TUDelft

Exploitation of P4 Programmable Switch Networks

by

Mees Frensel

Supervisors: Fernando Kuipers, Chenxing Ji

A Paper
Submitted to EEMCS faculty
Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering

June 19, 2022

Abstract

P4 programmable data-planes provide
operators with a flexible method to
set up data-plane forwarding logic.
To deploy networks with confidence,
a switch’s forwarding logic should
correspond with its intended behav-
ior. Programs loaded onto pro-
grammable data-planes don’t neces-
sarily go through as much testing as
traditional fixed-function devices from
large manufacturers. Security is there-
fore of utmost importance.

The main question this research at-
tempts to answer, is whether a sin-
gle compromised P4 switch can cor-
rupt the entire (P4) network. In this
scenario the attacker already has ac-
cess to the compromised switch, and
the assumption is made that all de-
vices blindly trust each other. Two
load balancing schemes are investi-
gated, Clove-ECN and HULA. The
former performs load balancing on the
hosts, and results show that switches
can transparently influence traffic flow
by manipulating the ECN bits. The
latter is designed for implementation
on the data-plane, e.g. using P4, and
we can conclude that HULA is sus-
ceptible to attacks by spoofing probe
packets with false data.

1 Introduction

Data-plane programmability allows operators
to program the forwarding layer of network de-
vices. Network switches conceptually operate
on two layers: the data-plane and the control-
plane. The data-plane is responsible for for-
warding packets to the right port(s), often using
match action tables. The control-plane fills the
match action tables with forwarding rules. In
high performance switches, the data-plane func-
tionality (or ‘forwarding logic’) is traditionally
handled by an Application-Specific Integrated
Circuit (ASIC), while the control-plane oper-
ates on a separate generic CPU.

The switch ASIC as well as the control-plane
logic is developed and manufactured by the

switch manufacturer, who thus controls which
protocols get implemented. It takes more time
and requires more expensive hardware to use
custom protocols. Software Defined Network-
ing (SDN) overcomes these drawbacks. SDN
physically separates the control-plane from the
data-plane, which often are on the same chip in
low to medium performance switches. The con-
trol plane functionality is given to the end user
while the data-plane is still on a fixed-function
ASIC [1].

SDN architectures like OpenFlow have to
support all protocols end users may want on
both the data-plane and the control-plane,
which complicates configuration [2]. In the last
decade, data-plane programmability has started
to gain traction, which promises to decrease
this complexity and increase flexibility and ease
of use. Using the programming language P4
[3], network operators have the freedom to im-
plement whatever protocol or other data-plane
functionality they need on the device. This
brings many advantages over the old restricted
bottom-up approach, e.g. flexibility, but also
using system resources and power only for tasks
and protocols that are used in the network.

In closed networks like data centers, the net-
work operators may not consider security to
be of the highest priority. It can be assumed
that the switches programmed by yourself will
not attack the other switches. In this research
and the accompanying experiments the assump-
tion is therefore made that these devices blindly
trust each other.

The main question this research attempts to
answer, is whether a single compromised P4
switch can corrupt the entire (P4) network.
Corruption can mean a disruption of data flow
to and from the compromised switch or be-
tween two unrelated switches, modifying an-
other switch’s data tables, etc. A single compro-
mised switch can influence all data being sent
from and to it, because it processes packets to
forward them to the correct location. Thus, the
question that remains is to which extent data
(flow) can be corrupted.

To aid in finding the answer, some sub-
questions are formulated.

1. Can the attacker obtain access to the rest
of the switches in the network? This could

possibly mean that programmable switches
are unsafe to use in a network that is not
physically secured.

2. To what extent can the attacker corrupt
the behavior of the network traffic? To this
end, the attacker does not necessarily need
access to other switches.

3. Lastly, what defense mechanism can be
used against a single corrupted pro-
grammable switch? For end users of pro-
grammable data-plane devices, this sub-
question is perhaps the most interesting.

Some research has already been done on se-
curity of P4 devices [4]. The capabilities of an
exploited device are explored by Black & Scott-
Hayward [5]. Their paper and most other pre-
vious research mostly focuses on the security of
a switch device itself, while this research looks
into how a compromised switch can influence
the network it is on.

This research paper begins with the back-
ground and methodology in sections 2 and 3,
where algorithms and tools are explained, and
related work is discussed. In sections 4 and
5, we introduce ECN poisoning, an exploit of
load balancing algorithms using ECN for con-
gestion feedback, and an exploit of HULA, a
load balancing architecture designed for pro-
grammable data-plane networks. From section
6 onwards, results, discussion and conclusions
are discussed.

2 Background

Data-plane programmability is a relatively new
concept. Security thereof is still in its infancy.
Some techniques are used to try and break the
security of network protocols on P4 switches.
P4 is discussed in the introduction; the tech-
niques, protocols, and related tools are intro-
duced here.

ECN

Explicit Congestion Notification (ECN) is a
mechanism to signal network congestion with-
out resorting to dropping packets immediately.
It was defined as a part of the IPv4 header in
2001 [6] and web server support is commonplace
nowadays [7]. ECN is used to signal from end to
end that the traffic route is congested, to which

a host can react by lowering the transmission
rate. For example, switches using active queue
management may signal congestion when the
queue size is over 20 packets, and start drop-
ping packets when the queue is bigger than 50.
The data sender might then respond by lower-
ing the transmission rate.

ECN can also be used by switches to deter-
mine the best path from A to B. For example, if
there are two paths between hosts, and the path
currently in use is getting congested, the switch
can decide to use the other, free path. This
research aims to explore whether this function-
ality can be abused to force most or all traffic
along one of multiple paths.

This is a security and specifically an avail-
ability issue, since this can be used to overload
parts of the network without signaling conges-
tion from end to end. Furthermore, if a network
is vulnerable to such a simple attack, this proba-
bly means that the assumption that all devices
in the network trust each other is too broad.
The devices can in turn no longer assume other
devices are trustworthy.

HULA

The Hop-by-hop Utilization-aware Load-
balancing Architecture (HULA) is a data-plane
load-balancing algorithm designed for switches
with programmable data-planes [8]. The fact
that it is designed for programmable data-plane
networks makes it an attractive thing to study.
HULA is aimed mostly at data center networks,
but can be used in any topology that has a
notion of upstream and downstream links.

Data center load balancing using HULA pro-
vides a number of advantages. It can quickly
adapt to volatile workloads and is more effec-
tive and scalable than existing load balancing
schemes [8]. Also, it doesn’t require any changes
to the end hosts. A downside is the requirement
of a network of programmable switches.

Tools and systems

Using Mininet, it is easy to simulate a network
of switches and hosts running real kernels and
software [9]. Mininet is used for simulating net-
works, and is focused on experimenting with
large Software Defined Networks. In our exper-
iments, Mininet simulates the hosts and the P4
programmable switches.

Behavioral Model version 2 (bmv2) is the
reference software implementation of a P4-
programmable network switch [10], and is used
as software switch within Mininet. Any valid
P4 program can be loaded onto bmv2 switches.
Their performance is lacking compared to hard-
ware implementations like the Tofino chips [11].
However, its functionality is near-complete and
bmv2 is the standard in research and learning
communities. The switches and topologies used
in this research are simulated in Mininet using
bmv2.

3 Methodology

Influencing devices in a network without be-
ing noticed is an important aspect of cyber at-
tacks. If an attack is in plain sight, e.g. a denial
of service (DoS) attack from one single source,
the target can simply block traffic from the at-
tacker and the attack is mitigated. However,
a Distributed DoS attack’s source is harder to
pin-point, since malicious traffic is coming from
multiple sources and is difficult to distinguish
from genuine network traffic. It is therefore a
goal that the attack uses existing mechanisms
in a way that is similar to their normal usage.

We conducted experiments based on two dif-
ferent network functions to investigate the secu-
rity of networks using data-plane programmable
devices. The first is an attempt to exploit load
balancing algorithms that use Explicit Con-
gestion Notification (ECN) to balance network
traffic over multiple links. Clove-ECN is an
example of such an algorithm, working at the
host/server level [12]. Tt influences packet head-
ers in such a way that a switch using Equal-Cost
Multi-Path routing chooses the least congested
path. The hosts determine this by inspecting
ECN data, which a P4 programmable switch
can change, and a corrupt switch could then
use to influence traffic flow.

While Clove-ECN does not run on the data-
plane, or even on the network switches, it is
interesting to see what impact a corrupt P4
switch can have. It is not unthinkable that in
the near future some new load balancing scheme
is presented that runs on the data-plane and
uses ECN for congestion control. Also, the at-
tack can be performed by anyone with a way to
modify packet headers.

Along with this exploit, HULA is investi-
gated. Since it is designed for programmable
data-planes, it is an especially interesting con-
cept to explore. It is not possible to use ECN
to influence the HULA load balancing, as it
completely depends on its own protocol sending
probe packets. Instead, to change the behavior
of HULA, the attacker changes the contents of
these probe packets, which signal link utiliza-
tion levels.

A P4 implementation of HULA is available
on GitHub [13]. It contains all features and re-
quirements presented in the paper, except for
some probe optimizations in multicast groups.
These optimizations do not add to HULA’s se-
curity, nor are they necessary to run it. Some
basic networking features are missing as well,
and this makes it impossible, for example, to
do iperf tests. First, we verified HULA’s ba-
sic load balancing functionality, which works as
expected. Results are shown and discussed in
section 6. A 16-host fat-tree topology is used,
which is shown in Figure 2.

The experiment setup is as follows: network
traffic is created between two hosts that do not
belong to the same pod (hosts 1-4, 5-8, etc.).
In our specific setting, hl repeatedly sends TCP
packets to h7. Then, we investigate the behav-
ior at s100. Its job is to forward packets to
either s202 or s203, depending on path utiliza-
tion. By sniffing packets on its upstream inter-
faces, we can determine how many packets are
leaving towards h7, and what the distribution
over the aggregation switches is.

The essence of the exploit presented in this
paper is discussed in section 5. For our exper-
iments, s202 is the compromised switch that
attempts to manipulate HULA to send more
packets along paths that contain it. This is
achieved by loading a different version of the
P4 implementation, that halves the actual path
utilization.

Specifically, the ingress stage begins with up-
dating the utilization statistics of the currently
used ingress port. This happens for every
packet. Utilization is based on an exponen-
tial moving weight average using the incoming
packet’s size as input. The malicious implemen-
tation does not simply use the packet’s size but
divides it by 2. Over time, this lead to an ‘av-

erage utilization‘ value that is precisely 50% of
the actual port utilization. This should lead to a
higher-than-expected usage of the paths across
the corrupt switch.

4 ECN poisoning

A novel exploit coined ECN poisoning is pre-
sented. The exploit abuses the Explicit Conges-
tion Notification (ECN) bits of the IPv4 header
to steer more packets towards itself instead of
other switches. The primary goal of the ex-
ploit is to influence network traffic in any way,
while remaining unseen, but especially forcing
more traffic to pass through our compromised
switch. An attacker could use this to overload
the network, inspect more packets than other-
wise would pass through the switch, etc.

The basic load balancer uses an algorithm
similar to Clove-ECN. A combination of Equal-
Cost Multi-Path (ECMP) and ECN is used.
When none of the equal-cost paths are con-
gested, the load balancer uses ECMP to make
decisions on which path to take, i.e. the 5-tuple
hash is used [14]. When one or more equal-cost
paths are congested (based on ECN), they are
no longer equal: see Figure 2. The number of
hops is the same, but latency on the congested
path will increase. Therefore, the ECMP al-
gorithm is adjusted to give congested paths a
lower priority than free paths. This basic al-
gorithm is different from Clove-ECN in that it
runs on the switches instead of the hosts.

Clove-ECN can be used in networks with tra-
ditional non-programmable switches that sup-
port ECN and ECMP, with the load balanc-
ing algorithm running in the hypervisor on end
hosts. Therefore, it is not necessary that a data
center using Clove-ECN for load balancing has
switches with programmable data-planes. Nev-
ertheless, simulating this network with P4 pro-
grammable switches serves as a good proof-of-
concept.

Exploiting an ECN-based load balancing al-
gorithm leans on the simple idea of resetting
ECN bits. Consider the simple version of the fat
tree topology shown in Figure 1, which is actu-
ally a single pod. There are two paths from h1 to
h2, one through each core switch. ECN-based
load balancing algorithms like Clove-ECN will
use ECN information to better distribute traffic

across the network. This mostly entails throt-
tling traffic across congested paths, and prefer-
ring less congested paths.

Figure 1: A very simple tree topology with only
two hosts. If one of two core switches would discard
ECN information, an ECN-based load balancing al-
gorithm would prefer paths via that switch.

When one core switch is compromised, the
switch could be programmed in such a way that
it resets the ECN bits to 00, effectively discard-
ing the ECN information. The load balanc-
ing algorithm interprets this as a congestion-
free path and prefers it when other path are
congested. Results show that when preferably
uncongested links are used, discarding ECN in-
formation does lead to a higher usage of the
path along the compromised switch. Further re-
search will have to explore the security impact
of such an attack.

5 HULA exploitation

Exploiting HULA to influence network traffic
has not been written about before. We pro-
pose an idea that disrupts HULA’s functioning
by manipulating path utilization values. The
exploit has been tested on a 16-host fat-tree
topology (see Figure 2) and successfully routes
more traffic across paths that contain the com-
promised switch.

HULA works on a hop-by-hop basis, where
every switch in the network keeps track of the
best next hop to each top of rack (ToR) switch
in a match action table. This bestHop table
is updated frequently with data about the best
next hop to a ToR switch from probe packets
sent by the ToR switches. Probe packets are

Figure 2: Fat tree topology [13]. The top row contains the core switches, below that the aggregation
switches, below that the edge switches, connecting to the hosts at the bottom. Two equal-cost paths from
host h1 to host h7 in a fat tree topology. When one of the paths gets congested, the load balancing algorithm
will adjust to send more traffic over the other path(s).

sent with an interval which is in the order of
magnitude of the ToR to ToR round-trip-time.

The main idea of HULA exploitation is to
modify the probe packet header data to present
our compromised switch as a very good ‘next
hop’ option to other switches in the network.
The HULA header contains two fields: torlD
(24 bits), the identifier of the ToR switch that
generated the packet, and minUtil (8 bits)
which is the utilization of the path from the
sender to the ToR switch. When a switch re-
ceives a HULA packet from another switch, it
can update the bestHop table with the switch’s
mac-address, port, or other identifier.

To influence network traffic without being no-
ticed, it is important to not make the minimum
path utilization values so low they are unreal-
istic. A very robust implementation of HULA
can put measures in place to detect suspicious
values from other switches. An adversarial can
decrease the utilization values by a certain per-
centage. On the other hand, switches can’t
make any assumptions about the maximum pos-
sible utilization of a path because HULA sup-
ports asymmetric networks. Therefore, as long
as actual utilization does not approach 100%,
the compromised switch can pretend to have a
lower utilization than it actually has, without
impacting performance. This results in the de-
sired effect of sending more data past the com-
promised switch.

There are several ways to achieve the same
general result. The first method is to simply
report lower utilization values right at the start

of packet processing, while otherwise running
the same HULA implementation. It is this ap-
proach that was experimented with and pro-
duced promising results. Another method is to
do honest bookkeeping within the compromised
switch, but under-report the minimum path uti-
lization when forwarding probe packets.

6 Results

Due to difficulties with running P4 code using
bmv2 and Mininet, there was no time to test the
proposed exploits in a realistic scenario. These
were not issues with P4; the switches did not get
the correct ARP and other routing information
via Mininet. It appears this was specific to the
author’s laptop. Nonetheless, some results were
achieved, which are presented here.

Using ECN to signal congestion works reli-
ably, and combining it with a naive ECMP im-
plementation does in fact balance traffic across
multiple links. Since connections are not neces-
sarily routed across the same path in the naive
implementation, packet reordering may occur at
the receiving end. This is undesirable but it
works for a proof of concept. Dropping ECN
data on one of the switches in the network did
however not successfully influence load balanc-
ing.

Manipulating path utilization data in the
HULA architecture did successfully route
more traffic towards the compromised switch.
Throughput during normal behavior is shown
in Figure 3 and shows that switch s100 evenly

balances traffic to s202 and s203. When the
switch is compromised, the reported bandwidth
is 50% less than the actual throughput. The
consequence is that throughput through both
switches is balanced until equal. This results
in a distribution of a third through the normal
switch, and two thirds of the traffic through the
compromised switch. This is graphed in Figure
4. We can conclude that it is possible and quite
easy to influence HULA load balancing.

Normal HULA load balancing

30 : ; ; ‘ ; i
%: I TS $100-s202 —— s100-s203 ||
o,
= 20+ |
j]
2, <
=
® 10| g
< | |
=

! L L
00 2 4 6

time (s)

Figure 3: Traffic from hl to h7 passing through
s100. HULA load balances packets across the two
next available hops, s202 and s203.

Load balancing altered by exploit

40 —_—
z |] ------ 100 - 5202 —— 5100 - 203 \
& 30| : |
B 20 T RS :
5 | |
o 10 W7
—
| |
0 : : :
0 2 4 6 8

time (s)

Figure 4: Traffic from hl to h7 passing through
s100. HULA load balances packets across the two
next available hops, but gets wrong path utiliza-
tion values and thus routes more traffic through the
compromised switch s202.

7 Responsible Research

When doing research on security, inevitably the
question arises whether a person could use your
results for an evil purpose. While the experi-
ments presented in this paper can be used in
a real-life scenario, it is unlikely that they are
truly applicable to such a situation. Especially
the combination of having to gain access to a
switch, and the assumption that devices com-
pletely trust each other, is unrealistic. Any sys-
tem administrator worth their salt will have se-
curity policies in place to prevent unauthorized
access. Therefore, this research does not raise
ethical issues.

When reading through related work, one
thing that caught attention was the possibility
to reproduce methods, or lack thereof. Some
papers explain for example a new algorithm in
detail, but do not provide directions for a P4
implementation. In this paper a middle way
was sought, providing the general steps to re-
produce results, while noting some specific rel-
evant things.

8 Discussion

Previous works ([5; 15] among others) investi-
gate the impact of exploits in the P4 ecosystem,
from P4 code to the interaction between the
data-plane and the control-plane. These works
explore the security on single network devices,
but leave networks of programmable data-plane
switches out of the picture. A lot of research
on P4 networks and security involve securing a
network using P4 [16]. This research focuses on
the security of a network of (P4) programmable
switches, specifically data center networks using
different forms of load balancing. It is incom-
parable to previous works known to the author.

In the introduction, one core assumption was
mentioned that the experiments and results pre-
sented here rely on: the hosts and switches trust
all other hosts and switches in the network.
In a data center environment, this is a realis-
tic assumption to make as data centers often
have very strong (physical) security measures in
place. The scenario with a compromised switch
is therefore sensitive to the exploits presented
in this research. The security measures data
centers have in place do mean that it is impos-

sible or at least very hard to get access to and
compromise such a switch.

A less secure environment (e.g. offices) would
be susceptible to the attacks presented in this
paper. However, it is unlikely that such an envi-
ronment does any load balancing in an exposed
part of the network, let alone use HULA for
that purpose. It raises the question of how use-
ful the attacks are. Nevertheless, they serve as
a proof-of-concept and can be used as a start-
ing point for further research into the security
of programmable data-plane networks. Sugges-
tions for further research are to let go of the core
assumption and focus on realistic and practical
setups.

9 Conclusions and Future Work

In this paper, the security of a P4 pro-
grammable network is researched. Specifically,
whether a compromised P4 switch can corrupt
the entire network. The first research question
is about an attacker obtaining access to the rest
of the switches in the network, if one switch is
compromised. From this paper no such conclu-
sion can be drawn yet, and more research has
to be done to confirm or deny this.

Second, we explore to what extent the at-
tacker can corrupt the behavior of the net-
work. Some ideas of potential exploits of load
balancing schemes are proposed using a cor-
rupt P4 switch. The first approach looks into
congestion-aware load balancers that use Ex-
plicit Congestion Notification (ECN) informa-
tion for congestion feedback. The main idea is
to abuse this fact by ignoring ECN in the cor-
rupted switch, and pretending the path along it
is free from congestion.

The Clove-ECN load balancing scheme is in-
vestigated, which runs on a standard network
using ECMP, and runs load balancing on the
hosts. ECN is used to get information on the
state of the network, and helps choose the best
path from host to host. While Clove-ECN can
run on a standard network, we consider the case
where one of the switches in the network is a
corrupted P4 switch that the attacker controls.
It is then possible to manipulate ECN data, af-
ter which hosts will prefer the path along the
corrupt switch.

A network with switches running a basic ver-
sion of ECN+ECMP load balancing can be in-
fluenced by a single compromised switch. It is
easy to discard ECN information, which other
elements in the network use to properly bal-
ance traffic. Even though it is possible to in-
fluence load balancing, it is hard to make any
statements on the security impact because of
the simplicity of the setup. Future work is to
thoroughly test this idea on a network running
Clove-ECN or another load balancing architec-
ture.

HULA, a load balancing scheme designed
for programmable data-plane data center net-
works, gets congestion information directly
from switches by regularly sending probe pack-
ets across the network. HULA is susceptible to
probe packet spoofing. The corrupt switch can
alter utilization data in the probe packets, after
which top-of-rack switches will prefer the ‘less
utilized’ path along the corrupt switch. While
this is an availability and thus a security prob-
lem, HULA is applied almost solely in data cen-
ter networks which use extensive security mea-
sures to prevent access to the network in the
first place.

Third, mitigation methods for both load bal-
ancing schemes are probably best sought in se-
curing communications. For example, IPsec
may be used to prevent switches from changing
ECN header data. While preventing switches
from changing data would help secure Clove-
ECN, this is not an option for HULA. Since
the switches have to report their utilization and
best next hop, they are free to modify probe
packets. While HULA is robust against link
failures, it is probable that there is no good so-
lution to secure the scheme as a whole. Again,
this will have to be confirmed by further work.

Securing networks has been a challenge since
the inception of the internet. Programmable
data-plane networks are no exception to this,
and can even prove to be even harder to se-
cure. Programmable devices performing non-
standard algorithms and schemes have to rely
on the security of those algorithms, as they can-
not trust other devices in the network. A secure
network proves to be a difficult feat to achieve.

References

[1]

2]

13l

l4]

[5]

l6]

7]

8]

D. Kreutz, F. M. V. Ramos, P. E. Veris-
simo, C. E. Rothenberg, S. Azodolmolky,
and S. Uhlig, “Software-defined network-
ing: A comprehensive survey,” Proceedings
of the IEEE, vol. 103, no. 1, pp. 14-76,
2015.

H. Song, “Protocol-Oblivious Forwarding;:
Unleash the Power of SDN through a
Future-Proof Forwarding Plane,” in Pro-
ceedings of the Second ACM SIGCOMM
Workshop on Hot Topics in Software De-
fined Networking, HotSDN ’13, pp. 127—
—132, Association for Computing Machin-
ery, 2013.

P. Bosshart, D. Daly, G. Gibb, M. Izzard,
N. McKeown, J. Rexford, C. Schlesinger,
D. Talayco, A. Vahdat, G. Varghese,
et al., “P4: Programming protocol-
independent packet processors,” ACM
SIGCOMM Computer Communication Re-
view, vol. 44, no. 3, pp. 87-95, 2014.

E. F. Kfoury, J. Crichigno, and E. Bou-
Harb, “An exhaustive survey on P4 pro-
grammable data plane switches: Taxon-
omy, applications, challenges, and future
trends,” IEEE Access, vol. 9, pp. 87094—
87155, 2021.

C. Black and S. Scott-Hayward, “Adver-
sarial Exploitation of P4 Data Planes,” in
2021 IFIP/IEEFE International Symposium
on Integrated Network Management (IM),
pp- 508-514, 2021.

K. Ramakrishnan, S. Floyd, and D. Black,
“The Addition of Explicit Congestion No-
tification (ECN) to IP,” RFC 3168, RFC
Editor, September 2001.

D. Murray, T. Koziniec, S. Zander,
M. Dixon, and P. Koutsakis, “An analy-
sis of changing enterprise network traffic
characteristics,” in The 28rd Asia-Pacific
Conference on Communications, 2017.

N. Katta, M. Hira, C. Kim, A. Sivaraman,
and J. Rexford, “HULA: Scalable load bal-
ancing using programmable data planes,”
in Proceedings of the Symposium on SDN
Research, SOSR 16, Association for Com-
puting Machinery, 2016.

o]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

B. Lantz, B. Heller, and N. McKeown, “A
network in a laptop: Rapid prototyping for
software-defined networks,” in Proceedings
of the 9th ACM Workshop on Hot Topics
in Networks, Hotnets-9, 2010.

A. Bas, A. Fingerhut, et al., “Behav-
ioral model v2: the reference p4 soft-
ware switch.” https://github.com/p4lang/
behavioral-model, 2022. Accessed: 2 June
2022.

“Intel, Kaloom create P4-
programmable network solu-
tions.” https://networkbuilders.

intel.com/solutionslibrary /

intel-kaloom-create-p4-programmable-network-solutions,

August 2020. Accessed: 9 June 2022.

N. Katta, A. Ghag, M. Hira, 1. Keslassy,
A. Bergman, C. Kim, and J. Rexford,
“Clove: Congestion-aware load balancing
at the virtual edge,” in Proceedings of the
18th International Conference on Emerg-
ing Networking EXperiments and Tech-
nologies, CONEXT ’17, pp. 323—-335, As-
sociation for Computing Machinery, 2017.

R. Nigam, “Implementation of the HULA
data-plane load balancing protocol.” https:
//github.com/rachitnigam /Hula-hoop,
2022. Accessed: 16 June 2022.

C. Hopps, “Analysis of an Equal-Cost
Multi-Path Algorithm,” RFC 2992, RFC
Editor, November 2000.

M. V. Dumitru, D. Dumitrescu, and
C. Raiciu, “Can we exploit buggy p4 pro-
grams?,” in Proceedings of the Symposium
on SDN Research, SOSR 20, p. 62—68, As-
sociation for Computing Machinery, 2020.

Y. Gao and Z. Wang, “A review of
p4 programmable data planes for net-
work security,” Mobile Information Sys-
tems, vol. 2021, 2021.

https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model
https://networkbuilders.intel.com/solutionslibrary/intel-kaloom-create-p4-programmable-network-solutions
https://networkbuilders.intel.com/solutionslibrary/intel-kaloom-create-p4-programmable-network-solutions
https://networkbuilders.intel.com/solutionslibrary/intel-kaloom-create-p4-programmable-network-solutions
https://github.com/rachitnigam/Hula-hoop
https://github.com/rachitnigam/Hula-hoop

	Introduction
	Background
	Methodology
	ECN poisoning
	HULA exploitation
	Results
	Responsible Research
	Discussion
	Conclusions and Future Work

