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Abstract

This study evaluates the feasibility of applying photogrammetry techniques to reconstruct historical
coastal topography and assess decadal scale coastal change from historical aerial images, focusing on
the Dutch coastal of Westkapelle. The workflow was validated on two benchmark datasets, Benchmark
Toronto and Benchmark Westkapelle, to verify registration accuracy under ideal acquisition conditions
before being applied to the Westkapelle test dataset for change detection.

The reconstruction pipeline employed Structure from Motion and Multi-View Stereo algorithms, followed
by a two stage point cloud registration. Coarse alignment was achieved through Sample Consensus
Initial, and fine registration used the Iterative Closest Point algorithm. In the two benchmark datasets,
registration achieved sub-metre mean C2C distances: 0.790 m for Toronto, 0.626 m for Westkapelle. In
the test dataset, the mean C2C distance improved from 10.287 m before registration to 2.025 m after-
wards, with 95% of points within ~6 m. DEM differencing, supported by JARKUS cross-shore transect
profiles, revealed systematic elevation gains of up to +10 m along foredune ridges, primarily resulting
from a combination of documented coastal nourishment and natural process between 1990 and 2020.
However, limitations of the historical dataset, including sparse image coverage, strongly oblique view-
ing geometry, lack of vertical imagery, and poor GCP distribution, introduced geometric distortions and
inconsistencies. The resulting orthophoto contained substantial voids and warped features, particularly
in urban areas and low texture surfaces, underscoring the challenges of dense stereo matching under
suboptimal imaging conditions.

Despite these constraints, this study demonstrates that meaningful reconstructions of past coastal en-
vironments are achievable when supported by careful preprocessing, robust registration, and multi
source validation. The proposed workflow offers a transferable approach for extracting geomorphic
insights from historical imagery in other coastal settings.
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Introduction

1.1. Research Background

For a long time, the acquisition of high-resolution digital elevation models (DEMs) has mostly relied on
airborne or ground-based LiDAR (LIiDAR). LiDAR is a mature technology and can obtain high-quality
elevation models without complex post-processing, so it has been widely used in various fields such
as coastal zones, urban construction, and ecological environment monitoring [51]. However, LIiDAR
acquisition is usually costly and the platform deployment flexibility is limited, which restricts its use in
small-scale or frequent monitoring scenarios.

With the popularization of Unmanned Aerial Vehicles (UAVs) and high-resolution commercial cameras,
image-based photogrammetry is rapidly developed. Compared with the traditional LiDAR system, pho-
togrammetry can acquire multi-view aerial images and use Structure from Motion (SfM) and Multi-View
Scanning (MVS) algorithms to generate 3D point cloud data on the ground surface, thereby construct
digital elevation models with a high degree of flexibility and economy [15, 11, 14].

The Dutch coastline represents about half of the national boundary line, which makes the monitoring
and management of the coast particularly important. In recent decades, sea level rise due to climate
change has been an imminent threat to the Netherlands due to its low-lying topography[19]. Over the
past few decades, the Netherlands has implemented a series of large-scale hydraulic projects, such
as the Zuiderzee Works and the Delta Plan, to reduce the risk of storm surges and long-term overflows.
[66, 60]. Coastal change, as a long-term process, relies on managers to understand the shoreline,
coastal elevation changes and coastal landscape changes of the coast at different times to synthesize
and examine the [38]. Modern LiDAR and UAV photogrammetry can provide near real-time, centimeter-
level accuracy data, but they only go back as far as the 1990s. Further back in time, historical imagery
is one of the few valuable resources available to understand the landscape at the time [10].

Attempts to integrate historical aerial imagery with modern SfM and LiDAR data allow for the reconstruc-
tion of DEMs on interdecadal scales and thus quantitatively analyze coastal evolution over decades.

1.2. Research Problem Statement

With the continuous development of photogrammetric technology, the reconstruction of 3D models
using historical aerial images has become one of the valuable tools for studying historical landforms.
In particular, in periods when LIiDAR data were unavailable, Structure-from-Motion (SfM)-based 3D
modeling methods offer a practical and feasible solution for recovering historical DEMs by making use
of archival imagery.

In order to accurately embed the generated 3D models into the real-world coordinate system, the tradi-
tional photogrammetry workflow usually involves two means of georeferencing. One is direct georefer-
encing based on the known external parameters of the camera, and the other is indirect georeferencing
with the help of the recognizable ground control points (GCPs) within the image[52, 57]. However, for
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most historical aerial images, both of the means are difficult to satisfy-camera parameters are usually
missing and it is challenging to identify control points that can be precisely geolocated.

Besides the problems mentioned above, there remains two chanllenges to solve. In most cases, there
is a temporal gap between historical imagery and modern LiDAR data. During this period, landscapes
may have changed significantly due to natural processes or human activities. In addition, the quality of
point clouds generated from historical imagery often depends on the original image resolution scanning
quality, and viewing angles, resulting in irregular and sparse point distributions. Modern LiDAR data, on
the other hand, have centimeter-level precision and uniform point cloud density. This difference in time
span and acquisition makes it challenging for point cloud spatial alignment. Furthermore, registration
errors may be difficult to be distinguished from geomorphological changes, complicating the validation
of the registration workflow and results.

Based on these challenges, this study focuses on a coastal area in the Netherlands, aiming to combine
selected photogrammetric methods with modern point cloud registration techniques. In addition to
the main experimental dataset, two representative benchmark datasets are introduced to evaluate the
sensitivity of registration accuracy across different time spans and geomorphic settings. To ensure
the reliability of the DEM comparison and to distinguish real topographic changes from reconstruction
artifacts as much as possible, long-term coastal monitoring data such as JARKUS cross-shore profiles
were additionally consulted.

1.3. Research Questions

The research question for this study is: How can photogrammetry applied to historical images
enhance our understanding of coastal changes?

To answer the lead research question, the following sub-questions need to be addressed:

1. Coastal Changes

» What are the common and significant changes in coastal areas over the last few decades?

» How have natural and anthropogenic factors contributed to these observed coastal changes?
2. Availability and Suitability of Historical Images

» What are the factors that contribute to determine the availability of archival photographs?

» What are the factors that contribute to determine the suitability of archival photographs?
3. Point Cloud Generation

» What are the photogrammetry workflow involved in generating point clouds from historical images
for this study?

» How is the quality of the point cloud assessed and ensured?
4. Point Clouds Registration

* How to achieve the spatial alignment between the photogrammetric point cloud and LiDAR point
cloud?

* How is the quality of registration assessed?
5. DEMs Generated from Point Cloud
» What is the workfow to generate generating DEMs from point cloud?
» How is the quality of these DEMs assessed and ensured?
* What kind of coastal changes can be derived by comparing the DEMs?



Background

2.1. Coast Change

The Dutch coast faces multiple dynamic changes driven by both natural environmental forces and hu-
man activities in the past few decades. Given the country’s low-lying topography and high population
density in coastal regions, understanding these changes is essential for sustainable coastal manage-
ment. In the context of this research, dutch coastal changes are categorized into 3 types: coastline
change, elevation change and landscape change.

2.1.1. Coastline Change

The coastline is the dividing line between the oceanand the mainland, and is one of the basic elements
of topographic maps and charts[56]. Coastline change refers to the change of a coastline’s position
over time. This change can result from natural coastal processes like wave action, tide and sediment
transport etc. In the context of the Netherlands, due to its densely populated low-lying coastal zones and
the dependence on artificial coastal defenses, coastline change is a particular concern. The shoreline
dynamics is related to a phenomenon - coastal squeeze, which presents a significant threat to these
storm-dominated shores [27]. It happens when sand beaches are trapped between the sea-level rising
erosion and the coastal development made by human from the inland side [12].

2.1.2. Elevation Change
Elevation change refers to the variation of land surface height over time, particularly in coastal dunes,
beaches, and tidal flats. These changes are driven by both marine and aeolian processes.

One important driver of elevation change is the changes in relative sea level (RSL), both rise and fall
[44]. When relative sea level rises, frontal erosion of dunes becomes more frequent, especially during
storm events. This erosion can move sand, which is then redeposited inland, leading to the formation
of secondary dune features such as blowouts and parabolic dunes. In Netherlands, this mechanism
has been linked to the formation of ” Young Dunes” [24], which is a second-generation coastal dune
system on the west coast of the Netherlands, with a bandwidth of up to about 5 km and a relative height
of about 25 m. And they have been formed since the beginning of the Middle Ages (ca. 1000 A.D.)
by the inward movement of fresh crustacean sand from the beaches, blown inwards by the prevailing
westerly winds, and overlaying the earlier Older Dunes.[21].

2.1.3. Landscape Change

Landscape change involves the conversion of natural habitats to urban or agricultural use. For exam-
ple, the natural dunes can be either remained because of the increasing vegetation or disappeares
because of construction. In the Netherlands, this may include the urbanization of dune landscapes,
the expansion of port and industrial infrastructure, or conversely, re-naturalization efforts that allow
vegetation to stabilize sandy environments.
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2.2. Digital Elevation Model

Digital elevation model (DEMs) is simply the continuous representation of terrain surface contains XYZ
coordinates [26]. DEMs are widely used in geomorphology, hydrological modeling, coastal monitoring,
land use planning, and other applications that require surface elevation information.

There are generally two types of DEMs, depending on whether surface features are included, as shown
in Fig. 2.1:

+ Digital Surface Model (DSM): A DSM represents the elevation of a terrain surface including all
objects present on it, such as buildings, trees, and other above-ground structures.

+ Digital Terrain Model (DTM): A DTM represents the bare-earth surface, with vegetation, build-
ings, and other man-made structures removed.

s digital surface model
I digital terrain model

Figure 2.1: Different types of DEM [43]

2.3. Photogrammetry

Photogrammetry is a 3D coordinate measuring technique that uses photos as the medium for mea-
surement and the fundamental principle of it is triangulation. In recent years, photogrammetry has
transformed from traditional analogue methods to fully digital and automatic workflows. Modern pho-
togrammetry makes use of the development in computer vision, particularly through algorithms such
as Structure from Motion (SfM) and Multi-View Stereo (MVS)[65]. These techniques make the recon-
struction of 3D models from overlapping images possible even in the absence of camera calibration.

Photogrammetry is generally categroized into two main types: aerial photogrammetry and close-range
photogrammetry. Close-range photogrammetry is widely used for small-scale objects and aerial pho-
togrammetry is more suitable for capturing large-scale terrain and topographic features. Consider-
ing that coastal monitoring requires wide-area elevation mapping and shoreline detection, aerial pho-
togrammetry provides a higher degree of spatial coverage and adaptability, making it a more appropri-
ate choice for this research.

2.3.1. Aerial Photogrammetry

The basis of aerial photogrammetry originated from the development of aerial photography. The tech-
nique appeared in the late 19th century, and it experienced significant development during World War
| due to its application for military purpose. After the war, aerial photography is gradually used in com-
mercial fields. During World War I, this technology was further developed and used again for military
purpose.

Based on camera orientation and imaging purpose, aerial photographs can be categorized into 3 main
types[61, 62]:

+ Vertical Aerial Photographs: They are taken with the camera axis aligned as closely as possible
to the vertical (nadir) direction. These are the most common type used for topographic mapping,
digital elevation model (DEM) generation, and orthophoto production, due to their geometric suit-
ability for accurate measurements.

» Oblique Aerial Photographs: They are taken with the camera tilted from the vertical axis. De-
pending on the tilt angle, these are further divided into high oblique and low oblique images.
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Oblique images provide a more intuitive view of the landscape, making them suitable for land-
scape documentation, archaeology, and real estate.

» Orthophotos: They are geometrically corrected aerial images in which distortions caused by
terrain relief, lens aberrations, and camera tilt are removed. Unlike raw aerial photographs, or-
thophotos maintain uniform scale and can be used as accurate base maps in Geographic Infor-
mation Systems (GIS). See Section 2.8 for further explain, technical details and procedures.

The images used in aerial photogrammetry involves capturing photographs of the Earth’s surface from
airborne platforms such as aircraft, unmanned aerial vehicles (UAVs), satellites, or rockets. These
platforms are equipped with optical sensors that take overlapping images from different locations. When
captured with sufficient overlap, these images can be used by photogrammetry.

2.3.2. Photogrammetry Fundamentals

Photogrammetry aims to obtain accurate geometric information about the physical environment from 2D
images. The core mathematical principles are grounded in projective geometry, collinearity constraints,
and optimization techniques[58, 17, 35].

Pinhole Camera Model

The pinhole camera model is the most commonly used model in photogrammetry because of ability
to describe the geometric relationship between 3D world points and their 2D image projections. The
model assumes an ideal camera with an infinitesimally small aperture (the "pinhole”) through which
light rays pass. All light rays from a scene point converge at the camera center and intersect the image
plane, forming a projection of the object.

Based on this physical principle, the perspective projection model provides a mathematical description
of the projection process. A 3D point X = (X, Y, Z)T is projected onto the image plane as a 2D point
x = (z,y)T, according to the following equations:

X Y
—fr. = =f._ 21
e=f—, y=rf- (2.1)
where f is the focal length, and the projection assumes that the camera is located at the origin and
oriented along the Z-axis. In practice, more complete formulations include the camera intrinsics (e.g.,
focal length, principal point, and pixel scale) and extrinsics (rotation and translation), which together

define the full camera projection model.

The full projection model can be written in matrix form as[17]:

X

S

=K[R|t] (2.2)

»
— <

Y
A
1

where:

» K is the intrinsic camera matrix,

* R is the rotation matrix (extrinsics),

* t is the translation vector (extrinsics),
* sis a scale factor.

Camera Calibration

If we want to restore the real-world position from a 2D image formed by projection, we need to un-
derstand the transformation between the two. One of the main purposes of camera calibration is to
determine this transformation, which means solving for the intrinsic and extrinsic parameter matrices.
In addition, another goal of camera calibration is to estimate distortion coefficients to correct the distor-
tion caused by the camera’s perspective projection.
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Intrinsic parameters describe the internal characteristics of the camera, such as focal length, princi-
pal point, and lens distortion. Extrinsic parameters define the camera’s position and orientation in the
real world, and are needed to transform coordinates between the camera and object space. In tradi-
tional photogrammetry, calibration is performed using known physical targets (such as a checkerboard
pattern) to recover parameters like focal length, principal point, and lens distortion.

However, the photogrammetry in this study is based on historical aerial imagery, which means that most
of the images were taken before the introduction of GPS and inertial navigation systems. Therefore,
the external orientation parameters are either unknown or highly uncertain, and there is no prior internal
calibration data. Due to this limitation, this study did not conduct camera calibration in the traditional
sense, but instead estimated the intrinsic parameters automatically through SfM, and manually added
ground control points (GCPs) to the images to provide real-world coordinates and assist in estimating
the extrinsic parameters.

In short, SfM-based self-calibration combined with GCP-assisted alignment provides a practical alterna-
tive to traditional calibration, allowing relatively accurate 3D reconstruction and orthophoto generation
from historical imagery.

Epipolar Geometry

Epipolar geometry describes the geometric relationship between two images taken from different view-
points of the same scene. As shown in Fig. 2.2, when a scene is observed from two distinct camera
positions C; and C5, the geometry of the cameras and a 3D point M together define the epipolar
geometry.

Epipolar Line

N Epipolar

~

.
~_ Plane
.

-

aury aejodids

. r .

Figure 2.2: Epipolar geometry [7]

In the figure, m; and my, are the projections of the 3D point A onto the image planes of cameras C; and
Cs, respectively. The lines joining the two camera centers and the point M defines a unique epipolar
plane. This plane intersects each image plane along lines known as epipolar lines, and the projections
of one camera center onto the other camera’s image plane are called epipoles, denoted ¢; and es.

To describe the mathematical relationship between corresponding image points under the epipolar
constraint, a matrix can be introduced to express this constraint concisely as an equation. This matrix
can either be the essential matrix, defined in the camera coordinate system, or the fundamental matrix,
defined in the image (pixel) coordinate system.

In the camera coordinate system, let p; and p, denote the normalized image coordinates, which are
the 2-D coordinates you obtain after removing all camera-intrinsic parameters so that every image
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point simply represents the direction of the incoming light ray in the camera reference frame, of a 3D
point projected into the left and right cameras, respectively. These points satisfy the following epipolar
constraint:

p/Ep, =0 (2.3)

Where, the essential matrix E describes the relationship between projection points in two camera views,
expressed in their respective camera coordinate frames. The constraintimposed by the essential matrix
makes it possible to recover the relative motion of the cameras from two views. If the transformation
between the two cameras is represented by a rotation matrix R and a translation vector T, the essential
matrix can be formulated as:

E=[T]«R (2.4)

where [T] is the skew-symmetric matrix, which means is any square matrix whose transpose equals
its own negative, representing the cross product with T.

In contrast, the fundamental matrix F relates image points in the pixel coordinate system. Let ¢; and
c, be the pixel coordinates of the same 3D point projected into the left and right image planes. Then
the epipolar constraint becomes:

c/Fc, =0 (2.5)

Typically, the intrinsic matrices of the cameras are required to solve for the essential matrix. However,
in practical applications the intrinsics may be unknown, in which case one can resort to the fundamental
matrix. The fundamental matrix accounts for both the relative motion between the cameras and the
intrinsic parameters of each camera. It is related to the essential matrix through the intrinsic matrices
K; and K, of the left and right cameras:

F =K, "EK,! (2.6)

2.4. Structure from Motion (SfM)

Structure from Motion (SfM) is a field within computer vision that focuses on recovering the 3D structure
of a scene from a sequence of images using algorithms. Structure from Motion (SfM) builds upon
the principles of photogrammetry introduced earlier, such as the perspective camera model and the
collinearity constraint. While those concepts focus on the geometric relationship between 3D points
and their image projections, SfM extends these ideas to recover both camera poses and 3D structure
from unordered or sequential images.

2.4.1. Feature Detection and Matching

A feature is a piece of information that can be consistently recognized in images and scenes and asso-
ciated with solving a specific type of computational task. For an image, features can be represented as
points, lines, edges, or entire objects. In photogrammetry and computer vision fields, feature detection
usually refers to the identification of certain interest points in an image that can be well interpreted
and express the texture of an object. These interest points often correspond to areas where there is a
sharp change in object boundaries or at the intersections of multiple edge segments. Once the detec-
tion of interest points is completed, feature descriptors need to be computed for these points to achieve
quantifiable comparison and matching. A feature descriptor encodes distinguishing information about a
point, allowing for robust identification across different views. For the same point of interest, the feature
descriptors remains invariant as the image changes, so that the same point can be matched across
multiple images. Descriptors are typically categorized into two types: local descriptors, which capture
information within a small neighborhood around the point, and global descriptors, which describe the
entire image. However, in general, global descriptors are less robust and reliable compared to local
descriptors in most applications.

Among various feature detection algorithms, Scale-Invariant Feature Transform (SIFT) is one of the
most representative and widely used methods. SIFT performs multi-scale feature detection by con-
structing a Gaussian pyramid and computes histograms with with gradient distributions for each key
point in order to obtain descriptors, which are designed to be invariant to changes in scale and rotation,
making SIFT particularly effective in matching features across diverse images[29].
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After feature detection is completed, the next critical step is feature matching. Feature matching refers
to establishing correspondences between images of the same scene or object. A common approach
involves detecting a set of interest points from the image data and computing a corresponding de-
scriptor for each point. Once feature points and their descriptors are extracted from the images, initial
correspondences can be established between them.

The performance of interest-point-based matching methods largely depends on the properties of the
detected points and the type of descriptor used. Therefore, it is essential to select appropriate feature
detectors and descriptors according to the specific content of the images in practical applications.

2.4.2. Camera Pose Estimation

Camera pose estimation aims to determine a camera’s position in a global coordinate frame by means
of computer-vision algorithms. Traditional estimation method relies on feature detection and matching:
by using the geometric relationships among matched features across images, the camera’s extrinsic
parameters can be inferred. With the development of machine learning, neural-network models have
been proposed to estimate the pose directly from images[34, 53], but these methods usually require
large, accurately labelled training sets[36]. Thus, this research adopts the traditional feature-based
method.

Mathematically, the problem can be written as recovering the rotation matrix R and translation vector
t of the camera from a set of correspondences between 3D points X; and their 2D projections x;:

X NK[R‘t]XJ, jzl,...,n, (27)

where K is the intrinsic matrix and ~ denotes equality up to scale in homogeneous coordinates. The
solution of this equation is based on the epipolar geometry introduced earlier.

2.4.3. Bundle Adjustment

Bundle adjustmentis the problem of refining a visual reconstruction to produce jointly optimal 3D struc-
ture and viewing parameter (camera pose and/or calibration) estimates[58]. The principle of this method
is to consider all image point observations, camera external orientation elements (pose) and 3D point
coordinates as a whole, and optimize them simultaneously through least squares iterations to achieve
a global minimum of the reprojection error.

In multi-view reconstruction, the same 3D point can be observed from different viewpoints. Define X
as the spatial coordinates of the j-th 3D point, P; denotes the projection matrix of the i-th camera, and
z; denotes the observed coordinates of the j-th 3D point X; in the i-th image. Under ideal conditions,
the projection point P; X; would coincide exactly with ac; In practice, however, due to various errors
there is normally some deviation. Bundle adjustment addresses this by jointly optimising all camera
parameters and 3D point positions to minimise the sum of squared reprojection errors:

min ; d(P’iX4 'z’i)z (2.8)

P, X; = g
T4y

where, d(P"Xj, xj’) represents the distance between the projection point P?X; and the observed point

L; And the optimisation variables include the camera projection matrices P* and the positions of the
3D points X ;.

2.5. Multi-view Stereo (MVS)

Structure-from-Motion (SfM) can estimate the relative poses and the intrinsic and extrinsic parameters
of the cameras from multiple views, thereby producing a sparse 3-D point cloud. Multi-view stereo
(MVS) can then use the camera poses and intrinsics obtained from SfM to estimate the depth of every
pixel in each image, thus reconstructing a dense 3-D point cloud.

2.5.1. Two-view stereo
MVS is based on the same principles as two-view stereo, we first introduce the basic concepts of two-
view stereo. Two-view stereo is founded on the stereo matching algorithm, which can estimate the
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depth of every pixel in the first image by using the second image. The process involves several steps:

Rectification

The goal of rectification is to transform a stereo image pair so that corresponding points lie on the
same horizontal scanline. In the special case where the two cameras have parallel image planes,
equal focal lengths, and their centres are at the same height relative to the baseline, the images are
already rectified. For more complicated cases, these conditions do not hold, and the raw images are
not geometrically aligned. Thus, image rectification must be performed with the matrix computation
method proposed by Loop and Zhang [30].

Correspondence Search

After rectification and after the epipolar lines have been obtained, all pixels on the epipolar line in
the second image are examined to find the pixel that best matches the pixel in the first image, thus
establishing correspondences. A variety of similarity metrics can be used, such as the sum of squared
differences (SSD) and normalized cross-correlation (NCC).

Consistency Constraints
After correspondences are obtained, several lightweight checks are applied to delete mismatches:

» Each pixel in one image should correspond to a unique pixel in the other image.

» The left-to-right ordering of points along an epipolar line should be preserved, except in cases of
true occlusions.

» Disparity values must lie within a plausible range based on scene geometry and camera setup.

* A left-right cross-check is enforced to detect outliers. Specifically, for a pixel at position «x in the
left image with disparity d;,(x), and the corresponding pixel at position 2’ = « — d(z) in the right
image with disparity dr(z'), the following consistency condition must hold:

|ldo(z) + dr(z — do(2))| < T, (2.9)

where 7 is a predefined threshold that tolerates small errors due to noise or calibration inaccura-
cies.

Pixels violating any of these conditions are re-examined or marked as invalid to improve overall match-
ing reliability.

2.5.2. Multi-view Stereo

The difference in multi-view stereo is that a global view selection must first be performed: based on
the 3-D point cloud extracted by SfM, the number of SIFT matches, camera poses, and other criteria,
a subset of views adjacent to the reference view is chosen from all available views for stereo matching.
After that, local view selection is carried out. When processing a specific pixel, the algorithm once
again examines the neighbouring views selected in the previous step and, according to the depths and
surface normals already estimated for nearby pixels, as well as the disparities between the reference
view and each neighbouring view, selects a small subset of truly useful views for computing the depth of
that pixel. The pixel’s depth is finally estimated from these few views in order of matching confidence.

2.6. Feature Descriptor

As mentioned earlier in feature detection, feature descriptors can describe points of interest and encode
that description in the form of multidimensional feature vectors in a vector space. Feature descriptors
can record a range of information about different points of interest and allow humans to effectively
distinguish between them. Features are important data for accomplishing the computations required
for a particular application. Features in an image can be specific elements such as points, edges or
objects.

2.6.1. Point Feature Histogram
The Point Feature Histogram(PFH) is a descriptor that captures the local geometric structure of a 3-D
point cloud. For a query point p, it analyses the pair-wise geometric relationships, angles, distances
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and surface normals between p, and all points inside its & neighbourhood, and encodes the result
in a 33-bin multidimensional histogram[49]. By averaging the curvature around the point in this way,
PFH provides a rich, high dimensional representation of the neighbourhood’s geometry that is robust
to variations in sampling density and moderate noise.

Figure 2.3 plots the PFH support region. The red query point p, lies at the centre of a sphere of radius r
and is fully connected to every neighbouring point whose Euclidean distance from p, is less than r. The
final descriptor is the joint histogram over all ordered point pairs within this support, giving the method
a computational complexity of O(k?).

For any interest point p,, the first thing to do is to gather all points that lie within a radius =, which are
its neighbours. Then it is needed to build a small local coordinate frame: its first axis is the surface
normal at p,, and the other two axes are defined by the line that joins p, to each neighbour. For every
neighbour we then measure three angles(«, ¢, and ) plus the distance between the two points. Each
angle range is splitinto eleven equal parts (bins). Counting how often «, ¢ and 4 fall into their respective
bins produces 33 numbers, which together form a histogram. Finally, normalise this histogram so that
all its values add up to 1. The resulting 33 element vector is called the Point Feature Histogram (PFH)
of p,, which provides a compact but expressive summary of the local surface shape.

aREEEmg,
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Figure 2.3: Point Feature Histogram. The red point is the query pointp,; blue points lie within the spherical neighbourhood of
radius r. All ordered point pairs inside this region are considered when building the histogram[42].

2.6.2. Fast Point Feature Histogram

Based on the original Point Feature Histogram (PFH), the Fast Point Feature Histogram (FPFH) sim-
plifies the method and reduces the computational complexity to O(k), saving significant computation
while retaining most of PFH’s descriptive power.

The first step is to compute the Simplified PFH (SPFH). For each query point p,, only the angular triplet
(o, ¢,0) between p, and each of its neighbors is recorded. Unlike the full PFH, SPFH deliberately
ignores the triplets between neighbor pairs and focuses solely on the relations from p, to its neighbors.

Once all points’ SPFHs are obtained, the final FPFH descriptor for each point is generated by revisiting
its k nearest neighbors and forming a weighted combination of their SPFHs with that of p,, as is shown
in equation below. The weights are typically based on the Euclidean distance, so that closer neighbors
have a greater influence on the result.

k
1<n 1
FPFH(p,) = SPFH(p,) + ; .+ SPFH(p,) (2.10)
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Figure 2.4: Fast Point Feature Histogram([41]

2.7. Point Cloud Registration

Point cloud registration is a key problem in computer vision applications, aiming to align two or more
point clouds captured from different viewpoints or sensors into a common coordinate system. Itinvolves
finding a rigid transformation that maps one point cloud onto another such that their geometries align
accurately [22].

A wide range of point cloud registration methods have been developed to date. Generally, these meth-
ods can be categorized into two stages: coarse registration and fine registration. When the initial pose
difference between point clouds is large, coarse registration is typically used to provide an initial trans-
formation estimate, which then serves as the starting point for the fine registration stage. Here in this
research, the coarse registration algorithm we use is Sample Consensus Initial Alignment (SAC-IA)
and the fine registration method we use is lterative Closest Point (ICP) algorithm.

Early approaches mainly relied on classical geometric principles, estimating transformations by match-
ing local features or minimizing geometric distances. With the rapid development of machine learning,
researchers have increasingly explored deep learning-based registration methods, which have demon-
strated excellent performance in recent years [4, 31]. In this study, we adopt traditional geometry-based
rigid registration methods, which do not require large-scale annotated training datasets and are well-
suited for aligning multi-source point clouds, such as those derived from LiDAR and photogrammetry.

2.7.1. Sample Consensus Initial Alignment

Sample Consensus Initial Alignment (SAC-IA) is a feature-based coarse registration algorithm com-
monly used in point cloud alignment tasks, particularly effective in scenarios where there are large
initial rotations or translations between datasets. This method combines RANSAC (Random Sample
Consensus) with an initial alignment strategy to estimate a rough rigid transformation by selecting a
subset of corresponding feature points[48].

At its core, SAC-IA builds on the principles of RANSAC, an iterative outlier rejection algorithm widely
used in machine learning and computer vision. RANSAC works by repeatedly selecting random sam-
ples from a dataset to fit candidate models, and evaluating how many data points are consistent with
each model. The model with the highest number of inliers is then selected as the best estimate[48].

SAC-IA applies this idea to point cloud feature matching and alignment. While RANSAC is funda-
mentally a sampling-consistency model estimation method, SAC-IA can be interpreted as sampling-
consistent initial alignment. Specifically, it first computes feature descriptors—typically Fast Point Fea-
ture Histograms (FPFH)—for each keypoint in the point clouds. Then, based on feature similarity, it
constructs an initial set of candidate correspondences. The RANSAC framework is then employed to
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iteratively sample and evaluate these correspondences, eventually identifying the most reliable subset
to estimate the rigid transformation.

SAC-IA has been successfully applied in various domains, including autonomous robotics, object recog-
nition, and 3D modeling [50, 28, 40]. Its main advantage lies in its robustness to large pose differences
and its ability to provide reasonable initial alignment even under challenging conditions. However, its
performance heavily relies on the quality of the feature descriptors. his makes SAC-IA a suitable first
step before fine registration methods such as ICP.

2.7.2. Iterative Closest Point (ICP) Algorithm

The Iterative Closest Point (ICP) algorithm is a classic and widely used method for point cloud reg-
istration in computer vision. It is applicable to both 2D and 3D point clouds and has demonstrated
excellent performance, particularly in 3D applications. ICP is commonly adopted as a fine registration
technique. The algorithm was first formally introduced by Besl and McKay [9], and its core idea is con-
ceptually simple: it iteratively refines the alignment between two point clouds by minimizing the spatial
discrepancy—typically the sum of squared errors—between corresponding points, thereby estimating
the optimal rigid transformation.

It is important to note that ICP is highly sensitive to the initial alignment between the point clouds. A
poor initial pose may lead to inaccurate results or even prevent the algorithm from converging. The
implementation of ICP begins with finding, for each point in the source point cloud, its nearest neighbor
in the target point cloud under the current transformation. Since computing nearest neighbors for large-
scale point clouds containing millions of points is computationally expensive, ICP typically leverages
data structures such as k-d trees. These trees recursively partition the 3D space and enable efficient
nearest-neighbor search, greatly reducing computational overhead.

Once the correspondences are established, the algorithm computes the optimal rigid transformation by
minimizing the Euclidean distances between corresponding pairs. This transformation is then applied
to the source point cloud, and the process is repeated: new correspondences are found, and a new
transformation is estimated. With each iteration, the source point cloud gradually aligns more closely
with the target, until the change in transformation parameters falls below a predefined threshold. This
iterative process is illustrated in Fig. 2.5.

Figure 2.5: ICP algorithm’s iterative alignment process[54]

The advantages of ICP lie in its simplicity and efficiency, making it capable of achieving high-accuracy
alignment. However, a notable limitation is its sensitivity to the initial pose. As a result, a reliable initial
alignment is often required to ensure convergence to a correct solution. This is precisely why, in the
registration workflow of this study, the SAC-IA algorithm is introduced prior to ICP to provide an effective
coarse alignment.
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2.8. JARKUS

In the Netherlands, long-term measurements of the coastline are collected by the JARKUS program
(JAarlijkse KUStmetingen), which has been active since 1965. The program is managed by Rijkswa-
terstaat, a part of the Dutch Ministry of Infrastructure and Water Management. Every year, JARKUS
collects cross-shore elevation profiles at regular intervals of approximately 250 meters along the entire
Dutch coast[46]. These profiles record the shape of the beach, dunes, and nearshore seabed, and are
aligned to the Normaal Amsterdams Peil (NAP), which is the national vertical datum.

Each profile consists of a series of elevation points, ordered by chainage, which represents the distance
from a fixed base point on the coast. Because the profiles are collected at the same locations every
year, they allow for direct comparison over time. This makes the JARKUS dataset highly valuable
for studying coastal changes, such as shoreline retreat, dune erosion, sediment transport, or beach
nourishment effects.

Researchers use JARKUS data in a wide range of coastal studies. [63] used JARKUS profiles and aerial
images to investigate shoreline changes across different time scales, from single seasons to multiple
decades. In many cases, JARKUS serves as a reference dataset or validation source for remote
sensing products such as LIiDAR or photogrammetry-based DEMSs. Its high temporal resolution, wide
coverage, and consistent measurement standard make it one of the most reliable sources for detecting
true coastal elevation change in the Netherlands.

2.9. Orthophoto

An orthophoto is a type of aerial image that has been corrected so that all objects appear in their true
positions on a flat surface, as if viewed directly from above [13]. Original aerial photos often contain
distortions caused by things like sensor tilt, movement of the aircraft, or changes in terrain height.
Orthorectification removes these distortions, so that every pointin the image looks as if it was taken from
directly overhead (nadir). Because of this, orthophotos can be directly used to determine geographic
locations, measure distances, compute areas, and extract other spatial information about the surveyed
region [16]. In this study, orthophotos are used to observe and analyze the spatiotemporal evolution of
coastal landscapes. High-resolution orthophotos provide a clear depiction of shoreline position, beach
morphology, intertidal zone distribution, and vegetation cover, enabling a direct visual assessment of
coastal change over time.

The standard orthophoto generation workflow generally consists of three main steps: image orienta-
tion, reprojection using a digital terrain or surface model, and image mosaicking [8]. Image orientation
involves estimating the exterior orientation parameters (camera position and attitude) and the interior
orientation parameters of each image using Structure-from-Motion (SfM) techniques, thereby determin-
ing the spatial geometry of the image set. Next, the original images are orthorectified using a Digital
Terrain Model (DTM) or Digital Surface Model (DSM) to remove geometric distortions caused by ter-
rain relief and camera tilt, ensuring that every pixel corresponds precisely to a geographic coordinate.
Finally, the orthorectified images are mosaicked together, with radiometric balancing and seamline
optimization applied in the overlapping areas, to produce a seamless orthophoto with a uniform scale.

The quality and accuracy of an orthophoto are influenced by multiple factors. First, the resolution and
overlap of the original imagery directly affect the spatial detail and registration precision of the final
orthophoto. Second, the accuracy of camera interior and exterior orientation parameter estimation
impacts the positional accuracy of the orthorectified image. At last, the precision of the DTM or DSM
used is critical for eliminating relief displacement, particularly in areas with significant terrain variation
[20].



Data Description

3.1. Benchmark Dataset of Toronto Downtown

The first benchmark dataset covers the downtown area of Toronto, Canada. This dataset originates
from the ISPRS Test Project on Urban Classification, 3D Building Reconstruction and Semantic La-
beling, and includes two typical high-density urban blocks within Toronto’s financial district, each mea-
suring approximately 530 m x 600 m[47]. The data used in this study include both aerial imagery and
airborne LiDAR data, which were acquired between September 2011 and the end of 2012. The short
temporal gap between the two datasets, combined with the fact that the streetscape of downtown
Toronto remained largely unchanged during this period, allows for a reliable validation of the registra-
tion workflow by minimizing the impact of temporal differences.

3.1.1. Downtown Toronto Aerial Imagery

The aerial photographs over downtown Toronto were captured using Microsoft’'s UltraCam-D digital
aerial camera. As illustrated in Figure 3.1, the area was covered by three flight strips, with a side
overlap of 0.3 and a forward overlap of 0.6. A total of 13 images were captured, and the complete
exterior orientation parameters are available. Each image frame has a resolution of 7,500 x 11,500
pixels, with a physical pixel size of 9 um [47].

Strip1

Strip 2

Strip 3

Figure 3.1: Aerial Image Strip[47]

The aerial images within 3 strips coverage provided are in .tif format.Based on a visual inspection of
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the overlaps and image quality, three representative images were selected as inputs for the photogram-
metric 3D reconstruction: 03751.tif, 03753.tif, and 03755.tif. These images belong to a sub-area
within flight strip 2 and were chosen to ensure sufficient overlap for stereo reconstruction as well as
to capture both high buildings and surrounding ground features. The selected images are shown in
Fig. 3.2, where their coverage illustrates the dense urban environment of downtown Toronto, including
tall buildings casting long shadows, transportation infrastructure, and open spaces.

(a) Visualization of 03751.tif (c) Visualization of 03755.tif

Figure 3.2: Overall caption describing all three images.

3.1.2. Airborne Laser Scanning (ALS) Data

The ALS data were acquired using an ALTM ORION sensor onboard an aircraft flying at an altitude of
650 m and a speed of 120 knots. The sensor operated at a wavelength of 1064 nm in the near-infrared
(NIR) range. It scanned the ground surface with a 20° field of view at a scanning frequency of 50 Hz.
The reflected laser echoes were digitized at a sampling rate of 100kHz, enabling high-density and
high-precision 3D point cloud data collection suitable for urban mapping applications[47].

According to the ISPRS benchmark dataset, six flight strips were collected over the downtown Toronto
area, as is shown in the left image in Fig. 3.3. The coverage extent of these strips is indicated by the
red box in the figure. After visual inspection, it was observed that the dark blue region in the strip map
corresponds to the scanning area of strip 2 — the same flight strip selected in the previous subsection
for photogrammetric reconstruction. Therefore, the ALS data from the dark blue strip were selected as
the ground truth for this benchmark dataset, enabling direct comparison with the point cloud generated
from aerial imagery.

Figure 3.3: Toronto ALS strip and coverage area(Red line on the right image covers the area of ALS strips)[47]

3.2. Datasets of Westkapelle, the Netherlands

Westkapelle is a coastal town located in the province of Zeeland, in the southwestern Netherlands, as
is shown in Fig. 3.4. Situated on the western tip of the Walcheren peninsula, it faces the North Sea
and is known for its coastal dike system, sandy beaches, and historical sea defenses. The region
has a variety of surface types—including urban buildings, dunes, grassland, and engineered sea walls,
making it an ideal test site for topographic comparison studies.
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Figure 3.5: Zoom in of research area of Westkapelle, the Netherlands

This section describes two datasets used in this study: a benchmark dataset for validation purposes,
and a test dataset for research purpose.

3.2.1. Benchmark LiDAR Data: AHN2 and AHN4

While the Toronto dataset enabled validation of the registration workflow under the condition without
time inconsistency, it did not solve another important question that brought in research statement, which
may affect the accuracy of point cloud alignment—inconsistency in data acquisition methods. To evalu-
ate the robustness of the registration pipeline under varying acquisition conditions, an additional bench-
mark was required: one where the datasets were collected using the same acquisition method but at
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different time periods. Thus, two national elevation datasets from the Netherlands are selected, the
AHN2 dataset and the AHN4 dataset.

The Actueel Hoogtebestand Nederland (AHN) is a national elevation dataset of the Netherlands, based
on airborne laser scanning (LIDAR) surveys. It is managed by a consortium of Dutch water boards and
governmental agencies and provides high-resolution elevation information with centimeter-level vertical
accuracy[3].

The Netherlands is divided into multiple grid regions by the AHN system, with each grid consisting of
25 sub-tiles. Each sub-tile covers an area of approximately 1.25 x 1.25 kilometers. For each grid area,
AHN provides LiDAR point cloud data, along with DSM and DTM products derived from the point cloud,
available at spatial resolutions of 5 meters and 0.5 meters. In addition, orthorectified aerial imagery
from the years 2016 to 2024 is available to support the DSM products.

The AHN 2 dataset was acquired between 2007 and 2012, while AHN 4 was collected between 2020
and 2022, resulting in a temporal separation of around 10 years. Specifically, the AHN 2 data for
Westkapelle were collected in 2007, whereas the AHN 4 data were acquired in 2020 [2]. Both datasets
were produced by official Dutch government agencies using airborne LiDAR, ensuring high spatial
accuracy, vertical precision, and overall consistency. Furthermore, both are referenced to the same
RD New coordinate system (EPSG:28992) and use NAP (Normaal Amsterdams Peil) as the vertical
datum.

A summary of the two datasets information is shown in Table 3.1.

Table 3.1: Comparison of AHN2 and AHN4 datasets

Attribute AHN2 AHN4
Acquisition Period 2007-2012 2020-2022
Point Number 7,731,302 4,621,620
Point Density 6—10 pts/m? 10-20 pts/m?

Coordinate System

RD New (EPSG:28992)

RD New (EPSG:28992)

Vertical Datum NAP (Normaal Amsterdams Peil) NAP
Data Provider Dutch Government (RWS/Kadaster) | Dutch Government (RWS/Kadaster)
Data Format LAS 1.2/ LAZ LAS 1.2/ LAZ

However, running the full registration and validation workflow on the entire Westkapelle area would
place heavy demands on computing resources. To shorten processing time, we first examined the
complete study region and selected a representative sub-area that contains pronounced geomorphic

features and avoids excessive overlap of repeat point clouds, as shown in Fig. 3.6.

\ A
\

Figure 3.6: The Subset Benchmark Area of Westkapelle
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3.2.2. Test Dataset: Aerial Imagery and AHN4

Aerial Imagery

Before deciding Westkapelle as the research area, we conducted an extensive survey of all publicly
available historical aerial imagery of the Dutch coastline, focusing on data acquired during the 1990s.
The primary goal was to identify candidate regions suitable for photogrammetric reconstruction and
coastal change analysis.

Most of the datasets were from the TU Delft Library’s open access aerial image archives, which contain
scanned analog photos from various decades. Due to the historical nature of these datasets, several
limitations exist:

» The spatial resolution is generally low, especially compared to modern aerial imagery.

» Some photographs are often only available in non-digital formats (e.g., scanned prints or TIFFs
rather than modern lossless formats such as PNG or JPEG2000).

» Camera metadata (e.g., focal length, flight altitude, sensor size) is often incomplete or missing.

» Radiometric quality is limited due to aging of physical prints and scanning artifacts (e.g., color
fading, scratches, or noise).

» Georeferencing information is typically absent, requiring manual ground control point (GCP) col-
lection or approximation from external sources.

A summary of the collected datasets is presented in Table 3.2. Based on visual inspection and evalu-
ation of image overlap, the dataset named Kustfotos acquired in 1990 was ultimately selected for this
study, as it provided sufficient coverage of the Westkapelle coastal area and exhibited the highest po-
tential for successful photogrammetric reconstruction among the available candidates. The selected
historical imagery is shown in Fig. 3.7

Table 3.2: Overview of Aerial Photographs of the Dutch Coastline

Data Name Source Author Date
Kustfotos TU Delft Library | Unknown | 1982, 1987, 1990
Luchtfotos kust Noord Nederland TU Delft Library | Unknown | 1990
Luchtfoto’s van de Nederlandse kust - Zeeland TU Delft Library | Unknown | 1994
Luchtfoto’s van de Nederlandse kust - Zuid Holland TU Delft Library | Unknown | 1994
Luchtfoto’s van de Nederlandse kust - Noord Holland, Texel | TU Delft Library | Unknown | 1994
Luchtfoto’s van de Nederlandse kust - Waddeneilanden TU Delft Library | Unknown | 1994

(a) Kustfotos of Westkapelle-1 (b) Kustfotos of Westkapelle-2 (c) Kustfotos of Westkapelle-3

Figure 3.7: Historical Images of Westkapelle

3.3. JARKUS Data

In this study, the JARKUS dataset is employed to validate coastal elevation change results derived
from photogrammetric reconstructions and LiDAR analyses. The data were obtained from the public
Deltares OpenEarth repository, where the transect overview is available as a KML file and can be
visualized in QGIS[18]. This dataset provides cross-shore elevation transects along the entire Dutch
coastline. Within the Walcheren coastal cell, the Westkapelle block contains approximately forty such
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transects. Each transect originates from a fixed benchmark pole within the village, extends across the
dune crest, the sea dike, the intertidal beach, and the upper shoreface, and terminates at approximately
—8 m NAP water depth.

For the Westkapelle region, the profile line settings were obtained from shown in Fig. 3.8. Within the
area of interest, there are three relevant transects. According to the JARKUS naming convention, their
official IDs are 16002195, 16002215, and 16002235, which correspond to 21950, 22150, and 22350
in Fig. 3.8. The green-yellow lines (jarkusraaien) are the JARKUS cross-shore profiles themselves,

spaced every 250 m and extending from land out to approximately —200 m, and the oranges dots rep-
resent the fixed benchmark pole.

21950

22150

22350

Figure 3.8: JARKUS profiles around Westkapelle



Methodology

In this chapter, the overall technical methodology used in this research will be described in detail. Based
on the research objectives and theoretical foundations presented in the previous section, this study
designs a complete point cloud generation and alignment process to ensure that the point cloud gen-
erated from historical images can be well aligned with the ground truth point cloud, so as to ensure
that the comparison of the later DEMs is reasonable and credible. The methodology is illustrated us-
ing the Westkapelle test dataset, as it is the only study dataset for which the complete workflow can
be fully reproduced from start to finish. In contrast, for the benchmark datasets—Toronto Downtown
and the Westkapelle benchmark—the specific characteristics of the data meant that certain workflow
steps were unnecessary. For example, the Toronto dataset did not require surface masking, while the
Westkapelle benchmark dataset did not require point cloud generation from photogrammetry, as such
data were already available.

Section 4.1 introduces the photogrammetric processing flow, Section 4.2 discusses the point cloud
registration workflow, Sections 4.3 and 4.4 present the evaluation of point clouds and DEMs, and finally,
Section 4.5 explains how JARKUS data are used to validate the elevation change.

4.1. Photogrammetry Workflow for Point Cloud Generation

This section presents the complete photogrammetric workflow used to generate high-density 3D point
clouds from historical aerial imagery, which generates the foundational dataset for future point cloud
registation. Initial step sea masking, was carried out using the Segment Anything model. The re-
maining photogrammetry steps including feature matching, camera pose estimation, georeferencing,
orthophoto generation and dense point cloud reconstruction were performed using Agisoft. Additionally,
QGIS was used to collect and manage Ground Control Points (GCPs) to support accurate georefer-
encing. The overall workflow is illustrated as follow:

20
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Input Images
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Figure 4.1: Photogrammetry Workflow

4.11. Sea Masking

The historical aerial imagery used in this research covers the coastal area of Westkapelle, the Nether-
lands, where wave patterns are typically observed. Due to temporal difference between image acqui-
sitions and the movement of waves, there is a variation in the position of the waves between images,
which violates the assumption that photogrammetry requires temporal consistency among the images
used for 3D reconstruction[55, 39], and interferes with the matching of keypoints in the future process-

ing.
In preliminary tests, the results of Metashape’s feature detection and matching of historical aerial im-
agery showed notable mismatches in the wave regions due to the drastic changes in the waves on

the water surface. For example, in Fig. 4.2, the red line represents the mismatch point in two overlap
images, from where it can be told that the wave’s position will lead to mismatch. Theses regions may
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