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Abstract
Expanded use of reduced complexity approaches in epidemiology and environmental justice investigations motivates
detailed evaluation of these modeling approaches. Chemical transport models (CTMs) remain the most complete
representation of atmospheric processes but are limited in applications that require large numbers of runs, such as those that
evaluate individual impacts from large numbers of sources. This limitation motivates comparisons between modern CTM-
derived techniques and intentionally simpler alternatives. We model population-weighted PM2.5 source impacts from each of
greater than 1100 coal power plants operating in the United States in 2006 and 2011 using three approaches: (1) adjoint
PM2.5 sensitivities calculated by the GEOS-Chem CTM; (2) a wind field-based Lagrangian model called HyADS; and (3) a
simple calculation based on emissions and inverse source-receptor distance. Annual individual power plants’ nationwide
population-weighted PM2.5 source impacts calculated by HyADS and the inverse distance approach have normalized mean
errors between 20 and 28% and root mean square error ranges between 0.0003 and 0.0005 µg m−3 compared with adjoint
sensitivities. Reduced complexity approaches are most similar to the GEOS-Chem adjoint sensitivities nearby and
downwind of sources, with degrading performance farther from and upwind of sources particularly when wind fields are not
accounted for.

Keywords air pollution modeling ● reduced complexity modeling ● PM2.5
● HyADS ● exposure modeling

Introduction

New evidence of harm from exposure to air pollution even
at the historically low levels seen in the United States
motivates identification of the pollution impacts of indivi-
dual sources [1, 2]. Many power plants in the United States
continue to burn coal and emit harmful pollutants, and
targeted air pollution regulations would benefit from evi-
dence that accurately identifies which sources contribute
disproportionately to the public exposure and health
burden.

Recent public health research in epidemiology and
environmental justice to these ends has employed chemical
transport model (CTM) results (often combined with ground
and/or satellite-based observations) to quantify exposure
variability across populations on wide spatial scales [2–6].
Despite gains in computational power and algorithm effi-
ciency, the complexity and increasing fidelity of CTMs
impedes their application to research questions that would
require many model runs. Recent air pollution exposure
research has relied on reduced complexity approaches to
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quantify exposure variability in space and time [7–13].
These and other epidemiological and environmental justice
applications quantify impacts from (many) individual
sources over specific time periods and/or consider more
refined spatial scales than commonly available in CTMs. In
addition, these analyses are often conducted by researchers
without the resources to effectively navigate the complexity
of CTMs.

Increased use of reduced complexity approaches to
quantify spatial-temporal impacts from individual sources
motivates a need to evaluate their abilities to reproduce
application-relevant features of CTM results [14]. This
manuscript explores how two reduced-complexity char-
acterizations of individual source exposure compare to
annual GEOS-Chem adjoint sensitivities by their abilities to
quantify source impact variability in time and space from
each of greater than 1100 United States coal-powered
electricity generating units. The vast effort required to
produce the annual GEOS-Chem sensitivity results moti-
vated this investigation. Reduced complexity models may
be able to reproduce result characteristics important in
exposure studies—namely, spatial-temporal variability in
exposure metrics—and more readily extend them to other
time and distance scales. Knowledge of the extent to which
relatively simple exposure modeling approaches reproduce
point source impacts modeled with a full-scale CTM will
inform whether such simple calculations could propel
applied research in directions currently limited by the
computational burden of full-scale CTMs.

Methods

We present source impacts calculated in 2006 (2011) for
each of 1256 (1177) electricity generating units comprising
503 (484) facilities with coal as their primary fuel operating

in the United States. These are calculated using three unique
modeling frameworks (Fig. 1)—the GEOS-Chem adjoint
model employs a full suite of scientific atmospheric trans-
port and chemistry on a 3D grid, the HYSPLIT Average
Dispersion (HyADS) model employs the HYSPLIT
Lagrangian wind field model, and the inverse distance
weighted emissions (IDWE) model uses a simple calcula-
tion of distance and emissions. All three approaches employ
coal power plant continuous emissions monitoring data in
from the US Environmental Protection Agency’s (US EPA)
Air Markets Program [15].

A potential limitation of the two reduced complexity
models—HyADS and IDWE—is that they do not, by
default, estimate source impacts in terms of air pollution
species or physically interpretable concentration units (e.g.,
µg m−3 or parts per million), and instead provide metrics
only interpretable in terms of their relative source impacts.
While such relative characterization has proven relevant in
some health-outcomes and environmental justice studies
[8, 11, 16], here we employ a quantitative post-processing
procedure to improve the interpretability of the reduced
complexity model exposure outputs. This procedure uses
results from a second full-scale source impacts modeling
platform—the Community Multiscale Air Quality
(CMAQ)-Direct Decoupled Method (DDM) Hybrid—to
build statistical models that convert raw HyADS and IDWE
exposure metrics to PM2.5 source impacts.

GEOS-chem adjoint sensitivities

The adjoint of the widely used global GEOS-Chem CTM
enables the calculation of source-oriented sensitivities of
model output (e.g., concentrations) to emissions perturba-
tions [17]. We use the sensitivities described and calculated
by Dedoussi et al. [18] for the nested North American
domain for 2006 (using U.S. EPA’s 2005 National

Fig. 1 Schematic of the three
approaches for calculating
PM2.5 source impacts. Each of
the three models calculate
individual source impacts on
given locations P, here
represented by a pink
rectangular prism.
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Emissions Inventory (NEI)) and 2011 (using the U.S EPA’s
2011 NEI) [19]. The sensitivities have a horizontal resolu-
tion of 0.5° × 0.666° (~55 × ~55 km) (latitude × longitude),
and a near-surface vertical resolution of ~130 m. This
resolution has been shown to be adequate for application in
health impacts assessments [20–22].

These adjoint sensitivities quantify state-level, annually
averaged PM2.5 population source impacts with respect to
vertically-resolved emissions perturbations anywhere in the
3D domain. By multiplying the sensitivities with the cor-
responding emissions, we estimate population-weighted
PM2.5 source impacts (PWSIAdjoint) of annual SO2 emissions
from each individual power plant (i) on each receptor
location P (for the GEOS-Chem adjoint runs employed
here, P will represent a state or the entire United States).
While linearity is assumed with this multiplication, the
individual source perturbations are estimated to be small
enough for this to have negligible effects. Assessing annual
impacts of thousands of individual emission sources using a
conventional CTM approach is otherwise computationally
(and likely numerically) impractical.

To distribute each coal unit’s emissions into the hor-
izontal grid, we assume that the emissions are contained in
the grid column correspondent to the unit’s coordinates. To
test the hypothesis that various plume rise assumptions
would affect the results, we compare results from five
simple models: (a) the average sensitivity within ~650 m
above surface (first five model layers; referred to hereafter
as “Average”), (b) the average sensitivity between ~120 and
~650 m above surface (layers two–five; “Layers 2–5”), (c)
the sensitivity at the layer of the stack height (“Stack
Height”), (d) the average sensitivity of the stack height layer
and the layer above it (“Stack Height +1”), and (e) the
average sensitivity of the stack height layer and the two
layers above it (“Stack Height +2”). Where the stack height
was not available in the emissions data, we use the average
of the first five layers. Dedoussi et al. included fully
vertically-resolved plumes, modeled using the SMOKE
model accompanying the NEI [23], when calculating the
adjoint sensitivities [18].

Since observation-based ground truths for the source
impacts attributable to individual coal units cannot be
estimated using currently available methods, GEOS-Chem
adjoint results are taken as the closest available estimate of
actual impacts.

Reduced complexity approaches

As in the GEOS-Chem adjoint modeling, we employ the
two reduced complexity models to calculate population-
weighted source impacts for each coal-fired electricity

generating unit. For these models, each unit’s impact on a
population in location P is:

PWSImP; j ¼
PNP

i¼p PM
m
2:5 i; j � populationiPP

i¼p populationi
; ð1Þ

where i= p … NP is the collection of 36 km grid centroids
contained in location P and PWSImP; j is the population-
weighted PM2.5 source impact from source j on location P
for reduced complexity model m. PMm

2:5 i; j, the PM2.5 source
impact from source j on receptor location i, is defined using
one of the two reduced complexity models (m∈ [HyADS,
IDWE]) described in the subsequent subsections. Annual
Intercensal Population Estimates for Unites States Counties
for 2006 and 2010 were retrieved using the censusapi R
package (2010 was used as a proxy for 2011) and spatially
aggregated to the same 36 km grid [24].

The HYSPLIT with average dispersion (HyADS) model

HyADS employs the HYSPLIT [25, 26] air parcel transport
and dispersion model to identify exposure patterns from
individual sources. To estimate these, HyADS initiates 100
emitted parcels at each stack location four times per day and
tracks hourly locations of each parcel for 10 days using
HYSPLIT—10 days approximates a conservative upper
bound of sulfur’s atmospheric residence time [27]. Any
parcel trajectories that reach a height of zero are assumed to
stop contributing to exposure thereafter. Monthly parcel
locations are spatially aggregated to a 36 km grid. These are
then weighted by each unit’s monthly SO2 emissions,
resulting in a metric of unit-specific influence on a grid
covering the United States. In a given time period,
exposureHyADSi; j is a linear combinations of emissions from
each source j and the number of air parcels originating from
that source over a grid cell i:

exposureHyADSi; j ¼ emissionsj � parcelsi; j ð2Þ

The exposure metric, defined as “HyADS emissions-
weighted exposure,” is interpreted as a relative metric (i.e.,
it does not correspond directly to individual air pollutants
such as SO2 or PM2.5). In Henneman et al. [28], we describe
the method in detail and evaluate HyADS’s ability to cap-
ture annual exposure to coal-fired power plant emissions
from all U.S. plants and change over time [28]. We found
high annual correlation with observed sulfate and PM2.5

coal source impacts modeled with the CMAQ-DDM Hybrid
described below. Section 2.3 outlines our approach to
convert the HyADS metric into PM2.5 source impacts used
for the calculation in Eq. (1).

656 L. R. F. Henneman et al.



Inverse distance weighted emissions (IDWE)

As an even more simplified approach with the most sim-
plistic account of pollution transport, we use only distance
and annual SO2 emissions to estimate emissions exposure:

exposureIDWE
i; j ¼ emissionsj � distance�1

i; j ; ð3Þ

where emmisionsj represents annual or monthly emissions
from source j and distancei,j represents the distance between
each source and centroids of a 36 km grid covering the
continental United States. We refer to this approach as
IDWE; Section 2.3 outlines our approach to convert this
relative metric into PM2.5 source impacts used for the
calculation in Eq. (1).

Post-processing reduced complexity approaches to
PM2.5 source impacts

While raw exposure metrics estimated by HyADS and
IDWE may be useful for some applications, these approa-
ches are inherently limited by their nonphysical units and
lack of interpretability relative to air quality observations
and outputs of standard CTMs. It is useful, therefore, to
relate the metrics to policy-relevant pollutant concentration
in familiar units. By assuming that HyADS and IDWE
exposure contributed to elevated PM2.5 concentrations
which is valid in particular because they are based on SO2

emissions—atmospheric SO2 oxidizes to sulfate, a PM2.5

constituent—we employ an approach that adjusts these
fields to PM2.5 coal source impacts with units µg m−3.

Calibrating the HyADS and IDWE fields to PM2.5 coal
impacts requires a spatially and temporally concurrent metric
of coal source impacts measured in PM2.5. As one such
approximate gold standard, we employ results derived from
the CMAQ model with the DDM calculated on a 36 km grid
over the continental United States. The approach for creating
these fields, called the CMAQ-DDM Hybrid, is detailed in
full by Ivey et al. [29]. CMAQ-DDM Hybrid source impacts
estimate the total PM2.5 source impacts from all coal sources
in the United States; coal power plants in our database
represented 89% of total coal SO2 emissions in 2005. While
not available for a wide range of time periods, availability of
CMAQ-DDM Hybrid estimates for 2005 and 2006 presents
the opportunity to: (a) train the statistical calibrations descri-
bed below on 1 year’s worth of data from 2005, (b) evaluate
the trained models using 2006 data (one of our model eva-
luation years) and (c) use the trained statistical model to
predict HyADS and IDWE PM2.5 source impacts in 2011, a
year in which CMAQ-DDM is not available.

For HyADS and IDWE exposure fields to all emissions
sources (

PJ
j¼ 1 exposure

m
j ), we projected raw exposure

fields to match the CMAQ-DDM Hybrid grid and trained

multiple models over the continental United States. The
models took the form:

PMCMAQ�DDM
2:5 ¼ βm0 þ βmexp

XJ

j¼ 1

exposuremj

þ βm
X
* X

* þ βm
exp;X

* X
*�

XJ

j¼1

exposuremj þ ϵm;

ð4Þ

where PMCMAQ�DDM
2:5 is PM2.5 coal source impacts from

CMAQ-DDM Hybrid, X
*

is the vector of meteorological
variables and ϵ is assumed iid normal. We employed
monthly and annual average temperature, accumulated
precipitation, relative humidity, and x and y wind vectors
for meteorological inputs from the North American Regional
Reanalysis [30]. The raw meteorology values originally on a
~32 km grid were spatially projected to the same 36 km grid
as the CMAQ-DDM Hybrid PM2.5 source impacts.

CMAQ-DDM Hybrid results were available in 2005 and
2006. Model (4) was judged the best among four different
model specification based on training in 2005 and using
data from 2006 as a holdout sample to evaluate prediction
error and bias (model variations and evaluation presented in
Supplementary Section 1 [Supplementary Figs. 1–4]).
Models for monthly impacts were obtained analogously
using corresponding months in 2005 for training and 2006
as a holdout validation sample.

To calculate each unit’s source impact on location i in
terms of the recalibrated PM2.5 metric, we evaluate the
difference between two predictions using the trained version
of Eq. (4) for HyADS and IDWE: (1) a prediction in whichPJ

j¼ 1 exposure
m
i; j ¼ 0 and (2) a prediction in whichPJ

j¼ 1 exposure
m
j ¼ exposuremj . We repeat this calculation

for each source in each of 2006 and 2011, and we use the
resulting outputs in Eq. (1) to calculate population-weighted
source impacts on locations P (PWSImP; j).

Method comparisons

We compare unit-level PWSIʼs from HyADS and IDWE with
GEOS-Chem adjoint PWSIʼs. The GEOS-Chem adjoint
model runs employed an objective function targeting annual
average population-weighted PM2.5 concentrations in indivi-
dual states and on the entire United States. As such, we first
compare the abilities of HyADS and IDWE to simulate
annual population-weighted exposures attributable to emis-
sions from all units on the entire country and on a group of
states (Pennsylvania, Georgia, Kentucky, Wisconsin, Texas,
Colorado, and California) selected to represent a range of
proximities to and densities of nearby coal-fired power plants.
We calculate the average distance of each state’s population-
weighted grid centroid from the emissions-weighted centroid

Comparisons of simple and complex methods for quantifying exposure to individual point source air. . . 657



of all power plants (termed population-emissions weighted
distance; Dpew) as a representative distance for each location P
from emissions sources:

Dpew
P ¼

PJ
j¼1

PP
i¼p distancei; j � populationi � emissionsj

PJ
j¼1

PP
i¼p populationi � emissionsj

;

ð5Þ
where j= 1, …, J comprises all coal units. Dpew exhibits a
minimum near Kentucky and a maximum in the western
United States (Supplementary Fig. 5).

Evaluation metrics

We employ various evaluation metrics suggested by Emery
et al. [31]: root mean square error (RMSE), mean bias (MB),
normalized mean error (NME), normalized mean bias
(NMB), and Pearson linear correlation (Pearson R). We add
Spearman rank-order correlation (Spearman R) to quantify the
ability to estimate relative importance of individual units.

Monthly source impacts

Subannual meteorology and emissions variability con-
tributes to varying source impacts throughout the year. The
GEOS-Chem adjoint sensitivities provided by Dedoussi
et al. estimate annually averaged exposures with respect to
emissions perturbations, preventing comparisons at sub-
annual scales [18]. Nonetheless, we compare monthly unit-
specific HyADS and IDWE population-weighted source
impacts to evaluate a reduced complexity approach con-
taining explicit information on pollutant transport (HyADS)
against one rooted solely in distance and emissions levels.

Results and discussion

In this section, we compare the three exposure models by
their abilities to quantify PM2.5 source impacts from indi-
vidual coal electricity generating units. The first subsection
discusses annual impacts across all three metrics (GEOS-
Chem adjoint, HyADS, IDWE) and the second discusses

monthly impacts across HyADS and IDWE. The final
sections explore limitations and implications.

Annual power plant impacts

The GEOS-Chem adjoint found the top-ranked units by
population-weighted PM2.5 source impacts PWSIAdjointP¼US; j on
the entire United States (US) to be located across the eastern
United States, with the densest collection of large-impact
facilities located in the Ohio River Valley, consistent with
recent findings that Ohio and Kentucky contribute the
greatest cost per megawatt-hour on the entire country [32]
(Fig. 2). Between 2006 and 2011, total population-weighted
exposure on the entire United States from all power plants
fell by 37%, mirroring emissions reductions from coal-fired
power plants of 41%.

For the majority of the comparisons made in Fig. 3,
correlations, bias, and error between GEOS-Chem adjoint
and the two reduced complexity approaches were not
affected by assumptions about the plume injection height in
the GEOS-Chem adjoint model. Overall, annual average
population-weighted PM2.5 source impacts on the entire
United States varied by less than 2.7% for our different
plume height injection assumptions.

GEOS-Chem adjoint coal-fired power plant unit
population-weighted PM2.5 exposures on the entire United
States are highly correlated with PWSIHyADSP¼US; j and
PWSIIDWE

P¼US; j population-weighted exposures, with Pearson
correlations between 0.86 and 0.98 (Fig. 3 and Supple-
mentary Fig. 6). NMB (RMSE) range between 2 and 23%
(3.7 × 10−4 and 4.7 × 10−4 µg m−3) for PWSIHyADSP¼US; j and
between −26 and −17% (3.0 × 10−4 and 3.0 × 10−4 µg m−3)
for PWSIIDWE

P¼US; j. For individual source impacts on the entire
United States, HyADS and IDWE tend to be positively and
negatively biased, respectively, by similar amounts.

In Pennsylvania (PA), Kentucky (KY), and Georgia
(GA)—states which are the easternmost and have the lowest
characteristic population-emissions weighted distance Dpew

—PWSIAdjointP; j correlations with PWSIHyADSP; j and PWSIIDWE
P; j

range from 0.62 and 0.98 in 2006 and 2011 (Fig. 3 and
Supplementary Fig. 5). RMSE’s range between 1.0 × 10−3

Fig. 2 50 top units in 2006 and
2011 by annual average
population-weighted
PM2.5 source impacts on the
entire United States using the
Average GEOS-Chem Adjoint
results. Some colocated unites
overlap in the plot.
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and 3.2 × 10−3 µg m−3 for HyADS and between 1.1 × 10−3

and 3.3 × 10−3 µg m−3 for IDWE; NMB’s range between
−28 and 29% for HyADS and between −46 and −22% for
IDWE. Overall, HyADS yields lower magnitude bias in
these states, but both approaches yield similar error. This

means that, on average, PWSIHyADSP; j is closer to PWSIAdjointP; j ,

but both PWSIHyADSP; j and PWSIIDWE
P; j consistently differ from

PWSIAdjointP; j by similar magnitudes. Evaluation metrics

presented in the SI reinforce this narrative (Supplementary
Fig. 7).

In states farther west (both farther from the largest con-
centrations of coal-fired power plants and more upwind on
average), performance of IDWE degrades compared with
HyADS. In California (CA) and Colorado (CO), PWSIIDWE

P; j

yields very low correlation and very positive NMB relative
to PWSIAdjointP; j ; the former is likely due to the increased
importance of physical processes such as atmospheric
transport and deposition in transporting pollution to these
distant states, and the latter is attributable to low overall
impacts in these states. Indeed, RMSE’s in these states are
low (below 1.0 × 10−3 µg m−3) for both models and are
lower for HyADS than IDWE. This trend of IDWE’s

decreasing performance in western states is consistent
between 2006 and 2011 even with large emissions reduc-
tions from coal power plants between the years.

While the results show a relationship between
population-emissions weighted distance (Dpew), this dis-
tance does not explain all of the variability in the evaluation
metrics between GEOS-Chem adjoint results and the
reduced complexity models. Dpew values in Pennsylvania,
Georgia, Kentucky, Wisconsin, and Texas, for example,
span a range of more than 1000 km, but correlations
between source impacts estimated by HyADS and IDWE
perform similarly across all of these states. In states further
west, the benefits of the HyADS model over IDWE become
clearer due to its relatively higher correlations and lower
bias and error.

Monthly power plant impacts

Monthly unit Pearson NMB between HyADS and IDWE
source impacts on the entire United States PWSIHyADSP¼US; j and
PWSIIDWE

P¼US; j range between 22 and 132% with peaks in the
winter and summer. Correlations range between 0.90 and
0.99 and show little variability throughout 2006 and 2011

Fig. 3 Top: linear correlation (Pearson R), Normalized Mean
Bias (−100% <NMB <+∞) and root mean square error (RMSE)
evaluations of PWSIHyADS

P; j and PWSIIDWE
P; j source impacts

evaluated against PWSIAdjointP; j in individual states and entire

United States (US). Bottom: Population and emissions weighted
distance (Dpew, defined in Eq. (5)) for individual states and the entire
United States. NMB for PWSIIDWE

P; j in CA and CO are removed
because they are many times higher than the scale of the results in
other states the removed values range from 1000 to 1800%.

Comparisons of simple and complex methods for quantifying exposure to individual point source air. . . 659



(Supplementary Fig. 8). NMB’s for the entire United States
range between 22 and 132% and both NMB and NME are
highest in the summertime for both years and winter 2006
(Fig. 4 and Supplementary Fig. 9), and MB shows a posi-
tive bias of about 0.01 µg m−3 in the summertime in both
years (Supplementary Fig. 10).

Similar to the annual results, the three states near high
concentrations of coal-fired power plants (Pennsylvania,
Kentucky, and Georgia) exhibit similar bias, error, and
correlations as source impacts on the entire United States,
with poorer performance in the summer and winter than the
fall and spring. Monthly NMB’s average 58% in Pennsyl-
vania, 62% in Kentucky, and 79% in Georgia (Fig. 4), with
the evaluation statistics showing that IDWE is positively
biased relative to HyADS in these states in most months
(Supplementary Figs. 9–11).

Farther from large numbers of coal units in the east, bias,
error, and correlations in Wisconsin, Texas, and Colorado
between PWSIHyADSP; j and PWSIIDWE

P; j are highly variable
throughout 2006 and 2011 and generally reflect poorer
agreement than in the eastern states. Monthly variability in
performance increases even further west, with no monthly
NMB’s reaching above 79% in California. NMB and NME
are extremely high in Colorado and California, though this
is primarily a factor of low total impacts in these states.

Limitations

All three approaches employed here simulate point source
emissions impacts using different methods that produce
unique metrics. The two physical models (GEOS-Chem
adjoint and HyADS) simulate different physical processes—

Fig. 4 Normalized mean bias
(−100% <NMB <+∞) of
PWSIIDWE

P; j evaluated against

PWSIHyADS
P; j . The values in

Colorado (CO) range up to
18,000% and in California range
from 700% to greater than
2,000,000%.
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GEOS-Chem adjoint simulates the annual PM2.5 source
impacts attributable to SO2 emissions perturbations using the
full suite of physical and chemical processes in the atmo-
sphere, while HyADS simulates monthly exposure to air
influenced by such emissions. Atmospheric lifetimes of
emitted species as dictated by deposition and chemical
reactions in the atmosphere are most fully captured by the
GEOS-Chem adjoint sensitivities; HyADS and IDWE largely
ignore these processes, potentially explaining decreased per-
formance of the reduced complexity models in western states.

The formulations that produce the HyADS and IDWE
exposure metrics imply potentially differing policy impli-
cations but are generally limited by lack of interpretability
in their raw form. In converting the raw exposure metrics to
PM2.5 source impacts, we alter the interpretation of the
metrics and introduce potential bias in the conversion. The
converted metrics PWSIHyADSP; j and PWSIIDWE

P; j are inter-
pretable as PM2.5 source impacts—these are correlated, yet
distinct, from the raw metrics. Individual source impacts
calculated with the raw metrics correlate similarly with
PWSIAdjointP; j as the converted metrics (Supplementary
Fig. 12). While the raw exposure units produced by HyADS
and IDWE are not directly comparable or applicable in
health impact assessments that apply existing exposure-
response functions, their variability across time and space
may be useful in epidemiological and/or exposure varia-
bility studies [8, 11, 16].

The results here are not necessarily expected to extra-
polate to other emitted species (e.g., NOx) that could lead to
elevated air pollution concentrations and adverse health
impacts, and only the GEOS-Chem adjoint sensitivities
approach account for chemical transformations and inter-
actions of emitted species. More variability is expected in
applying these approaches to other types of sources, such as
ground-based area or mobile sources.

We chose to use a simplified plume approach for the
vertical distribution of point source emissions in the GEOS-
Chem adjoint sensitivities approach. While we originally
hypothesized that various plume rise assumptions would
have an important effect on the results, our sensitivity
analysis (Fig. 3) showed that the plume rise assumption had
little impact on annual correlations with the reduced com-
plexity approaches.

Implications

We present comparisons between three approaches for esti-
mating exposure attributable to large numbers of point
sources. The results suggest that the HyADS and IDWE
reduced complexity approaches are able to reproduce state-
level PM2.5 impacts from individual sources calculated by
the GEOS-Chem adjoint sensitivity approach. The reduced

complexity approaches perform similarly at annual time
scales and for nearby, upwind sources. At longer distance
scales, source impacts become more sensitive to atmospheric
processes not captured by IDWE, the simplest approach.
Recent evidence showing health impacts at even low PM2.5

concentrations [1, 2] suggests that performance even in
apparently clean areas has important implications on the
models’ potential to influence regulatory decision-making.

The monthly evaluation results highlight the importance
of characterizing atmospheric transport on shorter time
scales. Comparisons of the IDWE source impacts to HyADS
show higher bias and error in summer and winter months
than spring and fall. As in the annual evaluation, IDWE’s
performance degrades substantially in locations further from
large groups of point sources. Dedoussi and Barrett showed
the importance of monthly variability—sensitivity values
during the summer months were a factor of ~4 times higher
than the winter months in their analysis [33].

The GEOS-Chem CTM accounts for atmospheric pro-
cesses including advective and diffusive transport, wet
deposition, interaction with emissions from other sources,
and background air constituents. The post-processing of the
reduced complexity exposure metrics to PM2.5 enabled us to
develop, evaluate, and apply statistical parameterizations of
these processes. One physical parameterization we tested—
plume injection heights—turned out to have little impact on
the eventual comparisons between HyADS and IDWE.

Overall, the results suggest three important factors in
determining point source exposure patterns: emissions
amount, source-receptor distance, and directionality relative
to average transport patterns. These factors contribute to the
relatively better performance of IDWE in states nearby large
numbers of sources. Including information about transport
—such as wind speed and direction—becomes more
important at locations far from and upwind of sources.
Adjusted to more complex model results that need only be
run once, impacts from these reduced complexity models
can be converted to physically interpretable units.

This work presents evidence that intentionally simpler
alternatives to full-scale CTMs have potential to quantify
population exposure to individual point source SO2 emis-
sions. Some processes (such as advective transport) were
shown to be more important for identifying exposed areas
than others (such as plume injection height), and the
importance of invective transport, in particular, was shown
to differ with distance and direction from source.

Data availability

Annual and monthly datasets of unit-level population-
weighted PM2.5 source impacts are available at https://
github.com/lhenneman/simple_and_complex_AQ.
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Code availability

We provide R code to reproduce the analyses and plots
at https://github.com/lhenneman/simple_and_complex_AQ.
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