
Generalized Pólya urn model
with fitness and non-linear

reinforcement

by

Floor Jacobs

Technical University Delft
June, 2021



Summary

There exist many different types of competitions, urn models can be used to
describe the behavior of these competitions. This report will provide an answer
to the question “How does a generalized Pólya urn model, with fitness and
non-linear reinforcement behave when time goes to infinity?”.

The classical Pólya urn model is a model with balls of different colours
contained in an urn. At each time step a ball will be drawn and put back in the
urn, along with an additional ball of the same colour. Each colour represents
a component in a competition and the amount of balls of a colour is their
share in the competition. This is a discrete-time Markov chain. In this report
a generalized version of the model with a fitness parameter and a non-linear
reinforcement are considered.

Each component has two main properties, fitness and current share in the
competition. The fitness denotes how suitable that component is in the compe-
tition and does not change over time. This means a component with a larger
fitness has a higher chance of winning. Secondly, the share could be denoted by
an amount of balls or as a proportion of the total amount. When a component
has a larger share it is more likely to win the competition. The probability dis-
tribution of the colour of the next ball in the urn is proportional to the fitness
of the components, and depends in a non-linear way on their current shares.
Together the fitness and non-linear reinforcement will form a feedback function
for each component, that determine the transition probabilities in the Pólya urn
model.

To analyse the model, the discrete-time Markov chains will be translated to
continuous-time Markov chains using a standard method in the research of urn
models, called exponential embedding.

When time goes to infinity the model will almost always reach a stable state,
depending on the value of the non-linear reinforcement. The stable state can
either be an equilibrium where all components have a non-zero proportion of the
total amount, or a monopoly can be reached. When a monopoly is reached one
component essentially has all but a finite amount of the total amount of balls
in the urn, which means it has proportion 1, whereas the rest has proportion
0. Whether the model reaches a stable equilibrium or a monopoly depends on
the strength of the non-linear reinforcement. However, the proportion of each
component in a stable state depends on the fitness each component has. In the
equilibrium case the stationary point is determined by the fitness and reinforce-
ment strength and is independent of the current share in the competition. The
higher the fitness of a component, the more likely it is this will component reach
monopoly, or have a larger proportion in the stable equilibrium. Apart from
the fitness, the initial condition of the components is also of influence on the
stable state in case of monopoly. Whenever a component has a higher initial
condition, it is more likely to win the competition, when time goes to infinity.



Summary for layman

Consider a competition consisting of market share, such as the market share of
web searchers. Currently Google has over 90% of the market share in this field
and has left all of its competitors behind. In this report the distribution of the
market share of such a competition will be described with a model called the
Pólya urn model. Each competitor has a fitness which denotes how suitable the
competitor is, this means the higher the fitness the better. In addition, there
exists a reinforcement in the dynamics, which is the same for all competitors.
This reinforcement models the advantage of having a larger market share. Af-
ter a large amount of time, call it an infinite amount, the model will almost
always reach a stable state. Meaning that the proportion of market share each
competitor has, will no longer change. In this report it can be seen for what
strength of reinforcement the model reaches either a monopoly or another stable
state in which all competitors have a non-zero proportion of the total amount.
The proportion each competitor has in the end depends on the fitness and their
initial condition. This is only one example of a competition for which the Pólya
urn model can be used, but the model can be adapted for many other types of
competitions.
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1.1 Pólya urn model . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Exponential embedding . . . . . . . . . . . . . . . . . . . . . . . 4

2 Monopoly 6

3 Main result 8
3.1 Concentration of explosion times . . . . . . . . . . . . . . . . . . 8
3.2 Strong monopoly and attractive domains . . . . . . . . . . . . . . 10

4 Flow fields 11
4.1 General properties . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1.1 Stationary points . . . . . . . . . . . . . . . . . . . . . . . 12
4.1.2 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2 Flow field of the model for k=2 . . . . . . . . . . . . . . . . . . . 13
4.3 Flow field of the model for k=3 . . . . . . . . . . . . . . . . . . . 16

5 Asymptotic dynamics 18
5.1 Noise term of the flow field . . . . . . . . . . . . . . . . . . . . . 18
5.2 A Lyapunov function . . . . . . . . . . . . . . . . . . . . . . . . . 20

6 Discussion 22

1



1 Introduction

This report will provide an answer to the question “How does the Pólya urn
model, with fitness and non-linear reinforcement behave when time goes to in-
finity?”. The probable outcomes of competitions between multiple components
and the interplay between fitness and non-linear reinforcement can be described
using the results in this report.

To illustrate what a Pólya urn model can describe the competition between
web searches can be looked at. Whenever you need an answer to a question
you will probably use Google to find it. Google is the biggest web searcher and
currently has a market share of over 90%. It has left all of it’s competitors like
Yahoo behind, even though for example Yahoo started out with a significant
market share advantage. Google managed to win that competition, presumably
due to a better product.

This is only one example, but there are many types of competitions and
hence models. The outcome of such a competition depends on multiple vari-
ables and this report contains results for a generalized Pólya urn model with
fitness and non-linear reinforcement that give a clear understanding as to when
monopoly or a different stable state is reached in the model. As well as those
results, flow fields of a specific model are given to understand the asymptotic
dynamics within the model.

The report is structured as follows. First the generalized Pólya urn model
that is used will be defined and explained. This is a discrete-time Markov chain
and using exponential embedding it will be translated to a continuous-time
Markov chain. Next, the concept of strong monopoly will be formally defined
and it will be proven for which functions the process reaches strong monopoly.
In Section 3 the attractive domains will be described for a specific kind of
function using a lemma on expected explosion times, which is also proven in
that section. In Section 4 the flow fields for the model are determined and some
general properties for these flow fields are given. As well as those results, some
examples will be given to illustrate the flow fields in different cases. Lastly, in
Section 5 a result to substantiate the function of the flow fields will be given
and a Lyapunov function to substantiate results from Section 4.
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1.1 Pólya urn model

An urn model is a probabilistic model consisting of a number of particles of
different types, often denoted by balls of different colours contained in an urn.
At each time step, a set of these balls is drawn from the urn after which the
contents of the urn might be altered.

The first Pólya urn model appeared in Eggenberger and Pólya in 1923 [5].
Since then many variations of urn models have been studied. Contrary to Be-
naim [1] who studied a model with multiple urns interacting with each other,
this report focuses on models with a single urn with balls of different colours,
the generalized Pólya urn model, variations of which are discussed in Pemantle
[7].

Throughout this report colour/type/agent/component will be used inter-
changeably. This model can represent biological or economical applications of
which some examples are given by Pemantle [7]. From the set of balls of dif-
ferent colours, which will also be called components, one ball will be drawn at
random, at each time step. The colour of this ball will be noted, after which the
ball is returned to the urn along with an additional ball of the drawn colour.
The probability of drawing a ball of a certain colour will not only depend on
the proportion of that colour in the urn but also on a fitness each colour has
and a non-linear reinforcement.

In this report each of the colours or components, has a positive fitness and
feedback function that does not depend on other colours. Therefore those with
a high fitness are often more likely to win and contrary to Costa and Jordan
[3], the types do not interact among each other. A process of ”Balls-in-Bins”
with similar feedback was also studied by Oliveira [6], however Oliveira did not
consider a fitness for each component.

The model will now be formally defined. One urn will be considered, con-
sisting of balls of k colours. The number of balls of each colour at a time n =
0,1,2,. . . will be denoted by the vector X(n) = (X1(n), X2(n), . . . , Xk(n)) ∈ Nk0 .
Since the colour that is drawn does not depend on previous draws, but only on
the current configuration of balls in the urn, the process (X(n) : n ∈ N0) is a
discrete-time Markov chain on state space Nk0 . Each colour i = 1, . . . , k has a
feedback function Fi(xi) > 0, depending on the number of balls xi of type i.
The transition probabilities are then given by

p(x, i) = P[X(n+ 1) = x+ e(i)|X(n) = x] =
Fi(xi)∑k
j=1 Fj(xj)

, (1)

where e(i) is a unit vector in direction i. Note that in every time step we add
exactly one new ball, and equation (1) gives the probability that it is of type
i and X(n + 1) = X(n) + e(i). Whenever a particular feedback function is
considered in this report instead of a one, it will be,

Fi(xi) = αix
β
i . (2)
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Here αi > 0 is a fitness parameter corresponding to each i = 1, . . . , k, the
reinforcement strength is a positive real number β > 0 and thus Fi : N0 →
[0,∞). Whenever the reinforcement is taken β = 1, the model corresponds
to the classical linear Pólya urn. The initial number of balls in denoted by
n0 =

∑k
i=1Xi(0).

For a better analysis of the model, the discrete-time Markov chains (DTMC)
are translated into continuous-time Markov chains (CTMC), which will be ex-
plained in the next section.

1.2 Exponential embedding

In this section the discrete-time Markov chain (X(n) : n ∈ N0) will be defined
in terms of a jump chain of a simpler continuous-time Markov chain, which is
called exponential embedding. This is a standard method in the research on
urn models (see [2] [4] [6] [7]). For the exponential embedding of the model,
consider a birth process (Y (t) : t ≥ 0) on state space Nk0 . In this process the
components Yi(t) evolve independently for each i = 1, 2, . . . , k for t ≥ 0 and can
only increase by one or remain the same. First some definitions are given that
will be used throughout the report.

The process starts at Y(0) with initial condition Yi(0) = Xi(0) for each i.
The birth rate of component i is given by Fi(yi), which is the rate at which
a jump is made from state y to y + e(i). The waiting times in a state y ∈
Nk0 for component i are τi(yi) ∼ exp(Fi(yi)) for each i and are independent.
Now for the jump times Ji(z), out of a state z ∈ Nk0 , take the sum of the τi,
starting from the initial condition of component i, up until z. Hence this gives
Ji(z) =

∑z
yi=yi(0)

τi(yi) with a value in [0,∞), where Ji(z) = 0 if z < Yi(0),
corresponding to the empty sum. Lastly, the explosion time Ti of a component
i is the moment that the process (Yi(t) : t ≥ 0) reaches infinity, defined as

Ti := lim
z→∞

Ji(z) =

∞∑
yi=yi(0)

τi(yi) ∈ (0,∞]. (3)

Remark. If Ti =∞, the process Yi(t) does not explode.

To see how this birth process translates into the urn model, the jump chain
of the birth process will be looked at and then from the transition probabilities
it can be seen that the jump chain and discrete processes have the same distri-
bution. First the jump chain is defined.

Let J(n) ≥ 0 be the time at which the n-th jump occurs in the CTMC
(Y (t) : t ≥ 0). Then J(0) = 0 and J(n + 1) = min{Ji(z) > J(n) : i =
1, . . . , k and z ∈ N}. As mentioned before, this jump chain (Y (J(n)) : n ∈ N0)
of the CTMC is a DTMC. The transition probabilities of the jump chain are
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given by the relative rates as

P[Y (J(n+ 1)) = y + e(i)|Y (J(n)) = y] =
Fi(yi)∑k
j=1 Fj(yi)

, (4)

which is the same as equation (1) for the urn process. Since also X(0) = Y (0),
the two processes (X(n) : n ∈ N0) and (Y (J(n) : n ∈ N0) have the same
distribution.

Hence the urn process can be defined as (X(n) := Y (J(n)) : n ∈ N0) in terms
of the jump chain of (Y (t) : t ≥ 0), which is called exponential embedding. With
this definition of the process, events that occur in the Pólya urn model can be
explained in terms of the explosion of the birth process. In the next section it
will be used when the event of a monopoly is discussed.
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2 Monopoly

In a Pólya urn model it can occur that after a certain time all new balls added
to the urn will be of one colour. This is an important event in the model and
will be discussed in this section following [4] and [6].

Consider an urn model (X(n) : n ∈ N0) with transition probabilities as
given in equation (1), with general feedback functions Fi(z), z ∈ N0. Let s(i) =∑∞
z=1

1
Fi(z)

and J = {i : s(i) <∞}. Let the urn model be such that at least for

one of the feedback functions
∑∞
z=1

1
Fi(z)

<∞, and thus J 6= ∅.

Definition 2.1 (Strong Monopoly). Strong monopoly for agent j is reached
whenever for ∑

i 6=j

Xi(∞) = lim
n→∞

∑
i 6=j

Xi(n) =: U <∞, (5)

i.e. agent j has all but a finite amount U of the total amount, as n→∞.

Theorem 2.1. Consider an urn model (X(n) : n ∈ N0) with feedback func-
tions Fi(z) satisfying

∑∞
z=1

1
Fi(z)

< ∞ for at least one i. Then the process

reaches strong monopoly as in Definition 2.1 for some agent i ∈ J for all initial
conditions X(0) ∈ Nk.

Proof. Exponential embedding is used to define the DTMC (X(n) : n ∈ N0) in
terms of the jump chain of the CTMC (Y (t) : t ≥ 0) with waiting times τi(z)
and explosion times Ti as defined defined in Section 1.2. Note that for all i ∈ N ,

E [Ti] =

∞∑
z=Xi(0)

1

Fi(z)
≤ s(i) <∞,

which implies that E[Ti] < ∞ and therefore almost surely, Ti < ∞. For all
i 6∈ N almost surely Ti =∞.

The random variables {Ti}i∈[k] are independent and have a continuous distri-
bution without point masses, hence with probability 1 they are distinct. Suppose
i is such that

Ti = min
1≤j≤k

Tj .

Then for each j 6= i there exists a finite number p(j) such that

p(j)−1∑
z=Xj(0)

τj(z) < Ti <

p(j)∑
z=Xj(0)

τj(z).

Define

M = max
j 6=i

p(j)−1∑
z=Xi(0)

τi(z).

This means after time M all new balls will be of type i. Thus agent i receives
infinitely many balls whereas agents j 6= i receive p(j) balls and

P[strong monopoly for i] = P[∃p(j) : xj(∞) ≤ p(j) for all j 6= i] = 1. (6)
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By Definition 2.1 agent i achieves strong monopoly almost surely.

It will be convenient to describe the state of the system by proportions
χ = x

‖x|‖1 ∈ ∆k−1 where ‖x‖ =
∑k
i=1 xi is the total amount in the system. Here

∆k−1 is the standard simplex in Rk and
∑k
i=1 χi = 1 for each χ. More on this

will be explained in section 4. Note that strong monopoly for agent j implies
that χ(n)→ χ(∞) = e(j) as n→∞, which is also referred to as a weak form of
monopoly.
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3 Main result

In this section two results for the specific feedback function F (z) = αzβ will be
formulated and proven, in the limit of diverging initial conditions.

3.1 Concentration of explosion times

The first result is on the concentration of explosion times. This lemma will be
used to prove Theorem 3.2 on attractive domains.

Lemma 3.1. Consider a birth process (Y (t) : t ≥ 0) as defined in Section 1.2,
with rates F (z) = αzβ, β > 1 and α > 0. Let the initial condition be of the form
Y (0) = χ(0)n0 for some χ(0) ∈ (0, 1) and the explosion time T =

∑∞
z=Y (0) τ(z),

where τ(z) ∼ Exp(αzβ) are independent. Almost surely, T
E[T ] → 1 as n0 →∞.

Proof. First the expected explosion time is computed, where Y (0) = χ(0)n0.

E[T ] =

∞∑
z=Y (0)

1

αzβ

' n1−β0

α

1

n0

∞∑
z=χ(0)n0

1

(z/n0)β

' n1−β0

χ1−β
0

α(β − 1)

as n0 →∞. Then compute the variance of T
E[T ] .

V ar

[
T

E[T ]

]
=

1

n
2(1−β)
0

α2(β − 1)2

χ(0)2(1−β)

∞∑
z=Y (0)

1

α2z2β

=
(β − 1)2

(χ(0)n0)2(1−β)
1

n2β−10

1

n0

∞∑
z=χ(0)n0

1

(z/n0)2β

=
(β − 1)2

2β − 1

n1−2β0

n
2(1−β)
0

χ(0)1−2β

χ(0)2(1−β)

=
(β − 1)2

2β − 1

1

n0

1

χ(0)

This implies only a weak law of large numbers, to get an almost sure version a
fourth central moment is needed for a standard concentration argument. This
is computed using the cumulant generating function where the logarithm is
expanded with the Maclaurin series. This function is as follows.
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KT (θ) = log(E[eθT ])

=

∞∑
z=Y (0)

log
αzβ

αzβ − θ

=

∞∑
z=Y (0)

− log(1− θ

λz
)

=

∞∑
z=Y (0)

θ

αzβ
+

1

2
(
θ

αzβ
)2 +

1

3
(
θ

αzβ
)3 +

1

4
(
θ

αzβ
)4.

From this the fourth cumulant can be found which is the fourth derivative of
the cumulant generating function at θ = 0.

d4

dθ4
KT (θ)

∣∣∣
θ=0

=
6

α4

∞∑
z=Y (0)

1

z4β

= n1−4β0

6

α4

χ(0)1−4β

4β − 1
.

Then the fourth central moment can be found.

E
[
(T − E[T ])

4
]

= K4 + 3K2
2

= c1n
1−4β
0 + c2n

2−4β
0

E

[(
T

E[T ]
− 1

)4
]

= c1n
−3
0 + c2n

−2
0

≤ Cn−20 .

Now, using the Chebychev’s inequality for higher moments, the following is
obtained

P
[∣∣∣∣ T

E[T ]
− 1

∣∣∣∣ > ε

]
≤

E
[(

T
E[T ] − 1

)4]
ε4

≤ C

n20ε
4
.

Let ε = εn0
= 1

n
1/8
0

then,

P
[∣∣∣∣ T

E[T ]
− 1

∣∣∣∣ > εn0

]
≤ Cn−

3
2

0

Now define the sequence of events (An0
)n0∈N0

as An0
= {| TE[T ] − 1| > εn − 0},

where εn0
= 1

n
1/8
0

→ 0 as n0 → ∞, to use the Borel Cantelli lemma. As shown
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above P[An0 ] ≤ C
n2
0ε

4
n0

. By Borel Cantelli P[An0 for finitely many n0]=1 hence

P[∃n′ such that ∀n0 > n′ : | TE[T] − 1| ≤ 1

n
1/8
0

] = 1. So P[ T
E[T ] → 1] = 1 and thus

T
E[T] → 1 almost surely.

3.2 Strong monopoly and attractive domains

The next theorem characterizes the asymptotic dynamics of the urn model and
the attractive domains of the flow field in Section 4 can be determined.

Theorem 3.2. Consider the urn model (X(n) : n ∈ N0) with feedback func-

tions Fi(xi) = αix
β
i with β > 1, transition probabilities p(x, i) = Fi(xi)∑k

j=1 Fj(xj)

and initial conditions Xi(0) = bn0χi(0)c for some χ(0) ∈ ∆k−1. Then, as
n0 → ∞ the system exhibits strong monopoly and χ(∞) = e(j) with probability

1 if
χj(0)

1−β

αj
< χi(0)

1−β

αi
for all i 6= j. This partitions the simplex ∆k−1 into de-

terministic attractive domains for the corner points, which are convex polytopes.

Proof. For feedback functions Fi(xi) = αix
β
i with β > 1,

∞∑
xi=1

1

Fi(xi)
=

∞∑
xi=1

1

αix
β
i

<∞ for all i = 1, . . . , k.

By Theorem 2.1, the process reaches strong monopoly for some j ∈ {1, . . . , k}.
Then as n0 →∞ by Lemma 3.1, almost surely T

E(t) → 1 and
χj(0)

1−β

αj
< χi(0)

1−β

αi

implies that

E[Tj ] =
(n0χj(0))1−β

αj(β − 1)
<

(n0χi(0))1−β

αi(β − 1)
= E[Ti], (7)

for all i 6= j. Thus Tj < Ti almost surely and the system exhibits monopoly for
agent j as n0 →∞ and χ(∞) = e(j).

The simplex ∆k−1 of initial conditions is a convex set. Whenever this is
partitioned into two parts by a hyperplane, both parts are convex again. The
hyperplanes follow from equality in equation (7), which implies the linear con-
dition

χjα
1/(β−1)
j = χiα

1/(β−1)
i . (8)

These k(k−1)
2 conditions partition, by construction, the simplex into k attractive

domains for the corner points. Each of these domains is convex since these are
the result of multiple splits with hyperplanes. Since the sides of these convex sets
are flat, they are all polytopes. Hence the simplex is partitioned into attractive
domains for the corner points, which are convex polytopes.

For χ(0) on the boundary of an attractive domain, where equation (8) holds
for some i and j, χ(∞) = e(i) and χ(∞) = e(j) are both possible outcomes
and the corresponding probabilities depend on lower order scaling of the initial
conditions.
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4 Flow fields

Flow fields can be used to find and visualize the stationary points and domains
of attraction. Recall that n0 is the fixed initial amount of balls. In order to find
the flow fields, the amounts of balls of each colour are translated to proportions
as follows,

χi(n) =
Xi(n)

n0 + n
∈ [0, 1], (9)

where χ(n) = (χ1(n), . . . χk(n)) and
∑k
i=1 χi(n) = 1. Then for given n0 ∈ N

the processes (X(n) : n ∈ N0) and (χ(n) : n ∈ N0) are equivalent. The process
of χ(n) has state space given by the standard simplex

∆k−1 = {χ ∈ [0, 1]k : χ1 + . . . χk = 1, χi ≥ 0 for i = 1, . . . , k}. (10)

Then, note that

χ(n+ 1) =
X(n) + e(n+ 1)

n0 + n+ 1

=
(n0 + n)χ(n) + e(n+ 1)

n0 + n+ 1

=

(
1− 1

n0 + n+ 1

)
χ(n) +

e(n+ 1)

n0 + n+ 1
,

where e(n + 1) is the random increment of the process at time n + 1. Hence
e(n+1) = e(i) with probability p(x, i) as in equation (1). A direct computation,
see Costa and Jordan [3], leads to,

χ(n+ 1)− χ(n) =
e(n+ 1)− χ(n)

n0 + n+ 1
=

1

n0 + n+ 1
(G(χ(n) + ξ(n+ 1). (11)

The right-hand side of equation (11) consists of two parts. The deterministic
part G(χ(n)) will form the vector field and a noise part, ξ(n + 1) with mean
zero. These two parts are given by,

G(χ(n)) = E[e(n+ 1)|χ(n)]− χ(n), (12)

and
ξ(n+ 1) = e(n+ 1)− E[e(n+ 1)|χ(n)], (13)

where indeed E[ξ(n+ 1)|χ(n)] = 0. Now let γn = 1
n0+n+1 , then

χ(n+ 1)− χ(n) = γn(G(χ(n)) + ξ(n+ 1)). (14)

This equation (14) can be seen as a numerical approximation with step size
γn for the ordinary differential equation (ODE) dχ/dt = G(χ). For a small
enough γn the ODE and asymptotic dynamics of (χ(n))n∈N0

are connected, this
is called the dynamical system approach [2]. By Costa and Jordan [3] there
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exists a subset of equilibria for the flow which is induced by the vector field.
Assuming that Fi : [0.∞)→ [0,∞) are homogeneous and suppose the increment
at time n + 1 is of type i then since the distribution of e(n + 1) is p(x, i), the
vector field of equation (12) is given by,

Gi(χ) =
Fi(χi)∑k
j=1 Fj(χj)

− χi (15)

for each i = 1, . . . , k, where again Fi is the feedback function. The feedback
function has to be homogeneous so that the rescaling factors cancel in the ratio.
In particular for homogeneous feedback functions Fi, Fi(0) = 0.

In section 5 it will be shown why only the deterministic part of equation
(14) is relevant for the vector field.

4.1 General properties

In this subsection some general properties of the flow field with feedback function
2 will be given. In the following subsections these properties will be discussed
in the cases of k = 2 and k = 3.

4.1.1 Stationary points

Using the vector field the stationary points of the model can be found. A point
is stationary whenever the vector field equals zero in that point. For general

k, Gi(χ) =
αiχ

β
i∑k

j=1 αjχ
β
j

− χi, so the corner points are always stationary with

Gi(e
l) = δi,l − δi,l = 0 for all i, l. Existence of other stationary point, in the

interior of the simplex, depends on the αi and β.

First set Gj(χ) = 0 for all j and rewrite this as
αjχ

β−1
j∑k

i=1 αiχ
β
i

= 1. This suggests

αiχ
β−1
i = αjχ

β−1
j (16)

for all i and j.

Remark. For the interior stationary point of the flow field, all expected explosion
times are equal.

Next, assume χj = α
1/(1−β)
j , this is correct for all β 6= 1 and solves the

equation above for all pairs of i and j since the equation, 1 = 1 will be obtained.
Then the solution can be is renormalized and for the stationary point in the
interior of the simplex,

χj =
α
1/(1−β)
j∑k

i=1 α
1/(1−β)
i

(17)

is obtained. This exists for β 6= 1 and k ≥ 2.
In Section 5.2 a Lyapunov function is used to show, there are no limit cycles

and the system actually converges to one of the stationary points.

12



4.1.2 Stability

The stability of the stationary points will determine whether a point is attracting
or not and can be determined with the Jacobian or a local analysis. For β = 1
the stability is discussed in Section 5.2.

For β > 1 and β < 1 the flow field around the corner points will be looked
at to determine the stability in these points. The case of k = 2 will be given
which can be extended to general k. In the case of k = 2, instead of looking
at (1,0), the point (1 − ε, ε) for small ε is taken. This point is substituted into
equation (18) and the following is obtained

G(1− ε, ε) =

(
ε− 1 + α2(1−ε)β

α1εβ+α2(1−ε)β

−ε+ α1ε
β

α1εβ+α2(1−ε)β

)
,

and for small ε→ 0 to leading order,

G(1− ε, ε) '

(
ε− α1ε

β

α2

−ε+ α1ε
β

α2

)
.

Then for β > 1 the first entry is positive and the second is negative. For β < 1
it is the other way around. Hence this means for β > 1 the point (1,0) is at-
tracting and for β < 1 it is unstable. The same goes for the other corner point
(0,1).

This can be generalized to k components. The point (1−ε, 0, . . . , ε, . . . , 0) will
be considered, close to (1, 0, . . . , 0), where ε can be at any entry χi, i = 2, . . . k.
This point is then again substituted in the function for the vector field, this
time G(χ). Most entries will be zero, except for G1(χ) and Gi(χ), those will
be similar to the case of k=2. Which means in general, for β > 1, G1(1 −
ε, 0, . . . , ε, . . . , 0) > 0 and Gi(1− ε, 0, . . . , ε, . . . , 0) < 0 for i 6= 1 and thus is the
corner point attractive. Whereas for β < 1, G1(1 − ε, 0, . . . , ε, . . . , 0) < 0 and
Gi(1− ε, 0, . . . , ε, . . . , 0) > 0 for i 6= 1, hence the point is unstable.

The stability of the stationary point inside the simplex will be opposite of
that of the corner points and can be determined by a standard analysis of the
Jacobian of G.

4.2 Flow field of the model for k=2

In this subsection the flow induced by a feedback function will be illustrated for
a two dimensional model. Considering the case where the feedback function is
defined as Fi(χi) = αiχ

β
i and k = 2, hence i = 1, 2. This results in the two

dimensional vector field

G(χ1, χ2) =

 α1χ
β
1

α1χ
β
1+α2χ

β
2

− χ1

α2χ
β
2

α1χ
β
1+α2χ

β
2

− χ2

 (18)
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From this it can be seen immediately that both (1, 0) and (0, 1) are stationary
points as well as

χ =

 α
1/(1−β)
1∑k

i=1 α
1/(1−β)
i

α
1/(1−β)
2∑k

i=1 α
1/(1−β)
i

,

 (19)

as found in equation (17). Next, the stability of these stationary points will be
illustrated for β > 1 and β < 1.
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1.0
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χ
2

(a) β = 0.5

0.0 0.2 0.4 0.6 0.8 1.0

0.0
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χ
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(b) β = 1.5
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0
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0.4

0.6
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(c) β = 2.5

Figure 1: Flow fields for α1 = 1, α2 = 2 and given different β values. For
β < 1 in (a) the corner points of the simplex ∆1 are unstable and there exists
a stable attracting stationary point in the interior of simplex. This stable point
is closest to the corner of the component with largest value for α. For β > 1
in (b) the corner points of the simplex are attracting and the stationary point
in the interior is unstable. The unstable point is closest to the corner point of
the component with smallest value for α. For larger values of β > 1 in (c) the
stationary point in the interior moves to the middle of the simplex since the
ratio between α1 and α2 becomes less significant.
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In Figure 1 the vector fields are given corresponding to the values α1 = 1
and α2 = 2. The simplex ∆ is given by the black line, with the stable and
unstable stationary points denoted by black and white dots respectively. In
Figure 1a clearly the two corner points (0,1) and (1,0) are unstable points and
there is a stable attractive point at (0.2, 0.8), which is computed using equation
(19). This last attractive point can also be determined using the linear relation
in equation (8) because in this case of k=2 the simplex is only divided once,
hence the stationary point lies on the border of the two domains. Due to the
choice for α1 and α2 the stable attractive point lies closer to (0,1) in the case
of β > 1. This is because the α corresponding to the χ2 component is larger,
which means that that component has a higher fitness and thus an advantage
over χ1. Hence the attractive point lies closer to (0,1).

The value for β is changed to β = 1.5 > 1 and figure 1b is found. It can
be seen from figure 1b that the corner points in ∆1 are now stable attractive
points, hence black dots. However, the third stationary point has moved to (0.8,
0.2) and is no longer attractive but is now unstable. Since still α2 > α1 the
χ2 component again has a higher fitness, this can be seen from the attractive
domain in the figure. The unstable point has moved towards (1,0), leading to
a larger attractive domain for the χ2 component than the χ1 component. The
attractive domain of (0,1) is in this case the part of the line χ1 + χ2 = 1 from
(0,1) to the stationary point around (0.8, 0.2).

To see what happens when a higher value for β is considered as well, Figure
1c with β = 2.5 is given. In comparison to figure 1b the corner points stay
attractive, however only the position of the unstable point has changed, which
is due to the higher value for β. This stationary point has moved towards the
middle of the simplex, which means the attractive domain of (0,1) decreases but
that of (1,0) increases. Since β is an exponent it is of large influence on the flow
field. The higher β is, the less significant the difference in α1 and α2 becomes,
which results in the unstable point moving towards the middle.

These flow fields for k=2 can easily be extended to k=3. The fields that are
obtained will be explained next.
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4.3 Flow field of the model for k=3

The vector field for the case of three components is very similar to G for two
components and is given by the function

G(χ1, χ2, χ3) =


α1χ

β
1

α1χ
β
1+α2χ

β
2+α2χ

β
3

− χ1

α2χ
β
2

α1χ
β
1+α2χ

β
2+α2χ

β
3

− χ2

α2χ
β
3

α1χ
β
1+α2χ

β
2+α2χ

β
3

− χ3

 . (20)

The vector field will be plotted again and in order to do so χ3 will be rewrit-
ten as χ3 = 1−χ1−χ2. Furthermore χ1+χ2 ≤ 1 so that, in general,

∑
i χi = 1.

This will result in a triangular flow field in R3 which can be drawn as a triangu-
lar field in R2. An example of this field is given in figure 2a. Surely the corner
points are stationary points again, hence in this case those are (1,0,0), (0,1,0)
and (0,0,1). The stability of these points depend on β, as determined above.
Two examples will now be given, showing the difference between β < 1 and
β > 1.

(a) β = 0.5

(0,1,0)

(0,0,1) (1,0,0)

G1=0

G2=0

G3=0

(b) β = 2.5

Figure 2: Flow fields for α1 = 1, α2 = 2, α3 = 1 and given different β values.
For β < 1 in (a) the corner points of the simplex are unstable stationary points.
There exists a stable stationary point as in (17) in the interior of the simplex,
which is closest to the corner point of the component with the highest value for
α. For β > 1 in (b) the corner points of the simplex are stable attractive points.
The attractive domains for each of these points are marked by black lines. In
the interior of the simplex is an unstable stationary point, furthest away from
the component with the highest value for α.

Contrary to the case of k=2 where the stationary points were on a line, the
simplex is now a triangular region in ∆2. In Figure 2a, β = 0.5 < 1 is considered
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again, now with α1 = 1, α2 = 2 and α3 = 1. The corner points are stationary
and not attracting but the point (17) inside the domain is. This time computing
two of the relations will give approximately (0.17, 0.67, 0.17). It is closer to the
(0,1,0) α2 is the largest and hence the most fit to win. As one can notice, the
field can be interpreted in a similar way to the case of k=2, however a plane is
now considered instead of a line. Then for β > 1 Figure 2b is obtained.

As could be expected for β > 1, again the corner points are attractive sta-
tionary points and there is another stationary point inside the triangle. Now if
the attractive domains of the corner points are determined, instead of a line as
in the case of k=2, regions are found corresponding to the different components.
These regions intersect, and using the expected explosion times of each compo-
nent, the boundaries of the regions can be found, as was discussed in section
3.2. These boundaries are marked by black lines and it can be seen that the
sides are flat, hence indeed these domains are convex polytopes.
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5 Asymptotic dynamics

In the section two results are given to substantiate the asymptotic behavior that
was described before.

5.1 Noise term of the flow field

To show how the noise of the flow field in equation (14) vanishes, the time will
be rescaled by the initial condition n0, which will be send to infinity.

Theorem 5.1. Let (X(n) : n ∈ N0) be the urn model with transition proba-
bilities p(x, i) and initial condition Xi(0) = bn0χi(0)c for some χ(0) ∈ ∆k−1.
Then the rescaled process

(
χ(btn0c) : t ≥ 0

)
, extended to continuous time as a

step function, converges to a limit process
(
χ∞(t) : t ≥ 0

)
as n0 → ∞. This

process is deterministic and solves the following system of ordinary differential
equations (ODE),

d

dt
χ∞(t) =

G(χ∞(t))

1 + t
with χ∞(0) = χ(0). (21)

Proof. First the classical tightness criterion as stated by Williams in proposi-
tion C.3 [8] is checked to guarantee that the sequence of rescaled processes has
limit points. This criterion consists of two parts, starting with the criterion on
boundedness.

The jump size γn+1 is bounded in the supremum norm, ‖χ(btn0c + 1) −
χ(btn0c)‖∞ < 1

btn0c+n0
, hence the first criterion is satisfied. For the second

criterion the number of jumps in a time interval [t, t+ ε) is considered, this has
order n0ε which means the noise is bounded by ε. Then as ε → 0 the second
criterion is fulfilled as well. This means it is impossible for a lot of jumps to be
accumulated in a small time interval. Furthermore, the jump size tends to 0 as
n0 →∞ which means the limit paths will be continuous. Thus the sequence of
processes has weak limit points on path space, which are again proccesses with
continuous paths. Now it will be shown that these limit points satisfy the ODE
since the noise term will vanish.

For 0 < t1 < t2,

χ(t2n0)− χ(t1n0) =

t2n0−1∑
n=t1n0

γn+1G(χ(n)) +

t2n0−1∑
n=t1n0

γn+1ξ(n+ 1) (22)

First the deterministic part will be worked out.

t2n0−1∑
n=t1n0

γn+1G(χ(n)) =
1

n0

t2n0−1∑
n=t1n0

1

1 + n/n0 + 1/n0
G(χ(

n

n0
n0)).
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Now sending n0 to infinity, then n
n0
→ t and 1

n0
→ 0 hence,∫ t2

t1

1

1 + t
G(χ∞(t)) dt,

where χ∞(t) is a limit of the rescaled processes along a subsequence.

Secondly the noise part. Let H =
∑t2n0−1
n=t1n0

γn+1ξ(n+1). It is already known
that E[H] = 0 and a bound on the variance is needed. It is obvious that ξi(n) ∈
[−1, 1] for each i = 1 . . . , k, so then E[|ξi(n)ξj(m)|] ≤ 1, for all i, j and n,m.
Hence the following is obtained,

E[H2
i ] ≤ 1

t2n0−1∑
n=t1n0

1

(n+ n0 + 1)2

=
1

n0

1

n0

t2n0−1∑
n=t1n0

1

(1 + n/n0 + 1/n0)2
.

Again, as was done in the computation of the deterministic part, letting
n0 →∞ an integral is found, of which another bound will be obtained.

1

n0

t2n0−1∑
n=t1n0

1

(1 + n/n0 + 1/n0)2
→
∫ t2

t1

1

(1 + t)2
dt ≤

∫ ∞
0

1

(1 + t)2
= 1.

The bound that is now obtained is independent of t1 and t2 and is given
by, E[H2

i ] ≤ C
n0

. When again n0 → ∞, the result is that E[H2
i ] → 0. To see

that indeed the noise vanishes it is written as the standard deviation times a
standardized random variable U, thus Hi ' C√

n0
U which goes to 0 in probability,

as n0 goes to infinity, for all t1, t2 > 0.
Now for all t2 > t1 > 0, as n0 →∞ along a suitable subsequence,

χ(t2n0)− χ(t1n0)→ χ∞(t2)− χ∞(t1) =

∫ t2

t1

1

1 + t
G(χ∞(t)) dt, (23)

where the noise part has vanished.
Thus as a result, (χ(n0t) : t ≥ 0) → (χ∞(t) : t ≥ 0) in distribution as

n0 → ∞ along all subsequences, where (χ∞(t) : t ≥ 0) is deterministic and is
the unique solution of the system of ordinary differential equations (21).

Remark. The interpolation by step function is not essential, any other linear
or sufficiently regular interpolation between discrete time points can be used as
well.

Remark. In (21), increasing t in the ′ 1
1+t

′
term slows down the dynamics of the

flow field since the changes in fractions become smaller.
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5.2 A Lyapunov function

To be sure there are no limit cycles and the system of ODE’s (21) actually con-
verges to one of the stationary points, the Lyapunov function will be analyzed.
It has to be checked that the Lyapunov function is non-negative, and equals 0
if and only if χ is a stationary point with G(χ) = 0. For simplicity the factor
1

1+t , on the right-hand side of equation (21), can be ignored here. In analogy to
results in [3] the Lyapunov function is given by

L(χ1, χ2, . . . , χk) = −(χ1 + χ2 + . . .+ χk) +
1

β
log(α1χ

β
1 + α2χ

β
2 + . . .+ αkχ

β
k).

This is a strict Lyapunov function and

∂L

∂χi
=

1

χi
Gi for all i.

Let χ(t) = (χ1(t), χ2(t), . . . , χk(t)) be an integral curve of G then,

d(L ◦ χ)(t)

dt
=

k∑
i=1

∂L

∂χi

dχi(t)

dt

=

k∑
i=1

χi(t)

(
∂L

∂χi

)2

=

k∑
i=1

1

χi
Gi(χ)2 ≥ 0.

The equality above only holds when G(χ) = 0. By Costa and Jordan [3] this
means there are only single stationary points. Hence these are the corner points
and a point in the interior of the simplex.

The stability of the model for β < 1 and β > 2 was discussed in Section 4.1.2.
In the case of β = 1 the condition for all pairs to be equal, in equation (16), is
αi = αj and every point in the interior of the simplex will be stationary. In this
case the flow field vanishes and the dynamics are given by only the fluctuations.
However, if not all αi are equal, all convex combinations of corner points with
maximal α are attractive stationary points, which could be a single point in case
of a unique maximal α. Two examples for the case of k=3 are given in Figure
3.
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(a) α1 = 1, α2 = 2 and α3 = 1
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(b) α1 = 2, α2 = 2 and α3 = 1

Figure 3: Flow fields for β = 1 are given for different values of the αi. In 3a,
α2 has the highest value and is thus the only attractive stationary point, denoted
by a black dot. The other corner points are unstable. In 3b, α1 and α2 have
the highest value, this results in attractive corner points for components 1 and
2 and a convex combination between those, denoted by a black line.

These figures clearly show the flow fields for β = 1. When a single component
has the highest fitness as in Figure 3a this will be the only attractive point
and this component will certainly reach monopoly. However when multiple
components have the value of the highest fitness, the corner points of these
components will all be attractive. Aside from these attractive corner points,
the area of the simplex between those corners will be attractive as well, this is
the black line in Figure 3b. This means a monopoly can be reached or a stable
equilibrium on the attractive region between and on the corner points.
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6 Discussion

The main question that has been answered in this report is, “How does the
generalized Pólya urn model, with fitness and non-linear reinforcement behave
when time goes to infinity?”. The generalized Pólya urn model can be used to
describe the probable outcomes of competitions and in this report general feed-
back functions for the model were considered, as well as a particular feedback
function.

First a proof was given for the well-known result that for general feedback
functions Fi(z) satisfying∑∞
z=1

1
Fi(z)

< ∞, the process will certainly reach a monopoly but the winner

will be random. It is likely that the larger Fi(Xi(0)) is, the higher the chances

are that agent i wins. For the specific feedback function Fi(xi) = αix
β
i with

β > 1, monopoly is indeed reached. To describe the behavior of the model with
this feedback function the dynamics were analyzed of the component fractions
in the standard simplex, in the limit of a diverging initial number of balls in the
urn.

In the case of β > 1, the corner points are stable and attractive. In this case
a monopoly will always be reached. The simplex will be partitioned into deter-
ministic convex polytopes and there exists an unstable stationary point in the
interior of the simplex. This point depends on the αi and β, and is on the inter-
section of the attractive domains. The relation between the fitness and initial
condition is very important and will determine who wins the competition. The
component with largest value for χi(0)β−1αi will eventually reach monopoly.
For larger values of β the value for αi will eventually be less significant.

For β < 1 the model reaches an equilibrium. This is an attractive stable
point in the interior of the simplex of the flow field. This point is determined by
the fitness of the components in the model. Components with a higher fitness
have a larger chance of winning. The corner points are unstable in this case,
which means none of the components have a chance of reaching monopoly.

Lastly, for β = 1 every point in the interior of the simplex is stationary when
all the components have equal fitness. When the components have distinct fit-
ness there are attractive regions. If there exists a single component with largest
fitness, it can reach monopoly.

For future research it could be interesting to focus more on the losing com-
ponents and determine the total amount they receive, as was also considered
for another model by Oliveira [6]. Another interesting question is what happens
to the model when the fitness of the components change over time, the losing
component could become much fitter than the winning component. Will this
have a significant influence on the model when time goes to infinity?
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