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Abstract
Phylogenetic Diversity (PD) is a measure of the overall biodiversity of a set of present-day
species (taxa) within a phylogenetic tree. We consider an extension of PD to phylogenetic networks.
Given a phylogenetic network with weighted edges and a subset S of leaves, the all-paths phylogenetic
diversity of S is the summed weight of all edges on a path from the root to some leaf in S. The
problem of finding a bounded-size set S that maximizes this measure is polynomial-time solvable on
trees, but NP-hard on networks. We study the latter from a parameterized perspective.

While this problem is W[2]-hard with respect to the size of S (and W[1]-hard with respect to
the size of the complement of S), we show that it is FPT with respect to several other parameters,
including the phylogenetic diversity of S, the acceptable loss of phylogenetic diversity, the number
of reticulations in the network, and the treewidth of the underlying graph.
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1 Introduction

Phylogenetic diversity, first introduced in 1992 by Faith [8] is a measure of the amount of
biodiversity in a set of species. It formalizes the intuitive notion that a set of species is likely
to have a greater range of biological features when they are distantly related. Such a measure
is of crucial importance in the field of biological conservation, where there are often insufficient
resources available to save every threatened species, one must make hard decisions about
which species to prioritize. Phylogenetic diversity forms the basis of the Fair Proportion Index
and the Shapley Value [11, 12, 17], which are used to evaluate the individual contribution of
individual species to overall biodiversity. These measures are used by conservation initiatives
such as the IUCN’s Phylogenetic Diversity Task Force (https://www.pdtf.org/) and the
Zoological Society of London’s EDGE of Existence program [14].

Let T be a phylogenetic tree; that is, a rooted tree, with weights on the edges, and S a
subset of leaves of T (representing a subset of present-day species). Then the phylogenetic
diversity PDT (S), as defined by Faith, is the sum of all weights on a path from the root

1 The research was carried out during an extended research visit of Jannik Schestag at TU Delft.
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to one of the leaves in S. Here the weight of an edge corresponds to phylogenetic distance,
which is taken to be proportional to the number of features of interest (e.g. biological
characteristics) that emerge along that edge.

Phylogenetic Diversity as originally proposed by Faith is defined for phylogenetic trees.
Consequently, it does not allow for models of evolutionary history with reticulation events
(where a species inherits genetic data from two or more species), such as hybridization or
lateral gene transfer. Such events are modeled in phylogenetic networks (directed acyclic
graphs with a single source), which extend the class of phylogenetic trees [13]. There are a
number of ways to extend phylogenetic diversity to phylogenetic networks. In this paper
we consider one of the simplest, all-paths phylogenetic diversity (first introduced under the
name “phylogenetic subnet diversity” in [21] and further studied in [2]). Under this measure,
given a rooted phylogenetic network N with edge weights and a subset of leaves S, the
phylogenetic diversity of S is again the total weight of all edges on a (directed) path from
the root to one of the leaves in S.

Assuming it is not possible to preserve all threatened species (e.g. due to limited resources),
we would like to find a subset of species that can be preserved, for which the overall diversity
is maximized. This gives rise to the maximum phylogenetic diversity problem: given a
network N and integer k, find a set of leaves S with |S| ≤ k such with maximum phylogenetic
diversity score. Fortunately in the case of trees, this turns out to be a tractable problem -
given as input a phylogenetic tree and number k, there is a polynomial-time greedy algorithm
that outputs the set of k species with maximum phylogenetic diversity [19, 16]. Unfortunately
this result does not extend to phylogenetic networks – the problem is NP-hard, and cannot
be approximated in polynomial time with approximation ratio better than 1 − 1

e unless
P = NP [2]. For this reason, we study the problem from the perspective of parameterized
complexity.

Related Work

All-paths phylogenetic diversity as a measure on networks was first introduced in [21]. The
computational complexity of MapPD was first studied in [2], where the authors showed that
the problem is NP-hard and cannot be approximated in polynomial time with approximation
ratio better than 1 − 1

e unless P = NP , but is polynomial-time solvable on the class of level-1
networks (in which the undirected cycles are pairwise vertex-disjoint).

Phylogenetic diversity forms the basis of the Shapley Value, a measure that describes how
much a single species contributes to overall biodiversity. The definition of the Shapley Value
involves the phylogenetic diversity of every possible subset of species, and so is difficult to
calculate directly. However it was shown in [9] that (on phylogenetic trees) the Shapley Value
is equivalent to the Fair Proportion Index [17], which can be calculated in polynomial time.
In the case of phylogenetic networks, it was shown that this result also extends to Shapley
Value based on all-paths phylogenetic diversity. This is in contrast to the NP-hardness
result of [2] – while it is easy to determine the individual species that contributes the most
phylogenetic diversity across all sets of species, it is hard to find a set of species for which
the phylogenetic diversity is maximal.

The phylogenetic networks considered in this paper are explicit networks, in which each
vertex represents a different species in evolutionary history and the edges represent the
transfer of genetic information from one species to another. Phylogenetic diversity has also
been studied on split networks. Such networks do not represent a single explicit evolutionary
history, but can represent structural information from several sources (e.g. conflicting
phylogenetic trees). See e.g. [3, 18].
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Our contribution

We study several parameterizations of the problem Max-All-Paths-PD (MapPD), in
which the task is to find a set of at most k leaves maximizing the all-paths phylogenetic
diversity in a network (see Section 2 for a formal definition). We first consider the problem
parameterized by k. We show in Section 3 that this problem is W[2]-hard by reduction
from Set Cover. Moreover, we establish an equivalence between this parameterization of
MapPD and a generalization of Set Cover called Item-Weighted Partial Set Cover.
We also show via a similar method that MapPD is W[1]-hard with respect to the “dual” of
k, namely k := |X| − k, where X is the set of all leaves in the network. On the positive side,
we show in Section 4.1 that MapPD is fixed-parameter tractable (FPT) with respect to D,
the total phylogenetic diversity of the desired solution, and also with respect to the “dual” D,
i.e. the acceptable loss in phylogenetic diversity. Finally we turn to structural parameters. In
Section 4.2 we give single-exponential fixed-parameter algorithms for MapPD with respect
to the number of reticulations in the network, and with respect to the treewidth of the
underlying graph of the network. In the case of reticulations, this algorithm is asymptotically
tight under the Strong Exponential Time Hypothesis.

2 Preliminaries

Mathematical Definitions

For an integer ℓ, by [ℓ] we denote the set {1, . . . , ℓ} and [ℓ]0 := {0} ∪ [ℓ].
A phylogenetic X-network N = (V, E, ω) is a directed acyclic graph with edge-weight

function ω : E → N>0 and a single vertex of indegree 0 (the root), in which the vertices of
outdegree 0 (the leaves) have in-degree 1 and are bijectively labeled with elements from a set
X, and such that all vertices either have indegree at most 1 or outdegree at most 1. The
vertices with indegree at least 2 and outdegree 1 are called reticulations; the other non-leaf
vertices are called tree vertices. In biological applications, the set X is a set of taxa, the
internal vertices of N correspond to biological ancestors of these taxa and ω(e) describes the
phylogenetic distance between the endpoints of e (as these endpoints correspond to distinct
species, we may assume this distance is greater than 0). For brevity, we will usually refer to
a phylogenetic X-network as an X-network, or more simply a network when the set X is not
relevant.

For a vertex v, the descendants desc(v) (ancestors anc(v)) of v is the set of vertices u for
which there is a path from v to u (from u to v). The offspring off(v) of v is the intersection of
desc(v) and X. Further for an edge e = (v, w) we define anc(e) = anc(v), desc(e) = desc(w)
and off(e) = off(w). For a set of taxa Y , an edge e is affected by Y if off(e) ∩ Y ̸= ∅ and
strictly affected by Y if off(e) ⊆ Y . The sets TY and EY are the strictly affected and affected
edges by Y , respectively. For a set of taxa Y , the all-paths phylogenetic diversity PDN (Y )
of Y is

PDN (Y ) :=
∑

e∈EY

ω(e).

That is, PDN (Y ) is the total weight of all edges (u, v) in N so that there is a path from
v to a vertex in Y . In what follows we refer to PDN (Y ) simply as the phylogenetic diversity
of Y .

For a detailed introduction to parameterized complexity refer to the standard mono-
graphs [5, 7].

IPEC 2023
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Problem Definitions and Parameterizations

Our main object of study is the following problem, introduced in [2]:

Max-All-Paths-PD (MapPD)
Input: A phylogenetic X-network N and two integers k and D.
Question: Is there a subset Y ⊆ X of taxa with size at most k and phylogenetic

diversity at least D? That is |Y | ≤ k and PDN (Y ) ≥ D.

In Section 3 we show that there is a strong connection between MapPD and the problem
Item-Weighted Partial Set Cover, which is defined as follows.

Item-Weighted Partial Set Cover (wpSC)
Input: A universe U , a family F of subsets over U , an integer weight ω(u) for

each item u ∈ U and two integers k and D.
Question: Are there sets F1, . . . , Fk ∈ F such that sum of the weights of the

elements in L :=
⋃k

i=1 Fi is at least D? That is
∑

u∈L ω(u) ≥ D.

Set Cover is the special case of wpSC with D = |U| and ω(u) = 1 for each u ∈ U .
We examine MapPD within the framework of parameterized complexity. In addition to

the parameters k and D which are the number of saved taxa and the preserved phylogenetic
diversity, we also study the dual parameters which are the minimum number of species that will
go extinct k := |X| − k and the acceptable loss of phylogenetic diversity D := PDN (X) − D.
By retN we denote the number of reticulations in N , and by twN we denote the treewidth of
the underlying undirected graph of N (see, e.g. [5, Chapter 7] for an overview of treewidth).
By maxω we denote the biggest weight of an edge.

Binary Networks

A phylogenetic X-network is called binary if each non-leaf, non-root vertex has degree 3,
and the root has degree 2. We note that in this paper (with the exception of Lemma 4.3
and Theorem 4.4) we do not assume networks are binary; in particular, we allow tree vertices
to have indegree and outdegree 1. Bordewich et al. [2], we have required that the given
network N is binary. In the following, we show that algorithmically, there is hardly any
difference.

The proofs of theorems and lemmas marked with (⋆) are deferred to a longer version of
this paper.

▶ Lemma 2.1 (⋆). For every instance (N , k, D) of MapPD an equivalent instance (N ′, k′, D′)
of MapPD with a binary network N ′, twN ′ = twN and |E′| ≤ 2|E| can be computed
in O(|E|) time.

3 Relationship to Item-Weighted Partial Set Cover

In this section, we demonstrate a relationship between MapPD and wpSC by presenting
reductions in both directions. Bordewich et al. already proved a similar reduction from Set
Cover to MapPD [2].

▶ Theorem 3.1. For every instance I = (U , F , ω, k, D) of wpSC,
1. an equivalent instance I ′ = (N , k′, D′) of MapPD with k′ = k and |X| = retN = |F|

can be computed in time polynomial in |U| + |F|;
2. an equivalent instance I ′

2 = (N = (V, E, ω′), k′, D′) of MapPD in which k′ = k and each
edge weights 1 can be computed in time polynomial in |U| + |F| + maxω.
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This theorem has several applications for the complexity of MapPD. Because Set Cover is
W[2]-hard with respect to the size of the solution k, MapPD is as well. This is in contrast
to the fact that MapPD can be solved in polynomial time when the network does not have
reticulations and therefore is a phylogenetic tree [19].

▶ Corollary 3.2. MapPD is W[2]-hard when parameterized with k, even if maxω = 1.

In Red-Blue Non-Blocker an undirected bipartite graph G with vertex bipartition
V = Vr ∪ Vb and an integer k are given. The question is whether there is a set S ⊆ Vr of
size at least k such that each vertex v of Vb has a neighbor in Vr \ S. There is a standard
reduction from Red-Blue Non-Blocker to Set Cover: Let Vb be the universe, for
each vertex v ∈ Vr add a set Fv := N(v) to F and finally set k′ := |Vr| − k. Red-Blue
Non-Blocker is W[1]-hard when parameterized by the size of the solution [6]. Hence, Set
Cover is W[1]-hard with respect to |F| − k and with Theorem 3.1 we conclude as follows.

▶ Theorem 3.3. MapPD is W[1]-hard when parameterized with k = |X| − k.

MapPD can be solved in O∗(2|X|) with a brute force algorithm that tries every possible
subset of species as a solution. In Theorem 4.5 we will prove that MapPD can be solved in
O∗(2retN ) time. In order to prove that these algorithms can not be improved significantly,
we apply the well-established Strong Exponential Time Hypothesis (SETH).

Unless SETH fails, Set Cover can not be solved in O∗(2ϵ·|F |) time for any ϵ < 1 [4, 15].
Thus, Theorem 3.1 shows that under SETH, not a lot of hope remains to find faster algorithms
for MapPD than these two algorithms. Thus, these two algorithms, with respect to the
number of taxa |X| and reticulations retN , for MapPD are tight with the lower bounds.

▶ Corollary 3.4. MapPD can not be solved in O(2ϵ·|X|) · poly(|I|) time or in O(2ϵ·retN ) ·
poly(|I|) time for any ϵ < 1, unless SETH fails.

So now, without further ado, we prove Theorem 3.1.

Proof of Theorem 3.1.

Reduction. Let I = (U , F , k, D) be an instance of wpSC. Let U consist of the items
u1, . . . , un and let F contain the sets F1, . . . , Fm. We may assume that for each ui there is a
set Fj which contains ui. We define an instance I ′ = (N , k, D′) of MapPD as follows. Let
k stay unchanged and define D′ := D · Q + 1 for Q := m(n + 1). We define a network N
with leaves x1, . . . , xm, and further vertices r, v1, . . . , vn, w1, . . . , wm.

Let the set of edges consist of the edges (r, vi) for i ∈ [n], (wj , xj) for j ∈ [m], and let
(vi, wj) be an edge if and only if ui ∈ Fj . We define the weight of (r, vi) to be ω(ui) · Q for
each i ∈ [n] and 1 for each other edge. Figure 1 depicts an example of this reduction.

This completes the construction of instance I ′ in case 2 of the theorem. We now describe
how to construct an instance I ′

2 from I ′ in which the maximum weight of an edge is 1,
completing the construction for case 1. For each edge e = (r, vi) with w(e) > 1, make ω(e)−1
subdivisions and attach a new leaf as the child of each subdividing vertex. We call these
newly-added leaves false leaves, and we call the other leaves of N true leaves.

Correctness. The proof of the correctness is deferred to a longer version of this paper. ◀

In the proof of Theorem 3.1, we can see that in the root r, we model an operation that
ensures that at least D of the children of r are selected and further, these tree vertices ensure
that at least one of the reticulations below them are selected. It might appear that by adding

IPEC 2023
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r

v1 v2 v3 v4 v5 v6

w1 w2 w3 w4 w5

x1 x2 x3 x4 x5

35
70 105 140 175

210

Figure 1 This figure depicts the network N that we reduce to from the instance
(U := {u1, . . . , u6}, F := {F1, . . . , F5}, ω, k, D) of wpSC with ω(ui) = i, F1 := {u2, u3, u4},
F2 := {u1, u6}, F3 := {u1, u3, u4}, F4 := {u2, u5, u6}, F5 := {u1, u3, u5}. Unlabeled edges have a
weight of 1. Here n = 6, m = 5 and Q = 35. The value of k′ would be k and D′ would be 35D + 1.

more layers of reticulations and tree vertices to the construction of N , one could reduce
from problems even more complex than wpSC, and thereby show that MapPD has an an
even higher position in the W-hierarchy. This however is unlikely, because of the reduction to
wpSC that we are about to show.

▶ Theorem 3.5. For every instance I = (N , k, D) of MapPD, we can compute an equivalent
instance (U , F , ω, k′, D′) of wpSC with k′ = k, D′ = D and maxω′ = maxω in time
polynomial in |I|.

Proof.
Reduction. Let I = (N , k, D) be an instance of MapPD. We define an instance I ′ =
(U , F , ω′, k, D) of wpSC as follows. Let k and D stay unchanged. For each edge e of N ,
define an item ue with weight ω′(ue) = ω(e) and let U be the set of these ue. For each taxon
x, define a set Fx which contains item ue if and only if e is affected by {x}. Let F be the
family of these Fx.

Correctness. Clearly, the reduction is computed in polynomial time. We show the equiva-
lence of the two instances.

Let Y be a solution for the instance I of MapPD. Without loss of generality, assume
Y = {x1, . . . , xℓ} with ℓ ≤ k. We show that F1, . . . , Fℓ is a solution for I ′ of wpSC. By
definition, ℓ ≤ k. Let EY be the edges affected by Y . Observe that e is in EY if and only
if ue is in F + :=

⋃ℓ
i=1 Fi. Then, D ≤ PDN (Y ) =

∑
e∈EY

ω(e) =
∑

ue∈F + ω′(ue). Hence,
F1, . . . , Fℓ is a solution for I ′ of wpSC.

Now, without loss of generality, let F1, . . . , Fℓ be a solution for I ′ of wpSC. Let ue1 , . . . , uep

be the items in the union of F1, . . . , Fℓ. By the construction, the edges e1, . . . , ep are affected
by Y = {x1, . . . , xℓ}. Then, PDN (Y ) ≥

∑p
i=1 ω(ei) =

∑p
i=1 ω′(uei) ≥ D. Because the size

of Y is at most k, Y is a solution for I of MapPD. ◀

To the best of our knowledge, it is unknown if wpSC is W[2]-complete, like Set Cover.
Nevertheless, we obtain the following connection between wpSC and MapPD.

▶ Corollary 3.6. MapPD is W[t]-complete with respect to k if and only if wpSC is W[t]-
complete with respect to k.

4 Fixed-Parameter Tractability Results

4.1 Preserved and lost Diversity
In this subsection, we show that MapPD is FPT with respect to the threshold of phylogenetic
diversity D and the acceptable loss of phylogenetic diversity D := PDN (X) − D.
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Let I be an instance of MapPD. If there is an edge e with ω(e) ≥ D and k ≥ 1, then
for each offspring x of e we have PDN ({x}) ≥ ω(e) ≥ D, and so {x} is a solution for I.
So, we may assume that maxω < D. Therefore, each edge e can be subdivided ω(e) − 1
times in O(D · m) time such that ω′(e) = 1 for each edge e of the new network N ′. Bläser
showed that wpSC can be solved in O∗(2O(D)) time when ω(u) = 1 for each item u ∈ U [1].
Subsequently, with Theorem 3.5 and the result from Bläser we conclude the following.

▶ Corollary 4.1. MapPD can be solved in O∗(2O(D)) time.

As Set Cover is a special case of wpSC with D =
∑

u∈U ω(u), wpSC is para-NP-hard with
respect to the dual

∑
u∈U ω(u) − D. By contrast, we show in the following that MapPD is

FPT with respect to D.
To this end, we use the technique of color coding. Recall that off(e) = off(w) for each

edge e = (v, w) and the strictly affected edges TY for a set of taxa Y ⊆ X is the set of edges
e with off(e) ⊆ Y . We define an auxiliary problem.

colored-Max-All-Paths-PD (colored-MapPD)
Input: A phylogenetic X-network N , an edge-coloring c : E → {red, green}

and integers k and D.
Question: Is there a subset Y ⊆ X of taxa such that |Y | ≤ k, PDN (Y ) ≥ D

and each edge in TX\Y is colored red, while edges not in TX\Y but
adjacent to TX\Y are colored green?

In order to solve colored-MapPD we observe the following.

▶ Lemma 4.2 (⋆). TY1∪···∪Yℓ
= TY1 ∪· · ·∪TYℓ

for any Y1, . . . , Yℓ ⊆ X such that each vertex v

of N is incident with edges of at most one set of TY1 , . . . , TYℓ
.

▶ Lemma 4.3. colored-MapPD can be solved in O(D · m · log(k + maxω)) time on binary
networks.

Proof.
Algorithm. Let I := (N := (V, E, ω), c, k, D) be an instance of colored-MapPD. Com-
pute the graph G = (V, E′), where E′ is the subset of edges colored red.

For every weakly connected component C = (VC , EC) of G proceed as follows. Compute
the subset of leaves YC that are in VC , and from this compute TYC

, the set of strictly affected
edges in N for YC . If YC = ∅ or TYC

̸= EC then continue with the next connected component.
Otherwise, define an item IC with weight ω(TYC

) and value |YC |.
Let N be the set of these items. Now return yes if there is a subset of items in N whose

total weight is at most D and whose total value is at least k = |X| − k, and no otherwise.
Observe that this can be determined by solving an instance of Knapsack with set of items N ,
budget D, and target value k, which can be done in O(D · |N | · log(k)) = O(D · |X| · log(k))
time [20, 10]. (The log(k)-factor of the running time comes from adding log(k)-digit numbers
and is not mentioned in the original paper.)

Correctness. Assume that I is a yes-instance of colored-MapPD with solution S ⊆ X.
Each edge e that is not affected by S is strictly affected by X \ S. Because S is a solution
we conclude that the color of e is red and the connected component Ce of G that contains e

contains a set of leaves YC of which off(e) is a subset. Further, all edges of TYC
are colored

red and the adjacent edges are colored green. Thus, Ce fulfills the conditions to be in N for
each edge e that is not affected by S. Let C1, . . . , Ct be the unique connected components

IPEC 2023
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that contain the edges that is not affected by S. We conclude that ω(C1 ∪ · · · ∪ Ct) ≤ D and
C1 ∪ · · · ∪ Ct contain the leaves X \ S, which are at least k. Hence, IC1 , . . . , ICt

is a solution
for the Knapsack-instance and the algorithm returns yes.

Conversely, assume that the algorithm returns yes and let IC1 , . . . , ICt be a solution for
the Knapsack-instance. Let Yi be the set of taxa such that TYi

= E(Ci). We prove that
S := X \

⋃t
i=1 Yi is a solution for the instance I of colored-MapPD. As the edges of each

Yi are colored red and the adjacent edges are green, we have that the edges of Yi and Yj

are not adjacent for any i ̸= j. Then by Lemma 4.2, TX\S = TY1∪···∪Yt = TY1 ∪ · · · ∪ TYt .
We conclude that TX\S is colored red and adjacent edges are green. Further, because∑t

i=1 ω(TYi
) ≤ D the phylogenetic diversity of S is PDN (S) = PDN (X) − ω(TY1∪···∪Yt

) =
PDN (X) −

∑t
i=1 ω(TYi) ≥ PDN (X) − D = D. Likewise as

∑t
i=1 |Yi| ≥ k, we conclude

|S| = |X| −
∑t

i=1 |Yi| ≤ |X| − k = k.

Running Time. The graph G and weakly connected components of G can be computed in
O(m) time. For each component C = (VC , EC) with leaves YC , the set TY can be computed
in O(|TYC

|) time. It follows that we can determine whether EC = TC , and construct the set
of items N , including their weights and values, in O(m · log(maxω)) time. As the instance of
Knapsack can be solved in O(D · |X| · log(k)) time [10], we have an overall running time of
O(m · log(maxω) + D · |X| · log(k)) = O(D · m · log(k + maxω)). ◀

To show that MapPD is FPT with respect to D, we show that MapPD can be reduced to
colored-MapPD using standard color coding techniques.

▶ Theorem 4.4 (⋆). MapPD can be solved in O(23D+O(log2(D)) · m log m log(k + maxω))
time on binary networks.

4.2 Proximity to a tree
MapPD can be solved in polynomial time with Faith’s Greedy-Algorithm, if the given
network is a tree [19, 8]. Therefore, in this subsection, we examine MapPD with respect to
two parameters that classify the network’s proximity to a tree, the number of reticulations
retN and the smaller parameter treewidth twN .

▶ Theorem 4.5. MapPD can be solved in O(2retN · k · m · log(maxω)) time.

Observe that by Corollary 3.4, MapPD can not be solved in O∗(2ϵ·retN ) time for any ϵ < 1,
unless SETH fails. Therefore, the running time of the previous proof is tight, to some extent.

Proof.
Algorithm. For a reticulation v in a network N with child u, let E(↑vu) be the set of edges
of N that are between two vertices of anc(v) ∪ {u}. Recall that off(e) ⊆ X is the set of
offspring of w for an edge e = (v, w) and the strictly affected edges TY for a set of taxa
Y ⊆ X is the set of edges e with off(e) ⊆ Y . Define two operations, called take and leave,
that for an instance I = (N , k, D) and a reticulation v of N return another instance of
MapPD. Every subset of taxa Y that does (does not, respectively) contain an offspring of v

should be a solution for I if and only if Y is a solution for take(I, v) (leave(I, v)).
We define leave(I, v) to be the instance I ′ = (N ′, k, D) of MapPD, in which k and D

are unchanged and N ′ is the network that results from deleting the edges Toff(v) and the
resulting isolated vertices from N . Recall that D =

∑
e∈E ω(e) − D. We define take(I, v)

to be the instance I ′ = (N ′, k, D′) of MapPD with D′ = D + D and k is unchanged. N ′ is
the network that results from N by deleting the edges E(↑vu), merging all the ancestors of v
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Figure 2 In this figure, an example for the usage of leave and take is given. A hypothetical
instance I is given in (1). Here, the value of D is 3. In (2) the instance leave(I, v), and in (3) the
instance take(I, v) is depicted. Unlabeled edges have a weight of 1. Observe in (3), the weight of
the edge (r, w) is 4, as w has two edges from ancestors of v in I which have a weight of 2 each. The
weight of (r, u) is 12, as in I the edges of E(↑vu) have a combined weight of 9.

to a single vertex r, adding an edge (r, u), and setting the weight ω′((r, u)) to ω(E(↑vu)) + D.
For each vertex w ≠ u that has t ≥ 1 parents u1, . . . , ut, in anc(v), we add an edge (r, w)
that has weight

∑t
i=1 ω((ui, w)). Observe that PDN ′(X) = PDN (X) + D. Figure 2 depicts

an example of the operations take and leave.
Now, we are at the position to define the branching algorithm. Let I = (N , k, D) be

an instance of MapPD. If N is a phylogenetic tree, solve the instance I with Faith’s
Algorithm [19, 8]. Otherwise, let v be a reticulation of N . Then, return yes if take(I, v) or
leave(I, v) is a yes-instance of MapPD and no otherwise.

Correctness. The correctness of the base case is given by the correctness of Faith’s Algorithm.
We show that if N contains a reticulation v, then I is a yes-instance of MapPD if and only
if take(I, v) or leave(I, v) is a yes-instance of MapPD.

Consider any set of taxa Y ⊆ X. Firstly, we claim that if Y ∩off(e) = ∅, then PDN ′(Y ) =
PDN (Y ), where N ′ is the network in leave(I, v). Indeed, N ′ contains all the vertices and
edges of N that have an offspring outside of off(v). Therefore, PDN ′(Y ) = PDN (Y ).
Secondly, we claim that if Y ∩ off(v) ̸= ∅, PDN ′(Y ) = PDN (Y ) + D, where N ′ is the
network for take(I, v). Recall that each edge e = (u1, u2) with u1 ̸= r of E(N ′) is also
an edge of N and ω′(e) = ω(e). Further, for each edge e = (r, u2) with u2 ̸= u of E(N ′)
there are edges e1 = (ui1 , u2), . . . , et = (uit , u2) of E(N ) with ω′(e) =

∑t
i=1 ω(ei). Now,

let Q = Q1 ∪ Q2 ∪ {(r, u)} be the edges of N ′ that have at least one offspring in Y , of
which edges in Q1 have both endpoints in V (N ′) \ {r}, and Q2 are outgoing edges of
r. Further, let P = P1 ∪ P2 ∪ E(↑vu) be the edges of N that have at least one offspring
in Y , of which edges in P1 have both endpoints in V (N ′), and P2 are edges with one
endpoint in anc(v) \ {v} and one endpoint in V (N ′) \ {r}. Observe that, since any vertex
in V (N ′) has the same offspring in N as in N ′, Q1 = P1 and ω′(Q1) = ω(P1). Further,
ω′(Q2) = ω(P2) as for each u2 ∈ V (N ′) \ {r}, the total weight of edges (u1, u2) with
u1 ∈ anc(v) \ {v} in N is equal to the weight of the edge (r, u2) in N ′. It follows that
PDN ′(Y ) = ω′(Q1) + ω′(Q2) + ω′({r, u}) = ω(P1) + ω(P2) + ω(E(↑vu)) + D = PDN (Y ) + D.

It follows from the above that if Y is a solution for I (that is, |Y | ≤ k and PDN (Y ) ≥ D),
then either Y is a solution for leave(I, v) or Y is a solution for take(I, v). Conversely, if
Y is a solution for leave(I, v) then Y ∩ off(e) = ∅ and thus PDN (Y ) = PDN ′(Y ) ≥ D, so
Y is also a solution for I. Finally, if Y is a solution for take(I, v) then Y ∩ off(e) ̸= ∅, as
otherwise PDN ′(Y ) ≤ PDN ′(X)−ω′({r, y}) = D +2D − (ω(E(↑vu))+D) ≤ D +D −1 < D′.
Then PDN ′(Y ) = PDN (Y ) + D, from which it follows that PDN (Y ) ≥ D′ − D = D and Y

is also a solution for I.

IPEC 2023
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Running Time. Let I be an instance of MapPD that contains a reticulation v. The number
of reticulations in I is greater than the number of reticulations in take(I, v) and leave(I, v),
because at least the reticulation v is removed and no new reticulations are added. Therefore,
the search tree contains O(2retN ) nodes. It can be checked in O(m) time, if N contains a
reticulation. Faith’s Algorithm takes O(k · m · log(maxω)) [19].

The sets off(v), anc(v) for a vertex v, and TY for a set Y can be computed in O(m) time.
Once anc(v) is computed, we can iterate over E to find the edges that are outgoing from
anc(v) and compute the value for an edge (r, w) in N ′ in O(m · log(maxω)) time, which is
also the time needed to compute ω((r, u)) which needs D and the weight of E(↑vu). Therefore,
the instances take(I, v) and leave(I, v) can be computed in O(m · log(maxω)) time.

Thus, a solution for MapPD can be computed in O(2retN · k · m · log(maxω)) time. ◀

Bordewich et al. showed that MapPD can be solved in polynomial time on level-1
networks [2]. We extend this result by showing that MapPD is fixed-parameter tractable
with respect to treewidth.

▶ Theorem 4.6 (⋆). MapPD can be solved in O(9twN · twN · k2 · m) time.

The detailed proof is deferred to a longer version of this paper; we give a sketch of the main
ideas here.

We aim to find a set of edges E′ that have an overall weight of at least D and that are
incident with at most k leaves. Further, for each edge e = (u, v) ∈ E′ we require that either
v ∈ X or there is an edge (v, w) ∈ E′. In the algorithm, which is a dynamic program over a
nice tree decomposition, we index feasible partial solutions by a 3-coloring of the vertices.
At a given node of the tree decomposition, a vertex v is colored:

red, if it is still mandatory that we select an outgoing edge of v (because we have selected
an incoming edge of v),
green, if we can select incoming edges of v and do not need to select an outgoing edge of
v (because v is a leaf or we have already selected an outgoing edge of v),
black, if we have to not yet selected an edge incident with v (such that only the selection
of an incoming edge of v makes the selection of an outgoing edge of v necessary).

We introduce each leaf as a green vertex and the other vertices as black vertices. In order to
consider only feasible solutions, a vertex must be green or black when it is forgotten. The
most important step of the algorithm is in the introduction of an edge, where colors may be
adjusted depending on whether or not the new edge is included in E′.

5 Discussion

While we were able to show that MapPD is W[2]-hard parameterized by k, it is unknown
whether it is W[2]-complete. We were however able to show an equivalence between MapPD
parameterized by k and Item-Weighted Partial Set Cover parameterized by the size
of the solution. Thus establishing the exact complexity class of Item-Weighted Partial
Set Cover, which seems to be of interest, would also establish the exact complexity class
of MapPD.

The all-paths phylogenetic diversity measure PDN considered in this paper is one of four
measures considered in [2], where it is called AllPaths-PD. The second measure, which they
call Network-PD, requires not only weights on each of the edges in the network, but also an
inheritance proportion p(e) on each edge e = (u, v) leading into a reticulation. This value
denotes the expected number of features that are expected to be passed from u to v. Network-
PD is a generalization of AllPaths-PD, as the measures are equivalent when all inheritance
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proportions are 1. The authors also consider two additional measures, MinWeightTree-PD
and MaxWeightTree-PD, that, under certain restrictions, act as lower and upper bounds
respectively on Network-PD.

It is natural to ask whether our parameterized complexity results for MapPD extend to
the corresponding maximization problems for Network-PD. We note that, since Network-PD
generalizes AllPaths-PD, our hardness results for k and k also carry across to Network-PD.
For the FPT results, the main challenge is that to compute Network-PD for a network N
and a subset of leave S, one must compute for each edge e an expected proportion γ(S, e)
of features arising in e that will be passed down to an offspring in S. γ(S, e) is computed
recursively; for an edge e = (u, v) the value of γ(S, e) is a non-linear function of the value
γ(S, e′) for all edges e′ leaving wv. Taking these values into account is likely to complicate
the FPT algorithms presented in this paper significantly.
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