
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where   is the evidence expressed in terms of the observation function  ( ). Observe that we deal 

with the evidence or observation similarly as we do with failure, by defining a function of the 

random variables that assumes negative values if the observation is true. That implies that we are 

dealing with inequality information, i.e. some observed quantity was greater or less than a certain 

value, which is typically the case for survival observations. Also equality information can be 

dealt with in reliability updating (i.e. (  ( )   , see Straub 2011), yet this is beyond the scope 

of the current paper. 

 

APPLICATION TO SLOPE INSTABILITY 

 

Observed survival of water level wobs. In this paper we focus on the instability of the inner 

slope of (river) dikes as failure mechanism, as can be seen in Figure 1 

 

 
Figure 1. Breach in a river dike as a consequence of inner slope sliding at Breitenhagen, 

Germany, during the Elbe floods in June 2013 

 

Generally, slope instability for dikes is assessed using two-dimensional (plane-strain) limit 

equilibrium methods (LEM) such as Bishop, Spencer or Uplift Van, which compute a safety 

factor SF based on moment equilibrium of potential sliding planes. Then, the corresponding 

performance function becomes     (   )   , in which w is the water level and X is the 

vector of the remaining random variables. Hence, the prior probability of failure can be estimated 

by assessing  ( )   (  (   )   ). 

Similarly, we can define the evidence in terms of a survived water level wobs as   

{  (       )   }, where    is the vector of random variables (except w) at the time of the 
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observed survival, i.e. for which we know that the safety factor was greater than 1. 

Consequently, we can re-write Eq. (1) in terms of safety factors for slope instability as follows: 

 
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Note that in this study we incorporate model uncertainty by multiplying the safety factor 

obtained by an LEM analysis with a model uncertainty factor m (i.e. a random variable) to obtain 

SF. Furthermore, note that w is a random variable, whereas wobs can be deterministic or a random 

variable, if measurement uncertainty in the observed water level is involved. 

Equations 1 and 2 represent classical (structural) reliability problems, a parallel system 

reliability problem in the numerator and a standard component reliability problem in the 

denominator. Hence, they can be solved by virtually any standard reliability method (SRM, see 

Straub and Papaioannou 2015), except that first-order approximations may not work well for the 

numerator part. The implementation with sampling techniques such as Monte Carlo simulation, 

Importance Sampling or Subset Simulation is straightforward (Schweckendiek et al. 2014). 

 

Epistemic and aleatory uncertainty. At this point, we need to elaborate on the difference 

between the (vector of) random variables representing the assessment conditions (X) and 

representing the observation conditions (X). Though there is sometimes a grey zone, most 

random variables involved in the stability analysis can be clearly assigned to either representing 

epistemic or aleatory uncertainty. For example, the friction angle of a relevant sand layer may be 

uncertain due to limited site investigation. However, its true value can be assumed time-invariant 

and the uncertainty is purely of epistemic nature due to our lack of knowledge of what that true 

value is. On the other hand, an external load on a dike such as a traffic load on the crest typically 

represents an actual random process in time and hence, aleatory uncertainty. 

 While the difference between epistemic and aleatory does not matter for the prior 

reliability estimate in a Bayesian (subjective) probability interpretation, this difference is 

essential to reliability updating and posterior analysis, as epistemic uncertainty is reducible and 

aleatory uncertainty is not. 

 The pragmatic, and we believe often reasonable approach we propose to distinguish 

between aleatory and epistemic uncertainties in the reliability updating analyses introduced here 

is to literally assign each random variable to either category: epistemic (i.e. time-invariant, 

reducible uncertainty) or aleatory (i.e. inherently random process, irreducible uncertainty). Of 

course, if more accurate estimates can be made, the correlation can be modeled in more 

sophisticated ways. For the sake of illustration, in this paper all random variables except for the 

water level will be treated as epistemic.  

 Note that also known or best-guess differences between the assessment and observation 

conditions can be incorporated in the respective random vectors X  and X. For example, 

settlements of the dike profile can be incorporated as well as differences in geo-hydraulic 

response etc. For more in-depth discussion on the relevance of modeling the differences and 
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correlations between assessment and observation conditions refer to Schweckendiek et al. 

(2016). 

 

Implementation with Monte Carlo simulation. While the approach can be easily adopted with 

virtually any standard reliability method, below we briefly explain how an implementation with 

Crude Monte Carlo simulation (MCS) would work in terms of the basic algorithm: 

1. Simulation of the event to be predicted: Generate n realizations of the basic random 

variables according to their (prior) joint probability distribution. The j-th realization of 

the i-th random variable is denoted as Xij and the j-th realization of the vector of basic 

random variables is denoted as Xj. 

2. Prior probability of failure: The prior probability of failure is the number of 

realizations in which the performance function assumes a negative value (1[·] is the 

indicator function), divided by n:  ̂(  )       ∑     (  )     . 

3. Simulation of the observed conditions: The realizations of all variables with (fully) 

reducible, epistemic uncertainty obtain the same value as the event to be predicted (full 

auto-correlation in time or time-invariance): Xij = Xij, i.e. for all i where the uncertainty 

is assumed reducible. The random variables assumed to be aleatory obtain new 

independent realizations according to their (joint) probability distribution. 

4. Posterior probability of failure: The updating is achieved by conditioning on the 

observation and evaluating the following term:  
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The way the updating affects the reliability estimate is, practically speaking, by removing 

realizations from the failure sample which are implausible considering the survival of the 

observed load. The implementation with computationally more efficient reliability methods such 

as Importance Sampling, Directional Sampling or Subset Simulation is rather straightforward 

and essentially requires solving Equation (2). 

 

APPROXIMATION WITH FRAGILITY CURVES 

 

Since LEM-analyses take roughly one second on an ordinary PC, estimation of low probabilities 

of failure using sampling techniques as described above is hardly computationally tractable. 

Below we will describe an approximation using fragility curves, which avoids several 

computational difficulties in slope reliability analysis for dikes. 
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Definitions. Fragility curves are functions describing the conditional probability of failure given 

a (dominant) load variable. For dikes, typically the (water-side) water level w is used as the load 

of reference:  ( | )   (  (   )   ), in which case   becomes the vector of all random 

variables except for w. While the following elaboration focuses on the water level w to be used in 

fragility curves, any other load variable can be used instead. 

The definition of fragility curves implies that the curve at the same time represents the 

cumulative distribution function (CDF)    
 of the critical water level wc, which is the water level 

at which the dike fails. This can be illustrated by defining the performance function       , 

for which case the probability of failure is given by: 

 

 ( ) ( ) ( ) ( ) ( ) ( ) ( | ) ( )
c

c
c c c w

w w
P F P w w f w f w dw dw F w f w dw P F w f w dw


        (4) 

 

The fact that fragility curves represent the probability distribution of the overall resistance 

(quantified as the 'critical water level') is the key concept used in the proposed approximation. 

 

Estimation. In reliability analysis for slope stability of dikes it is common practice in the 

Netherlands to first estimate the probability of failure conditional to several water levels in a 

relevant range using the First-Order Reliability Method (FORM). The results are represented as 

beta-h curves as depicted in Figure 2, which is just another representation of a fragility curve 

with the reliability index  on the vertical axis instead of the probability of failure. The "fragility 

points" are the result of the reliability analyses per water level. The red lines in Figure 2 indicate 

that we assume that the conditional reliability for other water levels than in the fragility points 

can be reasonably approximated by linear interpolation between the fragility points (in beta-w 

space). Note that the fragility points can in principle be determined using any other reliability 

method, not necessarily FORM. 

 

 
Figure 2. Illustration of a beta-w curve: The fragility points represent the reliability indices 

corresponding to the conditional probabilities of failure derived for discrete water levels. 

The conditional reliability for other water levels is obtained by linear interpolation. 
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Reliability updating with fragility curves. Being able to define the random variable of the 

critical water level based on beta-h curves as discussed in the previous section, we can directly 

apply the reliability updating approach using the direct method presented earlier. To that end we 

again define failure as the water level w exceeding the critical water level wc: F = {wc < w}. 

Furthermore, we define the observation or evidence (  ) as the critical water level at the 

observation, wc,obs, exceeding the water level at the observation wobs (which can also be a random 

variable due to measurement uncertainty):  = {wc,obs > wobs}. As discussed, the conditions at the 

time of the observation may differ from the assessment conditions, in which case it is necessary 

to derive a separate beta-w curve for the observation. Having defined failure under assessment 

conditions (F) and the evidence in terms of survival of the observed conditions ( ), the basic 

formulation of reliability updating with fragility curves directly follows from Equation 1: 

 

  
 

 
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As Straub and Papaioannou (2014) have illustrated, Equation 5 can be solved by standard 

reliability methods. The numerator represents a parallel system reliability problem of two limit 

states, whereas the denominator is a classical component reliability problem.  

 

Correlation between the resistance at assessment and observation. As discussed above, we 

can only reduce the epistemic (knowledge) uncertainty, since aleatory uncertainty is by 

definition irreducible. The proposed pragmatic approach is to divide the random variables in two 

categories: (1) epistemic, reducible uncertainty and (2) aleatory, irreducible uncertainty. For the 

present purposes considering a variable as epistemic implies considering it to be time-invariant 

and, hence, fully correlated between the assessment and the observation conditions. This 

information of auto-correlation in time of the individual basic random variables can then be used 

to estimate the correlation between the dike resistance in the assessment conditions (i.e. the 

critical water level wc) and the observation conditions (wc,obs) using the influence coefficients (i) 

from deriving the fragility curves. According to Vrouwenvelder (2006), the (linear) correlation 

coefficient between the two resistance terms can be approximated by   ∑     
     where 

  and   
  are the FORM influence coefficients of variable i for the assessment and the 

observation conditions respectively. The correlation coefficient i describes the correlation of 

variable i between the observation and the assessment as discussed above (i.e. i=1 for epistemic 

and i=0 for aleatory uncertainty). Of course, better estimates can be used if available.  

 

As discussed in Schweckendiek and Kanning (2016), there are several approaches to obtain the 

influence coefficients from the fragility points. In this paper, we use linear interpolation in the 

design point of the water level in the assessment conditions.  
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EXAMPLE DIKE SLOPE STABILITY  

 

Example description. The example below illustrates the application and accuracy of the 

proposed approximate approach with fragility curves to a rather simple dike cross section with 

undrained shear strength parameters in the clay layers. Figure 3 illustrates the geometry and main 

characteristics of the example, consisting of a clay dike (“Clay”) on a clay blanket (“Claylayer”) 

on top of a sand aquifer (“Aquifer”). Table 1 defines all probability distributions and input 

parameters of the problem. The phreatic surface is assumed to assume a steady-state response to 

the water level, for which the phreatic level at the toe is assumed to be at surface level.  

The stability analyses are made with D-GeoStability. For the sake of illustration, the sliding 

plane is fixed based on the lowest safety factor with mean values of all stochastic variables.  

 

 
Figure 3. Simple slope geometry with clay dike on clay blanket on top of a sand aquifer. 

 

Name Unit Description Distribution  Parameters 

Clay, S [-] Undrained shear strength ratio  Lognormal  μ=0.35 σ=0.10 

Claylayer, S [-] Undrained shear strength ratio  Lognormal  μ=0.35 σ=0.10 

Clay, m [-] Strength increase exponent Lognormal  μ=0.90 σ=0.02 

Claylayer, m [-] Strength increase exponent Lognormal  μ=0.90 σ=0.02 

Aquifer, c [kN/m
2
] Cohesion Deterministic  0 

Aquifer, φ [°] Friction angle Deterministic  35 

Clay, yield  [kN/m
2
] Yield stress in the dike Lognormal  μ=38 σ=6 

Claylayer, 

yield  

[kN/m
2
] Yield stress under the dike Lognormal  μ=137 σ=6 

Claylayer, 

yield  

[kN/m
2
] Yield stress next to the dike Lognormal  μ=28 σ=6 

Water level [m+REF] Outside water level Gumbel  shift=1.5 

scale=0.4 

md [-] Model undertainty Lognormal  μ=0.995 σ=0.033 

Table 1. Probability distributions of the random variables. The yield stress values belong to 

the white dots in the geometry in Figure 3, between which yield stresses are interpolated. 
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Prior reliability. For the prior reliability the full range of potential water levels with the 

corresponding probability distribution is taken into account. Table 2 shows that the prior 

reliability index as estimated using MCS and approximation using fragility curves (FC) are in 

good agreement, while the approximation with fragility curves requires substantially less model 

evaluations. 

 

 β D-GeoStability calculations 

Monte Carlo simulation 2.15 20,000 

Fragility Curve  2.07 250 

Table 2: Prior reliability indices from Monte Carlo simulation and the approximation with 

fragility curves, including the number of model evaluations (with D-Geostability). 

 

Posterior reliability. The observed survived water level is considered deterministic: wobs = 2 m. 

For both reliability updating approaches (MCS and FC), in general we would need to both the 

assessment conditions and the observed conditions. In the current example we assume all 

properties to be time-invariant and hence all uncertainty, except for the water level, epistemic.   

 Table 3 shows the posterior results of both methods, MCS and FC, which compare very 

well, while again the approximation with fragility curves requires substantially less stability 

analyses. Note that the approach actually involves two approximations, the linearization of the 

beta-h curves and the estimation of the fragility points by FORM (in this example). The 

probability of failure roughly decreases by one order of magnitude through incorporating the 

survival information. 

 

 β D-GeoStability calculations 

Monte Carlo simulation 3.05 100,000 

Fragility Curve approximation 3.05 500 

Table 3: Posterior reliability indices from Monte Carlo simulation and the  approximation 

with fragility curves, including the number of model evaluations (with D-Geostability). 

 

CONCLUSION 

 

Reliability updating using survived load conditions is a straightforward extension of prior 

reliability analysis and can be done with standard reliability methods. The effect on the estimated 

reliability can be considerable, especially when a problem is dominated by epistemic 

uncertainties in strength properties. The concept of Bayesian updating in geotechnical 

engineering is certainly not new and there are several displays of its potential in the literature. 

However, the authors feel that for actual practical application, simplified approaches are needed 

to close the gap between academics and practitioners. Though we have not been able to show 

this in detail in this paper due to space limitations, we have recently been in the lucky position to 

apply the presented approach to actual dikes in the Netherlands. The two related reports provide 

more in-depth background information on the proposed method and its accuracy 
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(Schweckendiek and Kanning 2016) and on two concrete case studies of lake dikes 

(Schweckendiek et al 2016). Additionally, at the time of writing there is ongoing work on three 

additional case studies with river dikes, in which also engineering firms are involved. With the 

accumulated experience from these cases, we strive to develop tools and best practices 

documents to enable practitioners to exploit the approach and the rich information contained in 

observations of survived loads. 
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