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The problem of how to solar sail around planets 

remains nearly unexplored. Most of the existing body 
of knowledge focuses on scape trajectories or locally 
optimal controls, not providing much insight into the 
inherent physical characteristics of the transfer 
problem. In this work, we present the first 
comprehensive study of solar-sail transfers around 
planetary bodies by analysing the simplest conceivable 
transfer, the planar Circular-to-Circular (C2C) 
transfer. The C2C transfer spans for only one orbital 
revolution, constituting the building block of more 
complex multi-revolution trajectories. By patching 
together a series of C2C transfers, a feasible initial 
guess for trajectory optimisation algorithms can be 
generated. The optimised control law maximises the 
orbital radius within the C2C transfer. The radius 
change is used as performance metric. The results 
suggest that the domain of the control variables can be 
substantially reduced, effectively enhancing 
convergence of the optimal control solver, and 
significantly reducing computational time. 
Furthermore, a dimensional analysis shows that the 
C2C performance only depends on one parameter: the 
ratio of the sail’s characteristic acceleration over the 
local gravitational acceleration. The scaled nature of 
the results allows to easily compute the C2C 
performance for a wide range of mission scenarios 
around any planetary body, providing a new tool for 
early mission design. 

 
I. INTRODUCTION 

A solar sail is a large, thin, mirror-like surface deployed 
in space and held in place by centrifugal force or by a 
lightweight structure. Its principle of operation is 
simple: reflecting sunlight. Although massless, photons 
carry momentum. When reflected, they impinge a force 
upon the sail, yielding a measurable and controllable 
thrust of the order of magnitude of a small ion drive (for 
near term solar-sail technology). A solar sail’s main 
advantage: it does not require propellant. The only 
limitation on the lifespan of a solar sail is the 
degradation of the sail’s film in the harsh space 
environment [1]. 
The body of knowledge of solar-sail trajectory 
optimization mainly focuses on heliocentric trajectories 
(started by works like [2] [3]). Planet-centred 
trajectories have been investigated to a much lesser 
extent, potentially due to the greater complexity of the 

problem. However, solar-sail technology will mature 
right here, around our home planet. We therefore believe 
in the importance of understanding the basics of solar 
sailing around planets, as Earth-centred sailing will be 
the cradle of future interplanetary missions.  
Previous research on optimising solar-sail trajectories 
around Earth focused on (blended) locally optimal 
control laws [4] [5] and often considered open-ended 
trajectories instead of orbital transfers [6] [7]. The very 
few works that do consider orbital rendezvous 
trajectories based on optimal control theory [8] [9] 
consider specific cases (e.g., from the geostationary 
orbit to the graveyard orbit), leaving insight into the 
general problem unexplored.  
In this paper, we present the first comprehensive study 
of solar-sail transfer trajectories around planetary bodies 
by investigating the simplest form of transfer trajectory: 
the planar Circular-to-Circular orbit transfer (C2C). The 
objective of the C2C transfer is defined as maximising 
the orbital radius within one orbital revolution, starting 
from, and ending in planar circular orbits. The C2C 
transfer could be viewed as the equivalent of the 
Hohmann transfer for solar sails. By understanding the 
basics of the C2C transfer, a foundation is laid upon 
which – in future research – more complex multi-
revolution trajectories can be computed efficiently. For 
example, by patching together a series of one-revolution 
C2C transfers, a feasible initial guess for a many-
revolutions trajectory optimisation algorithm can be 
assembled. 
The remainder of this paper is organised as follows: 
Section II poses the optimisation problem behind the 
C2C transfer as well as the Equations of Motion (EoM) 
of the solar sail. Section III analyses the performance of 
the C2C transfer as a function of the Sun-orbit geometry 
and the ratio of the sail’s characteristic acceleration over 
the local gravitational acceleration. Section IV 
elaborates on the control laws required to execute the 
C2C transfer and shows the various regimes that exist 
for the C2C transfer. Section V highlights some possible 
applications of this work. Finally, Section VI gathers the 
conclusions drawn from this study. 
 

II. OPTIMISATION PROBLEM 
The C2C transfers presented in this paper arise as the 
solution of the following optimisation problem: 
 

 max
𝒖∈#

$𝑟(𝑡$)) 	𝑠. 𝑡. 𝐸𝑜𝑀	&	𝑒2𝑡$3 = 0,			 (1) 



 

where 𝒖 is the control vector, 𝑈 the set of admissible 
controls (see Section IV), 𝑟 the orbital radius, EoM the 
Equations of Motion with associated initial conditions 
(see Section II.A for the complete formulation), 𝑒 the 
osculating eccentricity, and 𝑡$ the final time. The C2C 
transfer is defined as to span for one orbital revolution, 
meaning that, at 𝑡$, the initial and final position vectors 
are parallel. Due to the small magnitude of the solar-sail 
acceleration, the radius increase will be small, and the 
final time will be approximately equal to the initial 
orbital period.  
The optimisation problem in (1) is solved using the 
commercially available GPOPS-II software. GPOPS-II 
uses direct collocation (i.e., variable-order Gaussian 
quadrature methods) to translate the continuous optimal 
control problem into a non-linear program that is then 
solved with IPOPT [10]. 
 
A. Equations of motion 
In this study, the motion of the solar sail around a planet 
is described in an inertial reference frame using point 
gravity and the ideal solar-sail model [1]. The EoM 
adopt the form: 
 

 𝑑𝒓
𝑑𝑡 = 𝒗;											

𝑑𝒗
𝑑𝑡 = −

𝜇
𝑟% 𝒓 + 𝑎&2𝑺

B ∙ 𝒏E3'𝒏E, (2) 

 
Where 𝒓 is the position vector, 𝒗 the velocity vector, 𝑡 
the independent variable time, 𝜇 the planet’s 
gravitational constant, 𝑎& the sail’s characteristic 
acceleration at the planet’s average distance from the 
Sun, 𝑺B the direction of the Sunline, and 𝒏E the normal 
vector perpendicular to one of the sail’s surfaces. 
Numerical integration of (2) with the initial state 
(𝒓𝟎, 𝒗𝟎) at 𝑡 = 0 and the control law 𝒏E = 𝒏E(𝑡) provides 
the trajectory of the solar sail (𝒓 = 𝒓(𝑡), 𝒗 = 𝒗(𝑡)) 
around the planet. 
  

Fig. 1 depicts a schematic of the reference frame, 
vectors, and important angles involved in the 
formulation of the EoM. The inertial reference frame 
𝐶(𝑥, 𝑦, 𝑧) is centred at the planet. The 𝑥-axis results 

from the cross product of the direction of the Sunline 𝑺B 
and the orbit’s angular momentum vector 𝒉 = 𝒓𝟎 × 𝒗𝟎. 
The 𝑧-axis is aligned with 𝒉 and the 𝑦-axis lies in the 
orbital plane completing the right-handed triad. The 
Aspect Angle (𝐴𝐴) is the angle between the Sunline and 
𝒉. It determines the illumination conditions of the orbital 
plane: for 𝐴𝐴 = 0 deg and 𝐴𝐴 = 90 deg the orbit is 
perpendicular and parallel to the incoming sunlight, 
respectively. The cone angle 𝛼 is the angle between 𝒏E 
and 𝑺B. It determines the illumination conditions of the 
solar sail and thus its performance: 𝛼 = 0 deg and α=
90 deg create a maximum and zero solar-sail 
acceleration (SSA), respectively. For the remainder of 
the paper, it is important to mention that 𝛼O = 35.26 deg 
is the cone angle that maximises the in-plane projection 
of the SSA when 𝐴𝐴 = 0 deg [1]. The argument of 
latitude 𝜃 is the angle between 𝒓 and the 𝑥-axis. In this 
study, 𝒓𝟎 is always aligned with the 𝑥-axis and 𝒗𝟎 with 
the 𝑦-axis (see Fig. 1). Consequently, in a C2C transfer, 
𝜃 ∈ [0, 2𝜋].  
The Sun is assumed to be infinitely far away from the 
planet (i.e., sunlight parallel to 𝑺B). In addition, we 
neglect the motion of the Sun as viewed from the planet, 
because the transfer time is significantly shorter than the 
orbital period of the Sun around the planet. 
The C2C transfer is assumed to be two-dimensional 
(2D) and remains in the initial orbital plane Π defined 
by 𝒉. The out-of-plane component of the SSA (i.e., 
𝑎&2𝒏E ∙ 𝑺B3

'𝒏E ∙ 𝒛[) is therefore neglected; only the in-plane 
SSA is considered in the EoM. Note that the small 
magnitude of the SSA and the periodicity of the control 
for a C2C transfer cause a negligible out-of-plane 
motion during the transfer. 
To improve numerical stability during the optimisation, 
the EoM are scaled using the initial position, velocity, 
and orbital period 𝑇& = 2𝜋]𝑟&%/𝜇, yielding: 
 

 𝑑𝝆
𝑑𝜏 = 2𝜋𝝃;										

𝑑𝝃
𝑑𝜏 = 2𝜋 b−

𝝆
𝜌% +Ψ𝒖e, 

(3) 

 
where ρ= 𝒓/𝒓𝟎,	𝝃 = 𝒗/𝒗𝟎, 𝜏	 = 𝑡/𝑇&, 𝒖 = 2𝑺B ∙ 𝒏E3'𝒏E, 
and Ψ = 𝑎&/𝑔&. 𝑔& = 𝜇/𝑟&' is the local gravitational 
acceleration at the initial state.  
The scaled EoM only depend on one dimensionless 
parameter, the scaled characteristic acceleration	Ψ. Ψ 
represents the “strength” of the sail relative to the local 
gravity. A particular sail design around a planet will 
yield a smaller value for Ψ the closer it gets to the planet. 
Note that two real problems (e.g., initial circular orbits 
around Mars and Earth) with the same scaled initial 
conditions, control 𝒖 = 𝒖(𝜏) and Ψ yield the same 
scaled trajectory. By studying the scaled C2C transfers 
as a function of the parameter Ψ, we can later 
extrapolate the results to a wide range of real mission 
scenarios (see Section III). 
Given 𝑺B, we can easily compute the control law 𝒏E =

 
Fig. 1. Schematic of the reference frame, vectors, 

and important angles involved in the formulation of 
the Equations of Motion. 
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𝒏E(𝑡) (e.g., expressed through two attitude angles) from 
the control vector 𝒖 = 𝒖(𝑡). In our analyses, we use 𝒖 
instead of 𝒏E as it provides a more intuitive 
understanding of the thrusting capabilities of a solar sail 
(see Section II.B). Note that 𝒖 = [𝑢) , 𝑢*, 𝑢+] is the 
SSA scaled with 𝑎&. 
 
B. Set of admissible controls 
The control set 𝐵 contains all possible control vectors 
that can be generated by an ideal solar sail: 
 

 𝐵 = i𝒖 = 2𝑺B ∙ 𝒏E3'𝒏E:	𝒏E ∙ 𝑺B > 0l. (4) 

𝐵 is commonly represented with the “bubble” surface 
diagram. As an example, Fig. 2 shows the (hollow) 
bubble diagram in frame 𝐶 for 𝐴𝐴 = 0 deg (i.e., the Sun 
is along the negative 𝑧-axis). The projection of the 
bubble diagram onto the orbital plane generates the 2D 
set 𝐵,. 𝐵, represents the control at our disposal for in-
plane manoeuvres. An equivalent projection could be 
defined for out-of-plane manoeuvres. However, as 
mentioned above, in this work we neglect the out-of-
plane component of the SSA and thus focus only on 𝐵,; 
the out-of-plane projection can be viewed as wasted 
control.  
Note that the bubble diagram of a spacecraft equipped 
with an ion drive is not a hollow bubble, but a solid 
sphere: the control vector can be pointed anywhere in 
inertial space and modulated between zero and the 
maximum available thrust. As the spacecraft consumes 
propellant, the sphere grows, reaching its maximum size 
at the end of the mission. 
 

 
Fig. 2. Depiction of the various control sets as a 

function of the 𝐴𝐴. Solid lines represent 𝑈, dashed 
lines 𝑈,. 

For a zero aspect angle, 𝐴𝐴 = 0 deg, an ion drive would 
produce an equivalent 𝐵, as a solar sail (i.e., a circle, see 
Fig. 2) but with no out-of-plane waste. However, for 
𝐴𝐴 = 90 deg, the resulting 𝐵, for a solar sail differs 

completely from that of an ion drive (i.e., still a circle). 
Hence, it is expected that, for 𝐴𝐴 = 0 deg, the computed 
solar-sail transfers will closely resemble that of ion-
drive transfers, whereas for 𝐴𝐴 = 90 deg, the resulting 
transfers will be entirely different. 
Set 𝐵 can be constrained from the “bubble” surface to a 
line by applying Pontryagin's maximum principle. The 
maximum principle states that, to obtain an optimal 
trajectory, the controls 𝒖 must minimise the 
Hamiltonian 𝐻 throughout the entire trajectory, always 
adopting values within the so-called admissible controls 
[2] (for an ideal solar sail, the set of admissible controls 
is 𝐵). Mathematically: 
 

 min
𝒖∈-

{𝐻 = 𝑟$ + 𝝀𝒓 ∙ 𝒗 + 𝝀𝒗 ∙ (𝒈 + 𝑎&𝒖)}, (5) 

where 𝒈 is the gravitational acceleration, and 𝝀𝒓 and 𝝀𝒗 
are the position and velocity co-states, respectively. 
Note that the part of 𝐻 that explicitly depends on 𝒖 is 
𝐻 = 	𝝀𝒗 	 ∙ 𝒖. Then, Pontryagin's principle reduces to: 
 

 max
𝒖∈-

{𝒒E ∙ 𝒖}, (6) 

where 𝒒E = −𝝀𝒗/𝜆0	is the so-called primer vector 
direction. Equation (6) indicates that, to attain an 
optimal solution, we must orient the sail so that the 
projection of the control vector along the primer vector 
direction is maximised. We do not know a priori the 
evolution of the primer vector direction, but we know 
that it is contained in the orbital plane Π. In [1], McInnes 
solves the optimisation problem in (6), providing an 
explicit equation (see Section IV.A, (11)) to compute the 
optimal 𝒖 for any given 𝒒E	. Thus, we can compute all 𝒖 
vectors for all possible 𝒒E vectors in Π to obtain a reduced 
set of admissible controls: 
 

 𝑈 = v𝒖 = arg	max
𝒖∈-

[𝒒E ∙ 𝒖]: 𝒒E ∈ Πy.	 (7) 

 
Fig. 2 shows the reduced set of admissible controls 𝑈 in 
frame 𝐶	for increasing values of the 𝐴𝐴 (solid lines). As 
with 𝐵, the projection of 𝑈 onto Π (i.e., 𝑈,) reveals the 
available control for in-plane manoeuvrers (dashed 
lines). The projected curves 𝑈, match the contours of 
𝐵, (as an example, see the black curve and the grey 
surface for 𝐴𝐴 = 0 deg in Fig. 2), as they represent the 
maximum available in-plane control for each 𝐴𝐴. This 
result is somewhat intuitive. To achieve a maximum 
radius solution, the control (i.e., in-plane thrust) must be 
maximised at every time-step. Indeed, any optimisation 
problem that can be interpreted as a minimum time 
problem (e.g., fastest orbit raising, fastest C2C transfer) 
will employ a control law in 𝑈. 
𝑈 can be used to restrict the domain of the control 
variables to speed up the optimisation. One no longer 
has to consider all possible orientations in 𝐵, but only 
the subset in 𝑈. Even more, 𝑈 can be used to reduce the 
number of control variables by substituting the control 



 

vector 𝒖 with the primer vector 𝒒E. Because 𝒖 can be 
expressed as a function of 𝒒E, it is sufficient to use one 
angle to locate 𝒒E in the orbital plane rather than using 
two angles to define the orientation of 𝒖 in 3D space. In 
this study, the angle 𝛿 between the 𝑦-axis and the primer 
vector 𝒒E was used as the control variable (see Fig. 3). 
Note that, for conventional unconstrained propulsion 
systems (e.g., chemical propulsion, ion drives), there 
would be no advantage in replacing 𝒖 with 𝒒E, since 𝒖 
can be aligned with 𝒒E. 
A more intuitive approach to defining the control 
variable would be to use the yaw angle 𝐴 of the control 
and 𝑈,. Fig. 1 shows a schematic of the solar sail at an 
epoch mid-transfer. Fig. 3 shows the available in-plane 
control 𝑈, in frame 𝐶 at that epoch as well as the 
velocity vector 𝒗. The yaw angle 𝐴 defines the direction 
of the in-plane projection of the control vector 𝒖, with 
respect to this instantaneous velocity vector. It 
determines how the control is distributed among the 
along-track, radial and cross-track directions. The 
magnitude of the control is also defined by the yaw 
angle, as the endpoint of the control vector must lie on 
𝑈 to obtain an optimal solution. Once 𝑈 is defined, we 
thus only need the yaw angle to compute optimal in-
plane manoeuvres. However, since an explicit 
mathematical relation between 𝒖 in 𝑈 and the yaw angle 
could not be found, the primer vector formulation was 
used instead. 
 

 
Fig. 3. Schematic of set 𝑈 with a control vector 𝒖 

and relevant control angles. 

 
III. PERFORMANCE 

The performance of the C2C transfer is defined as the 
achieved radius increase after one orbital revolution 
scaled with the initial radius: 
 

 𝜂 =
𝛿𝑟
𝑟&
	.	 (8) 

 
In this section, we analyse the dependency of 𝜂 on the 
scaled characteristic acceleration Ψ and the aspect angle 

𝐴𝐴. 
Fig. 4 shows the performance 𝜂 as a function of the orbit 
aspect angle 𝐴𝐴 for several values of Ψ. The values for 
𝜂 are scaled with the minimum performance at 𝐴𝐴 = 90 
deg, 𝜂1&, so that all cases have a minimum performance 
of one. Two significant conclusions can be drawn from 
Fig. 4:  
1) The best performance is achieved for 𝐴𝐴 = 0 deg 
(i.e., the incoming sunlight is perpendicular to the orbital 
plane), and the minimum performance for 𝐴𝐴 = 90 deg 
(i.e., the incoming sunlight is parallel to the orbital 
plane). The difference is a factor of 20. Performance 
thus drops significantly as the aspect angle increases. 
Compare, for example, a solar-sail debris removal 
mission in the LEO and GEO regions, where the debris 
is transferred from a circular initial orbit to a higher-
altitude circular graveyard orbit, respectively. The 𝐴𝐴 of 
most objects in LEO is in the range [0, 60] whereas for 
the GEO belt the aspect angle oscillates between 
[67, 90] deg. Based on the results in Fig. 4, it can 
immediately be concluded that a solar sail would be 
much more effective for such a mission in LEO than in 
GEO. It is interesting to note that, for pure orbit raising 
(i.e., no eccentricity control), the best geometry occurs 
for 𝐴𝐴 = 90 deg.  
2) The shape of the scaled performance curve seems 
similar for different Ψ values. Based on this observation, 
we assume that the dependency of 𝜂 on aspect angle and 
scaled characteristic acceleration is separable and can be 
formulated as: 
 

 𝜂 = 𝜂2(Ψ)	𝜒(𝐴𝐴), (9) 

where 𝜂2 is a reference performance value obtained for 
a particular 𝐴𝐴 that only depends on Ψ, and 𝜒 is the 
shape function, which maps 𝜂2 to different 𝐴𝐴 values. 
Fig. 4 thus shows 𝜒(𝐴𝐴) for 𝜂2 = 𝜂1&. 
 

 
Fig. 4. Scaled performance over 𝐴𝐴 for various 

values of Ψ. 

Fig. 5 shows three selected values of 𝜂2 as a function of 
the scaled characteristic acceleration Ψ: maximum 
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performance at 𝐴𝐴 = 0 deg (𝜂2 = 𝜂&), performance at 
AA = 40 deg (𝜂2 = 𝜂3&),	and minimum performance at 
AA = 90 deg (𝜂2 = 𝜂1&). The figure indicates that 𝜂2 
increases for increasing values of Ψ. In other words, as 
the initial altitude increases, the local gravitational 
acceleration decreases and thus the effect of the solar 
sail on the trajectory increases, yielding a larger 𝛿𝑟. 
Note that, when using the same sail around the same 
planet, increasing values of Ψ correspond to increasing 
initial altitudes.  
Hereinafter, we choose 𝜂3& as the reference performance 
value 𝜂2 in (9). 
There seems to be a clear linear relation between 𝜂2 and 
Ψ in log-log scale. Consequently, we furthermore 
assume that: 
 

 𝜂2 = 𝑛Ψ4, (10) 

where 𝑛 and 𝑚 are coefficients obtained by linear 
regression of the data points shown in Fig. 5. The values 
for 𝑛 and 𝑚 for 𝜂2 = 𝜂3& are: 𝑛 = 2.19795377, and 
𝑚 = 1.00062885.  
By adequately using Fig. 4 and Fig. 5, one can readily 
obtain an estimate of the initial transfer performance of 
a particular mission scenario. For example, consider a 
solar sail with sail loading 𝜎 = 0.18	kg/m' at Venus in 
an orbit with 𝑟& = 18,000 km and an aspect angle of 
𝐴𝐴 = 30 deg. This scenario yields a value for Ψ of 
1 × 1053. Entering Fig. 5, we find that the reference 
performance 𝜂3& for Ψ = 1 × 1053 is approximately 
2 × 1053. Then, using Fig. 4 and (9), we obtain 𝜂%& =
𝜂3&	𝜒%& 𝜒3&⁄ = 2 × 1053 × 12/9 = 2.7 × 1053. 
Finally, from (8) we obtain that the achievable increase 
in radius after one orbital revolution is 𝑟&	𝜂%& = 4.8 km. 
Note that the presented workflow is valid for any planet 
orbiting a star. One just has to substitute the correct 
physical parameters to compute Ψ, know the aspect 
angle of the orbit and 𝛿𝑟 is readily available. However, 
the linearity shown in Fig. 5 breaks down at large Ψ 
values. At sufficiently large Ψ values, the solar sail is 
blown away from the planetary system before it 
completes the C2C transfer, because the gravity of the 
planet is too small to balance the SSA. It is found that 
for Ψ below 1 × 105', (10) and Fig. 5 remain valid.  
 

 
Fig. 5. Reference performance values for 𝐴𝐴 = 0, 
𝐴𝐴 = 40, and 𝐴𝐴 = 90 deg as a function of Ψ. 

 
IV. CONTROL 

Fig. 6 shows the set of admissible controls 𝑈, (thin 
lines) together with the controls that are actually used in 
the C2C transfer (solid circular markers) for increasing 
aspect angles, where lighter colours represent larger 
aspect angles. Note that the thin lines in Fig. 6 are the 
same as the dashed lines in Fig. 2. We define the inner 
angle 𝛽 as the angle between the 𝑦-axis and the 
projection of the control vectors in the orbital plane 𝒖, 
(see Fig. 3). This inner angle is the in-plane equivalent 
of the cone angle. In fact, for 𝐴𝐴	 = 	90 deg, the cone 
angle and inner angle are equal. The following important 
facts can be observed in the figure:  
1) There is a critical value of the 𝐴𝐴 for which the 
computed control no longer traverses the whole 
available set of 𝑈, but is confined to a specific region 
around the origin. We refer to this 𝐴𝐴 as the critical 
aspect angle (𝐴𝐴6) (see Section IV.A for more details). 
Note that the light-green contour in the figure is the set 
𝑈, associated with 𝐴𝐴6. It is as if above 𝐴𝐴6, the 
computed control bounces off an invisible (𝑦, 𝑧)-plane 
rotated around the 𝑧-axis by a critical inner angle 𝛽6 and 
is no longer able to access the remaining 𝑈,. We refer 
to this plane as the boundary plane. From Fig. 6, the 
boundary plane is defined as the (𝑦, 𝑧)-plane that cuts 
the 𝑈 set for the critical aspect angle (i.e., the green 
contour in Fig. 6) at the “hinge points”. The hinge points 
are the two points in 𝑈 with cone angle 𝛼O.  
2) Only at the critical aspect angle does the control reach 
the boundary plane. For larger aspect angles, the control 
does not extend fully up to the boundary plane. Even so, 
we can use the concept of the boundary plane to further 
restrict the set of accessible controls 𝑈 for 𝐴𝐴 > 𝐴𝐴6. 
Indeed, the boundary plane effectively restricts the sail 
cone angle to a specific cone angle band (see Section 
IV.B for an in-depth explanation). 
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Fig. 6. 𝑈, projections for increasing 𝐴𝐴 (thin lines) 
together with the computed controls (solid circular 

markers). 

 
A. Critical geometry 
This subsection will explore the geometry at the critical 
aspect angle to gain a further understanding of the 
concept and to allow an analytical solution for the value 
for 𝐴𝐴6. 
Fig. 7 represents the main geometrical dimensions of 𝑈 
as a function of the aspect angle: for each 𝐴𝐴, the 
maximum (solid lines) and minimum (dashed lines) 
values of 𝑢) , 𝑢* and 𝑢+ for all control vectors in 𝑈 are 
displayed. Note that the geometry of 𝑈, is given by 𝑢* 
and 𝑢). The critical 𝐴𝐴 occurs when 𝑢*,48) = 𝑢+,48) 
(green vertical line in Fig. 7), i.e., when the maximum 
out-of-plane dimension of 𝑈 is the same as the 
maximum in-plane dimension. Why this condition 
results in the critical aspect angle is yet unknown but 
will be part of future investigations. 
 

 
Fig. 7. Evolution of the characteristic dimensions of 

𝑈 with 𝐴𝐴. 

The critical aspect angle 𝐴𝐴6 can be computed 
analytically. To do so, we make use of the angles and 
vectors displayed in the schematic in Fig. 8. Note that 
the depicted vector 𝒖 yields the largest projection along 

the 𝑦-axis among all possible 𝒖 ∈ 𝑈6. For 𝑢*,48) =
𝑢+,48) to be true, the angle between 𝒖 and the 𝑦-axis 
must be 𝜋 4⁄ . From Fig. 8, 𝜑 − 𝛼∗ = 𝜋/4, where 𝛼∗ is 
the cone angle of the vector 𝒖 and 𝜑 is the angle between 
the 𝑦-axis and 𝑺B. McInnes [1] shows that 𝛼∗ is related to 
𝜑 via: 
 

 𝛼∗ =
1
2 b𝜑 − sin

5: �
sin𝜑
3 �e.	 (11) 

 
Substituting 𝛼∗ = 𝜑 − 𝜋/4 into (11) and solving for 𝜑 
yields: 𝜑 = 2 tan5:�1\3(√10 − 1)�. Finally, from Fig. 
8, the critical aspect angle can be computed as 𝐴𝐴6 =
𝜋/2 − 𝜑 = 18.43 deg.  
The 𝐴𝐴6 is geometrically linked with the critical inner 
angle 𝛽6, which defines the orientation of the boundary 
plane represented in Fig. 6. 𝛽6 is the inner angle of the 
vector 𝒖 ∈ 𝑈6	with cone angle 𝛼O. From the critical 
geometry: 𝛽6 = tan5:(sin 𝛼O/(cos 𝛼O 	sin𝐴𝐴6)) =
65.91	deg.  
 

 
Fig. 8. Schematic of the critical geometry. 

 
B. Cone angle bands 
This section investigates whether the set of admissible 
controls 𝑈 can be even further restricted. To that end, 
the relation between the aspect angle, the cone angle and 
the inner angle is explored with the aim of defining so-
called “cone angle bands”. These bands help in limiting 
the search space for an optimal control solver. An 
additional result is the identification of three distinct 
C2C transfer regimes, characterised by the value of the 
aspect angle.  
Fig. 9 shows the cone angle as a function of the inner 
angle for various 𝐴𝐴, where lighter colour indicates 
larger aspect angles. The solid circular markers 
represent the optimal controls computed using GPOPS-
II. For 𝐴𝐴 = 0 deg, the cone angle is 𝛼O = 36.26	deg for 
all inner angles, whereas for 𝐴𝐴	 = 	90 deg, the inner 
angle matches the cone angle. The highlighted green line 
corresponds to the critical set 𝑈; for 𝐴𝐴 = 18.48 deg. 
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The vertical red line denotes the boundary plane. Note 
that Fig. 9 is just a different representation of Fig. 6. 
Depending on the value for 𝐴𝐴, different C2C transfer 
regimes can be defined: 
1) Ion drive (0 ≤ 𝐴𝐴 < 𝐴𝐴6) regime: The solar sail 
behaves like an ion drive. The control is unrestricted and 
uses the totality of the admissible controls 𝑈. For 0 <
𝐴𝐴 < 𝐴𝐴6, the cone angle of the computed controls 
oscillates above and below 𝛼O (see the solid circular 
markers to the left of the boundary plane in Fig. 6). 
2) Critical regime (𝐴𝐴 = 𝐴𝐴6): The control no longer 
accesses the region with 𝛼 < 𝛼O. The computed control 
bounces off the boundary plane, which acts as an 
invisible barrier that cannot be trespassed for 𝐴𝐴 > 𝐴𝐴6 
(see how the solid circular markers keep to the right of 
the boundary plane in Fig. 6). At the critical aspect 
angle, the exact cone angle limits of the employed 
control can be computed: the minimum cone angle is	𝛼O 
and the maximum cone angle is that of 𝑈. Note that (11) 
can be used to compute the minimum and maximum 
cone angles of 𝑈. From Fig. 8 one can infer that 𝜑4<= =
𝜋/2 − 𝐴𝐴 and 𝜑48) = 𝜋/2 + 𝐴𝐴. Substitution of these 
values in (11) gives the min/max cone angles as a 
function of 𝐴𝐴. Thus, at the critical aspect angle, the 
maximum cone angle is that of 𝑈 and equals 45 deg. 
 

 
Fig. 9. Cone angle of 𝑈 as a function of the inner 
angle for increasing 𝐴𝐴 (solid lines) together with 

the computed controls (solid circular markers). 

3) Solar Sail (𝐴𝐴6 < 𝐴𝐴 ≤ 90 deg) regime: The control 
cannot access the whole set of admissible controls 𝑈 and 
keeps to the region delimited by the boundary plane. 
Although the control no longer reaches the boundary 
plane, we can use the boundary plane to set a practical 
limit for the minimum admissible cone angle and define 
the concept of cone angle bands. The cone angle bands 
are cone angle intervals that effectively constrain the set 
of admissible controls 𝑈. For 𝐴𝐴 < 𝐴𝐴6, the cone angle 
band is that of 𝑈. For 𝐴𝐴 > 𝐴𝐴6, the upper limit is still 
that of 𝑈, whereas the lower limit is set by the critical 
cone angle 𝛼6, which is computed as the intersection of 
the boundary plane with 𝑈 (see Fig. 9). 

Fig. 10 shows the cone angle bands obtained 
geometrically from 𝑈 for each 𝐴𝐴 (solid lines) together 
with the min/max cone angles of the optimal control 
computed with GPOPS-II. Note the clear behavioural 
change at 𝐴𝐴6. The minimum cone angle of the optimal 
control suddenly jumps to lie within the cone angle 
band, and remains there from 𝐴𝐴 = 𝐴𝐴6 until 𝐴𝐴 = 90 
deg.  
 

 
Fig. 10. Cone angle bands together with the 

minimum and maximum cone angle of the computed 
optimal controls. 

 
V. OUTLOOK 

The results in this paper can be used to initialise a many-
revolution optimisation problem and assess the 
feasibility of a real solar-sail mission scenario. Consider, 
for example, a multi-revolution C2C transfer from GEO 
(𝐴𝐴 = 90 deg) to an orbit 300 km higher with a sail with 
𝜎 = 0.18	kg/m' (i.e., 𝑎& = 0.05	mm/s'). Following 
the procedure in Section III for 𝐴𝐴 = 90 deg, we obtain 
a performance of 𝛿𝑟 = 2	km/rev, which in turn can be 
used to obtain a rough estimate of the number of 
revolutions required to gain 300 km in altitude: Δ𝑟/𝛿𝑟 =
300/2 = 150	rev. A possible approach for solving the 
optimisation problem would be to build an initial guess 
as a sequence of one-revolution transfers and then use 
that guess to initialise a global optimisation algorithm 
for a refined solution. For a 150 revolutions transfer, the 
computational cost for optimising 150 one-revolution 
transfers could be a limiting factor, but by using the 
results in Fig. 10, the computation of this initial guess 
can be enhanced by adopting the reduced set 𝑈 (i.e., the 
smaller the search space the faster the convergence). We 
know that the aspect angle of a GEO orbit ranges from 
66.6 deg to 90 deg. Fig. 10 indicates that the cone angle 
band that covers that range is [58, 90] deg, which is a 
non-negligible reduction of the set of feasible controls. 
Future work will aim at validating this hypothetical 
approach to see if it can indeed be generalised to multi-
revolution global solar-sail trajectory optimisation 
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problems. 
Secondly, it is interesting to mention that the cone angle 
bands can be used to assess the feasibility of a real solar 
sail mission. High-fidelity solar sail acceleration models 
teach us that, at large cone angles, the solar sail 
acceleration is difficult to predict and control [1]. C2C 
transfers requiring large cone angles might therefore not 
be feasible due to operational constraints. Let us resume 
our previous GEO example. Near the equinoxes, the 
cone angle band is as high as [65, 90]. It is then 
reasonable to expect that C2C transfers in the GEO belt 
will suffer more from cone angle restrictions than, for 
example, C2C transfers in LEO, where the orbit aspect 
angle is not as constrained.    
 

VI. CONCLUSIONS 
This paper has explored the building block of planet-
centred solar sailing: the planar Circular-to-Circular 
transfer (C2C). The timespan of the C2C transfer is 
constrained to one orbital period and the performance is 
defined as the achieved orbital radius increase after that 
one orbital revolution. It was shown that the 
performance is a function of the ratio of the sail 
characteristic acceleration and the local gravity. This 
relationship can be used to compute the C2C 
performance for over a wide range of mission scenarios 
around any planet. 
In addition, the relationship between the performance 
and the illumination conditions of the orbital plane was 
established. The angle between the orbital angular 
momentum and the incoming sunlight, referred to as the 
aspect angle (𝐴𝐴), strongly influences the C2C 
performance, which decreases for increasing 𝐴𝐴. 
Maximum and minimum performances are achieved for 
𝐴𝐴 = 0 deg (i.e., orbit perpendicular to the incoming 
sunlight) and 𝐴𝐴 = 90 deg (orbit parallel to the 
incoming sunlight), respectively. Performance at 𝐴𝐴 =
90 deg is 20 times worse than at 𝐴𝐴 = 0 deg. Thus, 
efficient transfer designs should try to avoid high 𝐴𝐴. 
When the orbit is (near-)perpendicular to the incoming 
sunlight (i.e., 𝐴𝐴 = 0 deg), the solar-sail C2C transfer 
closely resembles the same transfer but executed with a 
low-thrust ion drive. This similarity diffuses with 
increasing 𝐴𝐴. There is a critical value of the 𝐴𝐴, coined 
the critical aspect angle (𝐴𝐴6), for which the control 
abruptly changes behaviour. It was found that for 𝐴𝐴 >
𝐴𝐴6, the set of accessible controls (i.e., the domain of 
the control variables) can be considerably reduced, 
possibly saving significant computational time in future 
more refined many-revolution trajectory optimisations. 
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