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Abstract
As autonomous driving systems advance, ensuring
the robustness of underlying decision-making algo-
rithms becomes increasingly critical. This study
assesses the performance and reliability of two
reinforcement learning models, Deep Q-Network
(DQN) and Quantile Regression DQN (QR-DQN),
within the context of a simulated highway envi-
ronment. While DQN has been widely adopted
for its simplicity and effectiveness in discrete ac-
tion spaces, it suffers from overestimation bias and
lack of performance in out-of-distribution environ-
ments. QR-DQN addresses some of these limi-
tations by modeling the distribution over returns
using quantile regression, offering a superior rep-
resentation of uncertainty. This research focuses
on two core objectives: (1) implementing a risk-
averse decision-making strategy using the quantiles
of QR-DQN to enhance safety and reliability, and
(2) evaluating the robustness of DQN and QR-DQN
as the test environment deviates from training con-
ditions. Results show the limitations of DQN and
demonstrate QR-DQN’s higher robustness in dif-
ferent environments. Moreover, a better perform-
ing alternative of QR-DQN is presented, employ-
ing a conservative behaviour through the use of its
quantiles. This puts emphasis on the implemented
model’s trade-off between maximising rewards and
avoiding collisions, providing a safer approach.

1 Introduction
With the field of Autonomous Driving (AD) advancing in
recent years [1], the need for reliable and robust Machine
Learning algorithms becomes more significant. Deep
Reinforcement Learning (Deep RL) has been showing
considerable promise in the development of intelligent
driving agents that are capable of navigating complex traffic
scenarios [2]. A widely adopted Deep RL approach is Deep
Q-Network (DQN) [3], capable of effective operation in
environments with discrete action spaces [4]. However, it
suffers from overestimation bias, a phenomenon in which the
agent systematically learns to overestimate the true values
of certain actions, caused by the maximisation operator.
Moreover, performance reduction can be seen in out-of-
distribution or adversarial scenarios [5].

In order to address these limitations, one distributional
model introduced is Quantile Regression Deep Q-Network
(QR-DQN) [6]. Unlike DQN, which estimates a single
expected return (i.e. the mean of the return distribution),
this model uses quantile regression to estimate the quantile
values of the return distribution. Although this allows for a
more comprehensive understanding of the return distribution,
QR-DQN still computes the mean when choosing its actions.
Without utilising the quantiles when deploying the policy,
the model becomes similar to DQN. However, the quantiles
can be used to, in fact, train policies with different risk sen-
sitivities. Even though QR-DQN has shown superior results

in benchmark tasks compared to DQN, its effectiveness
under variable and progressively differing environmental
conditions has not been sufficiently explored. Specifically,
there is room to understand how the quantiles of QR-DQN
can be utilised to improve safety and robustness through
employing a risk averse approach.

This study aims to evaluate the robustness of these models
in a highway scenario using HighwayEnv, an AD simulation
environment [7]. This environment supports Deep RL
model training and testing, allowing environment parameter
configuration, which makes it suitable for this experiment.
The focus of this research is two-fold: (1) analysing the
results of implementing a conservative decision-making
approach utilising QR-DQN’s quantile distribution, and (2)
measuring performance degradation of DQN, QR-DQN and
the proposed implementation in test environments which
differ from the training setting. Through this, the goal is to
contribute to the understanding of each model’s performance
and robustness in dynamic environments and provide an
implementation that produces better performance by using
QR-DQN’s quantiles.

In order to conduct this study, a background research on
the models used and related works is done to understand
the current state of this topic. After that, an experiment
is carried out by training and testing the models in the
highway environment. Firstly, the Risk-Averse QR-DQN
is implemented, presenting the modification made from
the original model. Then, the environment configuration is
adapted for this experiment, defining the parameters that will
later be changed in testing. Lastly, the models are trained
using multiple seeds, each of them then tested in various
environments to assess their robustness.

The subsequent sections are organized as follows. Section 2
offers an overview of the models used in this study and sum-
marises some related works. Section 3 describes the method-
ology used for this experiment, explaining the configurations
used for the models and environments. It further provides in-
sights into the custom QR-DQN policy implementation. Fol-
lowing that, Section 4 presents the results from training and
testing and discusses the findings. Finally, Section 5 offers
the conclusion and a look into possible future work.

2 Literature Review
In this section, an overview of the models used in this ex-
periment are presented. In addition, related experiments or
studies are mentioned, giving a summary of their results and
findings.

2.1 Deep Q-Networks
The Deep Q-Network (DQN) is fundamentally based on
the Q-Learning algorithm [8]. This algorithm aims to
iteratively learn an optimal action-value function Q(s, a),
that maximises the expected future reward for taking action
a in given state s. Its return is an estimate of the expected
cumulative reward for taking action a in state s. However,



due to its requirement of maintaining a value table for all
state-action pairs, Q-Learning becomes inefficient in dealing
with large or continuous state spaces.

To overcome this limitation, Mnih et al. [3] and [9] intro-
duced the DQN model, which makes use of deep neural net-
works to approximate the Q-function. Its introduction rep-
resented a major breakthrough in Deep RL, enabling agents
to effectively learn policies straight from high-dimensional
input. The underlying algorithm takes as input a state, return-
ing a set of Q-values for all possible actions. Crucial to its
stability and performance, DQN incorporates experience re-
play and target networks. Experience replay uses a memory
buffer to store experiences at each step in the form of state,
action, reward and next state. The training is done on ran-
dom small batches of experiences from the buffer in order to
break the correlation between consecutive data and improve
sample efficiency. Target networks are introduced in DQN
as secondary neural networks, used to calculate the target Q-
values, being periodically updated to mitigate oscillations and
divergence in learning. The Bellman’s equation for DQN is
showcased in equation (1),

Q(s, a; θ) = r + γmax
a′

Q(s′, a′; θ′) (1)

where:
• Q(s, a, θ) is the current state value with weight θ,
• r is the reward received for taking action a in state s,
• γ is the discount factor that determines how much future

rewards are taken into account, and
• maxa′ Q(s′, a′; θ′) is the maximum value for state s’

considering all possible actions a’, having weight θ′.

To train the neural network, a loss function is defined by the
squared difference of the Bellman equation, as in the follow-
ing equation (2):

L(θ) = E
[
(r + γmax

a′
Q(s′, a′; θ′)−Q(s, a; θ))2

]
(2)

Despite its performance and success, because of its reliance
on the expected return, DQN has shown limitations in the
form of overestimation bias and poor performances in uncer-
tain environments [5].

2.2 Quantile Regression Deep Q-Network
To overcome the limitations of DQN in modelling uncer-
tainty, Dabney et al. [6] proposed a distributional reinforce-
ment learning approach, named QR-DQN. This new model
approximates the value distribution over possible returns in-
corporating quantile regression, compared to the single ex-
pected return for each state-action pair provided by DQN. In
their paper, Dabney et al. propose the following changes from
the base model of DQN when implementing the new model.
A distributional variant of the Bellman’s optimality operator
is used to estimate a state-action value distribution, as given
in the following equation (3):

T Z(x, a) = R(x, a) + γZ(x′, a′), (3)

x′ ∼ P (·|x, a), a′ = argmax
a′

Ez∼Z(x′,a′)[z].

Moreover, the DQN loss function is replaced by the Huber
quantile loss (4), a variation of the Huber loss [10] defined as
in equation (5).

ρκτ (u) = |τ − δ{u<0}|Lκ(u). (4)

Lκ(u) =

{
1
2u

2, if |u| ≤ κ

κ(|u| − 1
2κ), otherwise

. (5)

Finally, RMSProp [11] has been swapped with Adam [12]
as the optimisation strategy. The output layer of the neural
network architecture of DQN was also adapted to be of size
|A| × N , where A is the action space and N is the quantile
target hyperparameter. This approach has been shown to out-
perform DQN on the Atari 2600 benchmark [6] by learning a
distribution over possible future rewards using multiple quan-
tile regressions. Instead of considering only the expected re-
turn like DQN, it estimates the full possible return distribution
by predicting quantile values. The network is trained to min-
imize the quantile regression loss, which compares the pre-
dicted quantiles to target quantiles using the Huber quantile
loss. Through the use of quantiles, QR-DQN gathers more
subtle information about the variability and risk of each ac-
tion, making it more efficient in uncertain environments.

2.3 Related Studies
Prior to conducting the experiment, a review of existent
studies and results was carried out. Most relevant studies
found are summarised in this subsection. In one study [13],
an experiment on DQN is performed using three environ-
ment based driving modes: safe, normal and aggressive,
determined by the ego vehicle speed range. Each variant
was trained for 12000 timesteps in HighwayEnv, then tested
for 20 episodes. Results were measured by the percentage
of completed episodes and total reward obtained. The safe
mode achieved the highest reward (32) in training, followed
by normal (28) and aggressive (26). This trend was con-
firmed in testing, where safe mode obtained highest reward
(35.7), then normal (33.42) and lastly aggressive (31.85).
However, completion rates were highest for aggressive mode
(95.875%), then normal (94.625%) and safe (90.750%). The
study shows that DQN struggles in challenging and dynamic
driving scenarios.

Another study [14], examined DQN applied to autonomous
vehicles in a highway simulation environment with varying
levels of traffic density. Following training with 20000
timesteps and 40 vehicles, the model was then tested using
in turns 20, 40, 60, 80 vehicles, for 20 episodes each. The
results show a decline in total rewards with higher densities,
with 20 vehicles/frame achieving 35.6117 and success rate
of 90.075%, all the way down to 19.3024 and 61% for 80
vehicles. The study emphasises the limitations of DQN when
it comes to adapting to denser environments.

In a related study [15], DQN and Proximal Policy Opti-
mization (PPO) model are compared in increasing lane and
traffic density scenarios in HighwayEnv. The experiment is
undertaken using 2 to 8 lanes with vehicle count is 10 times



the lane count for each test. The results show DQN having
an inconsistent performance as the number of lane increases,
showcasing its limitations to perform in changed environ-
ments. However, PPO presents progressive improvements
proving its efficiency and capability to navigate scenarios
with higher number of lanes. These findings are confirmed
in a different study [16], where the effectiveness of DQN and
PPO was compared in different scenarios using the CARLA
environment [17]. One of the scenarios was a highway
with medium traffic density in foggy weather condition.
The training and testing is done on a 70%/30% data split
with no cross-validation. PPO outperformed DQN in all
metrics, while requiring more computational load. The study
highlights that PPO can get higher results, performing better
than DQN in different scenarios.

One paper proposes the Implicit Quantile Network (IQN)
[18] as a model that enables risk-sensitive policy learning.
Unlike QR-DQN, which relies on fixed discrete approxi-
mations, IQN learns a continuous quantile function. This
method improves fidelity and data efficiency, outperforming
existing approaches in benchmark tasks. Despite its simple
architecture, IQN allows for exploration of risk-sensitive
behaviours, showcasing competitive results compared to
state-of-the-art agents.

Most of the studies found and presented compare DQN
against other models in different AD environments. How-
ever, a study that implements a risk-averse QR-DQN algo-
rithm utilising the model’s quantiles has not been found, a
gap which this paper aims to cover. Furthermore, the goal
is to compare this implementation’s performance against the
DQN and QR-DQN models.

3 Methodology
This section outlines the methodology taken in this study. It
includes the environment configuration and experiment setup
for comparing the robustness of DQN and QR-DQN in a
highway simulation environment. Furthermore, the imple-
mentation of a risk-averse policy in the QR-DQN model is
given, describing the changes made. The code used for run-
ning this experiment and all the necessary hyperparameters
are accessible online, in a GitHub repository [19], which can
be used for reproducing this study.

3.1 Risk-Averse QR-DQN
To promote a risk-averse behaviour in QR-DQN, the standard
method of computing the expected return is modified. Where
base QR-DQN averages over all quantiles of the predicted
return distribution, the proposed implementation alters the
algorithm to consider only a smaller, lower subset of the
quantiles. This adjustment determines the policy to favour
more conservative decisions, choosing actions with higher
return in the tails of their return distribution. Thus, the agent
aligns with a risk-averse approach while still utilising the
distributional nature of QR-DQN.

The base models used in this study are taken from Stable
Baselines 3 (SB3) [20], a Python library that offers reliable

implementations of RL algorithms. In order to implement the
risk-averse behaviour, a couple of changes need to be made
to the QR-DQN model. These are made by extending the al-
ready existing classes and methods offered in the SB3 library.
The base model takes the ’n quantiles’ parameter which
represents the number of quantiles QR-DQN tries to learn. To
be able to control how much of the quantile is to be consid-
ered, the parameter ‘quantile fraction’ is introduced in
the initialisation of the model. After verifying the value of the
parameter (i.e., resides in the range of [0, 1]), the ’predict’
method takes it into account when producing its return value,
ensuring that the model considers at least one quantile. The
SB3 QR-DQN implementation uses the following equation
(6) to predict next actions:

argmaxa (mean(n quantiles)) (6)

which returns action a with the maximum q value, that is cal-
culated based on the quantile mean. In the proposed imple-
mentation, the return of the ’predict’method is changed to
incorporate the newly introduced parameter when determin-
ing the next action. as shown in equation (7).

k = n quantiles ∗ quantile fraction,

argmaxa (mean(k)) (7)

This change causes the quantile mean to be calculated over
a reduced subset of quantiles, resulting in action a being
determined by considering the maximum q value over this
lower range mean.

The simple nature of this implementation allows for
easy manipulation of the quantile fraction that is con-
sidered when predicting next actions. This way, the
‘quantile fraction’ can be tweaked to find a balance be-
tween conservative behaviour and reward maximisation. The
goal is to increase safety by lowering the collision rate with
minimum effect on the performance of the model. To test
this out, two models are used in this study, specifically with
‘quantile fraction’ values 0.1 and 0.4. This choice is
made in order to compare two levels of conservativeness, de-
termined by the scope and time constraint of this study.

3.2 Environment Configuration
Among the widely used environments for autonomous driv-
ing simulations, HighwayEnv [7] is chosen for this experi-
ment. While it provides multiple scenarios, the focus of this
study is on the highway scenario (Figure 1), which can be
configured to fit different requirements.

Figure 1: Screenshot of HighwayEnv’s default highway scenario

Using the base environment provided in the repository, named
‘highway-fast-v0’, further changes were made to fit our ex-
periment description. The following parameters have been



configured from the default settings, used throughout the
training phase:

• ‘simulation frequency’= 5 (Hz): sets the number
of updates per second made during the simulation, al-
lowing for less computation and a faster run;

• ‘lanes count’= 3: determines the number of lanes
used in the simulation;

• ‘vehicles count’= 50: the number of uncontrolled
vehicles rendered in a simulation;

• ‘speed range’= [14, 30] (m/s): the speed range the
ego vehicle can drive in, set to represent common real-
world highway speeds (50 to 108 km/h).

To study the robustness and performance of the models
in progressively changing environments, we made inde-
pendent changes in the environment variables, such as
’lanes count’, ’vehicles density’ and additionally,
the ’other vehicles type’ parameter. More details on
the testing settings is provided in section 3.3, under Model
Evaluation. The reward system was kept the same as in
training to ensure a correct understanding of the model’s
robustness in new environments.

The possible actions the agent can take to explore and max-
imise rewards are: changing one lane to the left, changing on
lane to the right, remain idle, accelerate or slow down. Re-
ward values are kept the same as defined in the default con-
figuration, with the total reward showcased in equation (8):

Ri = rright lane
i + rcollisioni + rspeedi ,

Total reward =

n∑
i=1

Ri (8)

where:
• r rightlane ∈ {0, 0.1} : reward given to the agent when

the vehicle is on the rightmost lane;
• r speed ∈ [0, 0.4]: reward obtained based on speed,

mapped to the ego vehicle’s speed range configured pre-
viously;

• r collision ∈ {0,−1}: reward given if ego vehicle
crashes into another vehicle;

• i = current timestep.
Lastly, the elements of randomness are explicitly controlled
and documented, making it easier for the study to be repro-
duced. To keep it simple and consistent, during each run
the same seed as the model’s is used for setting seed val-
ues across relevant libraries and components. This includes
the random seeds for the Python module, NumPy, Tensor-
Flow and PyTorch, alongside CUDA-level seeds that are ini-
tialised via their provided functions. In the case of PyTorch,
deterministic behaviour is enforced while disabling bench-
marking, which prevents PyTorch from trying different con-
volution algorithms and picking the fastest one for the hard-
ware used. Furthermore, the ‘PYTHONHASHSEED’ OS vari-
able along with the HighwayEnv’s environment, action space
and observation space are all configured to use the same seed.

This comprehensive procedure helps in eliminating variabil-
ity in each run that could arise from uncontrolled sources of
randomness.

3.3 Experiment Layout
Training Setup
In order to ensure coherent results, each model is trained
across 5 independent runs, each with the following different,
randomly selected seeds: 13, 5728, 896, 3988, 73310.
This approach is common in reinforcement learning, em-
ployed to guarantee reproducibility of results. By averaging
results over multiple seeds, a more trustworthy indicator of
how the model is expected to perform is provided. To help
with consistency, the model seed used for each run is also
used for the environment configuration as explained in the
previous section.

The DQN and QR-DQN implementations used are taken
from Stable Baselines 3 (SB3) [2], a Python library that offers
reliable implementations of RL algorithms. Having an exten-
sive documentation and a consistent interface, it provides ef-
fortless integration in the experiment codebase. Both models
are trained using the same hyperparameters, the main differ-
ence being that QR-DQN takes the number of quantiles as a
parameter. The Risk Averse QR-DQN model takes the quan-
tile fraction variable in addition when initialised. For this ex-
periment, the hyperparameter configuration used is presented
in Table 1. Every model and seed combination is then trained
using 50000 timesteps in order to ensure sufficient learning,
while avoiding overfitting.

Model Evaluation
The testing setup is done in the same fashion as the training
one, evaluating all models on same seeds (i.e. 13,
5728, 896, 3988, 73310), making it more convenient
and simple to reproduce. Testing over multiple seeds ensures
consistent results, avoiding biases and providing better
benchmarking of each model’s performance.

The evaluation is done in diverse environments to understand
the capabilities of each model and how they compare in per-
formance. The first test is done using the training environ-
ment, determined by the off-policy nature of the algorithms.
Meaning that, the models use a different policy in training
(i.e. random exploration) compared to the one used in test-
ing (i.e. taking action with highest predicted value). This
reinforces the need to assess the model’s convergence and
whether the agent has learned an effective policy. On top
of the training environment, further four environments were
designed, by manipulating one of the environment parame-
ters listed below. Each testing environment is defined by the
following changes:

• First environment sets variable ‘lanes count’ to 4;
• Second environment sets variable ‘lanes count’ to 6;
• Third testing environment changes the surrounding

vehicles’ behaviour to an aggressive one by set-
ting the ‘other vehicles type’ parameter to ”high-
way env.vehicle.behavior.AggressiveVehicle”, as de-
fined in the HighwayEnv package;



Table 1: Hyperparameters and their descriptions for the SB3 models used

Hyperparameter Value Description
policy MlpPolicy Type of policy the model employs: multilayer perceptron in this

case
net arch [256, 256] Define architecture of the policy network: two hidden layers

with 256 nodes each
learning rate 5e-4 Step size for updating the network weights
buffer size 50000 Size of the experience replay buffer
learning starts 200 Step from which the model starts learning
batch size 32 Number of samples drawn from the buffer during each update
gamma 0.8 Discount factor for future rewards: less than 1 prioritizes short-

term rewards
train freq 1 Environment step frequency the model should be trained at
gradient steps 1 Gradient update rate per training step
target update interval 50 Frequency to update the target network
verbose 1 Logging to track training progress
seed seed number Sets the random seed used within the model
n quantiles* 50 Number of quantiles used to approximate return distribution
quantile fraction** 0.1 and 0.4 Fraction of each quantile to be considered when predicting next

action
* Parameter used only for the QR-DQN models
** Parameter used only for the implemented Risk-Averse QR-DQN model

• Fourth test environment is defined by increasing the
‘vehicles density’ parameter to 1.5 from the default
value of 1.0, to simulate a higher traffic scenario.

For every environment setting, each model-seed configura-
tion is tested on 1000 episodes, ensuring a comprehensive
pool of results. Each episode is configured to take the
episode’s index as its seed, making it easier to set up and
reproduce the test. Upon completing a run, the mean and
standard deviation of both the reward and episode length are
saved, alongside the number of collisions, which are the eval-
uation metrics for evaluating and comparing the models. Col-
lisions are determined by looking at the episode’s info vari-
able for the ‘crashed’ value. Episode reward is calculated in
the same way as described in subsection 3.2.

4 Results
In this section the results of both the training and testing
phases are presented, discussing the outcome and what it
means. The experiment was carried out on the researcher’s
local machine, using a NVIDIA GeForce RTX 3070 Ti
Laptop GPU for running the tasks. More result data can be
found in the aforementioned Github repository [19].

For the remainder of this section, besides the standard nam-
ing convention used for the base models, the variations intro-
duced in this experiment will be referred to as RA QR-DQN
0.1 and RA QR-DQN 0.4, respectively, for the Risk-Averse
QR-DQN implementation with the ’quantile fraction’
parameter value set to 0.1 and 0.4.

4.1 Training Phase
Each model is trained for 50000 timesteps using the 3 lane
highway scenario, as presented in section 3.2. In order
to visualise the results, the Tensorboard logging feature is
used, which tracks both the reward value and the episode
length value each step. The reward value graphs for each
model can be seen in Figure 2, each graph containing the
results from 5 seeds of the indicated model. There is an
intuitive correspondence between the progression trend of
the reward value and length value (i.e., the longer the ego
vehicle survives, the higher the reward it gets), hence only
one metric is presented.

During training, DQN (Figure 2a) sees a stable progression
until reaching timestep 10K, after which the performance sta-
bilises between reward values 25 and 30, with a few seeds
fluctuating. Towards the end of training there is a dip in re-
sults from a couple of seeds, decreasing the overall perfor-
mance. The QR-DQN models (Figures 2b, 2c and 2d) show-
case a faster and more consistent learning progression, all
reaching a steady performance around 5K timesteps. From
there on, the reward value achieved fluctuates around the 30
mark, showcasing the exploration nature of the model. DQN
achieves a mean reward value of 26.065 (± 0.959 standard
error), having a lower performance than the standard QR-
DQN (Figure 2b), which reaches the mean reward value of
30.109 (± 0.348). This indicates not only the limitations of
DQN in training, but also the advantage QR-DQN has by cap-
turing the quantile-based approximation of the return distri-
bution.



(a) DQN (b) QR-DQN

(c) RA QR-DQN 0.1 (d) RA QR-DQN 0.4

Figure 2: Training reward value graphs for each model, shown as reward value per timestep.

Both variants of Risk-Averse QR-DQN outperformed the
standard QR-DQN baseline, with 31.320 (± 0.304) for
RA-QRDQN 0.1 (Figure 2c) and 31.031 (± 0.267) for RA-
QRDQN 0.4 (Figure 2d). The improved performance justifies
the benefit of incorporating risk-sensitivity by considering
only a fraction of the model’s quantiles. The 0.1 variant,
which places a greater emphasis on lower quantiles, yielded
the best performance, suggesting that a more conservative
policy during training is favourable in this environment.

4.2 Testing Phase
Following training, the models were tested for 1000 episodes
in 5 environments, as described in Subsection 3.3. In
this subsection, the test environments defined are denoted
as: ’3 lanes’ is the training environment, ’4 lanes’
and ’6 lanes’ are the first and second test environment,
’aggressive’ is the third one, which changes other
vehicles’ behaviour and lastly, ’traffic’ for the fourth
testing environments, that increases the vehicle density. The
evaluation metrics are determined by the average reward
achieved over all the episodes and the number of episodes
that ended in a collision. The results overview can be seen
in Table 2 and Table 3, representing the mean and standard
error of both metrics over 5 seeds for each model.

Results from the 3 lanes environment demonstrate the
off-policy character of the models, performing better in
testing, by taking the action with the highest predicted value
compared to the random exploration done in training. In
the case of DQN, a slight decrease in performance can be
seen in Table 2 from an environment to the other, putting
further emphasis on the overestimation bias the model suffers
from. These results correlate directly with the collision
rate from Table 3, which see an increase over each envi-
ronment. As expected, QR-DQN shows better performance
for both metrics in comparison to DQN in the first 3 out
of 5 environments, especially when it comes to collision

rates. This reinforces the results found in training, where the
quantile representation helps the model achieve better results
by having a better understanding of the return distribution,
which further improves collision avoidance. The reduced
performance in the aggressive and traffic environments,
when compared to DQN, can be explained by insufficient
learning, although this is not proven in this study.

Among the QR-DQN models, the risk-averse variants
show an increase in performance over the standard model
across both metrics, while proving to be more predictable
as showcased by the standard deviation in results. The
performance can be explained by the conservative approach
employed by the models through the use of the lower part
of the quantiles when taking an action. Variation in results
between the two RA QR-DQN models highlights a trade-off
between enabling broader action exploration, and narrowing
distributional focus via the lower quantile fraction. Both RA
QR-DQN models appear to be outperforming lower collision
rates than QR-DQN, highlighting the correlation between
taking a conservative approach and avoiding collisions,
leading to safer highway navigation.

4.3 Discussion
The findings from this experiment confirm previously found
performance limitations that DQN suffers from, achieving
lower results when the environment setting differs from
the training one. This can be seen in related studies [14]
and [13], confirming the issues the model has in terms
of overestimation bias and lack of performance in out of
distribution environments. QR-DQN proves to overcome
these limitations by achieving both a higher reward value and
lower collision rates, performing better than DQN in most
of the scenarios. Overall, the RA QR-DQN variants seem
promising for training policies that reduce the probability of
collisions, even in environments that differ from the training
environment.



Table 2: Average return ± standard error over 5 seeds across different environments.

Model 3 lanes 4 lanes 6 lanes aggressive traffic
DQN 30.392 ± 1.010 29.959 ± 0.953 29.339 ± 0.850 29.050 ± 0.971 17.099 ± 0.603
QR-DQN 31.162 ± 0.616 32.637 ± 0.343 32.268 ± 0.392 28.320 ± 0.711 15.647 ± 0.971
RA QR-DQN 0.1 31.400 ± 0.259 31.664 ± 0.207 31.097 ± 0.435 29.606 ± 0.392 15.493 ± 0.791
RA QR-DQN 0.4 31.696 ± 0.165 32.370 ± 0.134 32.057 ± 0.114 28.819 ± 0.420 16.131 ± 0.297

Table 3: Collision rates (%) ± standard error over 5 seeds across different environments.

Model 3 lanes 4 lanes 6 lanes aggressive traffic
DQN 20.360 ± 5.914 20.780 ± 5.351 20.800 ± 4.727 24.480 ± 5.272 81.360 ± 1.499
QR-DQN 15.420 ± 3.159 5.220 ± 1.501 5.600 ± 1.689 25.040 ± 3.222 86.800 ± 2.946
RA QR-DQN 0.1 5.720 ± 1.673 4.440 ± 1.902 6.620 ± 3.088 13.040 ± 2.199 84.580 ± 1.579
RA QR-DQN 0.4 8.680 ± 1.399 2.740 ± 0.603 2.600 ± 0.252 20.140 ± 2.379 83.880 ± 0.833

The performance increase between the 3 lanes and 4
lanes tests for the QR-DQN models indicate the capacity
to which they can adapt to and utilise the added lane for
maximising results. However, the decrease in performance
from 4 lanes and 6 lanes emphasises the limitations of
all models to utilise the full available driving space, based
on the learned policy. The environments that have higher
complexity prove to be a challenge for all models, showcased
in the loss of average reward and increase in collisions rates.
Surprisingly, the overfitting nature of DQN helps the model
achieve better results, as the environments share the same
number of lanes as the training one.

From the inconsistencies between the two evaluation metrics,
the default reward function offered by HighwayEnv seems to
be inefficiently designed. Some models achieve higher re-
ward values, although there is an increase on average colli-
sion rates. This is not intuitive, as it seems like the envi-
ronment reward system allows for high rewards even though
the ego vehicle collides, a trend which can be seen through-
out multiple environments. In the 3 lanes environment,
this inconsistency is present when comparing the RA QR-
DQN models. The 4 lanes and 6 lanes tests see QR-DQN
achieving a higher reward value despite its higher collision
rate when compared to the RA QR-DQN 0.4 model. Like-
wise, the same behaviour is spotted when comparing QR-
DQN to RA QR-DQN 0.1 in the 4 lanes and traffic
test environments. These unpredictable results contradict
the desired performance, where a conservative approach that
achieves lower collision rate should be rewarded higher.

5 Conclusion
This research investigates the robustness of Deep Q-Network
(DQN) and Quantile Regression Deep Q-Network (QR-
DQN) models in the context of autonomous driving using
a simulated highway environment. The primary goals are
to provide a risk-averse implementation derived from the
standard QR-DQN model and compare the performance of
the models in varying environments to assess their robustness.

The findings of this study reinforces results from previous
studies and provides significant new insights. The results
show the limitations that DQN demonstrates in out of
distribution environments, suffering from overestimation
bias. This leads to the model performing worse than the
QR-DQN counterparts in both the average reward and col-
lision rate. By modeling the distribution over returns using
quantiles, the QR-DQN models show improved robustness
and lower collision rates when compared to DQN. However,
for more complex environments, insufficient training leads
the QR-DQN models to perform worse than DQN. An under-
lying problem concerning the reward function definition is
also found, shown by offering high rewards to the agents al-
though they collide, a safety compromise that is not desirable.

The proposed modifications of the QR-DQN models show a
risk-averse implementation that utilises the model’s quantiles.
By considering only the lower part of the quantile, a policy
that favours conservative actions can be derived. The changes
made involves the model taking a new parameter, named
’quantile fraction’, that is used to determine the quan-
tile segment when predicting actions. Considering two mod-
els, with ’quantile fraction’ values 0.1 and 0.4, both
Risk-Averse QR-DQN (RA QR-DQN) models outperformed
the standard model in terms of collision rates with only minor
losses in achieved reward, suggesting an added benefit from
incorporating risk-sensitivity in the model’s policy. Further-
more, the two models illustrate a critical trade-off between
conservative decision-making and reward exploration, show-
cased by the variation in performance.

Limitations and Future Work
There are some limitations presented by this study. Although
the models have been tested in multiple environment vari-
ants, the study is limited to only the highway environment,
preventing a generalisation of results. Moreover the results
found are limited to the model’s configuration and training
done within the scope of this study, leaving room for better
hyperparameter optimisation and more extensive training.



Another limitation in generalisation is determined by the
narrow selection of Deep RL models that are being tested,
allowing for more advanced models to be studied alongside,
for a better understanding of the models’ performance.

Multiple open questions are available for further research.
A study into optimising the HighwayEnv’s highway reward
function can be done, in order to find a balance between
reward exploration and collision penalty. Furthermore, a
study can be conducted to include more than just two RA
QR-DQN models, evaluating the trade-off between differ-
ent ’quantile fraction’ values. Instead of fixed quantile
fraction, future work could explore an implementation that
considers adjusting the quantile range dynamically to create
more adaptive and context-aware agents.

Responsible Research
The practices of responsible research practices have been
considered throughout the process of this study. In this sec-
tion, an overview of how these practices were implemented
is given, touching on the ethical concerns in regards to the
study, the reproducible nature of the experiment and how AI
has been used in the process.

Reproducibility
Reproducibility was the main goal when designing the exper-
iment and documenting the process. Throughout the experi-
ment implementation phase, every decision was noted down
and then included in the report, to ensure it can be reproduced
easily. In Section 3, where the methodology is presented, a
comprehensive description is given, reporting both the setup
and configuration of all components. The implementation of
the machine learning models is given, mentioning the hyper-
parameter settings used. Moreover, the environment config-
uration is described together with the reward function defini-
tion. Due to the inherent random nature of the frameworks
and models used, certain seeds have been used and docu-
mented to be make the experiment reproducible. Further-
more, the scripts used to run the experiment and its’ results
were made accessible through the Github repository [19].

Ethical Concerns
Considering that this research is related to the field of
autonomous driving, there are some ethical aspects that
have become apparent. Specifically, when it comes to the
societal adoption of autonomous driving and the environment
appropriation of this study. One aspect to be taken into
consideration is how does this study fit into society when
it is expanded into the real-world. Since the experiment is
considering a predefined setting (i.e. highway driving with
only automated vehicles), it is hard to consider the results
gathered in the context of real-life scenarios, where there
is a split between drivers that adopt autonomous vehicles
and those that do not. This split can lead to a difference
in performance for the autonomous vehicles, given that the
surrounding environment can be somewhat unpredictable
through the introduction of the human factor. This can be
further studied and looked into, to understand better how the

transition from simulations to real-life instances can be done.

Another ethical aspect of this study is the representative-
ness of the environment chosen for the experiment. This re-
search uses a highway simulation environment as the setting
in which the models get trained and tested. Throughout the
experiment, the configuration is set for at least 3 lanes using
a speed range of 14 to 30 m/s ( 50 to 108 km/h). Although
this is representative for most highway settings, it does rep-
resent a bias towards highway that have certain lane count
and maximum speed limits which may not be representative
across the globe (i.e. Germany highways that have no speed
limits or countries that have 2 lane highways). Furthermore,
a lack of diverse parameters that can be configured in High-
wayEnv, may lead to a less comprehensive highway environ-
ment setting. This experiment considers only straight high-
ways, with no inclination and perfect road surface and no
effect of weather conditions. Consequently, the study may
not be applicable in less developed countries where the qual-
ity of the road surface varies (i.e. potholes or cracks). In
addition, the study may exclude countries with variation in
altitudes, where the highway is going uphill or downhill, or
countries with diverse weather conditions (i.e. heavy rains,
storms, snow or sand storms). Therefore, need of further re-
search that consider a more comprehensive environment that
includes these varying aspects of highway driving.

Use of AI
Throughout the process of conducting this study and report-
ing its findings, LLM tools were used to aid in completing the
project. The use of LLMs was limited to help in formatting
a LaTeX document, setting up environments and debugging
errors and for getting a sense of the direction to move towards
when configuring parameters. However, the contents of this
experiment and research paper are solely produced and writ-
ten by the researcher, including the results gathered, sources
found and written code for running the experiment. A sample
of prompts used in the project is given in appendix A.
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A LLM prompts used in the research project
Latex Formatting

• https://chatgpt.com/share/
685160cf-4c84-800c-bfe1-fea5d9cb6c85

– ”How to use citet in latex?”
– ”Does it work if there are more authors?”
– ”I want to put 6 figures in 2 rows and 3 columns in

latex. How do i do that, given that i am using a 2
column format?”

– ”how to put svg in latex?”
– ”Package svg Error: File dqn length svg-

tex.pdf’ is missing. Package svg Error: File
dqn length svg-tex.pdf tex’ is missing.”

• https://chatgpt.com/share/
6851611d-2c48-800c-bbf3-24740f09bd8f

– ”Can you create a table in Latex using this? I want
the headers to be formatted as bold and I want sep-
arating lines only between the headers and body”

– ”My table is in a column of a two column doc-
ument, but the span of the table goes on both
columns”

– ”how to deliimit the right margin of the table, it
goes over the page limit”

– ”can i put distance between the rows of the table?”

• https://chatgpt.com/share/
6817a93d-1e30-800c-830e-2713aba4168a

– ”Underfull hbox (badness 10000) in paragraph at
lines 2–4 how to solve in latex”

– ”how to make latex text bigger”
– ”How to make the latex citations appear in order in

the text”
– ”how to define the width for just one page in latex”
– ”How to set size of title using the ijcai style”

Setup and Debugging
• https://chatgpt.com/share/

68516101-5d60-800c-a799-3635c9e8086c

– ”(base) PS C:\TU Delft\RP\rp cristian git push
origin main error: src refspec main does not
match any error: failed to push some refs to
’github.com:Tdr13/research project 25.git’”

– ”no branch appears when git branch”
– ”how to ignore the .idea folder in my project?”

• https://chatgpt.com/share/
685163e7-4f08-800c-b221-fe35fcbf3ce5

– ”How to setup highwayenv in conda?”
• https://chatgpt.com/share/

68516594-f6ac-800c-ada8-ea77932fa3c6
– ”I get this error when trying to run

a pyhton file using py in conda:
C:\Users\nikev\AppData\Local\Programs\Python\
Python312\python.exe: can’t open file ’C:\\TU
Delft\\RP\\highway-rp \\main qrdqn.py’: [Er-
rno 2] No such file or directory”

• https://chatgpt.com/share/
685166bd-fdac-800c-b883-f35d1892c44d

– ”how to make a stable baselines 3 model that is be-
ing trained in the highwayenv run on my gpu in-
stead of my cpu”

Questions
• https://chatgpt.com/share/

685160cf-4c84-800c-bfe1-fea5d9cb6c85
– ”What does disableing benchmaring ad enforc-

ing determinstic behaviour in pytorch mean?” and
”what does the off-policy nature of an rl algorithm
means?”

• https://chatgpt.com/share/
685163ae-55d8-800c-8559-c86fc98f9dd5

– ”How to seyup the pythonhashseed environment
variable?”

– ”what about within the python file?”
• https://chatgpt.com/share/

68516163-0aa4-800c-96f5-68426c65dff1
– ”What is the simulation frequency of highwayenv

mean?”
• https://chatgpt.com/share/

6810fd67-45e0-800c-ae80-684b21ebe9fd
– ”how many timesteps should I use when trining

DQN?”
– ”What if I am using highwayenv”
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