
 
 

Delft University of Technology

On Designing Smart Agents for Service Provisioning in Blockchain-Powered Systems

Mhaisen, Naram; Allahham, Mhd Saria; Mohamed, Amr; Erbad, Aiman; Guizani, Mohsen

DOI
10.1109/TNSE.2021.3118970
Publication date
2022
Document Version
Final published version
Published in
IEEE Transactions on Network Science and Engineering

Citation (APA)
Mhaisen, N., Allahham, M. S., Mohamed, A., Erbad, A., & Guizani, M. (2022). On Designing Smart Agents
for Service Provisioning in Blockchain-Powered Systems. IEEE Transactions on Network Science and
Engineering, 9(2), 401-415. Article 9573346. https://doi.org/10.1109/TNSE.2021.3118970

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TNSE.2021.3118970
https://doi.org/10.1109/TNSE.2021.3118970


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



On Designing Smart Agents for Service Provisioning
in Blockchain-Powered Systems

Naram Mhaisen, Mhd Saria Allahham , Amr Mohamed , Senior Member, IEEE,

Aiman Erbad , Senior Member, IEEE, and Mohsen Guizani , Fellow, IEEE

Abstract—Service provisioning systems assign users to service
providers according to allocation criteria that strike an optimal
trade-off between users’ Quality of Experience (QoE) and the
operation cost endured by providers. These systems have been
leveraging Smart Contracts (SCs) to add trust and transparency
to their criteria. However, deploying fixed allocation criteria in
SCs does not necessarily lead to the best performance over time
since the blockchain participants join and leave flexibly, and
their load varies with time, making the original allocation sub-
optimal. Furthermore, updating the criteria manually at every
variation in the blockchain jeopardizes the autonomous and
independent execution promised by SCs. Thus, we propose a set
of light-weight agents for SCs that are capable of optimizing the
performance. We also propose using online learning SCs,
empowered by Deep Reinforcement Learning (DRL) agent, that
leverage the chained data to continuously self-tune its allocation
criteria. We show that the proposed learning-assisted method
achieves superior performance on the combinatorial multi-stage
allocation problem while still being executable in real-time. We
also compare the proposed approach with standard heuristics as
well as planning methods. Results show a significant performance
advantage over heuristics and better adaptability to the dynamic
nature of blockchain networks.

Index Terms—IoT, blockchain, smart contracts, service provi-
sioning, deep reinforcement learning, edge computing.

I. INTRODUCTION

THE Internet of Things (IoT) is a technology paradigm

envisioned as a global network of heterogeneous devices

that can interact with each other and/or the environment

around them. IoT devices are evolving from mere collectors

of data to sophisticated task processing entities that are

capable of processing and exchanging data using the edge

computing paradigm [1]. These devices can range from small

medical wearable devices to industrial equipment or autono-

mous electric vehicles (EV). One of IoT’s main challenges is

facilitating service management among them, especially for

constrained devices. Most IoT devices have limitations on

storing and processing the needed information to manage their

resources and services. Thus, the necessity of having a secure,

autonomous, and reliable service management framework

arises. Moreover, the fact that IoT devices can form largely

decentralized and dynamic networks necessitates the need for

the decentralization and security of such service management

systems. Hence, blockchain-based systems are foreseen to be

one of the essential service management and data sharing sys-

tems between IoT devices [2].

Blockchain has recently emerged as one of the most secure

distributed system architectures. It is based on P2P network-

ing, where all participant nodes exchange transactions and

reach a consensus on the general state of an asset. Each of

the blockchain’s nodes preserves an append-only, crypto-

graphically-linked list of all events of interests and transac-

tions that occurred in the network. This record is also

referred to as the distributed ledger. The peer-enforced con-

sensus rules and absence of a centralized third party make

data manipulation extremely hard [3]–[5]. Blockchains

enable any programmed logic to be deployed on the distrib-

uted network. These programs are called Smart Contracts

(SCs) [6]. SCs are general-purpose software applications that

are deployed on the blockchain distributed network. They

represent real-world agreements digitally, which offers multi-

ple appealing security guarantees [7]. Namely, being a form

of distributed software, SCs have high availability in case of

node failures across the network. Further, their code is immu-

table as it is stored on all nodes. Lastly, blockchain’s data is

edited only through cryptographic consensus, making the

execution of an SC automatic, and the resulting output cryp-

tographically verifiable by all participant nodes [8]. These

security benefits make the software programs (SCs) transpar-

ent and self-enforceable. [9]–[11].

Recently, multiple domains started to leverage the auton-

omy, resilience, and transparency features of SCs in service

provisioning and resource management for IoT devices.

These include peer-to-peer P2P energy trading of household

renewable energy, or EV [12], with some projects already

deployed in industry [13], where SCs are used to enhance

Manuscript received January 5, 2021; revised August 10, 2021; accepted
September 30, 2021. Date of publication October 14, 2021; date of current
version March 23, 2022. This work was supported by NPRP under Grant
#NPRP12S-0305-190231 from Qatar National Research Fund. Recommended
for acceptance by Dr. Yan Zhang. (Corresponding author: Amr Mohamed.)

Naram Mhaisen is with the Faculty of Electrical Engineering, Mathematics,
and Computer Science, Delft University of Technology, 2600 AA Delft, The
Netherlands, and also with Computer Science and Engineering, Qatar Univer-
sity, Doha, Qatar (e-mail: naram@qu.edu.qa).

Mhd Saria Allahham is with Computer Science and Engineering, Qatar
University, Doha, Qatar, and also with the School of Computing, Queen’s
University, Kingston, Ontario K7L 3N6, Canada (e-mail: ma1517219@qu.
edu.qa).

Amr Mohamed and Mohsen Guizani are with the College of Engineering,
Qatar University, Doha 2713, Qatar (e-mail: amrm@qu.edu.qa;mguizani@ieee.org).

Aiman Erbad is with the Division of Information and Computing Technol-
ogy, College of Science and Engineering, Hamad Bin Khlifa University,
Doha, Qatar (e-mail: aerbad@ieee.org).

Digital Object Identifier 10.1109/TNSE.2021.3118970

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 9, NO. 2, MARCH/APRIL 2022 401

2327-4697 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 06,2023 at 10:39:46 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-3883-2588
https://orcid.org/0000-0002-3883-2588
https://orcid.org/0000-0002-3883-2588
https://orcid.org/0000-0002-3883-2588
https://orcid.org/0000-0002-3883-2588
https://orcid.org/0000-0002-1583-7503
https://orcid.org/0000-0002-1583-7503
https://orcid.org/0000-0002-1583-7503
https://orcid.org/0000-0002-1583-7503
https://orcid.org/0000-0002-1583-7503
https://orcid.org/0000-0001-7565-5253
https://orcid.org/0000-0001-7565-5253
https://orcid.org/0000-0001-7565-5253
https://orcid.org/0000-0001-7565-5253
https://orcid.org/0000-0001-7565-5253
https://orcid.org/0000-0002-8972-8094
https://orcid.org/0000-0002-8972-8094
https://orcid.org/0000-0002-8972-8094
https://orcid.org/0000-0002-8972-8094
https://orcid.org/0000-0002-8972-8094
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:


P2P energy trading. Cloud and edge resource allocation

market also heavily utilizes SCs to facilitate the resource

auction mechanism through recording requests and services

for non-repudiation attack protection [14]. In the domain of

IoT smart sensors, SCs are being utilized for the provenance

of data sources, as well as machine-to-machine (M2M) pay-

ments to enable the direct transaction between sensing/actu-

ating nodes without relying on a centralized server [15]. In

general, SCs provide appealing features for service provi-

sioning in any industry and have been shown to support

large deployments of IoT devices for automated service

provisioning [16].

A crucial consideration in service provisioning is the crite-

ria of assigning users (or tasks) to service providers. Such allo-

cation problems should consider multiple factors, including

the service cost that users endure as well as the operation cost

of service providers. In general, the service allocation should

jointly optimize the service cost and operation cost. Obvi-

ously, service provisioning systems aim to assign users to the

service provider with minimum fees to save service costs for

the users. However, service providers have limited capacities,

and overloading them might lead to high operation costs over

time. For example, if the service provider is an IoT node deliv-

ering remote information as a service, then energy consump-

tion is a significant concern. Similar arguments can be made if

the service provider is a smart battery/EV trading energy since

more trading operations can tear the battery. In general, ser-

vice providers’ operation cost, as deduced by their load,

should also be considered by any service provisioning system.

Hence, the joint optimization of service cost and operation

cost is desirable.

The joint optimization in service provisioning is classi-

cally modeled as task allocation in a multi-agent set-

ting [17]. However, this formulation is not portable to

blockchain environments due to multiple factors. First, the

task allocation problem requires a static set of users and

service providers. However, blockchain is a dynamic sys-

tem where service providers of different capacities join and

leave flexibly. Second, as the blockchain is a temporal sys-

tem, the task allocation committed at the current block will

affect the decisions at future blocks as the providers’ load

will differ. Hence, even if the allocation is locally optimal,

it might lead to a sub-optimal situation over time. Lastly,

SCs, when deployed, are immutable and cannot be changed

or require a complex update process [7]. In summary, the

heterogeneity of participants and the temporal nature of

blockchain systems impose a challenge to traditional opti-

mization methods and calls for adaptive SCs.

Two major recent advances motivate our current work; First,

the proposal of rational contracts, which can optimize their per-

formance after they are deployed on the blockchain through

learning from past chained data [18]. Second, the major shift of

service provisioning systems from conventional centralized

cloud-based platforms towards distributed-ledger-based plat-

forms, providing transparency and security as a by-product

from the latter. Thus, the current work, which proposes service

provisioning through intelligent smart contracts, is a natural

integration that results in not only secure and transparent SP

systems but also adaptive ones that continuously tune their

assignment criteria to optimize the users’ QoE.

In this paper, we investigate the problem of service provi-

sioning through IoT devices. We leverage smart contracts for

secure and autonomous execution of the provisioning, model-

ing them as agents that perform the task allocation involved in

the provisioning system. Several design approaches are inves-

tigated for these agents, including heuristic, planning, and

learning-based (RL) agents. The contributions of this paper

are summarized as follows:

� Formulating the service provisioning as a multi-objec-

tive Markov Decision Process (MDP) whose solution

achieves the optimal trade-off between service

providers’ operation cost and users’ service cost along

with the QoE as deduced from an SC-based reputation

system.

� Proposing a set of heuristic-based designs for SC agents

based on the real-time participant’s load information,

serving cost, and reputation.

� Proposing a learning-assisted decision-making tech-

nique, namely, Deep Reinforcement Learning (DRL),

to model intelligent SCs that can leverage the sequential

data and adapt to the environment’s dynamics to maxi-

mize the overall performance.

� Providing a comprehensive performance evaluation and

analysis of the proposed method along with locally opti-

mal heuristics as well as other planning techniques.

� Illustrating a case study that demonstrates the effective-

ness of the proposed DRL-empowered SCs in a real-

world application.

The rest of the paper is organized as follows: Related works

on service provisioning over blockchains are explored in

Section II. We introduce the system model in Section III and

formalize the problem of interest in Section IV. We then pro-

pose the multiple design approaches in Section V and intro-

duce their complexity analysis as well as their empirical

performance in Sections VI and VII, respectively. Finally, we

provide a concrete application through a case study in VIII

and draw conclusions in Section IX.

II. RELATED WORK

The proposed learning-based agent is based on Deep Rein-

forcement Learning (DRL), which is an artificial intelligence

technique that tackles the problems of designing rational

agents capable of making complex sequential decisions in a

random environment to achieve maximum reward over

time [19]. The success of RL-based optimization is mainly

due to its ability to optimize utility functions effectively and,

more importantly, adapt to changes in the optimized systems,

leveraging the representation power of neural networks. Such

adaptation leads to faster and better convergence to policies

that maximize the utility function in dynamic systems. Due to

this fact, DRL has been showing impressive results for service

provisioning in dynamic domains whose entities might

undergo a change with time. For example, Authors in [20]

402 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 9, NO. 2, MARCH/APRIL 2022

Authorized licensed use limited to: TU Delft Library. Downloaded on February 06,2023 at 10:39:46 UTC from IEEE Xplore.  Restrictions apply. 



jointly optimize resource allocation and user association in

heterogeneous cellular networks for offloading stochastic

mobile traffic and showed that it could achieve an optimal

trade-off between the network utility and users Quality of Ser-

vice (QoS). Task allocation in heterogeneous and dynamic

(i.e., varying size) cloud clusters is studied in [21], where a set

of jobs is sequentially allocated to a heterogeneous set of het-

erogeneous machines in a way that minimizes job completion

time. In [22], the vehicles were modeled as edge nodes provid-

ing dynamic resources for the nearby user equipment. Then,

the task allocations problem (in this case, which node to off-

load to) is shown to be non-convex, and RL techniques are uti-

lized to solve such assignment problems. While these studies

give insights into the potential of RL in dynamic environments

for service provisioning, they do not directly model our case

of interest. We investigate the joint optimization of the service

cost and operation cost of the heterogeneous service providers

in the continuously evolving data in blockchain networks.

For blockchain-based service provisioning, RL is increas-

ingly used to tackle the complicated decision-making problem

that arises in such a complex network. For example, the

authors in [23] model blockchain peers as agents and optimize

their offloading decision of various blockchain tasks (i.e., min-

ing and regular processing tasks) in the context of mobile edge

computing. The same goal is also addressed by [1]. However,

the offloading is jointly optimized with other blockchain

parameters such as power allocation, block size, and block

interval. The work in [24] considers the privacy issue in such

offloading processes and proposes quantifying the privacy lev-

els of regular privacy tasks and adding this level in the offload-

ing decision. These works differ from the current one in agent

modeling; blockchain peers are modeled as agents to make

intelligent decisions regarding the offloading of blockchain

tasks (mining and regular processing) with the aim of improv-

ing blockchain transaction throughput. In contrast, we model

the SCs deployed on the blockchain as the agents whose deci-

sions are the allocations of general-purpose service provision-

ing logic written in them. This is independent of the

blockchain/peers working mechanism itself. In general, there

are multiple considerations and implications of selecting

which system modules are to be “agentified,” and hence, read-

ers are referred to [25] for extensive discussion on agent selec-

tion. Nonetheless, it is conveyed that more investigation is

needed in the “SCs as agents” paradigm.

In general, most of the literature research on task allocation

in blockchain and SCs implemented static rules. However,

this approach misses the opportunity of leveraging the ever-

expanding data of blockchain [26]. An initiative towards inte-

grating online control that leverages the blocks’ data as feed-

back is introduced in [27]. The authors propose using control

loop-style SCs to continuously tune participants’ trust scores

according to their recent behaviors/performance. However,

the authors focus only on developing an online trust score.

The allocation aspect of service provisioning was not

considered.

In the current work, we envision SCs as rational agents,

which means that they make the task allocation decisions

intelligently to maximize the utility based on the data stored

on the chain. Specifically, The chained data captures informa-

tion about the performance of previous allocations in the form

of a reward signal. Given these previous rewards, the alloca-

tion policies can be further optimized and improved at every

new block generation (i.e., online) to maximize the utility

(i.e., the total expected sum of rewards). We design the reward

signal to reflect the bi-objective criterion of maximizing

requesters’ QoE, which is calculated based on multiple factors

such as a blockchain-specific reputation score, as well as

maintaining providers’ loads in desired levels. To the best of

our knowledge, such an ambitious framework has only been

investigated in [18]. The authors address the current lack of

intelligence in SCs systems and motivate the design of

“rational” contracts that can make decisions based on the

available data on-chain as well as their recent experience (i.e.,

transaction results), so as to maximize a given utility.

This paper is concerned with the design of such autonomous

SCs in the context of IoT service provisioning. Specifically,

we aim to design SCs that can allocate tasks to service pro-

viders in a way that maximizes the overall social welfare as

measured by the global utility function. The utility function

jointly considered the serving cost that the task requester will

endure and the operation cost that the service provider will

endure while considering the credibility of such service pro-

viders. Such SCs are an essential step towards realizing

Decentralized Autonomous Organizations (DAO), which is a

term used to describe the self-executing and decentralized

code of SCs that are equipped with intelligent decision-mak-

ing, also referred to as “agent SCs” [28].

III. SYSTEM MODEL

There are two types of participants in a service provisioning

SC; Service providers that offer services and users that submit

requests for services in the form of transactions to the con-

cerned SC. The service providers can be a base station offer-

ing spectrum sharing services, IoT devices providing remote

data sensing, smart meters offering energy in P2P energy trad-

ing, or simply individuals. The blockchain is by design agnos-

tic to the type of participant. We denote the set of N service

providers as I ¼ f0; 1; 2; . . . ; Ng, and the set of transactions

O ¼ f0; 1; 2; . . . ; Og.
Fig. 1 shows the envisioned blockchain-based model that

leverages the chained data to continuously improve the policy;

Fig. 1. Task allocation for transactions (service requests) to service providers
(indicated as “P”) in the blockchain.

MHAISEN et al.: ON DESIGNING SMART AGENTS FOR SERVICE PROVISIONING IN BLOCKCHAIN-POWERED SYSTEMS 403

Authorized licensed use limited to: TU Delft Library. Downloaded on February 06,2023 at 10:39:46 UTC from IEEE Xplore.  Restrictions apply. 



At a given point in time, a block would contain performance

indicators of the allocation policy being followed by the SC

(e.g., participants reviews), which can be cast in terms of an

experience tuple of state s, action a, reward r, and next state

s0, as will be detailed in the following section. Based on these

indicators, an optimization epoch is performed to improve the

allocation policy and use it in the assignment to be done in the

most recent block. The dynamically changing allocation pol-

icy, by means of learning, forms a promising paradigm that

we investigate in this work.

Note that the assignment decisions and the resulting per-

formance, as captured by the reward, are saved in the SC

(i.e., inside the block). Then, at the following block (i.e.,

next time step), the agent’s optimization process retrieves a

batch from the experience buffer, which is utilized in

improving the policy for future blocks and assignments.

Thus, the chained data, which contains past assignments

and their results on users’ QoE and providers’ load, is uti-

lized in an online learning process that aims to improve the

assignment policy.

This system model is, in fact, agnostic to the specific type of

blockchain platform used and the SCs working mechanism.

The model is based on the fact that the temporal structure of

blockchain-based systems (i.e., blocks periodically generated

and appended) makes them excellent candidates to leverage

online-learning algorithms, especially that SCs are envisioned

as autonomous entities that learn from the chained data. A

major beneficiary from such gainful integration is service pro-

visioning systems, whose policy determines the task allocation

to maintain load balance across providers as well as users’

QoE as determined by several factors such as trustable reputa-

tion score.

IV. PROBLEM FORMULATION

In our formulation, we consider an agent interacting with an

environment E in discrete time steps t. E will be a continuing

environment, which means that its states keep transitioning

with no terminal state, i.e., it has an infinite horizon. E is to be

modeled by a Markov Decision Process (MDP). The MDP is a

modeling framework of the multi-stage sequential decision-

making problem. Generally, MDPs are defined as tuple

hS;A; T ;R; gi, where S is the states space, A is the actions

space, T is the state transition probability given an action in a

given state, R is the reward, and g is the discount factor. In

the sequel, we define the MDP’s component in the context of

service provisioning SCs.

1) State Space: At a given decision step t, a service

request transaction o 2 O should be allocated to a service

provider i 2 I . The agent (i.e., SC) should decide on the

allocation based on the state st ¼ hlt; ct;pt; dti defined as

follows:

� ltlt ¼ flðiÞt g for i 2 I , l
ðiÞ
t 2 ½0� 1� is a vector represent-

ing the current load for each participant i. A load of 1

indicates a fully loaded participant that cannot serve

users.

� ctct ¼ fcðiÞt g for i 2 I , c
ðiÞ
t 2 ½0� 1� is a vector represent-

ing the normalized cost of serving the transaction o by

each participant i. c
ðiÞ
t ¼ 0 indicates that the user cannot

be served by participant i. 1 represents the highest cost.
� ptpt ¼ fpðiÞt g for i 2 I , p

ðiÞ
t 2 ½0� 1� is a vector of the nor-

malized “reputation score” for each participant i. It can
be used as a measure for the Quality of Experience (QoE)

that this participant can provide. Such a score is popular

and widely used in blockchain-based systems [29], [30],

due to the previously explained provenance and immuta-

bility features, which made the blockchain one of the

most reliable platforms for QoE data.

� dt 2 ½0� 1� the normalized demand of transaction o. A
demand of 1 is the maximum serviceable demand by

the participants.

Such normalization of state elements is standard in the ser-

vice provisioning system in order to focus on the system per-

formance and abstract away units and unit conversions that

might be specific to the application. Nonetheless, the normal-

ized elements can always be interpreted or converted back to

represent units of interest [21].

B. Action Space

Based on the state information, the action atat ¼ faðiÞt g; ai 2
f0; 1g, for i 2 I is taken by the SC. a

ðiÞ
t represent whether the

participant i is serving the user in time slot t. Note that while
it is possible to serve the same user (transaction o) by multiple

service providers, we study the case of individual assignments.

C. Transition Model

The state transition of the MDP defines the next state stþ1
based on the current state action pairs (st; at), we model the

transition of the state elements as follows:

l
ðiÞ
tþ1 ¼

l
ðiÞ
t when a

ðiÞ
t 6¼ 1; t

ðiÞ
k 6¼ 0

l
ðiÞ
t � u

ðiÞ
k when a

ðiÞ
t 6¼ 1; t

ðiÞ
k ¼ 0

l
ðiÞ
t þ ð1� zðiÞÞ � dt when a

ðiÞ
t ¼ 1; t

ðiÞ
k 6¼ 0

l
ðiÞ
t þ ð1� zðiÞÞ � dt � u

ðiÞ
k when a

ðiÞ
t ¼ 1; t

ðiÞ
k ¼ 0

8>>><
>>>:

This set of calculations describe how the load increases or

decreases for a participant based on whether it was assigned a

new task to serve or a task is released (i.e., its service time has

ended).

The variable t
ðiÞ
k represents the number of time steps until a

task from a previously assigned transaction k is released (user

service is ended) from participant i, and can be calculated

according to:

t
ðiÞ
k ¼

d
ðiÞ
k

zðiÞ
(1)

Where zðiÞ is the participant processing capabilities (PC) and is
in the range of ½0; 1�. The term ð1� zðiÞÞ represents the load

increase factor, which is a characteristic of each participant as

it depends on its PC. In other words, the service demand is

404 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 9, NO. 2, MARCH/APRIL 2022

Authorized licensed use limited to: TU Delft Library. Downloaded on February 06,2023 at 10:39:46 UTC from IEEE Xplore.  Restrictions apply. 



reflected differently on the participant’s load according to

their PC. For example, the same task can be insignificant to a

workstation participant but causes considerable load on an

embedded system participant. As for u
ðiÞ
k , it represents the

amount of load that will be released (set to free), after t
ðiÞ
k

steps, for a participant i, which is equal to dt� � ð1� zðiÞÞ
(i.e., the load due to assigning the user, at some previous time

t� < t, to participant i).
For modeling the reputation transitions, we adopt the Beta

reputation model from [31]. This model builds the reputation

of the participants based on the served users’ feedback. Given

a record of feedback for a participant, we assume the reputa-

tion G is a random variable that follows the Beta distribution,

i.e., G � Betaða;bÞ, where a and b are the distribution

parameters. The expected value of the reputation is expressed:

E½G� ¼ a

aþ b
(2)

The parameters a and b in the reputation model are given by:

a ¼ nþ þ 1; (3Þ
b ¼ n� þ 1 (4Þ

with nþ and n� denoting the number of positive and negative

feedbacks respectively, and nþ þ n� ¼ F , where F is the

total number of feedbacks. However, instead of considering

positive and negative feedbacks only as discrete values (i.e.,

�1 for a negative feedback and +1 for a positive feedback),

we can introduce a continuous feedback variable v, which can

represent a single value of a feedback, where v 2 ½�1; 1�.
Therein, the values nþ and n� can be re-expressed as:

nþ ¼
F ð1þ vÞ

2
(5Þ

n� ¼
F ð1� vÞ

2
(6Þ

and then, from (2)-(6), the reputation expected value can be re-

definded as:

E½G� ¼ F ð1þ vÞ þ 2

2ðF þ 2Þ (7)

To integrate this reputation model in our formulation, first, we

define the feedback variable for a participant i at time t, as the
following:

v
ðiÞ
tþ1 ¼

�
PF

ðiÞ
t

k¼1 t̂
ðiÞ
k

F
ðiÞ
t

(8)

where t̂
ðiÞ
k is a normalization of the original value t

ðiÞ
k and

falls in the range of ½�1; 1�. The feedback variable is noth-

ing but the negative average time that a participant takes to

finish a transaction. More specifically, the feedback majorly

depends on the participant’s PC as the service time is con-

versely dependent on the PC. As such, participants with

higher PC will receive better overall feedbacks. Finally,

following (7), the reputation p
ðiÞ
t for a participant i at time t

can be expressed as:

p
ðiÞ
t ¼

F
ðiÞ
t ð1þ v

ðiÞ
t Þ þ 2

2ðF ðiÞt þ 2Þ
(9)

It is worth mentioning that the value F
ðiÞ
t also represents the

number of transactions served by the participant i up to time t.
The other components of a given st are transitioned according

to the following: c
ðiÞ
tþ1 � Uð0; 1Þ and dtþ1 � Uð0; 1Þ.

D. Reward Structure

Since each service provider might have a different cost to

service, it is desirable to assign users to low fees providers to

save service costs. On the other hand, service providers have

limited service capacities. In general, we assume that the more

loaded the service provider is, the more operation costs it

endures. Hence, the assignment should aim to also minimize

the load across service providers.

In order to have viable assignments, the following con-

straints should hold:

l
ðiÞ
t � 1; 8i 2 f0; 1; . . . ; Ng (10Þ

a
ðiÞ
t ¼ 1) c

ðiÞ
t > 0; 8i 2 f0; 1; . . . ; Ng (11Þ

The reward at times step t, rt, can then be calculated as a func-
tion of the state and action pair ðst; atÞ as:

rt ¼
p
ðjÞ
t � ð1� c

ðjÞ
t Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

service cost saving

þ 1

N

XN
i¼0
ð1� l

ðiÞ
t Þ

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
operation cost saving

ð10Þ; ð11Þ hold

0 otherwise

8>>><
>>>:

(12)

where j ¼ i : a
ðiÞ
t ¼ 1. The “service cost saving” term indicates

the preference of lower service fees, scaled by the QoE,

whereas the operation cost saving term indicates the preference

to lower loads across service providers. Note that rt 2 ½0� 2�
as it is the sum of two normalized terms. Each provider sets the

costs vector according to its own preferences. Then, given a set

of offers (i.e., the cost vector), our task assignment objective,

i.e., reward structure, aims to archive users’ QoE, and provider

load balance. As the MDP elements are now defined, we

explore solution methods that lead to the optimal policy p�.

V. PROPOSED AGENTS

In this section,we present the proposed designs of smart agents

for service provisioning in IoT blockchain-powered systems.

A. Greedy Agents

We propose a set of heuristic-based service provisioning

agents, which are greedy agents. This type of agents cares

only about one specific criterion in the system. At any point in

time, a greedy agent takes the action that maximizes this crite-

rion. In what follows, we show various approaches for the

design of this criterion.

MHAISEN et al.: ON DESIGNING SMART AGENTS FOR SERVICE PROVISIONING IN BLOCKCHAIN-POWERED SYSTEMS 405

Authorized licensed use limited to: TU Delft Library. Downloaded on February 06,2023 at 10:39:46 UTC from IEEE Xplore.  Restrictions apply. 



1) The Greedy Reward (GR): The GR agent in the system

simulates all the possible actions (i.e., tries to assign the trans-

action for each user) before taking a decision, and observes

which assignment returns the highest reward according to

(12), and choose this assignment as its decision.

2) The Greedy Load (GL): The GL agent observes the cur-

rent participant loads and assigns the transaction to the partici-

pant with the lowest current load. Such an assignment is

greedy due to the fact that it only looks at the current loads

and disregards the transaction demand, participant serving

cost, and reputation.

3) The Greedy Cost (GC): The GC agent observes the

serving costs for all the participants and assigns the transaction

to the participant with the lowest serving cost regardless of its

current load, reputation, and the transaction demand.

4) The Greedy Cost Improved (GCI): Unlike the previous

GC agent, the GCI agent takes into account the participant’s

load aspect. Ignoring the load aspect during the assignment

might overload the participant. Thus, The GCI assign the

transaction to the participant i with the lowest cost such that it

satisfies the following condition:

l
ðiÞ
t þ ð1� zðiÞÞ � dt < 1 (13)

This condition prevents any assignment from overloading the

participant. However, the GCI agent still disregards the partic-

ipants’ reputations and transaction demands.

5) The Greedy Reputation M (GREP-M): The GREP-M

agent only considers M participants with the highest reputa-

tion and assigns the transaction to the participant with the low-

est service cost from the considered ones. Since the GREP-M

agent considers only high reputation participants, it indirectly

considers the participant’s PC. Moreover, by choosing the

lowest service cost among these participants, it leverages all

the aspects in the system, unlike the previous agents, where

each one disregarded one aspect or more.

The majority of the proposed greedy agents are indeed

light-weight in terms of complexity, but these agents do

not take into account all the environment’s aspects and

ignore the fact that the environment is dynamic and fol-

lows a temporal structure, where future states changes

depend on the current actions. Moreover, a good criterion

might be hard to identify. For example, the GREP-M agent

heavily depends on the hyperparameter M. Setting a proper

fixed value for it is not trivial in an immutable SC, and the

agent performance might be inefficient or unscalable for

some values of M. In the next section, we propose an

agent that will be trained on the environment changes over

a horizon, such that it considers the dynamics of the envi-

ronment. In addition, it can be improved to make use of a

prediction model to forecast future information.

B. Reputation-Load Aware Agents

We further propose another heuristic-based agent, which is

the reputation-load aware (RLA) agent. The RLA agent

assigns the user to a participant with the lowest service cost

whose load is less than a threshold v, and reputation is greater

than ’. The rationale behind such a heuristic is that by consid-

ering an upper threshold for assigning load, the agent is more

likely not to experience overloading. Concurrently, to ensure

the users’ QoS, the agent will only assign the users to partici-

pants with acceptable reputations. However, choosing the

right threshold for the load in a dynamic and stochastic system

is a challenging task since the service demands and the serving

costs vary immensely in the system. A possible estimator for

the threshold can be the expected load of the participants after

an assignment. Based on past experiences in a blockchain-

powered system, we envision that using a regression model to

estimate the threshold will make it change autonomously

according to the instantaneous participant loads, service

demands, and serving costs. Accordingly, we opt to use neural

networks as a regression model. Specifically, the Long Short-

Term Memory (LSTM) architecture [32]. LSTM neural net-

works in our service provisioning system can perform auto-

regressive tasks and present the model that describes the time-

varying service demands and serving costs. As for the training

of the LSTM regression model, the training features X, and

the targets � have to be defined. As such, the features will be

all the states along a horizon H, where a single feature vector

xnxn can be the state at time t (i.e., xnxn ¼ st ¼ hlt; ct;pt; dti).
Whereas the target, we define it as the mean of the participants

loads at time tþ 1, and can be given by:

�n ¼
1

jIj
X
i2I

l
ðiÞ
tþ1 (14)

Afterward, we define the loss function for the model as the

Mean Squared Error (MSE) between the LSTM network out-

put and the targets, which can be expressed as:

JðF;�Þ ¼ 1

N

XN
n¼1

fFðxnxnÞ ��nð Þ2 (15)

where F represents the LSTM model parameters, and fF(.) is
the model output. Minimizing such loss functions can be done

by using the SGD algorithm. One can refer to [32] for more

information about training LSTMs for regression tasks.

Nevertheless, if the RLA-LSTM agent’s environment

goes under drastic changes that have never been seen

before, this agent fails in such cases. This is because the

LSTM model has not been trained on such scenarios, and it

gives predictions based on past experiences only, which

does not represent the current experiences. Hence, in the

next section, we propose an agent that can adapt to such an

environment and its dynamics without the need to be

retrained on the system’s new dynamics.

C. DRL Agent

The DRL-based agent is a learning-assisted agent that con-

tinuously learns from interacting with the environment. At

every decision epoch t, the agent receives a representation of

the environment state s 2 S. The agent then executes an

action a 2 A using a policy pðajsÞ, receives a reward rt 2 R,

406 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 9, NO. 2, MARCH/APRIL 2022

Authorized licensed use limited to: TU Delft Library. Downloaded on February 06,2023 at 10:39:46 UTC from IEEE Xplore.  Restrictions apply. 



and transition to the next state s0 with probability P ðs0js; aÞ ¼
T ðs; a; s0Þ. The total feature discounted sum of rewards from

time step t until some horizon H is denoted as Rt ¼PH
t0¼t g

t0�trt, with the discount factor g 2 ½0; 1Þ. The state-

action value function of a specific policy p is defined as

Qpðs; aÞ ¼ Ea�p;s0�T ½Rtjst ¼ s; at ¼ a�. It summarises the

sum of rewards resulting from taking the action a in state s,
and thereafter following policy p. The state value function

V pðsÞ ¼ Ea�p½Qpðs; aÞ� assesses the quality of a state when

following the policy p. The advantage function is then defined

as Apðs; aÞ ¼ Qpðs; aÞ � V pðsÞ, which reflects the advantage

of taking action a in state s.
The optimal policy maximizes the Q-function Qp� ðs; aÞ ¼

maxpQðs; aÞ (hereafter referred to as Q�). The goal of an RL

agent is to find such optimal policy through direct interaction

with the environment and without explicit or pre-encoded

information about it, such as the transition probability T . Q-
learning finds such policy through firstly finding Q� and then

acting greedily with respect to it p�ðajsÞ ¼ argmaxaQ
�ðs; aÞ

[19]. The optimal Q-function can be written recursively

through the Bellman Optimally Equation [19]:

Q�ðs; aÞ ¼ Es0�T ½rt þ g max
a0

Q�ðs;0 a0Þjst ¼ s; at ¼ a�

(16)

Q� can be iteratively calculated through interaction with the

environment using dynamic programming, where at each

update iteration k (which is typically a time step t), the follow-
ing Bellman update is calculated:

Q�kþ1ðs; aÞ ¼ Es0�T ½rt þ g max
a0

Q�kðs;0 a0Þjst ¼ s; at ¼ a�

where Qk is an estimate of Q� at iteration k. As k!1, Qk

converges to Q� [19].
The Q-function (including the optimal one) can be of very

high dimensionality or, as in our case, continuous. Thus, they

should be approximated. Neural networks are general function

approximators that proved successful in RL domains. Hence,

we use a deep Q�network Qðs; a; uÞ whose parameters are u.

We optimize those parameters using the Temporal Difference

error (TD-error) loss function, which pushes the parameters in

the direction that adequately approximate Q� [19]. At each

iteration k, the loss L is:

LkðukÞ ¼ yk �Qðs; a; ukÞð Þ2 (17)

where yk is the TD-target defined as:

yk ¼ rk þ g max
a0

Qðs;0 a0; ukÞ (18)

However, optimizing the above objective is likely to diverge

or result in poor performance [33]. We utilize collective

improvements from the RL community to stabilize learning.

Namely, replay buffer, fixed targets, double estimation, and

dueling network architecture. As illustrated in [33], keeping a

replay buffer of previous experience (i.e., transition tuples

s; a; r; s0) and then optimizing (18) through stochastic gradient

descent (SGD) greatly helps stability. In addition, the parame-

ters used in the TD-target evaluation are frozen to some previ-

ous values �u (fixed targets). The loss is then defined as:

LkðukÞ ¼ Eðs;a;r;s0Þ�UðDÞ½ yk �Qðs; a; ukÞð Þ2� (19Þ
yk ¼ rþ g max

a0
Qðs;0 a;0 �uÞ (20Þ

Note that using the same network in (20) to choose the best

action a0 and to evaluate it can lead to over estimation bias.

Thus, it is suggested that the freezed network is used for the

evaluation of the action, wheras the online network is used for

choosing that action [34], making the TD targets as:

yk ¼ rþ gQðs;0 argmax
a0
ðQðs;0 a0; ukÞÞ; �uÞ (21)

Of specific interest to this paper is the dueling network archi-

tecture introduced in [35], which is especially useful when

multiple actions are approximately similar, which is the case

in service provisioning. Estimating Q-function for every state-

action pair might be impractical and slows down learning.

This is because, in many states, the value of many actions

might be either irrelevant or similar. For example, when two

service providers have relatively similar states, then assigning

one of them should provide some information about the value

of assigning the other. We use the dueling network architec-

ture, which employs multi-stream neural network design with

two streams, one to estimate the state value function V ðs; u;aÞ
regardless of the action, and another stream to estimate the

advantage function Aðs; a; u;bÞ where a and b are the param-

eters of the two streams, respectively. The two streams are

then aggregated to provide the Q�values of a given state with

every possible action, and the action with the high Q value is

taken. As illustrated in [35], the simple sum aggregation may

suffer from the identifiability issue. Hence, we use the aggre-

gation in (22), which provides the best performance empiri-

cally.

Qðs; a; u;a;bÞ ¼ V ðs; u;aÞ þ Aðs; a; u;bÞ � bð Þ (22)

Algorithm 1. RLA-LSTM Service provisioning Agent

Input: LSTM model parameters F, reputation threshold ’

Output: j: The the serving participant index.
receive state st ¼ hlt; ct;pt; dti
Estimate the future load using LSTM: v fFðstÞ
set j randomly

for i ¼ 1 : I do
j ¼ fk j cðkÞt ¼ minfctg g
Calculate the projected l̂tþ1 for participant j
if l̂
ðjÞ
tþ1 � v & p

ðjÞ
t 	 ’ then

return j
else

ct  ct n cðjÞt
end if

end for

return j

MHAISEN et al.: ON DESIGNING SMART AGENTS FOR SERVICE PROVISIONING IN BLOCKCHAIN-POWERED SYSTEMS 407

Authorized licensed use limited to: TU Delft Library. Downloaded on February 06,2023 at 10:39:46 UTC from IEEE Xplore.  Restrictions apply. 



where b ¼ 1
jAj

P
a0 Aðs; a0; u;bÞ. The final algorithm used for

training is provided in Algorithm 2. At every decision step

(line 7), an assignment at is chosen to be either random (with

probability �, or the best action known so far (i.e., as deter-

mined by the network, with probability 1� �). This is known
as ��greedy policy, and it allows for balancing the explora-

tion-exploitation in RL agents. Then, the agent observes the

next state and the reward. These values constitute a tuple of

experience that is stored in the experience replay buffer D
(line 11) and used for optimization (lines 11-13). Finally, the

target network is softly updated towards the online network

Table I summarizes the presented strategies formulas and

approaches. The parameters used for the DRL agents are listed

in Table II. Note that these discussed strategies can be realized

as software programs and implemented in SCs to be deployed

in any general-purpose blockchain (such as Ethereum, Fabric,

and others). Thus, they inherit the security features from the

blockchain platform; these include, among others, code immu-

tability, network availability, and autonomous execution. For

security analysis of SCs, readers are referred to [36] which

surveys security aspects guaranteed by SCs, and [37] which

studies the development of secure SCs.

VI. AGENTS’ COMPLEXITY ANALYSIS

In this section, we study the complexity of our proposed

algorithms against the Model Predictive Control-based (MPC-

based) planning baseline [38]. The used variant of MPC plan-

ning method performs exhaustive search over a horizon h

among all combinations of ða0; a1; . . .; ah�1Þ. MPC then

observes the future reward from each combination and takes

the current action that resulted in the highest future reward.

The complexity of this MPC variant, given an action space A
and a horizon h, is OðjAjhÞ, which means that the MPC com-

plexity grows exponentially with longer horizons h, as the

search space over the action combination becomes huge. It is

worth mentioning here that the cardinalities of the sets A and

I are equal (i.e., jAj ¼ jIj). As for the greedy algorithms, the

GR, GL, GC have time complexity of OðjAjÞ, where they

only perform a linear search for the maximum reward, the

minimum participant load, and its serving cost respectively.

As for the GCI, the algorithm searches for the participant with

the lowest serving cost, such that it satisfies the condition

(13), where the worst-case scenario is presented when only

the participant with the highest cost serving cost satisfies the

condition. Hence, the GCI’s time complexity is OðjAj2Þ. The
GREP-M algorithm search for M participants with the highest

Algorithm 2. DRL-based Service Provisioning Agent

Input: System’s parameters,

Output: u: The NN parameters for the approximation Q�.
1: Initialize parameters of the online network u randomly.

2: Initialize parameters of second (target) network �u u.

3: for episodes= 1:M do

4: Initialize state st ¼ hl0; c0;p0; d0i
5: for time step t ¼ 0 : L do

6: /**Interaction with the environment**/

7: Assign a service provider through selecting at based on

�-greedy policy
8: Execute at, observe stþ1 and rtþ1
9: Store the experience tuple ðst; at; stþ1; rtþ1Þ in D
10: /**Updating the estimates**/

11: Randomly sample a minibatch F ¼fðsðmÞt ; a
ðmÞ
t ; s

ðmÞ
tþ1;

r
ðmÞ
tþ1Þg

jFj
m¼1 from D

12: Calculate Q-targets using (21): Y ðmÞ  fyðmÞgjFjm¼1
13: Fit QðsðmÞ; aðmÞ; u;a;bÞ to the targets Y ðmÞ: u u � druLðuÞ
14: Every target steps, update the target network �u tuþ

ð1� tÞ�u

TABLE I
SUMMARY OF PROPOSED AGENTS’ STRATEGIES

TABLE II
SERVICE PROVISIONING SYSTEM PARAMETERS

408 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 9, NO. 2, MARCH/APRIL 2022

Authorized licensed use limited to: TU Delft Library. Downloaded on February 06,2023 at 10:39:46 UTC from IEEE Xplore.  Restrictions apply. 



reputation and then perform a linear search for the lowest serv-

ing cost over them, where the complexity of selecting the

highest M participants is OðM � jAjÞ. Therefore, the overall

time complexity for the GREP-M is OðM � ðjAj þ 1ÞÞ.
Regarding the RLA algorithm, the vanilla version (i.e., no-

load threshold forecasting) with given parameters v and ’

searches over the participants serving cost such that the partic-

ipant’s reputation is higher than ’ and load is lower than v.

Thus, the time complexity for the vanilla RLA is OðjAj2Þ.
The RLA-LSTM algorithm uses LSTM neural networks. For a

single forward pass in the LSTM, it has been shown in [32]

that the time complexity is OðjFjÞ, where jFj is the number of

parameters of the LSTM model. Hence, the RLA-LSTM has

an overall time complexity of OðjFj þ jAj2Þ. However, before
deploying the LSTM model in the algorithm, it needs to be

pre-trained. The training complexity for the LSTM, with e
epochs, and input size of jSj, is Oðe � jSj � jFjÞ.

The DRL agent employs the Deep Q-Network (DQN),

where the DQN is a neural networks-based algorithm, and it

has a simple architecture that is the Multi-Layer Perceptrons

(MLPs) architecture. Therefore, the complexity of the algo-

rithm is nothing but the complexity of the forward pass in

MLP. In fact, a forward pass in MLP is only vector-matrix

multiplication. Generally, in the MLP architecture, there exist

hidden layers and an output layer, where each layer has a

weight matrix ðk� jÞ, where k and j denotes the number of

neurons in each layer, and each layer’s output is a vector that

has the size of that layer. Then, for a vector that has size k and

a matrix of size ðk� jÞ, the vector-matrix multiplication com-

plexity is Oðk � jÞ, which can represent the multiplication

complexity between the layers. Hence, for a single forward

pass in an MLP, which has two hidden layers with sizes j and
k respectively, with an input vector of size jSj and output layer
of size jAj, the time complexity for one forward pass in the

neural network is OðjSj � jþ j � kþ k � jAjÞ. As a result,

since we select the element with highest value from the DQN

output, the overall time complexity is OðjAj þ ðjSj � jþ j �
kþ k � jAjÞÞ. It is worth mentioning that the aforementioned

complexities are for a single full node execution in the block-

chain. However, to calculate the overall system complexity,

since each algorithm should be executed in every full node,

each algorithm complexity should be multiplied by the num-

ber of the full nodes in the system jAj (e.g., the overall com-

plexity of a system employing the GC algorithm is OðjAj2Þ.

VII. AGENTS’ PERFORMANCE ANALYSIS

AND SIMULATION RESULTS

In this section, we first analyze and discuss the DRL agent

training procedure, then the RLA-LSTM agent, and finally,

we show the comparison against the heuristics.

A. DRL Agent Training Analysis

In the training process of Algorithm 2, we set the values of

the hyperparameters as in Table II. These values were set

empirically in order to maximize performance. Fig. 2 shows

the obtained rewards during training throughout the episodes.

For the first 1000 episodes, the agent’s policy is fully explor-

atory; Actions are taken in a random manner. After that, the

agent starts following the �-greedy policy, where the agent

slowly learns a smarter behavior with time and learning to

achieve the desired trade-offs in the system that results in the

highest rewards. The convergence occurs approximately after

5000 episodes, with an average reward unit of �1.57.
After convergence, we extract and study the RL agent’s

learned policy in terms of the number of submitted transac-

tions and their demands with respect to the participant PC. We

execute the policy on 1000 testing episodes, and we analyze

the behavior of the agent and the assignment patterns in the

system. Fig. 3 depicts the number of assigned transactions for

each participant according to its PC. The RL agent learned a

policy that assigns the participants with the highest PC most

of the transactions. Assigning transactions to such participants

will prevent overloading the other ones, where the added load

will be insignificant to those high PC ones. In fact, high PC

participants finish their assigned transactions faster than the

others, where the chances of overloading them become less.

Moreover, Fig. 4 shows a statistical analysis for the demands

Fig. 2. RL agent training rewards over the episodes.

Fig. 3. Number of assigned transactions versus participant capabilities
according to the learned policy.

MHAISEN et al.: ON DESIGNING SMART AGENTS FOR SERVICE PROVISIONING IN BLOCKCHAIN-POWERED SYSTEMS 409

Authorized licensed use limited to: TU Delft Library. Downloaded on February 06,2023 at 10:39:46 UTC from IEEE Xplore.  Restrictions apply. 



of the assigned transactions with respect to the participant

capabilities, according to the RL agent learned policy. It can

be seen that the transactions with the highest demands are

assigned to the participants with higher PC, and transactions

with lower demands are assigned to the participants with low

PC. By doing so, none of the participants will be overloaded,

where the transaction assignment is based on the demand and

participant PC, such that the added load for the participant is

minimal. Nevertheless, the learned policy might not be opti-

mal in terms of serving costs. In Fig. 5, we show the serving

costs for the assigned transactions with respect to the partici-

pant PC. As can be seen from the figure, the costs are higher

for the high PC participants. This is due to the fact that the pol-

icy avoids overloading the participants, even on account of

high serving cost, since overloading the participants results in

a 0 reward.

B. RLA-LSTM Agent Analysis

For training the LSTM regression model, the training data

has been collected from the RL agent experience buffer after

convergence. Specifically, we have collected 20�104 sequen-
tial states from the experience buffer to be the LSTM model

training data, and the targets are the expected loads at each

state. Fig. 6 shows the statistical distribution of the average

participant load in the collected data. It can be seen that the

average participant load is low, which indicates that the RL

agent after convergence can achieve the optimal performance

in terms of keeping the participant load as low as possible. In

fact, this data is adequate for the LSTM model, as it can help

the model to forecast the optimal load threshold at any given

state, and by doing so, this gives a degree of freedom for the

RLA agent to look for the participant with the minimum cost

while its load does not exceed the predicted threshold.The

data has been split into training and testing data, with ratios of

70% and 30%, respectively. Fig. 7 shows the loss of the model

during training. The convergence of the model occurs approxi-

mately after 150 training epochs.

Lastly, in Fig. 8 we show the real-time prediction error for

the LSTM model while the model is deployed in the environ-

ment. It can be noticed that the prediction error is insignifi-

cant, which indicates that the model can accurately predict the

average load in the next time step by only looking at the cur-

rent state of the environment.

C. Performance Comparisons

To illustrate our proposed agents’ performance, we compare

them against an agent that employs exhaustive planning with a

certain horizon (i.e., MPC), which will be the benchmark of

the comparisons, in addition to an agent that employs the ran-

dom policy (i.e., the agent takes actions randomly), which rep-

resents the baseline in the comparisons. Fig. 9 depicts the

comparisons between the agents in terms of rewards obtained

while these agents are deployed in the environment E. In

Fig. 9(a), the comparison between the RLA agents against the

benchmark and baseline can be seen. Since the RLA agents

need the reputation threshold ’ hyperparameter to be set, we

Fig. 4. Assigned transactions’ demands according to the learned policy. Fig. 5. Participant serving costs for the assigned transactions according to
the learned policy.

Fig. 6. The distribution of the average load in the LSTMmodel training data.

410 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 9, NO. 2, MARCH/APRIL 2022

Authorized licensed use limited to: TU Delft Library. Downloaded on February 06,2023 at 10:39:46 UTC from IEEE Xplore.  Restrictions apply. 



performed a grid search over the parameter to obtain the best

performance out of these types of agents, in addition to an

intermediate performance for the sake of comparison. It has

been found that a reputation of 0.4 is the optimal threshold. It

can be noticed that all the RLA agents perform better than the

baseline, namely, the random agent. In addition to that, a nota-

ble pattern can be seen, with increasing the load threshold v,

the vanilla RLA agents’ performance increases and then

decreases, along with some fluctuations in the performance.

Having said that, we can conclude that there exists an optimal

value for the threshold, which changes with time. As a result,

since the vanilla RLA agents have their load threshold fixed

and do not represent the optimal threshold, they fall behind

the planning agent. However, after introducing the LSTM pre-

diction model to the RLA agent in order to predict the load

threshold, we can notice that its performance has been

enhanced as it achieves a similar performance to that of the

planning one.

The performance of the greedy agents is shown in Fig. 9(b).

Similar to the RLA agents, all the greedy agents outperform the

baseline. It can be noticed that the GL and the GC are the worst

of the greedy agents. This is because the GL and the GC agents

care only about one aspect, whether the load or the serving cost,

and disregard the other, while the goal of the optimization is to

optimize the serving cost of the participant load jointly. More-

over, it can be noticed that the GR agent is better than the previ-

ously mentioned two. In fact, the GR agent obtains the best

immediate reward, which is based on minimizing the serving

cost and the participant loads. However, since the GR takes its

actions based on the immediate rewards only, its performance is

not optimal in the long run. The GC-I agent enhances the GC

agent’s performance, achieving a closer performance to the

benchmark one. This enhancement results from the fact that the

GC-I agent avoids overloading the participants while looking

for the minimum serving cost. Nevertheless, it ignores the repu-

tation aspect, which prevents it from being more closer to the

benchmark. Considering the reputation aspect, along with look-

ing for the minimum serving cost, is what made the GREP-M

agents achieve similar performance to the benchmark one.

Indeed, the GREP-5 agent outperforms the planning agent.

Even though the GREP-M agent might not perform well when

increasing the number of agents in the environment, its algo-

rithm complexity grows linearly with the number of agents,

unlike theMPC planning agent algorithm, which is exponential.

In Fig. 9(c), the DRL agent performance is shown. One can

see that the DRL agent outperforms the benchmark. This is

attributed to the longer planning horizon of DRL, represented by

the expectation of the sum of future rewards, as opposed to the

limited samples of the rewards that MPC uses to deduce a cur-

rent action. Finally, in Fig. 9(d), we show a closer look to com-

pare the best agents. The RLA-LSTM agent achieves similar to

the planning agent, while the GREP-5 outperforms the planning

agent, and the DRL agent achieves the optimal performance.

D. Heuristic and Planning Agents in a Non-Stationary

Environment

In this section, we study the performance of the agents

under major changes in the environment. In general, all agents

have access to state information, which is a part of the SC.

Thus, they do know major changes as they occur (e.g., pro-

viders joining/leaving, or providers load increase/decrease).

However, the DRL method is able to generalize across the

state space and respond near-optimally to states not seen

before, and continue improving, as opposed to re-running an

optimization. Hence, the adaptation in blockchain networks is

of utmost importance for optimized performance.

At some point in time, the participants declare that their PCs

have been reduced to half. Fig. 10 shows the rewards obtained

under the environment change throughout the testing episodes.

It can be seen that learning-assisted agents, namely the RLA-

LSTM and the DRL agents, suffer the most from this hit. This

results from the fact that these agents face new experiences

that they have never seen before, nor have they been trained

on. However, since the DRL agent is experience-driven, it

adapts to the new changes and learns the new dynamics of the

Fig. 7. The MSE loss for the LSTM regression model. Fig. 8. The MSE loss in testing for the LSTM regression model.

MHAISEN et al.: ON DESIGNING SMART AGENTS FOR SERVICE PROVISIONING IN BLOCKCHAIN-POWERED SYSTEMS 411

Authorized licensed use limited to: TU Delft Library. Downloaded on February 06,2023 at 10:39:46 UTC from IEEE Xplore.  Restrictions apply. 



environment, where it can change its policy that maximizes

the obtained rewards in the new environment. Unlike the

RLA-LSTM agent, the DRL agent does not need to be

retrained on the new experiences from scratch to perform rea-

sonably. The heuristic and planning agents perform similarly

in the new environment but far behind the DRL agent after

adapting to the new environment. Hence, it can be concluded

that online and experience-driven learning is of utmost impor-

tance in a dynamic environment.

VIII. CASE STUDY

In order to demonstrate the effectiveness of the proposed

DRL-based technique, we introduce a concrete use-case in the

area of edge computing. In edge computing, computational

offloading is an emerging paradigm wherein computational

tasks can be offloaded from end-user devices to the edge

server, edge server to the end-user devices, or the user devices

themselves. These offloading decisions are made depending

on the required computation, as well as the communication

cost of the data to be processed [40]. In our use case, we focus

on the cases where the edge nodes offload tasks to end-user

devices, which is used when the data is available at (or can

effectively be communicated among) the end-user devices but

Fig. 10. Agents performance after introducing dynamic changes.

Fig. 9. Performance comparison in terms of rewards unit, for agents employing MPC and random policy against and (a) RLA agents, (b) greedy agents, (c)
DRL agent (b) top performing agents.

412 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 9, NO. 2, MARCH/APRIL 2022

Authorized licensed use limited to: TU Delft Library. Downloaded on February 06,2023 at 10:39:46 UTC from IEEE Xplore.  Restrictions apply. 



uploading it to the edge node is expensive. In such a case, the

edge nodes need to decide which end-device to perform a spe-

cific task. Table III projects the abstract state variables onto

the edge computing offloading use-case.

We simulate a scenario with 4 different end-user devices

whose CPU frequencies are ½0:2; 0:4; 0:6; 0:8� � 109cycles=
second. The serving cost is generated in the range [10�9 to

10�8� $=cycle uniformly distributed. The demands of transac-

tions are generated from the range [0.1 to 2]�109cycles. We

train an agent with the same hyperparameters illustrated in

Table II, then run its learned policy under those settings. We

then analyze the policy by showing the average demands

assigned for each participant (Fig. 11.a), as well as the average

serving costs of the assigned transactions for each device

(Fig. 11.b). The assigned transactions demands and their serving

costs follow the same expected pattern discussed in the results

sections; More powerful participants are assigned the more

demanding tasks. They might as well get assigned to less

demanding tasks. In contrast, devices with low CPU frequency

are never assigned tasks expected to overload them. In terms of

serving costs, it is more varied for the more capable participants,

which indicates that more computing tasks are allocated to

them. In general, the edge node is offloading (i.e., distributing)

tasks to the end-user device with the aim of having minimal exe-

cution time but in a manner that does not overload any, (as over-

loading might be reflected as more excessive energy usage or

even causes the device to freeze/crash). This policy is fully data-

driven and learned from online experience without directly

modeling each device’s expected load increments or specific

demands pattern. Lastly, in Fig. 12 we show the execution time

taken in the system for a single assignment with respect to the

algorithms. It can be seen clearly that the MPC 2 has the highest

execution time, since it has exponential complexity. Whereas

the RLA-LSTM and the DRL have similar execution times, but

much lower than the MPC 2. As for the greedy algorithms, they

have the shortest execution time in the system, as they are con-

sidered light-weight algorithms.

IX. CONCLUSION

In this paper, we investigated the design of smart agents for

service provisioning SCs. We showed that heuristic-based and

planning agents can have good performance in minimizing the

overall cost, but are unreliable to execute in run-time, since

their performance suffers when a shift in the system occurs.

The proposed DRL-based method is able to achieve the high-

est utility and adapt to variations in the blockchain network,

maintaining its superior performance. Future work can aim to

quantify the speed of adaptability to different types of possible

changes as well as the monetary execution cost of these adap-

tive agents in specific Blockchains. Overall, intelligent SCs

are essential to the realization of Decentralized Autonomous

Organizations (DAO) being sought after by academia and

industry to achieve secure and intelligent applications.

ACKNOWLEDGMENTS

The findings achieved herein are solely the responsibility of the

authors.

REFERENCES

[1] J. Feng, F. Richard Yu, Q. Pei, X. Chu, J. Du, and L. Zhu, “Cooperative
computation offloading and resource allocation for blockchain-enabled
mobile-edge computing: A deep reinforcement learning approach,”
IEEE Internet Things J., vol. 7, no. 7, pp. 6214–6228, Jul. 2020.

[2] O. Novo, “Blockchain meets IoT: An architecture for scalable access
management in IoT,” IEEE Internet Things J., vol. 5, no. 2, pp. 1184–
1195, Apr. 2018.

[3] C. Shen and F. Pena-Mora, “Blockchain for cities - A systematic litera-
ture review,” IEEE Access, vol. 6, pp. 76787–76819, 2018.

[4] K. Christidis and M. Devetsikiotis, “Blockchains and smart contracts for
the Internet of Things,” IEEE Access, vol. 4, pp. 2292–2303, 2016.

[5] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, “An overview of
blockchain technology: Architecture, consensus, and future trends,” in
Proc. IEEE Int. Congr. Big Data, Jun. 2017, pp. 557–564.

[6] D. G. Wood, “ETHEREUM: A secure decentralized generalised transac-
tion ledger,” Ethereum Project Yellow Paper, vol. 151, no. 2014, pp. 1–
32, 2014.

Fig. 11. Offloading policy statistics (a) Assigned transaction demands in the
offloading scheme. (b) Assigned transaction costs in the offloading scheme.

Fig. 12. Execution time comparison between the algorithms.

TABLE III
STATE VARIABLES MAPPING TO THE USE-CASE APPLICATION

MHAISEN et al.: ON DESIGNING SMART AGENTS FOR SERVICE PROVISIONING IN BLOCKCHAIN-POWERED SYSTEMS 413

Authorized licensed use limited to: TU Delft Library. Downloaded on February 06,2023 at 10:39:46 UTC from IEEE Xplore.  Restrictions apply. 



[7] S. Rouhani and R. Deters, “Security, performance, and applications of
smart contracts: A systematic survey,” IEEE Access, vol. 7, pp. 50 759–
50 779, 2019.

[8] T. T. A. Dinh, R. Liu, M. Zhang, G. Chen, B. C. Ooi, and J. Wang,
“Untangling blockchain: A data processing view of blockchain sys-
tems,” IEEE Trans. Knowl. Data Eng., vol. 30, no. 7, pp. 1366–1385,
Jul. 2018.

[9] S. E. Chang, Y.-C. Chen, and M.-F. Lu, “Supply chain re-engineering
using blockchain technology: A case of smart contract based tracking
process,” Technological Forecasting Social Change, vol. 144, pp. 1–11,
Jul. 2019.

[10] D. Bumblauskas et al., “A blockchain use case in food distribution: Do
you know where your food has been?,” Int. J. Inf. Manage., vol. 52,
2020, Art no. 102008.

[11] P. Helo and Y. Hao, “Blockchains in operations and supply chains: A
model and reference implementation,” Comput. Ind. Eng., vol. 136,
pp. 242–251, Oct. 2019.

[12] M. Andoni et al., “Blockchain technology in the energy sector: A sys-
tematic review of challenges and opportunities,” Renew. Sustain. Energy
Rev., vol. 100, pp. 143–174, Feb. 2019.

[13] E. Mengelkamp et al., “Designing microgrid energy markets: A case
study: The brooklyn microgrid,” Appl. Energy, vol. 210, pp. 870–880,
2018.

[14] H. Yao, T. Mai, J. Wang, Z. Ji, C. Jiang, and Y. Qian, “Resource trading
in blockchain-based industrial Internet of Things,” IEEE Trans. Ind.
Informat., vol. 15, no. 6, pp. 3602–3609, Jun. 2019.

[15] J. Abou Jaoude and R. George Saade, “Blockchain applications - Usage
in different domains,” IEEE Access, vol. 7, pp. 45 360–45 381, 2019.

[16] Y. Xu, G. Wang, J. Yang, J. Ren, Y. Zhang, and C. Zhang, “Towards
secure network computing services for lightweight clients using block-
chain,” Wireless Commun. Mobile Comput., vol. 2018, p. 12, 2018,
Art. no. 2051693. [Online]. Available: https://doi.org/10.1155/2018/
2051693

[17] Y. Shoham and K. Leyton-Brown,Multiagent Systems: Algorithmic, Game-
Theoretic, and Logical Foundations. New York, NY, USA: Cambridge
Press, 2008.

[18] G. Ciatto et al., “Towards agent-oriented blockchains: Autonomous
smart contracts,” in Proc. Adv. Practical Appl. Survivable Agents Multi-
Agent Syst. Cham: Springer, 2019, pp. 29–41.

[19] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[20] N. Zhao, Y.-C. Liang, D. Niyato, Y. Pei, M. Wu, and Y. Jiang, “Deep
reinforcement learning for user association and resource allocation in
heterogeneous cellular networks,” IEEE Trans. Wireless Commun.,
vol. 18, no. 11, pp. 5141–5152, Nov. 2019.

[21] M. Cheong, H. Lee, I. Yeom, and H. Woo, “SCARL: Attentive rein-
forcement learning-based scheduling in a multi-resource heterogeneous
cluster,” IEEE Access, vol. 7, pp. 153 432–153 444, 2019.

[22] Y. Liu, H. Yu, S. Xie, and Y. Zhang, “Deep reinforcement learning for
offloading and resource allocation in vehicle edge computing and
networks,” IEEE Trans. Veh. Technol., vol. 68, no. 11, pp. 11 158–11
168, Nov. 2019.

[23] A. Asheralieva and D. Niyato, “Distributed dynamic resource manage-
ment and pricing in the IoT systems with blockchain-as-a-service and
UAV-enabled mobile edge computing,” IEEE Internet Things J., vol. 7,
no. 3, pp. 1974–1993, 2019.

[24] D. C. Nguyen, P. N. Pathirana, M. Ding, and A. Seneviratne, “Privacy-
preserved task offloading in mobile blockchain with deep reinforcement
learning,” IEEE Trans. Netw. Serv. Manag., vol. 17, no. 4, pp. 2536–
2549, Dec. 2020.

[25] C. Savaglio et al., “Agent-based Internet of Things: State-of-the-art and
research challenges,” Future Gener. Comput. Syst., vol. 102, pp. 1038–
1053, Jan. 2020.

[26] M. Wu, K. Wang, X. Cai, S. Guo, M. Guo, and C. Rong, “A comprehen-
sive survey of blockchain: From theory to IoT applications and beyond,”
IEEE Internet Things J., vol. 6, no. 5, pp. 8114–8154, Oct. 2019.

[27] B. Shala, U. Trick, A. Lehmann, B. Ghita, and S. Shiaeles, “Blockchain
and trust for secure, end-user-based and decentralized IoT service
provision,” IEEE Access, vol. 8, pp. 119 961–119 979, 2020.

[28] S. Wang, W. Ding, J. Li, Y. Yuan, L. Ouyang, and F.-Y. Wang,
“Decentralized autonomous organizations: Concept, model, and
applications,” IEEE Trans. Comput. Social Syst., vol. 6, no. 5, pp. 870–
878, Oct. 2019.

[29] R. Dennis and G. Owen, “Rep on the block: A next generation reputation
system based on the blockchain,” in Proc. 10th Int. Conf. Internet Tech-
nol. Secured Trans., 2015, pp. 131–138.

[30] E. Bellini, Y. Iraqi, and E. Damiani, “Blockchain-based distributed trust
and reputation management systems: A survey,” IEEE Access, vol. 8,
pp. 21 127–21 151, 2020.

[31] R. Ismail and A. Jøsang, “The beta reputation system,” in Proc. 15th
Bled Electron. Commerce Conf., 2002, pp. 2502–2511.

[32] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[33] V. Mnih et al., “Human-level control through deep reinforcement
learning,” Nature, vol. 518, pp. 529–533, Feb. 2015.

[34] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learn-
ing with double Q-learning,” in Proc. 30th AAAI Conf. Artif. Intell.,
2016, pp. 2094–2100.

[35] Z. Wang et al., “Dueling network architectures for deep reinforcement
learning,” in Proc. Int. Conf. Mach. Learn., 2016, pp. 1995–2003.

[36] T. Salman, M. Zolanvari, A. Erbad, R. Jain, and M. Samaka, “Security
services using blockchains: A state of the art survey,” IEEE Commun.
Surv. Tut., vol. 21, no. 1, pp. 858–880, Jan.–Mar. 2019.

[37] Y. Huang, Y. Bian, R. Li, J. L. Zhao, and P. Shi, “Smart contract secu-
rity: A software lifecycle perspective,” IEEE Access, vol. 7,
pp. 150 184–150 202, 2019.

[38] D. P. Bertsekas, Reinforcement Learning and Optimal Control. Belmont,
MA, USA: Athena Scientific, 2019.

[39] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2017. Accessed: Oct. 31, 2021. [Online]. Available: http://arxiv.org/abs/
1412.6980

[40] P. Mach and Z. Becvar, “Mobile edge computing: A survey on architec-
ture and computation offloading,” IEEE Commun. Surv. Tut., vol. 19,
no. 3, pp. 1628–1656, Jul.–Sep. 2017.

Naram Mhaisen received the B.Sc. degree in com-
puter engineering with excellence, from Qatar Uni-
versity (QU), Doha, Qatar, in 2017 and the M.Sc.
degree in computing from the same university, in
2020. Since 2017, he has been a Research Assistant
with the Department of Computer Science and Engi-
neering, College of Engineering, QU. His research
interests include the design and optimization of dis-
tributed and multiagent (learning) systems with
applications to IoT.

Mhd Saria Allahham received the B.Sc. degree in
computer engineering with excellence, from Qatar
University, Doha, Qatar, in 2020. He is currently
working toward the master’s degree with Queen’s
University, Kingston, ON, Canada. He then was a
Research Assistant with the Department of Computer
Science and Engineering, Qatar University. His
research interests include reinforcement learning,
edge learning, and edge computing.

AmrMohamed (Senior Member, IEEE) received the
M.S. and Ph.D. degrees in electrical and computer
engineering from the University of British Columbia,
Vancouver, BC, Canada, in 2001 and 2006, respec-
tively. From 1998 to 2007, he was an Advisory IT
Specialist with IBM Innovation Centre, Vancouver,
BC, Canada, taking a leadership role in systems
development for vertical industries. He is currently a
Professor with the College of Engineering, Qatar
University, Doha, Qatar. He has more than 25 years
of experience in IoT, edge computing, pervasive AI,

and wireless networking research and industrial systems development. He has
authored or coauthored more than 200 refereed journal and conference papers,
textbooks, and book chapters in reputable international journals, and conferen-
ces. His research interests include wireless networking and edge computing for
IoT applications. He holds three awards from IBM Canada for his achieve-
ments and leadership, and four best paper awards from IEEE conferences. He
is serving as a technical editor for three international journals, has served as a
guest editor in several special issues, and has served as a technical program
committee (TPC), and co-chair for many IEEE conferences and workshops.

414 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 9, NO. 2, MARCH/APRIL 2022

Authorized licensed use limited to: TU Delft Library. Downloaded on February 06,2023 at 10:39:46 UTC from IEEE Xplore.  Restrictions apply. 



Aiman Erbad (Senior Member, IEEE) received the
B.Sc. degree in computer engineering from the Uni-
versity of Washington, Seattle, WA, USA, in 2004,
the master of computer science degree in embedded
systems and robotics from the University of Essex,
U.K., in 2005, and the Ph.D. degree in computer sci-
ence from the University of British Columbia, Van-
couver, BC, Canada, in 2012. He is currently an
Associate Professor and ICT Division Head of the
College of Science and Engineering, Hamad Bin
Khalifa University (HBKU), Qatar. Prior to this, he

was an Associate Professor with the Computer Science and Engineering
(CSE) Department and the Director of research planning and development
with Qatar University, Doha, Qatar, until May 2020. He was also the Director
of research support responsible for all grants and contracts during 2016–2018
and as the Computer Engineering Program Coordinator during 2014–2016.
His research interests include cloud computing, edge intelligence, Internet of
Things (IoT), private and secure networks, and multimedia systems. He was
the recipient of the Platinum Award from H.H. The Emir Sheikh Tamim bin
Hamad Al Thani at the Education Excellence Day 2013 (Ph.D. category). He
was also the recipient of the 2020 Best Research Paper Award from Computer
Communications, the IWCMC 2019 Best Paper Award, and the IEEE CCWC
2017 Best Paper Award. His research received funding from the Qatar
National Research Fund, and his research outcomes were published in
respected international conferences and journals. He is the Editor of the KSII
Transactions on Internet and Information Systems, the Editor of the Interna-
tional Journal of Sensor Networks (IJSNet), and the Guest Editor of the IEEE
NETWORK. He also served as a Program Chair of the International Wireless
Communications Mobile Computing Conference (IWCMC 2019), as a Public-
ity Chair of the ACM MoVid Workshop 2015, as a Local Arrangement Chair
of NOSSDAV 2011, and as a Technical Program Committee (TPC) Member
in various IEEE and ACM international conferences (GlobeCom, NOSSDAV,
MMSys, ACMMM, IC2E, and ICNC). He is a Senior Member of ACM.

Mohsen Guizani (Fellow, IEEE) received the B.S.
(with distinction), M.S., and Ph.D. degrees in electri-
cal and computer engineering from Syracuse Univer-
sity, Syracuse, NY, USA, in 1984, 1986, and 1990,
respectively. He is currently a Professor with Com-
puter Science and Engineering Department, Qatar
University, Doha, Qatar. Previously, he was with dif-
ferent institutions, which include the University of
Idaho, Moscow, ID, USA, Western Michigan Univer-
sity, Kalamazoo, MI, USA, University of West Flor-
ida, Pensacola, FL, USA, University of Missouri-

Kansas City, Kansas City, MO, USA, University of Colorado Boulder, Boul-
der, CO, USA, and Syracuse University. He is the author of nine books and
more than 800 publications. His research interests include wireless communi-
cations and mobile computing, applied machine learning, cloud computing,
security and its application to healthcare systems. He was listed as a Clarivate
Analytics Highly Cited Researcher in Computer Science in 2019 and 2020.
Dr. Guizani has won several research awards, including the 2015 IEEE Com-
munications Society Best Survey Paper Award and four best paper awards
from ICC and Globecom Conferences. He was also the recipient of the 2017
IEEE Communications Society Wireless Technical Committee (WTC) Recog-
nition Award, the 2018 AdHoc Technical Committee Recognition Award, and
the 2019 IEEE Communications and Information Security Technical Recogni-
tion (CISTC) Award. He was the Editor-in-Chief of the IEEE NETWORK and is
currently serves on the Editorial Boards of many IEEE Journals/Transactions.
He was the Chair of the IEEE Communications Society Wireless Technical
Committee and the Chair of the TAOS Technical Committee. He served as the
IEEE Computer Society Distinguished Speaker and is currently the IEEE
ComSoc Distinguished Lecturer.

MHAISEN et al.: ON DESIGNING SMART AGENTS FOR SERVICE PROVISIONING IN BLOCKCHAIN-POWERED SYSTEMS 415

Authorized licensed use limited to: TU Delft Library. Downloaded on February 06,2023 at 10:39:46 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


