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A B S T R A C T

The term hybrid modeling refers to the combination of parametric models (typically derived from knowledge
about the system) and nonparametric models (typically deduced from data). Despite more than 20 years of
research, over 150 scientific publications (Agharafeie et al., 2023), and some recent industrial applications on
this topic, the capabilities of hybrid models often seem underrated, misunderstood, and disregarded by other
disciplines as ‘‘simply combining some models’’ or maybe it has gone unnoticed at all. In fact, hybrid modeling
could become an enabling technology in various areas of research and industry, such as systems and synthetic
biology, personalized medicine, material design, or the process industries. Thus, a systematic investigation of
the hybrid model properties is warranted to scoop the full potential of machine learning, reduce experimental
effort, and increase the domain in which models can predict reliably.
1. Introduction

Machine-learning has obtained a lot of attention in recent years
performing tasks unthinkable before (Wang et al., 2020). Much hope
also relies on machine learning in natural and life science-related fields,
dreaming of the description of highly complex systems solely by using
data, regressing some inputs (e.g., features, factors, predictors, regres-
sors) to some outputs (e.g., response, target) (Montáns et al., 2019;
Jumper et al., 2021). Similarly, seeking to unravel the mechanisms
of the system by mechanistic modeling has in the past given rise to
fundamental modeling research (Sun et al., 2019; Gernaey et al., 2010;
Horstemeyer, 2010). At first sight, machine learning approaches seem
to compete with the more traditional fundamental modeling. How-
ever, fundamental modeling can be combined with machine-learning
approaches as highlighted in literature (Antoniewicz, 2015; Baker et al.,
2018; Bikmukhametov and Jäschke, 2020; Hamilton et al., 2017; Zhang
et al., 2019, 2020).

Indeed, the idea of combining mechanistic modeling with data-
driven models has been around from the 1990th (Psichogios and Ungar,
1992; Su et al., 1993; Kramer et al., 1992; Johansen and Foss, 1992;
Thompson and Kramer, 1994). Since then a significant amount of
research has been published using the terms ‘‘hybrid modeling ’’ in the
more process engineering-related research fields and ‘‘grey-box model-
ing ’’ in the control and automation field. Though grey-box modeling is
understood to include a wider range of models than hybrid modeling,
e.g., a system of equations that is derived from first principles and
complemented by empirically derived equations or structuring the

∗ Corresponding author at: DataHow AG, Hagenholzstrasse 111, Zurich, Switzerland.
E-mail address: m.vonstosch@datahow.ch (M. von Stosch).

machine-learning model based on process knowledge (Alhajeri et al.,
2022; Wu et al., 2020) qualify as grey-box but not as hybrid models.
Hybrid modeling is understood as the combination of models that are
different in their traits, i.e., one part of the model structure is derived
from knowledge (hence each parameter has a physical meaning and
is normally identifiable, this type of model is named ‘parametric’ and
it is typically represented by white boxes) whereas the other part of
the structure is derived from data (hence parameters do not have any
physical meaning and are normally not identifiable, and this type of
model is named ‘nonparametric’ and it is typically represented by black
boxes). As such, and in order to reduce the ambiguity in that the term
hybrid modeling could be understood, the term hybrid semi-parametric
modeling has been suggested (Thompson and Kramer, 1994; von Stosch
et al., 2014b). In what follows, we use the term hybrid modeling as a
short version of hybrid semi-parametric modeling.

The current hybrid modeling research and applications have evolved
from the area of artificial neural networks, starting with Psichogios and
Ungar (Psichogios and Ungar, 1992). They showed that the integration
of fundamental knowledge into neural networks can (1) improve the
model’s extrapolation performance (the model faithfully predicts the
system behavior beyond prior tested conditions), (2) reduce its data
requirements, and (3) increase process understanding (e.g., model
interpretability). The origin of these key properties can easily be
comprehended considering the examples discussed in Box 1. These
key properties were demonstrated and further extended in the liter-
ature (van Can et al., 1999; Van Can et al., 1998; Schuppert, 2000;
vailable online 17 December 2023
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von Stosch et al., 2014b; Fiedler and Schuppert, 2008; Kahrs and
Marquardt, 2007). Coming from the mechanistic modeling perspective,
machine-learning models can significantly extend their applicability
for cases where parameters of the mechanistic model exhibit great
confidence intervals, as they could be observed to vary in function
of experimental conditions not captured by the mechanistic model or
evolve over time, see e.g. Shah et al. (2022), Vega-Ramon et al. (2021).

Several recent reviews have discussed the application of hybrid
models in the process industries, e.g., for separation processes (Schäfer
et al., 2020; McBride et al., 2020), chemical, petroleum and energy sys-
tems (Sharma and Liu, 2022; Zendehboudi et al., 2018; Bradley et al.,
2022), biochemical processes (Galvanauskas et al., 2018; Agharafeie
et al., 2023; Mahanty, 2023), water systems (Schneider et al., 2022).
Moreover, the importance of hybrid modeling is emphasized in multiple
recent reviews and perspective articles on machine learning in chemical
engineering (Lee et al., 2018; Venkatasubramanian, 2019; Schweidt-
mann et al., 2021b; Daoutidis et al., 2023). The challenges for the
application of hybrid models to biopharmaceutical processes have been
highlighted in Tsopanoglou and Jiménez del Val (2021). Also, the role
of hybrid modeling for smart manufacturing (Yang et al., 2020), indus-
try 4.0 (Sansana et al., 2021) and digital twins (Sokolov et al., 2021)
has been explored. Beyond the process industries, systems and synthetic
biology seems a very promising field for applications (Hamilton et al.,
2017; Portela et al., 2018; von Stosch et al., 2014a; Pinto et al., 2023;
Lee et al., 2020) as well as the field of personalized medicine (Clifton
et al., 2017) and pharmacokinetics/pharmacodynamics modeling (An-
tontsev et al., 2021).

Following the above achievements, we argue that modeling com-
plex, high-dimensional, and/or computationally expensive systems
could greatly benefit from the combination and integration of more
fundamental modeling and machine-learning techniques because of
three main reasons:

1. The curse of dimensionality. The number of factors is often large
in practical applications, and the data demand of nonparametric
models scales super-linearly (exponentially) with the feature
dimensionality. Thus, we either need to focus our studies on sub-
systems, hence limiting the number of factors and dimension, or
generate humongous amount of informative data (not just big
data). Given that the cost to generate data in may disciplines is
quite high (e.g. a 250 mL mammalian cultivation run costs sev-
eral hundreds of dollars), the application of pure nonparametric
models for the entire system seem cost-prohibitive.

2. The trade-off between performance and effort. Even if we had
enough data, we may still not be able to decode the hidden
physical knowledge (and this could be very time-consuming).
We always face the situation with some amount of data and
some partial understanding of the process, however, we only
have limited time to build a model that is as accurate as possible
for process operation.

3. The quest for computational efficiency. Using hybrid surrogate
models for computationally expensive process simulation is ad-
vantageous as they can speed up calculating and address tasks
that are otherwise not feasible (e.g., real-time or fast decision-
making). Though it may be argued that pure black-box based
reduced models may achieve the same, the extrapolation ca-
pabilities of hybrid models render them invaluable for design,
optimization, or control in many practical applications.

Recent reviews on hybrid modeling methodologies have provided
ew views on the structuring/typology of hybrid models (Sharma and
iu, 2022; Bradley et al., 2022; Rajulapati et al., 2022) and also
evisited their framing within the evolving area of machine-learning
odels and in particular physics informed neural networks. In this

eview and perspective article, we suggest a more refined definition
2

f hybrid models and their structures. We revisit the methodologies for t
hybrid model construction and training in light of potential applica-
tions, highlight the existing challenges and propose potential research
directions to address them in connecting with other research fields.

We also discuss the perspectives of ongoing and future research in
this field. The distinctive contribution of this review paper lies in its
emphasis on novel solutions aimed at enhancing current practices in
hybrid model construction, thereby charting a course for the broader
utilization of hybrid models across a wider spectrum of applications
(see Fig. 1). .

Box 1: Showcasing the properties of serial hybrid modeling
structures

Imagine a system can be manipulated by three factors (in-
puts), 𝑥1, 𝑥2 and 𝑥3, and the response of the system, which can
be measured, is 𝑦. If the system is to be modeled by a data-driven
model, e.g. a neural network, the model can be posed as:

𝑦 = 𝑓 (𝑥1, 𝑥2, 𝑥3,w) (1)

which implies that 𝑥1, 𝑥2 and 𝑥3, need to be modulated such
that the function 𝑓 (⋅) (described by the data-driven model) can be
inferred and the parameters w identified (Fig. 1a). Thus, a three-
dimensional space needs to be explored to be capable of drawing
any conclusions regarding potential interactions between 𝑥1, 𝑥2
and 𝑥3 and/or nonlinearity of the system (within the studied
ranges). Considering the system exhibits only main effects and
interactions, 23 = 8 experiments are required to decipher the
impact of the factors on the system response. Suppose that it is
known that the impact of 𝑥3 on 𝑦 can be described with 𝑥3∕(𝑥3+𝑝)
(with 𝑝 some parameter), such that the system can be modeled by:

𝑦 = 𝑥3∕(𝑥3 + 𝑝) ⋅ 𝑓 (𝑥1, 𝑥2, 𝑤) (2)

The space that needs to be explored in this case comprises only
two dimensions (Fig. 1b), namely that of 𝑥1 and 𝑥2. This implies
that the number of experiments can be reduced, four experiments
are required for the example. In addition, the model will predict
reliably for any value of 𝑥3, i.e., the model can extrapolate in
𝑥3 beyond tested values. Regardless of the values in 𝑥3 (except
if 𝑥3 = 0) the model 𝑓 (𝑥1, 𝑥2, 𝑤) can be inferred given suf-
ficient variation in 𝑥1 and 𝑥2 (which can exhibit a particular
advantage in the case that 𝑥1 or 𝑥2 cannot be controlled). The
model 𝑓 (𝑥1, 𝑥2, 𝑤) will typically be simpler than 𝑓 (𝑥1, 𝑥2, 𝑥3, 𝑤)
which also simplifies the modeling exercise. However, not all
of these properties are unique to this specific nonparametric–
parametric serial hybrid model sequence. Consider the model
shown in Fig. 1c. This structure allows for a reduction in the
number of experiments required for the characterization of the
system because of the introduced structure (only the impact of 𝑔
rather than that of 𝑥1 and 𝑥2 needs to be investigated). However,
the extrapolation capabilities are different to the model shown
in Fig. 1b. This model can be expected to predict well as long
as g stays within the prior investigated ranges and hence 𝑥1
and 𝑥2 should only be varied such that 𝑔 does not exceed this
range. In the contrary, the extrapolation limits for 𝑥3 shown in
Fig. 1b (and discussed in the example before), are of physical
nature in that the model prediction performance will deteriorate
when the described mechanism is no longer governing the system
behavior.

. Fundamentals of hybrid modeling

In this section, we describe the hybrid modeling structures (Sec-
ion 2.1, the main advantages of hybrid modeling (Section 2.2), and
he training of hybrid models (Section 2.3).
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Fig. 1. Considering a system with 3 factors (𝑥1 to 𝑥3) and response 𝑦 which only exhibits main effects and interactions, it can be seen that the integration of knowledge has the
potential to reduce the experiments. It is considered that 𝑓 (𝑥1 , 𝑥2 , 𝑤) is a function that is given by a machine-learning model, whereas 𝑔(𝑥1 , 𝑥2 , 𝑤) is a function that is derived from
mechanistic knowledge.
Fig. 2. Basic hybrid modeling structures based on Psichogios and Ungar (1992) where
(a) shows a parallel model structure and (b,c) show serial model structures. Note that
the black boxes represent machine learning models and the white boxes represent
mechanistic models.

2.1. Hybrid modeling structures

There are three basic configurations of parametric and nonpara-
metric model that determine whether a hybrid model is understood to
have a parallel or serial structure. These basic configurations are shown
in Fig. 2, where the black-box typically represents the nonparametric,
data-driven component, and the white-box represents the parametric,
knowledge derived component.

These basic configurations have a high relevance for the mathemat-
ical foundations of hybrid models. Also, the model’s advantages and
limitations can be more easily understood as a result of the differen-
tiation. Hence, we provide a more restrictive definition of the basic
structures in the following.

In practice, hybrid models are often more complex intertwined
structures where a clear classification as parallel or serial is not pos-
sible (Bradley et al., 2022). For these more complex hybrid models
that consist of several white and black boxes, the properties are not so
straightforward to assess and the mathematical savvy reader is referred
to Fiedler and Schuppert for a mathematically more rigorous analysis
of such tree structured hybrid models (Fiedler and Schuppert, 2008),
which constitute a particular class of serial hybrid models. Moreover,
one can distinguish hybrid models using concepts from network science
where model structures can be classified into acyclic graphs and cyclic
graphs. One example is that of dynamic hybrid models where the
predicted quantity is used as an input for the next timestep, which
are discussed in more detail in Section 3.1. Hence, methods that have
been developed for graphs could perhaps readily be applied to hybrid
models, though we are not aware of any such application.

2.1.1. Parallel structures
A hybrid model is defined here to have a parallel structure if (1) the

parametric model can independently of the nonparametric model de-
scribe the system’s behavior; and (2) the nonparametric model ‘‘only’’
improves the prediction quality of the parametric model, aiming to ob-
tain a good agreement with the real system. While this is a ‘‘mechanism
3

Fig. 3. An example, where the differences in inputs of the nonparametric model
might results in scenarios where for certain extrapolative variations in the inputs the
predictions of the nonparametric model (left) might be significantly less accurate than
those of the hybrid semi-parametric model (right).

correction’’ approach as referred to in Bradley et al. (2022), Zhang et al.
(2020), not all mechanism correction approaches are automatically
hybrid due to the point on independence.

The extrapolation performance of this parallel structure can gener-
ally be assumed to be limited as the nonparametric model is typically
not expected to describe the behavior of the system outside the training
ranges. However, scenarios exist in which the parametric model is
extrapolating, whereas the nonparametric model operates within the
prior training ranges using complimentary measurements (e.g. mea-
sured spectra, Fig. 3) or describing one part of the system that does not
extrapolate effectively reducing the input dimensionality of the black
box model part (Quaghebeur et al., 2022).

In the simplest parallel case the nonparametric model’s correction
is added to the parametric model’s prediction, but more sophisticated
structures are available where the weighting of each prediction is made
in accordance with the expected prediction accuracy of the model (Dors
et al., 1995; Peres et al., 2001, 2008). In this regard, the Kalman, Sigma
Point, Particle or other alike filters could also be understood as a hybrid
model where the parametric component describes the process dynamics
and the nonparametric component consists of a soft-sensor model,
which are then combined by a weighting component (Simutis and
Lübbert, 2017; Cabaneros Lopez et al., 2021). Hence, a lot of learnings
can be drawn from developments in this field and the interested reader
is referred to Narayanan et al. (2020), Cabaneros Lopez et al. (2021).
In general though, the added value of the nonparametric model is
an increase in performance within the ‘‘domain’’ of the training data
(i.e., the data used for the development (training) of the nonparametric
model) (Kahrs and Marquardt, 2007; Schweidtmann et al., 2021c). One
way to improve the extrapolation potential and reduce data require-
ments of parallel hybrid models is to reduce the input dimensionality of
the black box by selecting only a few inputs (e.g., based on mechanistic
knowledge) (Fiedler and Schuppert, 2008).

2.1.2. Serial structures
The most interesting hybrid modeling properties, namely a reduc-

tion in the data requirements, improvement in extrapolation perfor-
mance, and improved systems understanding, can be obtained with
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serial structures, the basic ones are discussed in more detail in Box 1
and shown in Fig. 2b and c. Feature engineering can be regarded as a
serial hybrid model, as it resembles the serial structure shown in Fig. 2c.
The good performance that can be improved by feature engineering
demonstrates the capabilities of this structure. For instance, Richelle
et al. (2020) used material balance equations and simple biochemical
considerations to transfer the focus of the variation analysis from the
process to the underlying biological system for two upstream biophar-
maceutical processes. Tantamount to feature engineering, the output
can be engineering, as represented by Fig. 2c, giving rise to similar
performance. For instance, de Azevedo et al. (Rodrigues de Azevedo
et al., 2017; Azevedo et al., 2019) used an established empirical equa-
tion to transform variations in controlled drug release profiles into
variations into two distinct parameters that characterize the release
profile, i.e., the total amount of released drug and the kinetic of
drug release. The link function in generalized linear regression can
perhaps be understood as conceptually similar. However, rather than
using an equation that stems from fundamental knowledge, the link
function many times is chosen to resemble the observed behavior,
and the parameter of the function are subsequently used as output of
linear regression (Note that there exist several requirements for the
link function, such as monotonicity, differentiability, etc.) (Hilbe, 2011;
Lindsey, 1999).

2.2. Why hybrid models perform better?

The benefits of hybrid models arise from the incorporation of fun-
damental knowledge (Rogers et al., 2023b). Generally, one can differ-
entiate two types of parametric knowledge, according to von Stosch
et al. (von Stosch et al., 2014b). One type, referred to as ‘‘structuring
knowledge’’, considers the structure of the interactions of the different
variables (which typically is at least to some degree time-invariant) or
systems components. A structuring knowledge example, is the stoichio-
metric reaction matrix that describes the interconnection of reactions
and compounds. The other type of knowledge, referred to as ‘‘forming
knowledge’’ by von Stosch et al. (von Stosch et al., 2014b), describes
the functional form in that two or more variables are related. Kinetic
rate functions are an example for forming knowledge.

As should become apparent from the considerations described in
Box 1, the integration of structural or forming knowledge, can po-
tentially (1) reduce the number of experiments/data points required
to characterize the model application domain; and (2) increase the
extrapolation properties along certain domains. However, an error in
the structural or forming knowledge (i.e., the behavior of the system
is not appropriately described by the mathematical equations) will
bias the model, constraining its performance (Rogers et al., 2023b).
Thus, it is of paramount importance to assess to which extend can the
structuring knowledge be trusted and the assumptions that the funda-
mental knowledge is based upon. The evaluation of the fundamental
knowledge base prior to model creation and experiment execution can
help to assess the advantages of this approach a priori (Rogers et al.,
2023b). The creation of hybrid modeling structures by trial and error,
i.e., without consideration why the model should perform better, will
increase performance or decrease the number of experiments at best by
chance.

It is noteworthy that, while other advanced machine learning tech-
niques exist that also integrate domain knowledge and process data,
hybrid models are recognized for presenting distinct advantages beyond
those offered by these methods. For instance, physics-informed neural
network (PINN) has been extensively studied recently for different ap-
plications (Raissi et al., 2019; Rogers et al., 2023a; Sansana et al., 2021;
Wu et al., 2020; Zheng and Wu, 2023). However, PINN and hybrid
models are proposed for diverse applications. PINN primarily serves
as a surrogate model, substituting a computationally-intensive, first-
4

principles-derived physical model—exemplified by the Navier–Stokes
equations. While PINN has the capability to integrate pertinent infor-
mation from both process data and a physical model, it is imperative to
note that the existence of a rigorous mechanistic model is a prerequisite
for PINN construction. This stands in stark contrast to the hybrid
model, which operates independently of the need for a highly accurate
physical model. The hybrid model is principally employed to simu-
late complex systems where only partial understanding is available.
It employs a (simple) mechanistic model to quantify partial process
understanding and utilizes process data (constructing a data-driven
model) to address gaps in knowledge. Simultaneously, it maintains
a flexible model structure for computational efficiency. Notably, the
hybrid model distinguishes itself from PINN by not functioning as a
surrogate model but as an enhancement of the underlying mechanistic
model. As such, hybrid models demonstrate broader applicability across
various domains. However, this does not imply that hybrid models
preclude the utilization of other machine learning methodologies, such
as PINN. Indeed, the collaborative integration of PINN can contribute
to the advancement of hybrid model development, as elucidated in
Section 3.4.

In addition, hybrid models offer distinct advantages over other
machine learning based physical model construction strategies such
as symbolic regression (Forster et al., 2023; Narayanan et al., 2022)
and sparse regression (Massonis et al., 2023; Brunton et al., 2016).
Firstly, unlike sparse regression techniques e.g. sparse identification
of nonlinear dynamics (SINDy), hybrid models eliminate the necessity
for a predefined library of potential mechanistic expressions. Secondly,
the inclusion of a mechanistic model structure within hybrid models
enhances interpretability, a feature not consistently guaranteed by
symbolic regression. Symbolic regression often generates mathematical
expressions solely based on statistical considerations, lacking inherent
physical meaning. A parallel concern arises in sparse regression, where
the process of selecting expressions from the predefined library may
lack the incorporation of valuable physical insights. Moreover, when
confronted with the simulation of highly nonlinear systems, such as
bioprocesses or chemical reaction networks, both sparse regression and
symbolic regression may prove inefficient in capturing the underlying
process complexity. These methods often rely on simplistic expressions
to describe process behaviors. Contrastingly, hybrid models adeptly
address this limitation by combining a data-driven model with a mech-
anistic model, making them well-suited for the simulation of intricate
physical systems commonly seen in chemical engineering applications.

2.3. Hybrid model training

The fitting of the model to data by adapting the model’s parameter
values is referred to as training or learning in the machine-learning
field, in statistics called parameter estimation, whereas for fundamental
models one typically speaks of parameter identification. Due to the
fixed model structure, identifiability of the parameters given the data
and model structure is to be considered when fitting fundamental,
parametric models (Iliadis, 2019; Karlsson et al., 2012; Villaverde,
2019; Massonis et al., 2023). Parameters in a machine-learning model
are known to be nonidentifiable given the symmetric structure of many
types of machine learning models and the large number of parameters
giving the machine learning models the flexibility to approximate non-
linear functions (Hornik, 1993). However, this flexibility in structure
of machine-learning models gives rise to the problem of overfitting
and several methods have been proposed to alleviate this issue, such
as drop-out, regularization, early-stopping, pruning, etc. Hinton et al.
(2006, 2012), Wang and Raj (2017). One could also look at this
difference in training fundamental and machine-learning models in
terms of bias and variance. Whereas with fundamental models the focus
is on fitting the model to reduce the error from bias (introduced by the
rigid structure), machine-learning approaches fit the model to reduce
the error from variance (as the model structure can be adapted counter-

acting the bias). Notably, black box machine learning approaches like
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Fig. 4. Values of 𝑣 over 𝑥 for experiments with 3 different levels of 𝑧 = [𝑧1 , 𝑧2 ,… , 𝑧𝑛]
as well as the fitted function, indicated in the top right corner of each plot.

neural networks are proven to have universal approximation ability.
Therefore, it is possible that hybrid models may not perform as well as
machine learning models if the mechanistic knowledge is inaccurate,
i.e. the mechanistic knowledge provides an inductive bias (Psichogios
and Ungar, 1992). This potential impact of inductive bias is further
highlighted in Sections 3.4 and 3.5.

When fitting hybrid models, both problems, i.e., identifiability and
overfitting, need to be addressed. The inductive bias, stemming from
the knowledge back-bone, could hinder the successful development of
a model (if the introduced structure does not match the underlying
system), while at the same time it could also facilitate model develop-
ment (if the introduced structure matches the behavior of the system
and therefore constrains the parameter space). This is visualized for an
example in Fig. 4.

The prevailing approaches for parameter identification in hybrid
models give very little attention to structural identifiability and induc-
tive bias. A general recommendation for hybrid model development is
to only integrate those parts of the knowledge for which one is certain
that they are "correct", creating a baseline model. Subsequently, the
knowledge part can be increased while evaluating the performance
of the extended hybrid against the baseline hybrid model to check
whether the integration of knowledge has led to a deterioration or
increase in performance (Rogers et al., 2023b). While this manual
procedure can help with the inductive bias issue, it can only to some
extent and implicitly address the issue of structural identifiability.
Hence, research in this direction would be important to address these
shortcomings better.

Hybrid models can have parameters in both, the parametric and
nonparametric models. The practical approach to identifying them
considers first fitting and then fixing the parameters of the parametric
part (either through knowledge or, if the structure allows it, through
data) and subsequently training the nonparametric (black box) model.
This can potentially be followed by a re-adaptation of the parametric
model parameters, which provides good model performance as shown
by Yang et al. (2011), one of the few approaches proposed to iden-
tify the parameters in both parts. It is evident that this sequential
approach might converge to scenarios where the model parameter
and structure are not globally optimal. The incremental identification
approach, proposed by Kahrs and Marquardt (2008), can also be used
to identify parameters in both parts. This approach somewhat works
its way backwards from the outputs through the knowledge to the
parameters, decomposing the problem and therefore making it easier
to solve. However, for this, all the outputs must have been measured.
Also, along with many serial structures, it might not be possible to
obtain a closed form (the equations of the parametric model cannot be
inverted) or the estimation is numerically ill-conditioned, e.g., when
the system is dynamic. When this direct parameter identification is
not an option, the indirect approaches can be used, also referred to
as sensitivities approach (Psichogios and Ungar, 1992; Oliveira, 2004).
However, this approach has its limitations, in particular, if the system
is dynamic, since the system of ordinary differential equations or even
5

partial differential equations need to be numerically integrated which
is a sequential approach taking considerable time as it cannot be par-
allelized. In addition, parameter identification typically is a nonconvex
optimization wherefore multiple restarts from random parameters are
required to obtain a good approximator. However, recent work sug-
gests that the number of restarts can be limited when using a stochastic
gradient descent algorithm (Pinto et al., 2022), which would decrease
the computational load at least to some degree, though the multiple
restarts could of course be carried out in parallel. Nevertheless, it is
not clear how to use the sensitivities approach with a number of other
machine-learning models, such as Gaussian process models.

3. Current challenges and research perspectives

In this section, we discuss a number of current challenges and future
research perspectives of hybrid models.

3.1. Dynamic hybrid models

Depending on the mechanistic model expression, a hybrid model
can be categorized as static or dynamic (Glassey and von Stosch, 2018).
For instance, imagine a first-order chemical reaction with catalyst
deactivation. One way to quantify the mechanistic knowledge of this re-
action is to express the reaction concentration as an algebraic equation:
𝑐𝐴 = 𝑐𝐴0 ⋅ 𝑒−𝑘⋅𝑡. As catalyst deactivation is a complex process dependent
on the operating conditions (e.g., temperature 𝑇 ), reaction mixture
composition (e.g., reactant concentration 𝑐𝐴), and time duration (𝑡),
a machine learning model can be used to estimate the time-varying
reaction rate constant 𝑘 = 𝑓 (𝑇 , 𝑐𝐴, 𝑡, 𝑤) (Bui et al., 2022) with 𝑤 the
weights/parameters of the machine-learning model. Thus, the hybrid
model can be expressed as 𝑐𝐴 = 𝑐𝐴0 ⋅𝑒−𝑓 (𝑇 ,𝑐𝐴 ,𝑡,𝑤)⋅𝑡. Alternatively, one can
also formulate the mechanistic knowledge using a differential equation:
d𝑐𝐴
d𝑡 = 𝑘 ⋅ 𝑐𝐴 with the same machine learning model employed for

reaction rate constant estimation. In this way, the hybrid model can
be expressed as: d𝑐𝐴

d𝑡 = 𝑓 (𝑇 , 𝑐𝐴, 𝑡, 𝑤) ⋅ 𝑐𝐴. When comparing the two
approaches, it is easy to see that the first approach does not involve
the time derivative of the state variable, meaning that the hybrid
model is directly simulating the state over time. Instead, the second
approach aims to calculate the derivative of the state (i.e., change of
the state at each time), hence numerical integration is needed in order
to estimate reactant concentration. Therefore, the first approach is
considered a static hybrid model (i.e., no time derivative involved), and
the second approach is called a dynamic model (i.e., direct involvement
of derivative).

Intuitively, one would prefer the use of a static model whenever
possible as the resulting parameter estimation problem could be less
mathematically challenging compared to a dynamic model (c.f. Sec-
tion 2.3). This is particularly true if the states are not measured
frequently or if the measurements are of high noise, as errors can
be amplified when propagating from the state space to its derivative
space (Bayer et al., 2020a). In other words, one may build a dynamic
hybrid model that gives an adequate fitting performance for state
measurements but completely miscalculates the derivative of the state.
However, regardless of the type of the hybrid model, due to the
embedding of a machine learning model compartment, hybrid model
parameter estimation is always a challenge. This is because hybrid
models can be highly nonlinear and nonconvex, and they contain a
large number of parameters that are non-identifiable. As a result, when
simultaneously estimating all the parameters in a hybrid model, the
resulting parameter estimation problem is often ill-defined (Kahrs and
Marquardt, 2008), thus requiring substantial manual tuning during
model construction. While the incremental identification strategy by
Kahrs and Marquardt (Kahrs and Marquardt, 2008) has been proposed
to resolve this issue it is to date only applied to static systems.

In 2021, a more efficient two-step parameter estimation strategy
has been developed by Vega-Ramon et al. (2021). Compared to the
simultaneous parameter estimation approach, this strategy decouples
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the original problem into two steps. In the first step, it converts a time-
varying parameter 𝑝 into a vector 𝒑 = [𝑝1, 𝑝2,… , 𝑝𝑡𝑓 ]𝑇 , i.e., assigning an
independent parameter 𝑝𝑖 at each time step 𝑖. In this way, it explicitly
decouples the machine learning model from the mechanistic model.
Then, parameter estimation can be conducted via a well-established
dynamic model parameter estimation approach (del Rio-Chanona et al.,
2015; Cruz-Bournazou et al., 2022). To prevent overfitting, a regular-
ization term can be added in the objective function to penalize changes
in parameter values between adjacent time steps. Once completed, in
the second step, new data points (𝒙𝒊, 𝑝𝑖) can be directly generated to
train a machine learning to approximate the relation between process
variables 𝒙 and parameter 𝑝 at each time step. Moreover, data aug-
mentation can be applied to generate a large amount of synthetic data
to facilitate machine learning model construction. The advantages of
this strategy are two-fold. Firstly, dynamic model parameter estimation
results in less complex mathematical model which is easier to optimize
and more likely to obtain a high-quality solution, and the regularization
term can effectively prevent overfitting of the time-varying parameters.
Secondly, data augmentation can be effectively applied to stabilize the
training of the machine learning model, thus increasing the accuracy
and reliability of the hybrid model and reducing the time for real data
generation. In addition, this strategy has been successfully applied to
dynamic hybrid model construction and is verified to be of high effi-
ciency (Vega-Ramon et al., 2021; Rogers et al., 2023b; Cruz-Bournazou
et al., 2022). However, this strategy requires all time-varying outputs to
be measured and it might underestimate the dynamic properties of the
system. The rich behavior of dynamic systems (such as oscillations, etc.)
can be attributed to the dependence of the system on its state (which
could be represented by a cyclic graph). This dependence is explicitly
accounted for by the indirect learning approach, namely the sensitivity
equations. Using the example, the sensitivity equations read:

d
d𝑡

⋅
𝑑𝑐𝐴
𝑑𝑤

=
𝑑(𝑓 (𝑇 , 𝑐𝐴, 𝑡) ⋅ 𝑐𝐴)

𝑑𝑐𝐴
⋅
𝑑𝑐𝐴
𝑑𝑤

+
𝑑(𝑓 (𝑇 , 𝑐𝐴, 𝑡) ⋅ 𝑐𝐴)

𝑑𝑤
(3)

here the term 𝑑(𝑓 (𝑇 ,𝑐𝐴 ,𝑡)⋅𝑐𝐴)
𝑑𝑐𝐴

captures the propagation. This term is not
xplicitly taken into account by Vega-Ramon et al. (2021). The semi-
irect learning approach proposed by Pinto et al. (2022) considers
his dependence and a combination of the two approaches would be
nvisioned to be even more effective.

Although not being tested yet, one can expect that this decoupling
trategy can be effectively adopted to construct static hybrid models.

It is worth noticing that although static hybrid models can poten-
ially alleviate numerical issues arising from parameter estimation, in
ractice dynamic hybrid models are more widely used within the field
f chemical engineering. This is because for complex systems, the ma-
ority of physical knowledge (i.e., mechanistic models) is expressed as
rdinary differential equations (e.g., the Langmuir–Hinshelwood model
or catalytic reaction kinetics and the Droop model for fermentation
rocess) or partial differential equations (e.g., Navier–Stokes equations
or fluid dynamics), and they usually do not have closed-form solu-
ions in the state space. Moreover, these differential equations directly
escribe the interdependence of different state variables (i.e., human
nterpretable knowledge), which are more reliable when extrapolated
or process predictive modeling. As a result, it is more practical to build
hybrid model to simulate the derivative space rather than the state

pace.
Though most dynamic hybrid modeling applications have focused

n first order dynamic systems, more complex high order dynamics can
elatively easily be accounted for using a series of time-lagged inputs
n the machine-learning model (von Stosch et al., 2010; Sitapure and
ang-Il Kwon, 2023). Considering a bioprocess, where the underlying
iological system might exhibit a ‘‘memory effect’’, one could aim at
odeling the system using a second order dynamic system, i.e.

𝑑𝑐
𝑑𝑡

= 𝑟 (4)

𝑑𝑟 = 𝑔(𝑐, 𝑤) (5)
6

𝑑𝑡 L
where 𝑐 is a vector of concentrations, 𝑟 is a vector of reaction rates and
𝑔(𝑐, 𝑤) is a nonparametric model with parameters 𝑤. Alternatively, the
system could be modeled by considering 𝑛 time-lagged inputs (𝑐(𝑡−𝜏𝑛)),
.e.
𝑑𝑐
𝑑𝑡

= 𝑔(𝑐, 𝑐(𝑡 − 𝜏),… , 𝑐(𝑡 − 𝜏𝑛), 𝑤) (6)

ith 𝜏 the delay (Mowbray et al., 2023). The same rational as for
he integration of mechanistic knowledge likely can also be used to
efine whether the dynamics are explicitly formulated as part of the
echanistic backbone or integrated into the parametric part. This
ight provide an additional direction of research for the field of hybrid
odeling, though this is a topic that has been widely studied in process

ontrol (Seborg et al., 2016).

.2. Automatic structure discrimination

Automatic structure discrimination is an underdeveloped research
rea for hybrid modeling, whereas significant achievements have been
ade in discriminating data-driven models and mechanistic models.

or data-driven models, a range of methods have been developed
o reduce model complexity and minimize risks in overfitting. For
xample, for artificial neural networks, several approaches have been
roposed to either make the neural network structure leaner (e.g., reg-
larization, drop-out learning, pruning) (Hinton et al., 2006, 2012)
r to discriminate between the performance of different structures
AIC, BIC, adjusted R2). Moreover, different hyperparameter selection
rameworks (e.g., Bayesian optimization) have also been developed
o systematically identify the optimal neural network structure (Yu
nd Zhu, 2020). Meanwhile, other machine learning models such as
aussian processes are intrinsically immune to structure discrimination

although a kernel function still needs to be pre-defined) given their
nique characteristic (Rasmussen and Williams, 2006). Through the
evelopment of the two-step parameter estimation strategy (Vega-
amon et al., 2021), these data-driven model structure discrimination
ethods can be effectively used to identify a suitable machine learning
odel structure for hybrid model construction.

For mechanistic models, similarly, extensive research has been con-
ucted within this topic. Mechanistic model structure identification
an be either addressed by using statistical criteria (e.g., AIC, BIC,
annah Quinn Criterion, Bridge Criterion) based on different assump-

ions (Ward, 2008), or through the use of advanced optimization algo-
ithms (e.g., mixed-integer programming, sparse regression) (Willis and
on Stosch, 2016; Brunton et al., 2016), or a combination of the two.

This work is extended to a specific class of hybrid models by Willis
nd von Stosch (2017), who propose a method based on mixed integer
inear programming (MILP) that allows to simultaneously identify the
arameters of a polynomial/rational model and discriminate its struc-
ure. The work by Narayanan et al. (2022) can be seen as a further
xtension. These methods are conceptually similar to those of symbolic
nd sparse regression, which either screen a model library consisting
f different mechanistic knowledge-derived expressions to select the
ost appropriate model (Daume et al., 2020; Herold and King, 2014;
roll et al., 2017; Sahinidis, 2016; Willis and von Stosch, 2016; Wilson
nd Sahinidis, 2017; Žegklitz and Pošík, 2021; Chakraborty et al.,
021), or iteratively ‘‘distill’’ the underlying equations using genetic
rogramming (Hinchliffe and Willis, 2003; McKay et al., 1997; Schmidt
nd Lipson, 2009; Searson, 2015; Willis et al., 1997).

However, as the inference of the determined model structure is
ritically dependent on the data quality (the amount of information
aptured in the data), one could argue that the derived models based on
he above approach are indeed nonparametric (i.e., data-driven models
ather than mechanistic models) as the model structure is inferred
rom data without consideration of the underlying mechanism. This is
articularly true if the model library consists of randomly formulated
erms to improve diversity. Claims that ‘‘laws of nature’’ (Schmidt and

ipson, 2009) or ‘‘mechanistic models’’ (Daume et al., 2020; Kroll et al.,
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2017) are derived could be potentially problematic without rigorous
justification, as the approaches rather seem a model-fitting exercise,
similar to statistical models. Philosophically, one would expect the
formulation of mechanistic models to follow the hypothesis-driven
scientific principle giving rise to reproducible findings, whereas the
derivation of the model structure from an experiment point of view
could give rise to purely circumstantial observation fitting equations.
As a result, once these statistic models are identified, it is important to
investigate which hypotheses and conditions can be derived from these
identified models (e.g. the Langmuir–Hinshelwood model is derived
based on quasi-steady state of reaction intermediates, Navier–Stokes
equations are derived based on the conservation of momentum).

Despite the aforementioned achievements, effective strategies for
hybrid model structure discrimination which take into account both
the mechanistic model compartment and the data-driven model com-
partment have been barely proposed. For instance, one fundamental
assumption for the majority of the mechanistic model structure dis-
crimination methods is that model parameters are time-independent,
which is not the case for hybrid models (i.e., the presence of time-
varying parameters). As a result, they are not capable (or at least
suitable) for hybrid model structure discrimination. Similarly, although
the data-driven model structure discrimination methods can be applied
to build the data-driven model compartment for a hybrid model, they
are not applicable to help identify the structure of the mechanistic
model compartment. At this moment, simultaneous parameter estima-
tion and model structure discrimination can be only applied to some
specific types of hybrid models. For example, the MILP-based technique
developed by Willis and von Stosch (2017) can be used to address
this challenge if the hybrid model can be reformulated to be linear
in the parameters. Here, recent works on optimization formulations of
machine learning models could be used (Fischetti and Jo, 2018; Schwei-
dtmann and Mitsos, 2019; Tsay et al., 2021; Grimstad and Andersson,
2019; Schweidtmann et al., 2021a). Zhang et al. (2020), Forster et al.
(2023) proposed an MINLP-based technique if the hybrid model is a
discrepancy model (i.e., a machine learning model is appended to a
mechanistic model to rectify model-process mismatch). In 2022, the
first hybrid model structure discrimination methodology that could
be applicable to general hybrid models is proposed through the use
of reinforcement learning (RL) (Mowbray et al., 2023). This strategy
also requires a library of possible mechanistic model candidates (each
of which must have strong physical meaning) and then employs RL
to estimate which candidates should be selected as well as if their
parameters are time-independent or time-varying. Through a number
of in-silico tests, this strategy is proven of high potential. Moreover,
this strategy is also applicable to modeling history-dependent systems
(i.e., current dynamics dependent on historical conditions). However,
this framework is still at its infant stage, thus substantial improvements
are required for future real-world applications. Finally, another poten-
tial strategy that has never been explored before is physics-informed
neural network. A more detailed investigation about this approach for
hybrid model structure discrimination is discussed in Section 3.4.

3.3. Incremental learning

The methods presented hitherto are batch learning methods, i.e., the
model is fitted for a given data set. However, on many practical
applications new experiments/runs are executed and new data be-
come available extending the original data set. Thus, strategies for
incremental learning on new data are of high relevance. On approach
is the re-training using either all data, a combination of previous
and new data, or just the new data. While in principle, the batch
learning methods (i.e., batch-incremental learning (Read et al., 2012)
- sometimes also iterative learning, which essentially means training
a model de novo on all data) could be used for this purpose, for an
increasing quantity of data, re-learning will become computationally
7

expensive. Alternatively, the model could be trained only on the new
data, i.e., instance-incremental learning (Read et al., 2012), which
however might give rise to inferior overall model performance. For
instance, the training might be influenced by a particularity of the new
data (e.g., sample bias, outlier behavior) or by a drift of the behavior
of the underlying system, concept drift (Read et al., 2012). In gen-
eral, this can be framed as the stability/plasticity dilemma (Chefrour,
2019), where stability is the capacity to not forget the already learned
data and plasticity is the capacity to assimilate new data. Instance-
incremental learning methods need to exhibit a good stability/plasticity
compromise and according to Chefrour (2019) should exhibit four
criteria:

1. ‘‘it should be able to learn additional information from new data
(plasticity);

2. it should not require access to the original data, used to train the
existing classifier;

3. it should preserve previously acquire knowledge it should not
suffer from significant loss of originally learned knowledge (sta-
bility);

4. it should be able to accommodate new classes that may be
introduced with new data; ’’

While incremental learning is an active field of research in the
machine-learning community (Chefrour, 2019; Read et al., 2012; Wang
et al., 2020), research on this topic in the field of hybrid modeling is
limited.

3.4. Hybrid models for adaptive and evolving systems

So far, we have discussed hybrid models with fixed structures.
However, hybrid models can also adapt and evolve (Chefrour, 2019).
In adaptive models, the structure is fixed and only the parameters are
adapted. In evolving models, the structure and parameters are learned
from the new data. This ties back to the parameter estimation and
structure identification challenges addressed before. There is no clear
borderline to distinguish whether a system should be categorized as
adaptive or evolving, as they are interchangeable in many cases. For
example, mammalian cells used for recombinant protein synthesis often
go through two distinct phases including an initial cell growth stage
and a later product synthesis stage. Metabolic activities within cells are
changed significantly between the two stages. One can either regard
this system as adaptive by designing a lumped macro-kinetic model
(e.g., the Monod model) within which the model structure can simulate
both phases but parameter values have to be changed, or consider
the system as evolving by directly constructing different models for
each phase. Similarly, there can be multiple reaction mechanisms for
an organic reaction (e.g., substitution vs. elimination such as SN1:E1,
SN2:E2). The dominating reaction mechanism depends on the operating
conditions and can be changed throughout the reaction process. For
a gas–solid catalytic reaction operated at a high temperature, due
to continuous changes in catalyst configuration and reactivity, the
underlying reaction mechanism is also evolving. These systems can also
be modeled either as an adaptive system or an evolving system.

Both mechanistic models and machine learning models have been
extensively studied to simulate the two types of systems. For machine
learning models, given their data-driven nature, it is straightforward
to update their parameters and even structures based on new data if
needed. For mechanistic models, parameter re-estimation has been the
primary approach if they are applied to adaptive systems. Although
in principle the same concept can be extended to evolving systems
through mixed-integer programming or sparse regression (i.e., auto-
matically determining suitable model structures using new data), in
practice, this is not widely used as only updating model parameters can
already result in good performance for process prediction, optimization,
and control. The use of NLP is also more effective than MINLP if the
process model is highly nonlinear and fast decision-making is required.
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As a result, reducing an evolving system to an adaptive system can often
simplify the model construction challenge and meanwhile remain good
accuracy.

Nevertheless, research on the systematic use of hybrid models for
adaptive and evolving systems has been absent and critical questions
are yet to be answered. For example, could it be that fixing some
part of the hybrid model structure by introducing knowledge increases
stability and robustness for the learning of the remaining structure
and parameters, or does the introduced inductive bias, and therefore
reduced plasticity, hinder the constructed hybrid model from being
accurate and reliable? In addition, given the small size of data collected
from an ongoing process, how to determine which part of the model
structure and parameters should be updated meanwhile minimizing
risks in over-parameterization and overfitting (Rogers et al., 2022)?

To answer these questions, recent achievements in process systems
engineering and machine learning may offer extra insight. On the one
hand, discrepancy hybrid models have been widely used in process
control. A discrepancy hybrid model d𝑦

d𝑡 = 𝑓 (⋅) + 𝑔(⋅) consists of a
mechanistic model 𝑓 (⋅) and a machine learning model 𝑔(⋅) to rectify
mismatch between 𝑓 (⋅) and the real process. During process control,
the mechanistic model is fixed whilst the machine learning model
(e.g., Gaussian processes) is updated using real-time data to guarantee
hybrid model accuracy. Such an update becomes more time-efficient
when the differential equation is converted to a difference equation
for control purposes. Borrowing this concept, for adaptive or evolv-
ing systems, one can also build a discrepancy model consisting of a
comprehensive but fixed mechanistic model and a simple but adaptive
machine learning model. Such models have the potential to effectively
solve tasks related to process control and online optimization. Trans-
fer learning can somewhat be framed in the same manner, just that
the data-driven model would estimate parameters of the mechanistic
model, e.g., the reaction rate. Hence, the data-driven model would
evolve when applying the hybrid model, e.g., to a bioprocess with the
same species but a different product.

Transfer learning has been successfully adopted to develop data-
driven models for new system prediction (Rogers et al., 2022; Xiao
and Wu, 2023). Two strategies have been developed for transfer model
construction based on neural network topology selection and param-
eter regularization, both only requiring minimum process data. By
integrating transfer learning within hybrid model construction, it is
possible to efficiently update model parameters during an ongoing
process. Alternatively, one could also use, e.g., an embedding approach
to bridge between systems that exhibit generally the same behavior but
show some sub-system-specific behavior (Hutter et al., 2021) or, e.g., a
meta-learner (Weiss et al., 2016). The incorporated knowledge also in
this case might facilitate or hinder the learning exercise.

Finally, recent advances in physics-informed neural network
(PINN) (Raissi et al., 2019) may also help with hybrid model construc-
tion. PINN can be used to solve two classes of problems: data-driven
solution (i.e., forward problem) and data-driven discovery of differ-
ential equations (i.e., inverse problem). For a forward problem, both
process data and process model are known. The PINN is trained to
approximate process states across the spatial and temporal dimension.
In other words, the inputs of a PINN are time (𝑡) and space (𝒙), whereas
the output of a PINN is state (𝒔) (i.e., 𝒔 = 𝑃 (𝒙, 𝑡)). The forward problem
of PINN can also be viewed as surrogate modeling an area that is widely
investigated in process systems and design engineering (Misener and
Biegler, 2023; Alizadeh et al., 2020; Viana et al., 2021; Sansana et al.,
2021). However, its inverse problem can help identify hybrid model
structure. For an inverse problem, only process data is available. A
process model structure (normally a comprehensive model structure
incorporating different possible mechanisms) is available but param-
eters within each term are unknown. The PINN is trained to identify
the correct model structure and its associated parameters. Thus, PINN
can be used as an alternative technique for hybrid model automatic
structure discrimination, and by feeding new process data, PINN may
8

c

help identify the evolved model structure throughout the process time
course. This is similar to the concept of sparse identification of nonlin-
ear dynamics (SINDy). However, so far the inverse problem of PINN is
only applied to systems containing time-independent parameters. The
traditional PINN structure (𝒔 = 𝑃 (𝒙, 𝑡)) is not capable of simulating
ystems with time-varying parameters. To resolve this challenge, one
ould use the approach of Vega-Ramon et al. (2021) which converts a
ime-varying parameter 𝑝 into a vector, as described before. Similarly
o the RL based strategy discussed in Section 3.2, the PINN based
pproach is at its infant stage and it remains unknown if it can be
n efficient method. The only preliminary investigation conducted so
ar (Rogers et al., 2023a) suggests that the RL based approach has better
erformance than the PINN based approach for hybrid model structure
iscrimination. However, with the support of transfer learning, PINN
ould be more data-efficient than RL when being applied for hybrid
odel structure and parameter update.

.5. Uncertainty quantification of hybrid models

Uncertainty estimation has been considered as one of the most
ressing challenges for hybrid model development. Given the com-
only observed batch-to-batch variations within the formulated chem-

cals industry and pharmaceutical industry, predicting process uncer-
ainty is of great importance to guarantee product quality and mini-
ize batch failure. As uncertainty includes both epistemic uncertainty

i.e., due to a lack of information about a particular situation) and
leatory uncertainty (i.e., inherent to the nature of a random chance
etermined situation), predicting process uncertainty is a difficult task
or most real-world engineering applications. From a model construc-
ion point of view, model uncertainty can be divided into parametric
ncertainty and structural uncertainty. Depending on the nature of the
odel, different techniques have been developed to approximate model
ncertainty.

For data-driven models, as their parameters are non-identifiable,
t is not common to divide their uncertainty into parametric and
tructural uncertainty. Instead, only the overall model uncertainty is
onsidered. One of the most widely used techniques is bootstrapping
hrough which a machine learning model (e.g., artificial neural net-
ork) is trained using different sub-sets of data to generate a sample of
rediction results. This sample is then used to approximate the mean
nd standard deviation of true model prediction. Bootstrapping is easy
o implement and has been adopted for hybrid models (Pinto et al.,
019; Bayer et al., 2020b; Polak et al., 2022), but this method does not
ell estimate uncertainty in many cases (Mostofian and Zuckerman,
019).

Therefore, recently heteroscedastic noise neural networks (HNNs)
ave been proposed to simulate model uncertainty by reformulating
he network structure and the training loss function (Kay et al., 2022).
NNs automatically output the mean of the prediction and the variance
f the residuals by using the negative log-likelihood (NLL) loss function.
lthough more rigorous, HNNs only include aleatoric uncertainty due

o its frequentist characteristic. To account for both aleatoric and
pistemic uncertainty, probabilistic machine learning models such as
aussian processes and Bayesian neural networks have been applied

o different studies and have shown great potential. Though Gaussian
rocess models have also been integrated into hybrid models (Vega-
amon et al., 2021; Hutter et al., 2021; Cruz-Bournazou et al., 2022),

hese applications have not investigated uncertainty. In particular,
t would be interesting to understand how parameter identification
ight impact on the uncertainty representation, as the parametric part

nduces an inductive bias.
For mechanistic models, as their model structure is formulated

ased on process knowledge, both structural uncertainty and paramet-
ic uncertainty have been investigated extensively. For model structural
ncertainty, this is mainly addressed through model structure dis-

rimination and model-based design of experiments. Although these
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frameworks have been well established in the literature, it is critical to
highlight that given the adaptive and evolving nature of many chemical
and biochemical processes, the dominating process mechanism can
shift over time and therefore the identified model structure may only
hold true within a certain range of operating conditions. Automati-
cally predicting mechanistic model structural uncertainty is an open
challenge. Nevertheless, as discussed in Section 3.4, in practice when
applying a mechanistic model for process modeling and optimization,
it is more common to only update model parameters while fixing the
model structure. As a result, in most cases the model uncertainty is ap-
proximated using parametric uncertainty. For parametric uncertainty,
classic statistic methods (e.g., using Hessian matrix to approximate the
Fisher information matrix) have been well established and widely used
in many studies and this concept has also been extended to hybrid
models (Kahrs and Marquardt, 2007). Again, caution must be taken
that this parametric uncertainty is only a linear approximation of the
true parametric uncertainty at the proxy of the optimal solution to the
model parameters.

As one can expect, due to the difficulty in hybrid model parameter
estimation and structure discrimination, accurately quantifying hybrid
model uncertainty has been rarely explored. The traditional simultane-
ous parameter estimation approach for hybrid model construction is in-
capable of estimating parametric uncertainty given that the data-driven
model compartment is simultaneously constructed along with parame-
ter estimation for the mechanistic model compartment (i.e., parametric
uncertainty is influenced by the data-driven model and cannot be
estimated accurately). It is also inefficient to estimate structural uncer-
tainty as this would be extremely time consuming to compare various
combinations of mechanistic model candidates with data-driven model
candidates. Nonetheless, the recently proposed two-step approach can
greatly ease the procedure for hybrid model uncertainty estimation. As
described above in Section 3.1, the two-step approach can effectively
decouple hybrid model construction into mechanistic model construc-
tion and data-driven model construction. Therefore, within the first
step, mechanistic model structural uncertainty can be initially con-
ducted by assuming all parameters are time-independent. In this way,
the best performed mechanistic model structure can be identified. Then,
parameter estimation can be conducted to determine which parameters
should be switched from time-independent to time-varying in order to
reduce uncertainty and improve model accuracy. Once determined, pa-
rameter estimation can be carried out again to calculate the means and
variances of both time-varying parameters (i.e., the mean and variance
of the parameter at each time step) and time-independent parameters.
This information is finally passed to the second stage so that a ma-
chine learning model can be constructed accurately. Within this stage,
variances of time-varying parameters can be used to generate a large
number of synthetic data and probabilistic machine learning models
can be applied to for data-driven model construction. Through this
approach, the overall model uncertainty can be estimated efficiently.
A more detailed illustration can be found in the recent study (Rogers
et al., 2023b).

Nonetheless, the two-step approach also has its drawback. The
greatest advantage of hybrid models is the ability to integrate domain
knowledge with process data. However, there are several key questions
that fundamentally influence hybrid model uncertainty but have not
been answered in the literature. For instance, how to systematically
balance the amount of process knowledge (i.e., inductive bias) and the
amount of process data? To which extent should we trust and prioritize
domain knowledge over measured data? Moreover, how to determine
the level of our confidence on hypothesized prior knowledge (partic-
ularly if the system is only partially understood) against experimental
measurements? As the two-step approach separates mechanistic model
construction and data-driven model construction, it cannot automat-
ically take these questions into account (i.e. the mechanistic model
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constructed in Step 1 will dictate performance of the data-driven model
in Step 2, meaning that this two-step approach is naturally biased
towards domain knowledge).

In the recent study (Rogers et al., 2023b), the researchers attempted
to answer the above questions by investigating a fermentation process.
Three hybrid models were constructed using the two-step approach to
embed different amount of first-principle knowledge, namely a black
hybrid model (i.e., only using minimum process knowledge), a grey
hybrid model (i.e., only using process knowledge with high confi-
dence), and a white hybrid model (i.e., using all possible process
knowledge based on literature). Once constructed, the models were
used to predict dynamics of the fermentation process operated in a
larger bioreactor. They observed that the black hybrid model fails to
provide an acceptable model fitting result and exhibits significantly
larger uncertainty compared to the other two; whilst compared to
the grey hybrid model, the white hybrid model has lower prediction
accuracy but is more confident (i.e., false confidence). This suggests
that without carefully balancing the selection of domain knowledge
vs. process data, the uncertainty estimated by a hybrid model cannot
be fully trusted (e.g., either over-conservative or overconfident). As a
result, developing an efficient and automatic uncertainty quantification
framework remains a top priority for hybrid model studies.

3.6. The validity domain of hybrid models

Rather than assessing the uncertainty of the model outputs in form
of prediction or confidence intervals (as obtained from the approaches
described hitherto), the domain of inputs for which hybrid models (or
data-driven models) produce ‘‘valid’’ results can be sought, i.e., the
validity domain. This domain is spanned by the inputs of the nonpara-
metric model as well as the variation in the input data on which the
hybrid model (and implicitly the nonparametric model) was trained.
While this seems to imply that the nonparametric model is the only
component carrying uncertainty, uncertainty stemming from the para-
metric part also seems to be implicitly accounted for. This is because, if
the model describes the process accurately for the data the model was
trained on (i.e., the model is valid), then likely the uncertainty in this
domain is low.

A simple approach to characterize the validity domain, would be
the use of ranges for each input (i.e., constructing a hyperrectangle in
the input space). However, this disregards the multivariate nature of
processes and in many cases will overestimate the validity of the model.
While using a convex hull, build on around the training data (Kahrs and
Marquardt, 2007; Bae et al., 2020), would overcome this shortcoming
for scenarios where data are scattered across the input domain the
convex hull might also overestimate validity because the input data
domain might be nonconvex or there might be ‘‘holes’’ in the input data
domain. Still, it might be attractive to use the convex hull approach
when the data is homogeneously distributed, as, e.g., the validity
criteria can be formulated in form of a linear constraint, which renders
numerical optimization efficient.

In case of sparse data and potential holes in the input data domain, a
topological data analysis such as persistent homology can be performed
to identify such holes (Schweidtmann et al., 2021c). Moreover, two
alternative approaches exist to model scattered data domains in hybrid
models: k-means clustering (Teixeira et al., 2006; Ferreira et al., 2014;
von Stosch et al., 2016; Bangi and Kwon, 2023) and one-class classi-
fication (e.g., using support vector machines) (Schweidtmann et al.,
2021c). For both approaches, a threshold needs to be set that deter-
mines what is within and what without the validity domain. As both
approaches allow for a more gradual understanding of how distant a
novel data point is in relation to past data and as ‘‘small’’ excursions
into a space for which the model was not trained could be allowed for
an overall, integral threshold level can be set. As suggested by Teixeira
et al. (2006) a risk-measure can be defined and integrated into the

optimization as a nonlinear constraint.
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4. Conclusion

The concept of hybrid modeling—integrating both parametric
(knowledge-based) and nonparametric (data-derived) models—holds
significant promise for the advancement of various scientific and in-
dustrial domains. Despite relevant scientific advances over two decades
and its contribution to over 150 scientific publications, there remains a
considerable gap in its comprehensive understanding and application.
For instance, how to best extend an existing mechanistic model with a
machine-learning model to account for changes in process parameters
or material attributes, i.e., how to avoid combining the shortcomings
of both models but rather combine their strengths? This fundamental
development of hybrid modeling is not just a matter of academic
nuance; it potentially undermines the methodological advancements
that such an approach can bring to critical fields, including systems
biology, personalized medicine, material design, and process industries.
It is paramount to delve methodically into the inherent properties and
capabilities of hybrid models. Such an exploration will not only harness
the capabilities of machine learning but also optimize experimental
protocols and enhance the reliability of predictive domains.

Future research and application of hybrid modeling research should
focus on dispelling prevailing misconceptions and emphasizing its piv-
otal role in fostering scientific innovation and precision. As promising
future research challenges in the field of hybrid modeling, we identify
the (1) identification and use of dynamic hybrid models, (2) the auto-
matic structure discrimination, (3) incremental learning, (4) adaptive
and evolving systems, (5) uncertainty quantification, and (6) modeling
the validity domain.
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