Electrification of the Eastern Docklands

........

Analyzing the impact of electrification in heating and mobility on the
grid in an Amsterdam neighourhood

3
TUDelft Resourceful&%

Dirk Warmerdam
October 30, 2020



Thesis - Resourcefully

Contents

[ _Introductionl

12

Research Design|

[2.1 Research Questions|. . . . . . . . . ...

[2.2  Research Methodology| . . . . . . . . . . . . .

2.2.1 Literature Support| . . . . . . . .. L

2.2.2  Area Choice and Data Gathering| . . . . . . ... .. ... ... ... .. ...

2.2.4  Model Development and Implementation| . . . ... ... ... .........

2.2.5 Results and Analysis|. . . . . ... .. o oo o

B

Data Gathering and Extrapolation|

[3.4 Heatpump demand| . . . . . . . . .

[3.5 Solar production data] . . . . . .. ...

[3.6  Flexibility implementation|. . . . . . . . .. .. Lo

[3.7 Grid capacity| . . . . ...

Model Implementation|

[4.2  Preparation of model input data] . . . . .. ... ... oo oo

4.3 Model Flow Chart and Logic| . . . ... ... .. .. .. .. .. ... .. ........

4.4 Model output| . . . . . . . ..

B

Simulation Results and Analysis|

[5.1 Technical Results and Analysig| . . . . . . .. .. ... oo

p.1.2  Battery Operation| . . . . . . . . . . . ..

[5.2  Financial Results and Analysig| . . . . . . . . . . .. ... .. .

11

12

13

15

16

16

17

18

20

21

22

25

25

29

29

29

30

32

34



Thesis - Resourcefully

[6Discussionl

6.1 Impact onthe grid| . . . . . . . . . .

[6.2  Effect of demand flexibility] . . . . . ... oo

|7 Conclusion and Next Steps|

APP Cl

(8.1  Extra figures|

[References|

60

60

61

61

64

65

66

66

70



Thesis - Resourcefully

1 Introduction

In a bid to battle global warming the Dutch government has set ambitious targets to cut CO2
emissions in the Dutch Climate Agreement [1]. Aside from this state-driven initiative in line with
the Paris agreement, several Dutch cities have presented their own climate initiatives. The city of
Amsterdam has pledged to reduce its CO2 emissions by 55% in 2030 compared to 1990 levels which
surpasses the national goal by 5% [2]. The capital has laid out a detailed plan to achieve these goals
and it is clear that the electrification of mobility and heating, along with the roll-out of solar energy
across the city, will play an important role in the future. Amsterdam is planning to install 1 million
solar panels by 2022, aims to ban non-electric cars from the city by 2030 [3] and wants all buildings
to be heated gas-free by 2040. While all of these steps are very helpful regarding the reduction of
greenhouse gasses, they pose a big challenge to local grid operator Liander to ensure sufficient grid
capacity [4]. The spokesperson of Alliander (parent of Liander) estimates that in 2050, peak power
demand in Amsterdam could be 2.5 to 6 times higher than now. From the 25 substations in the city,
which transform high-voltage electricity to middle-voltage, a minimum of 11 will not have sufficient
capacity by 2030. The problem lies with an increase in both electricity supply and demand.

On the supply side, as more and more Renewable Energy Sources (RES) have entered the Dutch
energy mix in the past decade the strain on the electricity grid has increased. While wind turbines
have largely been built offshore and feed into the high voltage grid, on-land turbines and especially
large scale solar generation are mainly connected to the middle-voltage (MV) grid which is primarily
designed to distribute electricity, not to accept it. On a sub-level, solar panels installed on private
roofs deliver their electricity to the low-voltage (LV) grid. The capacities of cables and transformers
in residential areas are sized to deliver electricity from generator to consumer, and not the other way
around. Liander has indicated that capacity is sufficient to deal with privately owned solar for now,
but that the significant increase envisioned by the city of Amsterdam will pose a problem in the
future.

On the demand side, electric mobility and heating will create a sharp increase in electricity use.
The sale of (battery) electric vehicles ((B)EV’s) has markedly increased in the last years, with the
share of BEV’s in total car sales increasing from less than 1% in 2015 to 14% in 2019 and predicted
to grow [5]. The impact this will have on electricity demand can be illustrated by the fact that the
average energy charged per day by an electric car equals the electricity demand for one average Dutch
household for one day. In other words, if every household has an electric car, residential electricity
demand will double. Even more important from a grid perspective is the power required to charge
an EV. Modern electric cars charge at discrete power levels which have increased with newer models.
Whereas now 7.3 kW is the standard, models set to be released in the next two years indicate a shift
to 11 kW charging. This will cause larger power spikes during the periods that owners usually plug
in their cars; in the morning at work or in the evening at home.

Electric heat pumps are expected to take over a large part of the heating demand now fulfilled by
gas fired boilers. These pumps extract heat from the air, ground or water and use this to heat a
heating-agent (fluid) which is then compressed electrically. This compression increases the thermal
energy in the fluid which can then be used to heat water or air inside a building. Heat pumps operate
at power levels around 1 kW, meaning that continuous operation on a cold winter day could easily
double the normal electricity use of a household [6].

The mismatch between the time of energy generation and consumption, along with the large increase
in electricity demand straining the grid are two puzzles that need to be solved to allow larger quantities
of RES into the energy mix. These RES are essential to electrify our mobility and heating in a
sustainable way. Several solutions exist in order to reduce the stress that these factors induce on the
LV-grid and previous studies have focused on isolated aspects of the issues posed above. Naturally,
the reinforcement of substations, cables and transformers is an option but this necessitates building
operations that require huge investments, will inevitably disrupt traffic flows in important parts of
the city, and negatively impact the regular lifestyles of residents.
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Several studies point to ’smart’ solutions as an essential route to decrease power peaks and increase
the fraction of solar energy used. At the core of these solutions lies shifting demand from peak times
to downtimes. Demand response - or flexibility - is conceptually easy to implement on an end-user
scale by giving them the option to pre-heat their house [7], start charging their car at a later time
or do the laundry at night. Practical implementation has been proven to be harder as commercial
technology has struggled to make it to market. Flexibility can even be aggregated by the energy
supplier to achieve a larger effect on peak power demand [§]. While a certain degree of demand
shifting is certainly achievable, especially when considering EV-charging at the office, where the rate
of adopting smart charging points will be higher, users that charge their EV at home will still want to
plug-in their cars when they arrive after work in order to leave with a full battery the next morning.
Therefore, smart charging will only have a large effect on peak demand if affordable and easy-to-use
technology is introduced and the rate of consumer uptake is high. This can be compared to the heat
pump situation which exhibits a morning and evening peak. Demand shifting can be done when using
a (well-isolated) house as a heat buffer and heating during the day when PV-production is maximal.
While this could work in the winter, in summer a large part of PV production will go back into the
grid as PV production is high and heating demand low (or zero).

There is also plenty of research on grid-capacity which deals with the dynamic between TSO and
DSO (9} 110, [11, |12]. Traditionally these two links in the electricity chain have been able to operate
individually and responsibilities were clearly divided, as long as there was system balance. The role
of DSOs is changing due to more intermittent and distributed energy sources in the distribution grid.
At the same time TSOs are using flexibility services connected to the distribution grid to balance the
system and ensure security of supply, making the need for coordination clear. Other studies look into
grid congestion from an end-user perspective and focus on EVs (vehicle-to-grid) as an energy sink and
source [10]. While one could view battery electric vehicles (BEVS) as batteries on wheels, the fact
that lots of different owners will need to be compensated for their grid services complicates matters
greatly. Another approach is to implement home-batteries at every household and aggegrate the
resulting capacity [13]. This could be done by the energy company providing power, or a micro-grid
(solar and battery system) installer, and spreads investment across a lot of actors. This approach
lowers the financial barrier but does not profit from the economies of scale that a MW /MWh scale
battery provides. It also causes added complexity and potentially conflicting interests in a system
that consists of individual units that need to respond to very different energy demands between
households, while still being available for grid services on a larger scale.

A correctly sized neighbourhood battery system can store surplus solar-energy during the day and
provide this to end-users in the evening. This increases the fraction of PV-energy that is used by the
end-users and decreases the amount that the grid needs to provide during peak hours. Looking at it
from a grid-capacity perspective, both peak supply and demand of power decrease which decreases the
fraction of capacity used. Such a system usually has a MW/MWh scale when supporting thousands
of households and businesses [14] and can provide a number of services to the electricity grid.

This thesis aims to contribute to existing research by approaching the problem of intermittent solar
production and peak electricity demand in a holistic way, testing the added value of a neighbourhood
battery solution both technically and financially in a real-world situation. It was written as a graduate
intern for environmental consultancy Resourcefully who manage several projects aimed at accelerating
the energy transition in urban areas. They are involved in EU funded projects focusing on clean
electric mobility and increasing the self-use of renewable energy [15]. Via the B-DER project in the
Eastern Docklands in Amsterdam, funded by the Dutch government’s TKI initiative, Resourcefully
monitors the year-round energy consumption and production patterns of 24 households [16]. A
blockchain trading platform is now being developed to allow residents to trade surplus power. The
Eastern Docklands (ED) was chosen as the use-case in this thesis for a central battery system providing
grid-services and functioning as the primary energy storage device for all rooftop solar in the area.
It is a combined residential and commercial area with an above average income level, above average
EV-ownership and a high potential for PV [17, 18]. The income level is a driver for the adoption of
PV and, building on existing EV ownership, a catalyst for high EV adoption in the near future. This
creates the potential for a large increase in bidirectional electricity flows and possible grid congestion
problems. A high PV potential also makes the ED a prime location for implementing grid storage.
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The thesis is structured as follows. The research design - containing an outline, the research question
and sub questions - will be outlined in the next chapter. This chapter also explains the research
approach, or methodology, taken to answer the research questions. Following this is a data chapter
which outlines which data was used, in which form and from which source. It continues with a chapter
on model implementation. After this the results from the model simulations will be presented and
analysed. Lastly, the discussion and conclusion will assess the strengths, weaknesses and impact of
the research, and gives suggestions for future research.

This report provides the reader with a clear insight into the impact of electrification on a real urban
neighbourhood. It illustrates the possibilities of a neighbourhood battery system and the effect it can
have on maintaining a stable grid in the future. Lastly, it presents a business case calculation of this
system based on a novel neighbourhood balancing method and existing grid-services.
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2 Research Design

2.1 Research Questions

To achieve all of the goals mentioned in the introduction, the following research questions should be
answered.

Main questions

What is the impact of electrification on demand peaks in the distributed electricity grid of the
Eastern Docklands, Amsterdam? And how can demand flexibility and a neighbourhood battery
system decrease peak demand, increase solar energy usage, and aid in the CO2 reduction plans for
Amsterdam?

Sub-questions

1. How does the increase in electrification of heating and mobility translate to a higher electricity
demand in 2025 and 20307

2. How does the realisation of solar potential in the ED translate to a higher local electricity
production in 2025 and 20307

3. How can demand flexibility aid in reducing demand peaks?

4. How can a neighbourhood battery system (along with demand flexibility) aid in decreasing
demand peaks, increasing local self-consumption of solar energy and autarky, and thereby de-
creasing CO2 emissions?

5. Can a viable business case be made for a neighbourhood battery system in 2025-2030 with
neighbourhood balancing?

2.2 Research Methodology

To make a prediction on the future energy demand and local supply, this thesis adopts a scenario-based
approach. For each type of electric technology, three scenarios corresponding to three years (2020,
2025 and 2030) will be assessed, predicting different rates of PV, heat pump and BEV adoption.
The scenarios generate different electricity demands for the relevant technology. These demand
profiles feed into an energy system model programmed in Matlab designed to test the operation of a
neighbourhood-scale battery system. To see if the neighbourhood battery system can be economically
viable, a simple business case calculation is done incorporating possible value streams from performing
grid services. The research structure used to answer the main questions and sub-questions is explained
in this section. For the benefit of clarity, it is divided in different parts corresponding to the various
research steps. The section will paint broad strokes, subsequent chapters will go into more detail.

2.2.1 Literature Support

This subsection will substantiate the research methodology with relevant examples from literature.

The hypothesis posed in this thesis warns for the potential grid-congesting impact of EV’s, heatpumps
and local solar energy. Several studies have looked at the individual impact of these technologies in the
grid of the future. The Dutch energy grid is structured with a Transmission Service Operator (T'SO)
at the top of the hierarchy, responsible for the high-voltage transmission grid and a Distribution
Service Operator (DSO) below it, responsible for the middle- and low-voltage distribution grid. The
authors of [11] have looked at the increasingly overlapping challenges for both, caused by penetration
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of renewable energy, and the consequent need to cooperate. The paper distinguishes between grid
operating issues and market operating issues. The first are related to determining the grid capacity
to be offered to the different market stages (day-ahead, intraday, real-time) and procuring balancing,
congestion and curtailment services when the grid is strained. Cooperation involves a common grid
model, calculation method for capacity and unitary input data. The second is related to the allocation
of said capacity to these market stages. Cooperation involves coupling wholesale markets to use the
remaining capacity for congestion mitigation. In this light the authors recommend further regulatory
freedom for DSOs to experiment with new concepts such as local energy trading, to solve these issues.
The recommendation is taken to heart in this thesis, where neighbourhood balancing is explored as
a form of local energy market.

One way grid problems can occur is due to uncertain renewable energy sources (RES). A large influx
of solar energy when demand is low can cause grid-imbalances that have to be solved by the DSO.
Flexible demand, or demand response (DR) could be utilized to combat these imbalances. In [8], the
possibility of aggregating flexible demand from residential and service sector customers and making it
available for the DSO is investigated in the context of a realistic use-case. The reason for aggregating
demand is that individual consumers do not provide the capacity needed to solve the MW-scale
imbalances caused by RES. A Model Predictive Control (MPC) model is used to compute the optimal
DR strategy with the objective to minimize supply/demand imbalances, subject to time-constraints
imposed by the end-users. This model constantly updates the forecasted imbalances based on the
solar production and demand profiles. Aggregating is done by middle-parties, positioned in between
DR-offering consumers and DR-seeking electricity market participants. The paper assumes that the
aggregator has perfect knowledge of the load demands of the consumers when assessing the available
flexible demand, available to shift in time. It also assumes a 50% penetration of electric heatpumps
and solar panels among residential consumers. The first assumption is also made in this research,
substance is added to the second by including the realistic heat pump potential and suitability of all
roofs in the use-case area. Another difference is that flexibility of other appliances such as washing
machines is left out, and that EV-flexibility is added. The decision for leaving this out is based on the
dominating influence of heatpumps on total demand and the capricious nature of appliance usage.
Another advantage of heatpumps is that demand can be shifted over a longer period using the house
as a heat buffer. This decreases the time-limitation on load shifting and increases the impact of DR.
Household profiles come from the Dutch DSO Alliander, like in this research, and commercial demand
is modelled using the same US models as in [13].

Results show that imbalances are highest when solar production is highest, in June, owning to a
larger absolute forecast error. Imbalances are conversely lowest when production and errors are
lowest, in December. Demand Response reduces imbalances in June for the residential sector by
8.7% on average. The largest effect is observed with the lowest forecast errors and the largest flexible
load demand by heatpumps - DR reduces imbalances by 15-16% on average in December. However,
the forecast errors have a large influence on results. Days are identified when the forecast error
has the same sign for the entire day, for instance when solar production is underestimated for each
timestep. These are called single-direction forecast days and can occur for instance on very sunny
days in June. There are also days when the sign of the error switches constantly. These are called
switching forecast error days. Demand Response can only work when surplus demand can be time-
shifted to surplus production, and will therefore have no effect on days when the imbalance has a
singular sign. This shows that DR alone cannot solve imbalances completely and fortifies the case for
battery storage to exist alongside it. Financially, the study found that there is not an incentive for
the aggregator to adopt DR. This is because the objective of the model is to minimize all imbalances,
bot positive (making money) and negative (costing money). The incentive to implement DR lies
with the TSO who needs to reduce imbalances to prevent grid outages or expensive improvements,
and should therefore be the one to financially incentive the aggregator. Battery storage could also
provide the necessary revenue to aggregators, if one assumes that they both operate the system and
implement DR, an idea explored in this thesis.
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In [9], coordination strategies between the EV-user, Fleet Operator (FO) and DSO are investigated
to achieve congestion mitigation. The strategies look at the deferral or curtailment of EV-demand
without inconveniencing users. Three distinct approaches are mentioned. The first explores a possible
distribution grid capacity market. In this market, FO’s submit aggregated charging schedules for
their fleet to the Market Operator (MO). The latter quotes a price for these schedules based on
the difference between the sum of the scheduled charging and the grid capacity limits. The FO then
submits a new schedule based on these prices. Another new new price is calculated based on the latest
schedules. This process is iterated until price convergence happens. The problem with this idea lies
in the complexity of devising and operating a new capacity market with the associated information
flows between FO, DSO and MO. However, the research is from 2012 and since then the GOPACS
capacity market has been launched [19] which has some similarities with mentioned approach. The
FO can be seen as the flex-provider offering their fleet of EV’s as aggregated flexibility capacity to
the TSO/DSO to solve local grid congestion. GOPACS is explored in this thesis as a possible revenue
stream for the battery system, more on this in the Results chapter. The second strategy in the
article is advance capacity allocation. In this simple strategy, grid capacity is allocated to EV-users
(represented by FO’s) based on predicted demand. If any surplus capacity occurs due to deviations
from the forecasts, FO’s can trade this capacity over the counter. The strong point of this strategy
is its simplicity, which requires the DSO only to communicate one (capacity) value to the FO, and
then removing the DSO from the equation until the settlement phase. Relying on the FO’s to trade
capacity does pose a risk because it places on them the cost-burden to develop a reliable system for
trading. Lastly, the article introduces a method using a dynamic grid tariff set by the DSO. This
price anticipates grid congestion at grid nodes and expects the FO to alter their charging schedules
to minimize costs, thus (in theory) automatically mitigating congestion. The complexity in this idea
lies with the DSO as they have to model prices and potentially intervene in the charging operation
when the pricing scheme does not generate the expected charging demand. FO’s and EV-users could
thus be severely impacted in their desired operation of the cars.

The research in [10] also focuses on EV’s and proposes a multi-level, multi-agent hierarchical market
structure in which the DSO uses market mechanisms to influence the decision making of the FO, and
the FO uses the same mechanisms on a different market to influence the end-user. Their results are
promising and show that the demands of individual users can be met while allocating grid capacity
efficiently and not burdening the DSO with very complex computational tasks. Because a holistic real-
world use-case is considered in this thesis, on a large scale and comprising of more energy streams
than only EV-charging, flexibility is not analysed on an individual actor level. That is why EV-
flexibility is implemented by aggregating and centrally coordinating the demand. This takes the form
of a pre-calculated charging schedule based on a perfect charging forecast. However, parallels can
be drawn with the literature examples. When imagining flexible charging in the real world, user-
behaviour can never be predicted with 100% accuracy but it can be steered by sending price signals
to the end-user. This resembles the market-based user influencing in [10]. One could imagine that an
EV-driver inputs their desired SOC and expected parking time when connecting to a charger. The
FO could aggregate all requests and schedule an optimal charging pattern based on grid capacity,
similar to the last method in [9]. The end-user pays a dynamic price based on the charging demand of
the total EV-fleet. A system like this is assumed to facilitate the practical execution of EV-flexibility
in this thesis.

Heatpumps are expected to have a major influence on household electricity use. How large this
influence will be is investigated in [6] for the British energy grid. It identifies two problems with
connecting a large amount of heatpumps to the grid. Firstly, a substantial voltage drop can be
expected when the heatpumps turn on at the same time, which has to do with demand overcoming
supply. Secondly, thermal capacity of transformers can become insufficient, leading to overheating
unless they are reinforced. Aside from the impact on peak demand the influence on the grid ramp rate
is investigated. The grid ramp rate signifies the required rate of power build-up to match demand.
The research uses a unique dataset which records the electrical demand of 700 domestic heatpump
installations for every two minutes. The authors use a half-hour aggregated version of this dataset to
scale demand to countrywide levels, in order to estimate the peak grid demand with varying levels of
heatpump penetration. They also state the shortcomings of this method. For instance, it is unknown
what the technical characteristics of future heatpumps will be and how many different types of pumps
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there will exist. The technology can become more efficient and better integrated with storage and
smart grids. In addition, houses can become more thermally efficient like they have become in past
years. Therefore, it is stated that the scaling exercise is not done for an exact prediction of demand
with mass heatpump uptake, but rather to observe the approximate size of heatpump demand and
its relation to total demand and if there is any simultaneity with total demand peaks. The article
continues by comparing heatpumps with gas boilers, not in terms of energy consumption but the
shape of their demand profiles using normalized versions. These are predominantly the same for the
two heating variants and exhibit two peaks during the day at the same time, but the ramp rate is
higher for boilers. Boilers also show a more 'peaky’ behaviour during the day, which is confirmed by
a higher ratio of peak to mean than for heatpumps. At night, boilers fall to 16% of their peak output
compared to 41% for heatpumps. The method of gathering of real heatpump data and scaling to a
known population at different penetration levels is also used in this thesis.

Results show that heatpumps exhibit a daily morning and evening peak, coinciding with the grid
peak. The morning peak is the highest which implies that houses cool down the most during the
night and that a base load exists overnight. This is the same for the demand in this thesis. When
the data is aggregated and added to the total electricity demand for the UK, at a penetration of
20%, a small morning peak starts to occur. This effect is not very strong yet and the overall profile
mainly follows the existing profile with a slightly varying increased total load throughout the day.
Peak demand is defined as After Diversity Maximum Demand (ADMD), which is a fancy name for
the maximum of aggregated demand. ADMD increases with 14.3% at 20% heatpump penetration
among 25.8 million British households. This peak predictably occurs on a winter day in February.
Grid ramp rate increases are comparatively small at a 6.1% peak increase in the highest penetration
scenario and the daily UK grid profile is not much different from its original shape. When modelling
for heatpump demand in this thesis, and adding on the UK example, an even higher penetration is
assumed following gas-free policies, and the effect of heatpump demand response on grid peaks is
studied.

An urban microgrid with renewable energy production and battery storage was modeled in [13].
The paper compares individual to coordinated storage to see the effect on local renewable energy
utilisation. With individual storage, each PV /storage-owner only uses the capacity of their own
installation. Coordinated storage pools all available storage and exchanges residual surpluses or
shortages with the grid. The paper also tests two algorithms in a modelled environment, one only
focused on the current timestep, called ’greedy’, and one incorporating the forecasted mismatch
5 hours in the future, called 'peak shaving’ to see their influence on peak grid power flows. The
greedy algorithm stores any positive mismatch in the battery and meets any negative mismatch
until all stored energy is used. By looking a few timesteps ahead, the peak-shaving algorithm can
prepare for a peak in demand by holding onto stored energy, enabling it to better meet demand and
decrease peaks. Like in this thesis, the authors have had to combine different data sources to paint a
complete picture of the energy flows in the area. Dutch statistics data provides the information on the
number of households and businesses. Household consumption data is measured from 61 households
elsewhere in the Netherlands. Commercial consumption profiles are modelled using adapted US
Department of Energy reference models. Solar insolation data is converted to power generation using
an existing Matlab model and the specifications of a commercially available solar panel. Where the
articles’ approach differs from this thesis’ research is in the distribution and scaling of production and
batteries. A 50% penetration of panels and batteries is assumed and distributed randomly among
the prosumers. The installed solar and battery power is scaled according to the energy consumption
of the household or business. By running the model 25 times, each time with a different distribution,
a statistically significant set of results is obtained. While this last point adds flesh to the uncertain
bone of future solar penetration, there is no supporting argument for choosing a 50% adoption rate,
and no scenarios are sketched out based on historical growth or future policy.

10
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The results show that coordinated storage causes a relative increase of 39% for self-consumption,
rising from 62% to 86%. Almost three times less energy is transferred to the grid. Furthermore,
autarky shows a relative increase of 21%, with 69% of local microgrid demand being satisfied with
coordinated storage compared to 57% for individual storage. To assess peak-shaving, the authors
look at the day with the maximum power peak (demand + generation), equal to 43 MW at 12 in the
afternoon. The greedy algorithm does not manage to decrease this peak with either of the storage
strategies. The peak-shaving algorithm shows the best results with coordinated storage, which more
than halves the peak to a value of 18 MW, compared to 23 MW for the individual storage scenario.
This is partly due to the desired peak-shaving behaviour where it waits for the onset of the predicted
peak before any energy is delivered from the battery system, thus having the highest amount of
energy available to feed into the grid for critical moments of demand. The algorithm cannot always
decrease demand peaks, it depends on the amount of local generation that occurs before and during
the demand peak. For instance, the highest demand peak in the year is 22 MW and occurs on the 6th
of January and is preceded by a period of low solar generation. These issues will occur less frequently
when solar generation capacity is increased and, equally importantly, storage capacity is increased
so generation can actually be stored and used for high demand periods. A mismatch comparison for
each hour of the year between the greedy and peak-shaving algorithm shows statistically significantly
better results for the latter, for both coordination strategies. For this thesis, a peak-shaving algorithm
is developed that bases the load forecast on historical demand data. It incorporates the principle of
holding battery energy delivery until a certain grid-load threshold is reached, in order to have the
maximum amount of energy available for the peak.

2.2.2 Area Choice and Data Gathering

The Eastern Docklands is chosen as a use-case for a number of reasons. It is an area which has seen
rapid development in the past 30 years, transforming from a dedicated harbour area to a residential
area. This gives it a housing type mix weighed towards post 1990 buildings [20]. These fairly new
buildings are more suitable for heatpumps than the historical real-estate in the centre of Amsterdam
because of a higher degree of insulation. The demographic of the ED has an above average income
and is therefore more likely to invest in (still expensive) electric cars, solar panels and heatpumps
[17].

These reasons were also the motivation of Resourcefully to start monitoring the energy consumption
and production for a selection of ED households. In the separate Flexpower project, public EV-
charging at flexible-power charging points in the same area was investigated [21]. A product from
this project is the charging session data used to synthesize ED-wide EV-charging profiles in this
thesis. Summarizing, the make-up of housing types, demographic of the area, historical expertise of
Resourcefully and access to real charging data were the main drivers in choosing the ED.

Five different data-streams are needed to model the electricity flows in the area, namely: household
demand, commercial building demand (from now on, commercial demand), EV-charging demand,
heatpump demand and solar production. A household demand profile is needed to represent the
baseload from lighting, appliances and electric cooking. Distribution System Operator Liander has
published a dataset representing the electricity demand of 10.000 households [22]. This set is based
on the real aggregated demand of 10.000 Liander customers in 2014. There is no specification of the
types of houses contained in the set. It is assumed that with 10.000 houses, there is a fairly good
spread in the types of houses. CBS data indicates that there are currently 9362 households living in
the ED [20], which is fairly close to the customer base in the dataset. The set is scaled to the total
household energy demand in the ED, as published by Liander in the ’kleinverbruiksdata’ dataset [22].

While the ED is a mainly residential area, it also contains a substantial number of commercial
buildings. The BAG Kadaster mentions 1492 locations of which 85.8% is built in the period 1990-
2019. A majority of these businesses is active in the business services and culture/recreation sector
(total 63%). The Energy research Centre of the Netherlands (ECN) researched the electricity and
gas demands of different kinds of offices, active in different sectors. The demand profiles this has
generated are further differentiated by office size and building period. Based on the building period

11
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and industry of the majority of offices in the ED, a demand profile was chosen. This profile is scaled
to the total electricity use of businessess and institutions in the ED, as published by CBS [20].

Heatpump data is also derived from ECN profiles. These differentiate between air-air, ground-air
heatpumps in various types of houses with different insulation grades. As the ED is made up of
92% apartments, an apartment-profile accounts for the majority of housing demand profiles. About
two-thirds of the houses is built after 2000 when insulation grades were improved by law [23|. Later
the mandatory insulation level increased even further. Therefore, a fraction of the flats is assigned a
‘'medium’ insulation grade and another fraction is assigned a ’high’ insulation grade. Exact values are
given in the Data chapter. Ground-air heatpumps require major building work and thus are usually
installed during the building process while air-air pumps can be easily installed afterwards. So, a large
fraction of heatpump growth will likely come from air-air heatpumps by converting existing homes.
To reflect this, the largest part of the apartments is assigned a air-heatpump profile. The remaining
8% of non-apartments are assigned a ’tussenwoning’ (terraced house) profile with an air-air heatpump,
as this is the prevailing house-type after apartments. Because the Liander household data does not
contain electric heating, adding heatpump profiles will not cause the problem of ’double-counting’
demand.

Resourcefully was involved in another project in which charging data of public chargers in the ED
was analysed. Several charging profiles were identified relating to the connection times and charging
duration of users. These profiles were subsequently approximated and normalized to a per session
level. This allows for great freedom in scaling and fine-tuning for charging behaviour. The charging
profile division is based on the observed behaviour in real local data and the sessions are scaled
according to estimated current and future EV-ownership. Also taken into account is a move towards
charging at higher power and the ratio between public and private chargers.

There are several sources offering solar insulation data for specific coordinates, with some also offering
a solar power production calculation when installed power is given. For this research PV-GIS is used,
which uses satellite imagery to estimate the solar insolation at a specific location and height maps
to compute the horizon at this location. PV-GIS is developed by the Joint Research Center of the
European Commission and made available for public use. The reason for choosing PV-GIS is that
it is an reliable data-source that offers energy calculations, but more importantly does not smoothen
data by taking an average over several years. The raw data that it outputs is impacted by cloud
cover from hour to hour, which is, while less visually attractive, a more realistic representation of the
real output of a PV system. For simplicity’s sake, a central location in the ED was chosen for a PV
system. The total solar potential of the roofs in the area was assessed in 2018 [18]. This potential is
used in this research as the maximum size of the system. It is assumed that an increasing fraction of
this potential is installed in the years 2020, 2025 up to 100% in 2030.

2.2.3 Scenarios

The state of the energy demand and generation in the ED is assessed in three years, 2020, 2025 and
2030. A horizon of ten years is chosen because 2030 is often mentioned in climate plans as the year
in which a certain CO2 reduction or renewable energy goal must be reached [2]. A combination of
historical growth, announced future policy changes, sustainability goals from the government and
predictions from expert sources allow for the scaling of current electricity demand to scenarios for
the three years mentioned above. This is done by increasing the quantity of heatpumps, EV’s and
solar power in each year, which influences the demand, supply and mismatch at each moment, and
thus changes the grid peaks for each scenario. Exact figures are given in the data chapter.

Flexibility of demand is implemented for the EV and heatpump data. This generates new, time-
shifted, demand profiles which can be added to the rest of demand to end up with 'Flex’ total load
profiles for the year, producing two sub-scenarios per year. The peaks in these Flex profiles are
compared to Business As Usual (BAU) - non-Flex - peaks. 2020 is used as a base and does not have
the solar production required to charge and utilise a neighbourhood battery. Therefore, it is assumed
that there is no battery system yet 2020 and peak shaving, PV-utilisation and the CO2 reducing
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capacities of the battery system are only assessed in 2025 and 2030. The effect of varying battery
capacity on these metrics is studied to end up with a desired, ’'ideal’, battery size which offers a good
mix between utility and cost.

To summarize, a prediction of grid demand and local pv production is made for three years, of which
2020 functions as a base year. For the benefit of clarity the choice has been made to limit the analysis
to one level of technology penetration per year. The addition of flexibility and varying levels of storage
adds a good level of depth to account for various different situations. The goal of this research is
therefore not to exactly predict future grid loads, but to model a realistic scenario and assess the
potential of a battery system.

2.2.4 Model Development and Implementation

In order to analyse the impact of different scenarios for electricity demand and generation growth, as
well as assess the functioning of a neighbourhood battery, a model with a high degree of flexibility is
paramount. Therefore, the model built for this thesis has two main functions:

1. To include, evaluate and visualize all the data-streams associated with the energy generation
and demand in the ED.

2. To simulate a scalable neighbourhood battery system that stores excess solar energy and delivers
this when needed.

The software package used for building the model is Matlab with Simulink. The first step in creating
the model is cleaning up and time-step-equalizing all the data. A time-resolution of 15m is chosen
because it is equal to the Program Time Unit (PTU) of the balancing market in the Netherlands
[24]. Tt also achieves a good balance between simulation time and accuracy when modelling for a full
year. This required the household-, heatpump- and EV-data to be interpolated from a resolution of
1hr. A linear interpolation method is used which adds three intermediate data-points between the
hour-timestamps with a random variation of 2% around the hourly value. The random variation is
done by using the 'rand-function’ from Matlab, which draws pseudorandom values from the standard
uniform distribution on the open interval (0, 1).

Once the data is scaled and interpolated, the main model architecture is built in Simulink. A
detailed description and mathematical substantiation of all logic in the model is given in the Model
Implementation chapter. A short explanation of the workings is given here.

To be clear, the model is not an electrical engineering representation of a local energy grid. Only
active power is considered. The total loads, generation and storage and their interaction are evaluated
as if it were a standalone energy system. Grid capacity is taken into account on a neighbourhood level.
The goal is to make a prediction of the scale of future electricity demands, relate this to an estimation
of grid capacity, and assess the usefulness of a battery system in increasing self-consumption of solar
power by charging during the day and discharging during the evening peak, thereby also decreasing
peak demand.

The Simulink model allows for scaling of the battery system by increasing the number of batteries.
This scaling is performed in the Results chapter based on self-consumption and autarky results. When
considering the size of the battery, the focus is on energy capacity rather than power capacity because
in the end the self-sufficiency of the system is dependant on how much energy the installed solar can
generate. However, power capacity is not forgotten and the maximum charge/discharge power peaks
are analysed in the Results and included in the scaling process. The model also allows for a maximum
and minimum State Of Charge (SOC) input.
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The main part contains the logic to perform the required battery functions. The algorithm is fed
with two versions of each total load dataset, one which incorporates aggregated flexibility of demand
and one which does not. Flexibility is pre-calculated using the E-flows algorithm which is developed
in-house at Resourcefully [25]. The algorithm is applied to the EV and heatpump data. EV-data
shows longer connection times than charging times, and heatpumps can use buildings as a thermal
storage device. Both characteristics allow for demand to be shifted in time. E-flows assumes a perfect
prediction of demand, as its input are full-year load profiles with at a 15m interval. More detail is
given in the Data Gathering and Analysis chapter.

The model has an algorithm with two goals: to minimize the grid interaction (by maximizing solar
self-consumption) and to maximize peak-shaving in the evening. The interaction algorithm evaluates
the amount of energy that is demanded or produced for each time-step and updates the State of
Charge (SOC) of the battery, incorporating charging, discharging and self-discharging losses. Only
when the battery’s capacity is insufficient, grid interaction takes place. The battery system is given
constraints by he peak shaving algorithm, which evaluates the mismatch to see if a threshold is
reached and energy is required. The threshold for delivering energy is based on the average evening
peak (between 17:00 - 21:00) on the same day from the previous week. If this threshold is reached,
the battery recognizes that there is an evening peak and supplies energy. If not, energy is drawn
from the grid. This ensures that the maximum amount of energy is available for daily evening peak
demand.

The third part of the model is where the results of the simulation are outputted from the Simulink
simulation environment to the Matlab workspace for further analysis. The most important outputs
of the model are the grid-interaction timeseries and the battery-SOC. Grid interaction is the input
for most of the analysis. Battery-SOC is used in conjunction with grid-interaction to assess the effect
of the battery size. As an example of this output, the results for a full year simulation run are given

in |[F1gure 2.1
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Figure 2.1: The output of the battery model for a full year (2030 scenario).

This figure clearly shows seasonal variation of the loads and solar production, and consequently a
varying battery SOC and grid interaction. At the top is the mismatch graph, the difference between
total load and production. These are shown in the bottom graph as the yellow and blue traces
respectively. The blue production trace is regularly above total load during approximately half the
year, from the beginning of spring to the end of summer. Before and after this period loads are
higher due to higher heating demand because of colder outside temperatures, and solar production
is lower because of lower solar intensity. Because the battery is only charged using solar electricity in
this model, this has an influence on the State Of Charge of the battery. Each line in the SOC graph
(second from the top) represents a (partial) charge/discharge cycle. It is visible that during spring
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and summer, when production is high, the battery is regularly charged up to its maximum SOC and
subsequently discharged again to its minimum SOC, representing a full cycle. This depends on the
storage capacity of course. Far less cycles take place during the colder months at the beginning and
end of the year. The SOC graph in shows the equivalent of 160 full cycles.

When the battery is full or empty but there is still a mismatch, grid-interaction occurs where electricity
is dumped on or drawn from the grid. The second graph from the bottom shows the grid-interaction,
positive when a positive mismatch cannot be stored because the battery is at its maximum SOC (i.e.
full), negative when a negative mismatch cannot be supplied because the battery is at its minimum
SOC (i.e. empty). The amount of energy that is stored in the battery depends on two things: 1. The
amount of solar production. 2. The storage capacity of the battery. In winter the first point is the
bottleneck, there is not enough solar production for a surplus to occur, therefore there is no electricity
stored in the battery, the SOC stays at minimum level and when a negative mismatch occurs the
power needs to be drawn from the grid. During summer the second point can be the bottleneck when
there is so much solar production that not all surplus can be stored by the battery. The sizing of the
battery is a process that depends on minimizing grid dump to a level that is economically efficient,
as will become obvious in Chapter 5.

2.2.5 Results and Analysis

This section presents the results gathered through procedures detailed in the Research Design section
and is divided between a technical section and a financial section. The results are analysed and the
most important takeaways presented. The technical section starts with an overview of the extreme
demand situations occurring over the year and the impact of demand flexibility on these peaks.
The peaks are put into perspective by including the estimated grid capacity. It continues with
the battery system, specifically how the size of the system influences average evening peaks and
midday solar peaks. After this, the impact of flexibility and the neighbourhood battery on CO2
emissions are considered. A link is made with Amsterdam’s environmental goals. The financial
section evaluates neighbourhood balancing (saldering in Dutch) as an income stream for the battery
system and computes the payback time for the battery. A comparison is made to regular existing
compensation measures. Other forms of revenue generating grid services are briefly mentioned and
their financial impact is evaluated.
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3 Data Gathering and Extrapolation

The goal of this research is to model a combined commercial/residential neighbourhood and to predict
its bidirectional energy flows in the future. It is therefore important to gather reliable data of the
current energy flows. These can be divided between demand flows and generation flows. On the
demand side, there is residential and commercial demand forming the base. In addition to this there
is demand from EV-charging and heat-pump operation. This section describes how these data-streams
were acquired or synthesised. It also outlines how the data was extrapolated to the 2025 and 2030
scenarios. Firstly, it is explained why these years were chosen as a horizon along with an overview
for all the evaluated scenarios.

The year 2030 is important in a lot of climate plans. It is the landmark year in which the results
of the environmental policies put in place in the past decade will be appraised. Therefore, 2030
is chosen as the horizon in this research. An intermediate year is also needed. Because 2030 is
exactly 10 years away, 2025 serves as a neat intermediate date. The penetration of each technology
is predicted for these dates based on the current state, a best estimate of the growth rate and the
ultimate potential. The current situation is also evaluated. There are thus three main scenarios:
current (2020), intermediate (2025) and future (2030). These are expanded further by looking at
the situation with and without flexible demand and a neighbourhood battery system. The base year
2020 does not have enough solar installed to make use of a battery system, so only flexibility will be
assessed. In total 10 situations are evaluated, summarised in

Some plots are included at the end to get a feeling for the relative size and shapes of the individual
load profiles. These also include a mismatch plot. Mismatch is defined as the difference between all
loads and all production at every timestep and is a good way to directly see if there is a surplus or
shortage of renewable energy.

Table 3.1: Scenario overview

Scenario Year Flexibility Battery System

1 2020 No No
2 2020 Yes No
3 2025 No No
4 2025 Yes No
5 2025 No Yes
6 2025 Yes Yes
7 2030 No No
8 2030 Yes No
9 2030 No Yes
10 2030 Yes Yes

3.1 Household demand

Household demand contains all electric device demand from households, including lighting, electric
cooking and other appliances, but excluding EV-charging and electric heating. The residential de-
mand profile is based on the aggregated demand data of 10.000 Liander customers in the Netherlands
[22]. This dataset was published in 2014 and values are normalized to the average temperature-profile
of the last 20 years. Demand is scaled according to the known total electricity demand of residen-
tial consumers in the ED (Liander’s kleinverbruiksdata per postcode) in 2019, which is published by
Liander [26]. The profile had a resolution of one hour which has been interpolated to 15m by adding
2% random noise.
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Table 3.2: ED household demand data summary

Variables Value Source

Households (2019) 9.362 CBS

Households Liander set 10.000 Liander

Household demand Liander set [kWh] 31.240.940 Liander jaarprofielen
Household demand [kWh)] 35.653.638 Liander kleinverbruiksdata
Demand scaling factor 1.14

Household demand is not scaled to 2025 and 2030. CBS data indicates a small yearly increase in the
number of households and a larger decrease in the average yearly household demand, see
It is uncertain if the decrease in average household electricity use can continue at this pace or will be
asymptotic. The same thing holds for the number of households. One could imagine that the limited
amount of space in the ED will put a brake on its growth. These factors have prompted the decision
to refrain from scaling.

Table 3.3: Average yearly household electricity demand.

Average yearly household demand

Year Households [kWh /year]
2013 9095 2700
2014 8805 2600
2015 9035 2580
2016 9090 2500
2017 9290 2430
2018 9315 2360
2019 9362 2297
Ave. yearly — So00 -2.65%
difference

3.2 Commercial demand

The commercial profiles representative for the businesses in the ED are synthesised using normalized
(on a scale of 0-1) profiles from ECN, which can be scaled to a desired total energy demand [27]. The
ECN profiles are published for different types of businesses, reflected in different yearly operating
hours, office sizes and building periods. An estimation is made for a realistic amount of operating
hours and size of the average business in the ED. This is based on property registration data detailing
the building period distribution of commercial buildings, and the distribution of the types of businesses
using SBI-codes. The chosen profile is then scaled to the total energy demand of all commercial users
in the ED, as published by CBS via Liander. The resolution of this data is quarterly. A summary is

given in

Table 3.4: ED commercial demand data summary

Variable Value Source
Profile E3A ECN

Annual operating hours 3.827 ECN

Number of commercial buildings in the ED 1492 BAG Kadaster

Yearly demand offices and institutions [kWh] 47.354.000 CBS
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Commercial demand is not scaled for the same reasons as household demand. CBS data indicates a
yearly increase (5%) in the number of businesses. No data is available on average yearly electricity
demand for different years, for offices. However, one could imagine that the same developments that
cause the decreasing household demand - more efficient appliances and better insulation of buildings
- would apply to commercial demand. Extrapolating the household figure, this would mean a yearly
demand decrease of 2.5% which results in a net increase of 2.5%. This will have a negligible impact
when considering for instance the growth in heatpump demand. The space issue also applies, so there
is no clear basis here for a growth figure.

3.3 EV demand

EV charging data for the Amsterdam area is not public. However, the Flexpower project mentioned
before was conducted in conjunction with the HvA (Hogeschool van Amsterdam) and generated public
charging data. This data was analysed by a data analyst to end up with charging profiles representing
different charging behaviour. These profiles are based on the connection time and duration of charging
sessions. A worktime, short-stay and home profile was identified and synthesised. The worktime pro-
file corresponds to a connection time in the morning and disconnection late-afternoon/early evening.
Short-stay corresponds to short connection times all through the day, which are charging sessions
from people shopping, eating or meeting. Home profiles correspond to users connecting during the
evening and disconnecting the next morning. These profiles allow for individual up- or downscaling
to the required amount of charging sessions as well as the observed charging behaviour and are used
to generate the EV charging data in this research.

The distribution of the profiles is based on recorded public charging sessions from 2014 to 2018 in the
ED, which were classified to the same worktime, short-stay and home category. This distribution is
given in It is clear that the majority of EV users in the ED are either residents charging
near their homes, or visitors. The increase in year-on-year-growth from 2017 to 2018 is extrapolated
to 2019, and the number of sessions in 2018 is then multiplied with this growth factor to end up with
the 2019 public charging sessions. The same process is followed is done for 2020. This results in high
growth numbers, visualized in table but not unrealistically high, as the growth in EV-sales
as a fraction of total car sales has been in triple digits since 2018 [2§].

Table 3.5: Charging profile fractions in the ED.

Profile Fraction

Worktime 0.11
Short-stay 0.42
Home 0.47

Table 3.6: Extrapolation of ED public charging sessions

Year Sessions yoy-growth Ayoy-growth

2014 8159 /

2015 9198 12.7%

2016 10808 17.5% +37.8%
2017 11933 10.4% -40.6%
2018 14171 18.8% +80.8%
2019 18960 33.8% +79.8%
2020 30503 60.9% +80.2%

The ED has a relatively large availability for off-street parking (driveway or garage) compared to the
rest of Amsterdam, which allows for the installation of private chargers. There is no map for these
charging points, like there is for public chargers, but a survey carried out by the author among VVE’s
in the ED revealed a high penetration of private chargers in the area [29], and a large motivation to
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install private charges for future EV purchases. This legitimized the decision to use an estimation
by the Rijksdienst voor Ondernemen (RVO) [30] of the number of private chargers in the whole
country. Dividing this number by the known amount of public chargers in the country produces
a multiplication factor to generate the private charging sessions. One could assume that "Home’
charging will be more prevalent in private charging sessions, but a decision was made to stick to the
observed public charging behaviour in the relevant area. Estimation of private charging behaviour
would be pure guessing work because no data is available on that subject. In addition, the short-
stay charging fraction also captures visitors of businesses who charge their car on private business
property, adding to total private charging.

The base number of EV’s in the ED in 2020 was derived from the fraction of EV owners in the
"prosumer’ group (24 households) from Resourcefully and the before-mentioned survey. Both sources
show an EV adoption of 13%. A prediction for EV adoption in the ED was made for 2025 and 2030
based on several EV outlooks from other sources (31} |5, [32, |28]. In 2018, BOVAG, the Dutch auto-
motive industry organisation, made an EV outlook for the next 12 years with conservative, common
and progressive scenarios for EV sales and the fraction of EV’s of total cars in the Netherlands. Time
has caught up with this outlook as EV-sales have grown much faster than expected due to favourable
fiscal policies, a good charging infrastructure and an increased offering of affordable electric cars,
causing their conservative scenario for 2025 to already be reached in 2019. This prompted the de-
cision to update their scenarios, assume the common scenario as conservative and the progressive
scenario as common, resulting in 40% BEV of total sales in 2025 under the common scenario. In
January 2020 BOVAG published their outlook for the year, which predicted a lower fraction of EV’s
in total sales (10%, vs. 14% in ’19) due to a change to less favourable fiscal rules and a rush in
EV-sales at the end of 2019. However, in February 2020 the Dutch government announced a € 4000,-
buying subsidy for privately used EV’s which will partly make up for less business car sales. These
developments motivated the choice to assume the 2019 fraction of EV /car sales in 2020 (14%). This
needs to be translated to the Eastern Docklands to make an informed prediction. The prosumer
pool and ED survey reveal that the % EV/total sales in 2019 for the Netherlands, thus copied for
2020, is equal to the % EV/household in the ED, indicating that the area is ahead in electric car
adoption. The reason for this higher adoption rate is probably due to the well developed charging
infrastructure in Amsterdam and high average income [17]. The adoption rate is taken as the base
fraction for EV /household in 2020. For ’25 and ’30, the higher adoption rate is reflected by assuming
the EV penetration in sales from the updated BOVAG outlook as the EV penetration in total cars.
This is more conservative than continuing the assumption that EV/sales equals EV /household and
incorporates the reality that some households do not possess a car.

This results in a predicted EV penetration of 40% in 2025 and 100% in 2030. CBS data gives an
average of 0.6 cars/household in 2019, a figure which has been constant for the past years and assumed
constant until 2030. One could argue that there is a declining trend in car ownership among young
people, meaning cars per household will decrease in the future. This may be true, but the decline
could also be countered by the rise in ’share’ cars which are almost exclusively electric already. Which
trend is overpowering is hard to predict, so a choice is made to stick to the known data. To compute
a total amount of EV’s in the area for 2020, 2025 and 2030, the fractions EV /cars and cars/household
are combined to generate EV /household. Multiplying this with the number of households produces
the number of EV’s, which is used to scale EV charging demand, based on the amount of current
charging sessions with the relevant profiles. The data is summarized in No vehicle to grid
charging was included as this technology is still in a developmental phase, and there are concerns
regarding battery life [33].

It is important to include the developments in charging speeds when modelling future EV-charging
demand. New EV’s are capable of charging at increasingly higher speeds, with 11kW becoming
the norm and the more high-end cars also accepting 22kW. Fiscal rules starting to disfavor plugin
hybrids in the Netherlands have had a significant negative impact on sales, and thus it can be expected
that their 3.7kW charging speed will be represented less in future years. Full electric cars on the
other hand are being stimulated with fiscal rules and buying subsidies, so the share of 11 and 22kW
charging sessions can be expected to increase. Between these two, 11 kW charging has the best cards
to be the dominant charging speed for private chargers, because 22 kW charging requires a bigger
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grid connection for consumers which comes with significantly higher costs [34]. Public chargers are
regularly used by visiting users who need to charge in a shorter timespan. Historical public charging
data from the city of Arnhem, evaluated by Resourcefully in the CleanMobilEnergy project, also
points to more 22 kW charging in the public space [35]. The choices regarding charging speeds for
the EV-charging data in this research are summarised in

Table 3.7: Predicted EV-ownership and charging data in the ED

Variable 2020 2025 2030
Households 9.408 9.646 9.890
EV’s per prosumer 0.13 / /

Cars per household (CBS) 0.6 0.6 0.6
EV’s per household 0.13 0.238 0.6
Total EV’s 1.227 2.292 5.934
Public charging sessions 30.503  56.969  147.496
Private charging sessions 88.220  164.763 426.582
Total charging sessions 118.724 221.732 574.078

Charging sessions/EV /year  96.7 96.7 96.7

Table 3.8: Charging speed fractions in charging session data for the relevant years

Charging speed | 2020 2025 2030

3.7 79% 5% 0%

7.3 11%  35%  10%
11 7% 50%  70%
22 3% 10%  20%

3.4 Heatpump demand

For developing the heat pump scenarios, the author looked at the fraction of houses connected to
district heating and the distribution of the types of buildings to come to a realistic penetration
potential for the whole ED. CBS data indicates that 51% of the ED houses is connected to district
heating. District heating heat is generated by burning natural gas, waste or biomass and therefore
comes with greenhouse gas emissions. Plans are made to incorporate waste heat from datacenters
into this mix but no concrete use case has been established yet. The city of Amsterdam has recently
lost a court case against an environmental agency that aims to stop the connection to district heating
of the new ’Sluisbuurt’, which is yet to be built [36]. This potential legal backlash along with the CO2
footprint makes it unlikely that existing homes in the ED will be connected to traditional district
heating in the future. This could change if district heating using datacenter waste heat takes off.
Taking the facts mentioned above into account, it is assumed that no new homes will be connected to
district heating in the ED in the next 10 years. The fraction of district-heating-connected houses is
therefore excluded from heat pump installation, leaving 49% available for heat pumps. Heat pumps
are widely being suggested as the new way of heating. The Dutch government have placed heat pumps
centrepiece in their plan for gas-free housing. Amsterdam wants to be completely gas-free by 2040.
As new homes are already being built without gas-stoves for cooking, heat pumps are the logical next
step to completely electrify residential areas. To establish a base 2020 figure, it is estimated that
10% of houses in the ED have a heat pump at this moment. If the city wants to reach its 2040 goals,
neighbourhoods with the most suitable houses in terms of insulation must lead the way. That means
an aggressive roll-out of heatpump technology is needed in more modern areas like the ED. This is
reflected in the scenarios summarized in where in 2025 the realised fraction of the potential
has increased to 50% and in 2030 100% is predicted to be realised.
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Heat pumps are only suitable for well isolated houses. Fortunately, the ED is made up of 92%
apartments, 60% of which is built between 1990-2000 [20], and 40% is built after 2000. This ensures
a fairly high level of insulation which makes it suitable for heat pump adoption [23|. For the older
houses insulation works are required. Heat pump consumption profiles were generated from Energy
Research Center Netherlands (ECN) profiles for apartments with medium and high insulation [37).
Two different types of heatpumps are included: ground-air and air-air. Because ground-air heat
pumps are usually only installed in newly built apartment blocks, it is assigned a 5% fraction of total
homes with a high insulation grade (Flat/H/Ground), increasing to 10% by 2030 to account for new
building works. The rest of the apartments use air-air heatpumps which can be installed in existing
buildings. From these, it is estimated that 55% have 'medium’ insulation (Flat/M/Air) and 32%
have high insulation (Flat/H/Air) grades corresponding to the building period mix. The rest of the
houses in the ED are either house-boats or adjoined homes which have a higher heat demand than
apartments. These are modeled using a terraced-house profile with medium insulation (TW/M/Air).

As ground-air heatpump installations increase, the air-air types are expected to be slightly weighed
towards higher insulation as some medium-isolated apartments are renovated over the years. The
heat pump demand profiles have a resolution of one hour and are interpolated to 15m by adding 2%
random noise.

Table 3.9: Predicted heatpump installations per housetype and technology

2020 2025 2030

Households 9362 9646 9890
Heatpump potential  0.49 0.49 0.49
Heatpumps installed 10%  50% 100%

of which

TW/M/Air 8% 8% 8%
Flat/H/Ground 5% 75%  10%
Flat/H/Air 32%  31%  30%
Flat/M /Air 55%  53.5%  52%

3.5 Solar production data

To assess the impact of rising electricity demand one must first assess the way in which electrification
impacts energy flows. Because Amsterdam is an urban area, lacking the space for large on-land
windfarms, rooftop solar energy is the obvious choice to supply the city’s renewable electricity. Solar
energy is such an important driver because electricity use accounts for 39% of the city’s CO2 emissions
[2]. The Netherlands’s capital has set the goal to install one million solar panels by 2022 and to have
550 MW of installed solar power by 2030, up from 73 MW currently. The 2030 goal is 50% of the
potential for the whole city. Previous research into the suitability of ED roofs done by Resourcefully
together with the Amsterdam Energy City Lab defines the PV potential as 21.7 MWp [18], or about
4% of the 2030 citywide goal. Currently about 10% of this potential is utilized. Because the ED has a
lot of flat roofs, suitable for solar panels, it can act as a catalyst for PV growth in the city. It will be
much harder to achieve PV-installations on the old buildings in the city center. Socio-economically,
40% of ED residents are home owners and all residents have an above average income which allows
for higher discretionary spending [17], a driving factor for solar panel adoption. In other words, the
ED must lead the way in solar installations. Therefore it is assumed that in 2025 75% of the solar
potential is built and in 2030 100% is laid out. summarises this.

Several sources are available offering solar insolation data. These sources usually allow for the input
of geographical coordinates. Some sources also offer a solar energy production profile given a certain
installed capacity. The data chosen for this thesis is developed by the EU Science Hub and is called
PV-GIS [38]. It uses satellite images to compute solar radiation on a certain location. When a
location is inputted, the algorithm computes the horizon at this location. The user can then input
an installed capacity and PV-GIS outputs the energy production per hour for a defined timeframe.
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For the sake of simplicity, the total PV potential in the ED is input as one 21.7 MWp solar system
on one latitude/longitude coordinate.

Table 3.10: Solar power installed per scenario

Variables 2020 2025 2030

Potential installed 10% 7%  100%
Nominal power installed [kWp] 2180 16350 21800

3.6 Flexibility implementation

Electric cars and heatpumps allow for a certain degree of flexibility. So called ’smart systems’ can
control heatpumps to turn on at the beginning of the afternoon to pre-heat a house or instruct electric
cars to start charging at a certain time. These flexibility measures can mitigate extreme peaks in
demand and, in combination with solar power, can maximize self-consumption of renewable energy.
In order to reflect the flexibility potential this technology could unlock, a flexibility algorithm is
applied to the EV-charging and heatpump data. This ’e-flows’ algorithm, developed at Resourcefully,
allows for different flexibility strategies [25].

E-flows accepts datasets containing electricity demand and production profiles, and calculates new
supply/demand datasets with flexibility applied forming the input for the battery model. This means
that perfect prediction of production and demand is assumed. While this is not completely realistic,
very reliable predictions can be made for energy demand and production. Case study research from
New South Wales, Australia has shown that very-short term forecasts (5 min intervals) for electricity
demand have an absolute error of less than 1% [39]. Day-ahead solar forecasting based on neural
network learning can be done with an Normalized Absolute Mean Error between 1-2% on sunny days
[40]. E-flows uses a fitting curve to allocate demand which can incorporate a number of variables
including demand, production, energy price et cetera. The curves can be equal, opposite or everything
in between to the original curves, depending on the weight given to each variable. By assigning these
weights, the flexibility strategy can be adapted to suit the situation or goal. For instance, when
giving equal weight to peak shaving and solar self-consumption the fitting curve looks like the one in

Equation (3.1]

fit = (—0.5 x .production) + (0.5 * .demand) (3.1)

Note that there is a minus in front of the weight for production. This is because positive weights
act as penalty factors inside the fit: the algorithm optimises by shifting demand to wherever the
variable that the weight is assigned to is minimal. A weight of one for demand tells the algorithm
to shift demand to the lowest points of demand. A weight of minus one for production therefore
tells the algorithm to shift demand to the highest points of production, provided there is a surplus is
production.

When peak-shaving is considered, the lowest points in the demand fit are identified and load is shifted
there, taking into account the flexibility time constraint of the demand. As more demand is shifted
to the low points in the fit curve, there are new, lower, points that demand should be shifted to
next. The algorithm takes this into account and keeps updating the best locations to shift demand
to, generating the typical peak-shaving profile on the right in The left portion of this
figure shows what would happen if demand is not updated, indicated by ’demand_fixed’: demand
keeps being shifted to the same initial low-point, causing the formation of a new peak.

A 50/50 weight has been given to peak-shaving and self-consumption in this research. The ’e-flows
datasets’ are the inputs for the battery model together with the original, non-flexible, datasets. The
model simulates the ED energy system for the duration of one year, for each given dataset separately.
More on this in the Model Implementation Chapter.
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fit = ~ 1* .demand_fixed fit = ~ 1* .demand

Portions of demand shall be allocated where the fitting curve is minimal

The flexible demand is not The already allocated flexible
considered. Therefore, the point demand is considered; therefore
where the new demand is allocated there is a new minimal point in the

remains the same fitting curve

The demand tends to accumulate The demand tends to “flatten out”

Figure 3.1: The general principle of peak-shaving by e-flows. On the right, the method by which
e-flows dynamically transfers load to low demand periods by updating the minimal point. On the
left, comparison with a simpler, non-dynamic demand algorithm which shows unwanted behaviour,
with a new peak forming. Adapted from .
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Flexibility in EV-charging is defined by the energy charged, the charging speed and the connection
time of the session. When a car is connected for a longer time than is necessary to charge the
required amount of energy, the difference between connection time and charging time is the flexibility
potential. This potential is then utilized by the algorithm to shift consumption in time. Not all
demand is flexible, sometimes a car needs to be fully charged and the connection time only just
allows that. In this case charging cannot be delayed. The flexibility strategy can be focussed on
maximizing solar self-consumption or maximizing peak-shaving, and everything in between. Because
this research has a dual goal; to see how flexibility can decrease demand peaks and increase solar
energy use (to decrease CO2 emissions), an intermediate strategy is chosen. This gives equal weight
to shifting demand away from maximum values, and shifting demand to maximum solar production
values.

E-flows defines how much flexible demand there is by categorizing it into fractions with a different
flexibility potential per timestep. A contrived example is given in This is a matrix with
timesteps as rows, flexibility potentials as columns and charging demand as values. The flexibility
potentials are the amount of timesteps demand can be shifted to the future or into the past. For
instance, when a car needs to be charged with 10 kWh in the next hour, and it charges at 20 kW,
the flexibility potential is equal to half an hour, or two timesteps in the case of the 15m timesteps in
this thesis. In the example below, there is no demand with a flexibility equal to 1, variable demand
with flexibility 2, a fixed demand of 3 with flexibility 3, no demand with flexibility 4 and one 10 kWh
batch of demand with flexibility 5. The fact that demand can be "backshifted’; so advanced in time,
means that perfect prediction of demand is assumed.

#> [,1] [,21 [,31 [,4] [,5]
# [1,] 0 2.646572 3 0 0
# [2, 0 8.402889 3 0 0
# [3, 0 7.839502 3 0 0
# [4,] 0 9.433603 3 0 0
# [5, 0 2.606275 3 0 0
# [6,] @ 3.868473 B 0 10
# [7,] 0 9.097361 3 0 0
# [8,] 0 8.740563 3 0 0
# [9,] 0 7.057992 3 0 0
# [10,] 0 3.064047 3 0 0

Figure 3.2: The e-flows flexibility matrix. Adapted from [25].

For heatpump operation, flexibility can be adapted by changing the 'Time-horizon’. This is equal
to the number of hours that the heatpump turn-on time can be advanced or delayed. A certain
amount of energy loss is considered to account for imperfect insulation of homes. This is reflected
in the ’self-discharge’ variable which is set to 1% per hour. A time-horizon of 6 hours is chosen and
allows the heatpump to turn on at noon to pre-heat the house of someone arriving home at 18:00.
Similarly, the heatpump can turn on at 02:00 to make sure the house is heated by 08:00. A 6 hour is
a realistic timeframe to shift demand for households, as it captures the period between 11:00 - 17:00,
when the majority of people are at work, and between 00:00 - 06:00, when the majority of people are
asleep, and will therfore not cause any inconvenience for the user. Of course, when all heatpumps
turn on and off at the same time, the peak-demand issue is worsened. In fact, this behaviour occurs
when optimising for solar use. While this is not necessarily bad, because the timing increases self-
consumption and helps to balance the grid, if peak-shaving is also required the algorithm tries to
prevent peak-forming by ’smearing out’ the aggregated demand of the ED over the number of hours
defined in the time-horizon. For peak-shaving, the algorithm identifies demand with the highest
shifting potential, ideally demand at the top of a peak with a large Time-horizon. So, in the most
extreme case of two ED residents with a differing time-horizon, both arriving home at 18:00 to a
house regulated at 20 degrees C, one’s heatpump could turn on at noon and heat during the day at
low power, and the other’s at 18:00 at high power. To reiterate, e-flows uses the demand curve for
the full year as input, so effectively perfect forecasting is assumed.
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In this thesis, Business As Usual (BAU) will designate non-flexible demand and Flex will designate
loads where flexibility is applied.

3.7 Grid capacity

While the exact capacity of the electricity grid in the ED is not public knowledge, and the DSO
does not disclose this information upon request, research on EU DSO equipment combined with the
known household and commercial building figures allows for an estimation. A TSO/DSO observatory
document cites an average MV /LV substation (10kV to 400V) power capacity of 4.76 kVA, or 4.76 kW,
per LV consumer and a median value of 3.88 kVA [12] for the whole EU. Values for specific countries
are not mentioned, so to be conservative the higher mean value of the two is chosen. Because the
majority of business in the ED are denominated as ”Business Services” (see Research Design chapter),
not requiring electricity connections larger than 400V, this capacity per LV-consumer provides the
most reliable estimation of grid capacity per consumer. The parameter depends on the typical peak
average power of consumers, energy efficiency of the devices and the simultaneity factor.

It is assumed that the grid capacity will grow linearly with the households and commercial buildings
in the area. As demographic information is published for the ED by CBS, it is possible to make
a forecasted computation of the grid’s capacity. Data on the number of households from 2013 to
2019 is used to compute a growth percentage for a prognosis (2.5%). The same growth is applied
to commercial buildings, as only a current (2020) figure is published for this by the BAG Kadaster.
CBS does publish the number of business registrations in the ED, but these contain a large number of
home offices, obvious when comparing this number with the BAG one: 4005 vs. 1492. Including these
would cause a large overlap between households and businesses. The resulting number of households
and commercial buildings for the three years is multiplied with the mean transformer capacity which
generates grid capacities of 51.9 - 56.2 MW, see Based on this, and because grid capacity
does not change in small increments, the middle value from 2025, rounded up to 54 MW is used for
later computations.

Table 3.11: Estimated grid capacity in the Eastern Docklands.

MV /LV Substation Estimated Grid

Year Households Offices Capacity per LV Capacity
Consumer [kW] [MW]
2020 9408 1492 4.76 51.9
2025 9646 1688 4.76 53.9
2030 9890 1910 4.76 56.2

Chosen value 54 MW

3.8 Plots

To give the reader an idea of the individual load profiles, six plots are given here based on data from
the 2020, 2025 and 2030 scenarios. The first two are day-plots from 2030 showing the day with the
highest solar generation peak of the year (29th of March) and the day with the highest heatpump
demand peak of the year (14th of January). The second two show the same days with flexibility
applied to the heatpump and EV-demand using the e-flows algorithm. The third two are mismatch
plots, using BAU data, which show the weeks where the maximum negative and positive mismatch
occurs. Mismatch is defined as the difference between solar generation and the sum of all loads at
each timestep. Negative mismatch occurs when total demand is greater than supply, and vice versa
for positive mismatch.
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(a) All loads and solar on the 14th of January 2030. (b) All loads and solar on the 29th of March 2030.

Figure 3.3: (a) Shows all loads on the day of highest heatpump demand peak in 2030. (b) Shows the
same on the day of the highest solar generation peak in 2030. No flexibility of demand is applied yet
to the EV- or heatpump-demand.

The two graphs show very large differences in both heatpump demand and solar generation. Whereas
heating demand peaks around 22.5 MW on the January day, it only reaches 5 MW on the 29th of
March, an almost five-fold difference. Solar generation variances are relatively smaller with a three-
fold difference in peaks between the two days, reaching 6.5 MW on the 14th of January and 19.5
MW on the March day. Both days show a slightly higher heatpump peak in the morning than in
the evening. Heatpumps have a very large effect on the peakiness of total load (the sum of all loads
without solar generation) on winter days, their peak equalling 82% of the total load peak. This effect
is much smaller in March when household demand takes over as the dominant factor.

The commercial and household profiles show similar shapes for the two days, both weekdays, with
the commercial profile fairly constant during working hours and the household profile peaking in the
evening when lights, tv’s, electric furnaces etc. are being turned on. Lighting has a large influence
on household demand and causes it to rise much earlier in the day in January due to less sunlight-
hours. The primarily residential nature of the Eastern Docklands was already visible in the charging
profile fractions in Section 3.3. These fractions have logically translated to the EV-demand profile
in where the largest peak is in the evening on both days as users plug in their car upon
arriving home. Both days exhibit peaks of similar sizes - no seasonal differences are expected of course
- with the 7.3% disparity in favour of the March day being attributable to inherent variations in the
dataset.
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(a) All loads (Flex) and solar on 14/01/2030. (b) All loads (Flex) and solar on 29/03/2030.

Figure 3.4: (a) Shows all loads on the day of highest heatpump demand peak in 2030. (b) Shows the

same on the day of the highest solar generation peak in 2030. Flexibility of demand is applied to the
EV- and heatpump-demand.

The graphs in[Figure 3.4]serve as an illustration of demand response. While there were huge heatpump
peaks in [Figure 3.3a] these are decreased by about 30% by the e-flows algorithm in[Figure 3.4a] Much
of the evening load has now ’filled-in’ the through in the middle of the day. The morning peak has
lifted the nightly base heat demand to above 5 MW. EV-demand is almost completely shifted to
midday and, while there is no solar to match it, this further decreases the evening total load peak.
E-flows has less flexible demand to play with in The small morning heating peak that
occurs between 6:00 - 7:00 has been carved up and shifted to 3:00 - 6:00. A lot of the 19:00 EV-
charging peak is shifted to midday and directly fed by solar, but there is still a large amount of
surplus solar which has to be stored by the battery.
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(a) Week containing the largest negative
mismatch (black dot) in each scenario year.

(b) Week containing the largest positive mismatch
(black dot) in 2030.

Figure 3.5: (a) Shows the mismatch in the week of each year with the largest negative mismatch. In
this case it is the same week for each year, containing the 14th of January, owning to the heatpump
demand peak which occurs on this day. (b) Shows the mismatch in the week of each year with the

largest positive mismatch. No flexibility of demand is applied yet to the EV-demand or the heatpump
demand.
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The plots in show the two weeks with the largest negative and positive mismatch peak,
signified with a black dot, in each year. There is distinct winter and summer behaviour and the daily
shapes also differ per year. Looking at it is clear that solar production is not sufficient in
any year to sustain the energy load in this cold January week, the same week for each year because
of a large heatpump peak on the 13th. Mismatch is negative on all timesteps during the week except
for one midday moment on the 16th (2030), indicating that continuous grid interaction is necessary
to balance demand. Heatpump loads have such a great impact on overall demand that, on most
days, the smallest mismatch occurs just after midnight when heating loads subside (see ,
especially in 2020. Because supply and demand are better balanced in 2025 and 2030, mismatch is
also pushed close to zero during the midday solar peak in these years.

Moving on to 2020 does not have a timestep with a positive mismatch, only a least
negative one which occurs on day 164 in the middle of the night when electricity loads are smallest.
Little midday solar lumps’ are visible but energy demand remains the dominant factor shaping the
profiles. It is a different story for 2025 where large positive mismatches are visible due to solar,
peaking at close to 10 MW in the week shown (corresponding to the 28th May - 4th of June). These
energy surpluses in the middle of the day often trump the shortages in the evening, emphasizing the
need for this energy to be stored. The 2030 week, corresponding to the 14th - 21th of April, starts
with three capricious days where not much energy is produced, probably owning to cloudy weather
in the solar dataset. However, a maximum surplus of 12.3 MW occurs on the 4th day and there is a
positive mismatch on 6/7 days.

Further analysis on the absolute load peaks, their relation to the grid’s capacity, the impact of demand
response and results of the battery model are given in the dedicated Results chapter.
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4 Model Implementation

This chapter explains how the neighbourhood battery simulation is programmed in Matlab and
Simulink. First, the choice for this programming language is motivated by explaining which specific
characteristics of the software package suit this research. What follows is a short outline of how the
data is prepared and fed to the battery algorithm. Next, two flow-charts describe the data flow, and
the logic that forms the core of the algorithm. The customizability of the model is shown by outlining
all input variables. The chart is accompanied by a section that explicates in detail which calculations
are performed in what order, to translate a grid-level energy mismatch into the charge/discharge
demand of a neighbourhood battery, its subsequent State of Charge and grid-interaction. It is briefly
stated how the Simulink output is used to do subsequent analysis in Matlab and produce the results

(graphs).

4.1 The choice for Matlab and Simulink

Regular commercial data software like Excel works well when dealing with a limited amount of
datapoints and limited complexity in calculations. Once matrices start to expand beyond a certain
dimension size, processing must be performed on the data, and subsequent logic actions are intricate,
Excel falls short of the requirements and has the tendency to crash. The load profiles used in this
thesis contain data for a full year at an interval of 15m. This results in 35040 datapoints per scenario
year (2020, 2025 and 2030) for each demand type (BAU, Flex). While some data preparation could
be done in Excel, the calculations needed to generate the results are too complex for Excel. Matlab is
a programming language in a numerical computing environment that is designed to manipulate large
(matrix) datasets, plotting this data and implementing algorithms. Because building the 35040x3
matrices in this research required combining individual sets and quick visualisations are needed to
verify the data, Matlab formed the perfect software tool to perform the actions needed.

After the load profiles are built, they are translated to mismatch and fed to the battery model.
Here, mismatch is converted by the algorithm into battery demand. The logic implemented involves
boundary conditions for charging/discharging, integration steps, and output commands to generate
new 35040-element battery State of Charge and grid-interaction sets. Simulink is the designated
modeling and simulation environment for Matlab. It offers a graphical programming interface that
allows the user to build a model using blocks that perform certain tasks. The model can then
be simulated in short run-times inside the Simulink environment. The potential for visual logic
application and the seamless integration with Matlab motivated the choice to program the battery
model in this thesis with Simulink.

Several papers dealing with smart grid and battery modelling have used Matlab and/or Simulink (|13}
41} 42]. While the latter two have a more technical focus compared to this thesis, they also model the
electrical components of solar cell and wind-turbine, especially |13] is comparable in model complexity
with this thesis. These literature examples further solidified the choice for the Matlab/Simulink
combination in this research.

4.2 Preparation of model input data

Chapter 3 describes in detail what data is used for the different profiles, how it is scaled and how
household, heatpump and solar data was interpolated to 15m time steps. The section on flexibility
talks about how normal heatpump and EV-demand was translated into flexible demand using the
e-flows algorithm and what settings are used when running the algorithm. This section explains the
exact properties of the data feeding into the battery algorithm.

Each scenario (year and BAU/Flex) has one timeseries profile that feeds into its own copy of the
battery model. This mismatch profile is the difference between the solar production profile and the
total load, which is the sum of all loads. The normal data matrix is made into a timeseries using the
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‘timeseries’ function in Matlab. Timeseries represent the time-evolution of a process and are used by
Simulink to identify, model, and forecast patterns and behaviors in data that is sampled over discrete
time intervals. The evolution from individual datasets to timeseries is visualised in

2020, 2025. 2030

/ Solar Production

—_— ————— Flexible/BAU
_ . Flexible Mismatch
E-Flows —>/ Flexible Total Load Flexible Mismatch —I_b timeseries

- \
2020, 2025, 2030 2020, 2025. 2030 2020, 2025. 2030
Battery Model
Timeseries BAU Mismatch »
BAU Total Load BAU Mi 1 4|—> timeseries

2020, 2025, 2030 2020, 2025. 2030 2020, 2025. 2030

External (R-Studio) Matlab Simulink

2020, 2025. 2030

Figure 4.1: The process from data to model. The annotations designate in which programming
environment each process takes place.

4.3 Model Flow Chart and Logic

This section talks through the logic in the algorithm using the flowchart in Once the
mismatch-timeseries is fed into the model, a check is performed if it is positive or negative, designating
an energy surplus or shortage. At the same time, another part checks how the battery demand
that follows from this mismatch (charge or discharge) relates to the battery’s boundary conditions:
minimum State of Charge (SOCmin) and Maximum State of Charge (SOCmax). The combination
between a positive/negative mismatch and the SOC of the battery creates six different situations,
indicated by the yellow boxes. These situations in turn prompt four different actions in the algorithm.

1. Situation: Mismatch is positive and the SOC is equal to SOCmin, or between SOCmin and
SOCmax. Action: The battery is charged.

2. Situation: Mismatch is positive and SOC is equal to SOCmax, or would be if the mismatch is
fed to the battery. Action: The surplus energy is dumped on the grid (Grid Dump). This is
recorded as grid-interaction.

3. Situation: Mismatch is negative and the SOC is equal to SOCmin, or would be below it if the
mismatch is demanded from the battery. Action: The shortage of energy is drawn from the
grid (Grid Draw). This is recorded as grid-interaction.

4. Situation: Mismatch is negative and the SOC is equal to SOCmax, or between SOCmax and
SOCmin. Action 1: A second check is made if the mismatch is equal to or smaller (more
negative) than the average evening mismatch (see explanation below) on the same day a week
earlier. Action 2: If the previous check returns TRUE, the shortage of energy is drawn from
the battery.

In each case, the prompted action results in an energy delivery to the energy system which resolves the
mismatch in the current time step. The Average Evening Mismatch vector mentioned in Situation
4. is comprised of the averages of the mismatches between 17:00 - 21:00 of each day in the year. For
the first week of the year the values are the same, the second week uses the values from the first week
and so on. This tests the algorithm’s capacity to delay energy discharge until an evening peak occurs.
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When energy is discharged or charged in a real-life battery some losses occur, mostly in the form of
heat. A constant loss percentage of 4% for charge/discharge efficiency is included in the model and

applied following [Equation (4.1)]

Mismatch [EW] * Ncharge » for Mismatch > 0

Mismatch [EW] * Naischarge , for Mismatch < 0 (4.1)

Pyot [kW] = {

. Pyor = Power demanded from battery
with :
Nlcharge; Tdischarge = 4%

The percentage is based on the battery losses in [43]. The researchers from this article measured losses
from the grid connection to the lithium-ion battery at different SOC’s and AC voltages in a vehicle-
to-grid EV situation. They distinguish between building electrical losses (charging point losses and
cable losses) and EV component losses (battery and power electric unit, or charge controller). The
building electrical losses also include transformer losses for the transformation from 480V to 230V
which amount to an average of 8%. These transformer losses are also considered in the model in
this thesis, before the mismatch timeseries is fed to the battery algorithm, and are applied following

Mismatchinyerter [KW] = Mismatch [kW] * Nipverter (4.2)

with : Ninverter — 8%

Self-discharge is another important battery characteristic that describes how much energy a battery
loses due to internal chemical processes when there is no energy charged or discharged for an extended
period of time. A monthly self-discharge percentage of 5% is included in the model, based on the
data for lithium-ion batteries in |[44]. The energy lost is computed per 15m time step inside the
SOC computation. Once a certain mismatch triggers the battery in a time step, a new SOC (SOC})
is computed based on the energy demanded from the battery and the SOC from the previous time
step (SOC;_1). The new SOC again forms the input for the next SOC computation, but first the
self-discharge percentage, scaled for a single time step, is subtracted like expressed in
The 5% loss is divided over the number of 15m time steps in a month consisting of 30 days, 2880,
amounting to a per time step loss of 0.00174%. The use of this 30 day period means that self-discharge
is overstated by a negligible 0.00006% for a 31-day month. It is expected that self-discharge will not
play a significant role in the total battery losses, as the neighbourhood battery is designed to store
energy from midday until the evening, when it will be completely discharged. summarises
all losses included in the battery model, in the order they are applied in the algorithm.

SOCt—l = SOCf — Cself—discharge (43)

0.05

with : Csel f —discharge = M

Table 4.1: Summarisation of all losses considered in the algorithm.

Type of loss Magnitude Is applied on 1Is applied when
Inverter 8% Mismatch Each timestep
Charge/Discharge 4% Mismatch Each timestep

0.00174% (per timestep)

(5% per month) SOC Each timestep

Self-discharge
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Figure 4.2: The processes in the battery algorithm. The word ”Flex” between brackets means that
the same process takes place for Flex load and mismatch as for BAU.

4.4 Model output

Running a simulation of the model produces two important outputs: grid-interaction and Battery
State of Charge (SOC). These are the input for further analysis in the Matlab environment. This
section explains how they are processed to produce the variables that are presented in the results.

Grid-interaction

This variable describes the amount of energy dumped on or drawn from the grid. It can be the result
of the two situations described in the Model Flow Chart section: 1. There is a positive mismatch
and the battery is full (dump). 2. There is a negative mismatch and the battery is empty (draw).
The simulation is run for 50 different battery sizes, running from 0 MWh to 140 MWh, generating
50 different grid-interaction profiles. This allows for analysis of the evolution of other metrics over
increasing battery sizes.

In the Matlab model script, grid-interaction is split into draw and dump. These separate datasets are
then used to compute the average and peak grid-draw and dump for the full year and for the battery
active period. Grid-draw is also input for the CO2 emission calculation. Emissions are calculated
by multiplying the interpolated Marginal Emission Profile with the 15m grid-draw data to end up
with a 15m CO2 emission profile in kg/kWh. To make the CO2 over Battery size plot, the emissions
are summed for the whole year per battery size, generating 50 different profiles for each year and
BAU/Flex, or 300 profiles in total. Grid-draw is also used to build the average evening mismatch
profile described in the Model Flow Chart section. Lastly, grid draw is used to compute the cost of
grid-energy and balancing revenue in the Financial Results section, by multiplying the vector with
published day-ahead prices. More on this in the Results chapter.

Grid-dump is used to compute self-consumption by subtracting it from the total solar production,

generating total consumption, and dividing the product by total production, see [Equation (4.4)]
Again, 50 grid-dump profiles generates 50 self-consumption profiles. Using self-consumption, the CO2
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saved by solar consumption can be computed by using the fact that each kWh of solar consumed is
a kWh less that has to come from the grid. The CO2 emission profile from the previous paragraph is
used for this effect. The CO2 save profiles are the basis for the CO2 emission section in the Results.

Total consumed production

Self-consumption = (4.4)

Total production

Autarky is another metric that comes from the grid dump profiles. It is the measure of self-sufficiency
of a renewable energy system. So, what fraction of consumption is provided by (solar) production.

The definition is expressed in [Equation (4.5)|

Total consumed production

Autarky = (4.5)

Total energy consumption

Battery State of Charge (SOC)

SOC is a measure of the energy content in the battery at each given time step. The change of SOC
from one time step to the next expresses the energy going into or out of the battery. By constructing
a vector of SOC differences over the 35040 time steps in a year, and relating this to the storage
capacity, an battery energy (or power) flow vector can be made. This forms the basis of computing
neighbourhood balancing revenue where ingoing energy is multiplied with a certain margin per kWh.
More detail is given in the Financial Results section of the Results chapter. The definition of the

energy flow vector is given in [Equation (4.6)|

35040
Epar [EWh] = ) (SOC; = SOCy_1) % Char (4.6)
1

FEvot = Energy flow through the battery per time step

Chat = battery capacity [kW h]
with :
SOCy = State of Charge in the current time step

SOC;_1 = State of Charge in the previous time step

SOC is also used to calculate the number of cycles the system goes through, which is a statement
of its degradation. One cycle is equal to fully charging and discharging the battery. The amount of
yearly cycles is computed by first extracting the positive values (energy charged) from the energy flow
vector. Only the positive (or negative) values suffice, because all energy charged is also discharged
(the battery is empty on 31/12 00:00) and, as explained above, one battery cycle involves both. The
positive values are summed, equalling the total amount of energy that went into the battery for one
year. Dividing this total by the battery capacity produces the cycles per year. This calculation is

expressed in [Equation (4.7)|
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5 Simulation Results and Analysis

This section presents the results gathered through procedures detailed in the Research Design section
and is divided between a technical section and a financial section. To answer the four sub-questions
and subsequently the main research question, the following analysis steps are followed. Firstly, ex-
treme situations during the year are defined. Extreme situations are times where either demand or
supply of electricity show their maximum peaks. These extreme peaks could impact the stability of
the grid and necessitate grid improvements. These values are related to the grid capacity, which is
estimated by multiplying the number of households with the average grid capacity per low-voltage
user. It is also of interest to see how flexibility performs during these situations by making a com-
parison between the scenarios with and without flexibility. The section continues with results from
the battery model, showing specifically how the size of the system influences average evening peaks,
midday solar peaks and autarky and self-consumption. Based on these metrics a battery sizing is
done.

The second aspect being investigated is the impact that a battery system has on decreasing the
overall CO2 emissions of the ED. A Marginal Emission Factor (MEF) [45] is used to compute the
CO2 emission of each MWh drawn from the grid. The use of the MEF instead of an average emission
factor is fairly new in literature. Using it produces a more reliable estimation of CO2 savings by
adding renewable energy. This is because the conventional energy generation which is replaced by
renewables in each specific settlement period comes from facilities operating at the (price-setting)
margin, and is not evenly distributed over all generation facilities. Typically, these marginal facilities
have a higher than average CO2 emission per produced energy unit. Including the MEF in emission
calculations therefore produces higher and more realistic CO2 emission savings. This MEF profiles
used in this research are based on the energy mix in the Dutch grid at each hour. When more solar
energy is used, because the battery can store and supply it at the right times, less energy is needed
from the grid and thus CO2 emissions decrease. An assessment is subsequently done how this decrease
relates to CO2 reduction goals from the municipality.

Thirdly, the business case surrounding the neighbourhood battery system is evaluated. The Dutch
government has compensated people exporting energy to the grid with a price per kWh equal to the
electricity price they pay to their energy-suppliers (including taxes) up until now, but will stop doing
so after 2030. This so called ’saldering’, or balancing, was a major source of income for PV-owners
and therefore contributed significantly to the business case for solar panels. When this ends, the
compensation for private energy producers will solely come from energy suppliers that have to pay
80% of the variable electricity price to customers feeding electricity into the grid, which is much less
than the previous full-price compensation. This means the business case for a neighbourhood battery
performing 'neighbourhood balancing’ becomes more attractive, especially when the compensation
price would be somewhere between the variable energy price and the previous state-funded balancing
price. This form of a local energy market has been mentioned in other literature as a very promising
future value stream [46]. Neighbourhood balancing would compensate the energy producers in the
neighbourhood for the energy they feed into the battery during the day, and charge consumers the
commercial price for the electricity they consume at peak hours. This way the households receive a
higher price for their electricity, the battery system earns a compensation per transaction and there is
certainty that locally produced energy is also used locally. The benefit of neighbourhood balancing at
different prices is investigated and compared to current and planned future compensation policies. In
addition, an overview is given of other grid services and their potential revenues. Using these figures,
the payback periods for the battery system at the previously chosen size and cost are computed.
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Table 5.1: Nomenclature in this section. Explains all terms in [Table 5.2

Term Explanation
Total load The sum of all energy demand profiles
BAU Load without flexibility applied to heatpumps and electric vehicles
Flex Load with flexibility applied to heatpumps and electric vehicles
Commercial Load from the commercial demand profile
Household Load from the household demand profile
Heatpump Load from the heatpump demand profile
EV-charging Load from the EV-charging demand profile

5.1 Technical Results and Analysis

5.1.1 Peak Loads and Production

Table 5.2: Comparison of BAU and Flex peaks for each type of demand and production.

Type of demand Year BAU [MW] Flex [MW] Difference On date and time

Total load 2020 12.81 11.23 -12% 14/01/2020 17:15
2025 24.60 16.95 -31% 14/01/2025 17:15
2030 40.54 27.16 -33% 14/01/2030 18:00
Average peak 2020 6.99 6.83 -2.9% /
2025 7.30 6.88 -5.8% /
2030 9.26 8.06 -13% /
Commercial / 3.09 / / 14/12/2020 11:45
Household / 8.66 / / 18/12/2020 18:00
Heatpump 2020 3.02 2.13 -29% 14/01,/2020 07:00
2025 15.11 10.41 -31% 14/01,/2025 07:00
2030 29.72 21.11 -29% 14/01/2030 06:30
EV-charging 2020 0.50 0.05 -90% 11/09/2020 18:30
2025 1.20 0.77 -36% 24/04,/2025 18:00
2030 3.17 1.64 -48% 15/07/2030 17:45
Solar production 2020 1.975 / / 27/03/2020 12:30
2025 14.78 / / 27/03/2025 13:00
2030 19.69 / / 27/03/2030 12:30

shows all peaks in demand and production on their relevant dates. The BAU column gives
the peaks without flexibility in demand. The Flex column shows the same peaks when flexibility
of demand is applied, allowing a direct comparison. Additionally the peaks in solar production are
given. Starting with solar, all peaks occur on the same day in march around midday. The dates
are the same because the original production dataset is based on the installed capacity in 2030 and
scaled down to 2025 and 2020 levels. There is a slight variation in the times because of the random
interpolation around the original hourly values. All peaks correspond to around 90% of installed
capacity. Comparing the peak times of solar with those of the loads, a high degree of simultaneity
is not expected as most load peaks occur in the morning or evening, except for the relatively small
commercial peak which occurs in winter (see explanation below).

Because the number of heatpumps and charging sessions increases over the years, it is no surprise
that the peak demands follow suit as is visible in What is more interesting however is
how flexibility in demand decreases (or increases) these peaks. Starting with the total load peaks,
the flexibility algorithm shows a strong capacity to decrease these extreme values by 12 to 33%.
Flexibility demonstrates a larger impact in later years because of the increase in heatpump and EV
demand. Worth noting is that all peaks occur on the same date and around the same time.
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The dates of the heatpump peaks give away the cause; the 14th of January is an especially cold day
in the dataset where the heatpump demand is derived from.

The Flex values in [Table 5.2) are from the same date and time as the BAU peaks, in order to compare
the two, but they are not the absolute maxima for the flexible demand profiles. These are given in
along with the dates of occurance and compared to the BAU values at these moments (not
displayed). The decreases are comparable with those on the dates of the BAU peaks. The dates of
occurrence are now spread across four days in January because of cold outside temperatures. These
peaks prove that the flexibility algorithm shifts demand as desired and does not create higher peaks
at other times.

Table 5.3: Peaks of Flex total load, compared to BAU at the moments of occurance.

Type of demand Year Max Flex [MW] Difference On date and time

Total load 2020 11.36 -11% 10/01/2020 17:15
2025 18.36 -25% 11/01/2025 18:45
2030 27.36 -33% 14/01/2030 08:00

Moving down in the table to commercial and household demand peaks, their dates and times corre-
spond to lunch and dinner times in winter respectively when a substantial amount of electric cooking
stoves are turned on. The peaks probably occur in winter because of the higher lighting demand
(darker days). The datasets could also contain an amount of electric heating. Offices typically have
electric climate systems which heat during winter. The household dataset is from 2014 when heat-
pumps were not prevalent in homes, and does not specify heating technology, but the existence of
electric heating in a group of 10.000 households cannot be ruled out.

Heatpumps develop as the dominant factor in demand from 2025. The peaks all occur on the same
day and around the same time, due to an outside temperature of -15C in the dataset that the demand
is based on. Because the data was interpolated from hourly to quarterly by adding intermediate data-
points that differ randomly from the hourly values by 2%, the peak values can differ by a maximum
of 3 timestamps from the original hourly peak-value. This is acceptable because it does not detract
from the illustrating value of the absolute peaks and the relative impact of flexibility. The e-flows
algorithm manages to decrease the heat pump peaks by around 30% for each year.

EV-charging peaks show the highest percentual decrease compared to the BAU scenario. The 2020
scenario grabs the attention with a percentual decrease of 90%. This can be explained by the solar-
optimisation/peak-shaving parameter settings of the flexibility algorithm and the relatively low num-
ber of EV’s in 2020. The algorithm is set to weigh peak-shaving and solar-use equally. This means
that if the connection time of the charging session allows it, the session will be moved towards max-
imum solar production hours i.e. around noon. As more charging is moved there, the algorithm
starts to spread the demand more evenly from noon to evening. Because there is still a relatively low
amount of demand to move in 2020, there is ’space’ for this demand around noon causing it to be
transferred away from the evening, and the peak subsequently lowered more than in 2025 and 2030
when there is more demand.

Comparing the EV peaks in 2025 and 2030, one observes a larger peak reduction in the later year
which can be explained by recalling the charging speed fractions in The increase in 11
and 22kW charging mean that cars are charged faster, but connection times predominantly stay the
same for all profiles (home, worktime, short-stay). While it could be said that short-stay chargers
may base the time of their activities on the charging time of their EV’s, sleeping and working hours
certainly do not change with faster charging. So, as the time required for charging decreases there
is more potential to move the activity in time. The demand is spread out more and peaks decrease,
explaining the larger percentage-decrease in 2030 compared to 2025.

However, it is remarkable that the absolute peaks of flexible EV demand, given in are
higher than in the BAU scenario. This is a side-effect from the maximisation of self-consumption,
when demand is shifted to maximum solar production times (around noon) by e-flows. 2020 shows the
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highest increase due to a low absolute demand (easier to shift). To assess if this is worrying behaviour
from the flex algorithm, it helps to compare the total load peaks at the moments of the Flex and
BAU EV-demand peaks, displayed in If the Flex total load peaks are lower, there is not
an adverse effect where demand flexibility is creating higher grid peaks elsewhere in the day/year. In
2020 the Flex total load peak is higher than BAU at the time of the EV charging peak. However, it
should be noted that the 2020 EV Flex peak occurs in February, whereas the BAU peak occurs in
September when there is less heat pump demand. The possible adverse effects of flexibility should
thus be judged with the 2025 and 2030 peaks, which are both lower by 3% and 27% respectively.
The 2030 Flex peak even occurs in April, which has a substantially higher heat pump demand than
during the BAU peak in July, proving that the flexibility algorithm does not create higher total load
peaks in comparable seasonal circumstances.

Table 5.4: Increase in Flex EV-charging peaks compared to BAU

Type of demand Year Max Flex [MW] Difference On date and time

EV-charging 2020 1.55 210% 28/02/2020 12:45
2025 2.22 85% 21/05/2025 11:30
2030 3.97 25% 12/04/2030 12:15

Table 5.5: Comparison of total loads on date of maximum EV-charging.

. Flex
Type of demand Year Demand [MW] Flex [MW] Difference date and time
Total load 2020 6.86 9.71 42% 28/02/2020 12:45
2025 7.32 7.10 -3% 21/05/2025 11:30
2030 9.83 7.14 -27% 12/04/2030 12:15

Grid Capacity

Electricity grids in the Netherlands are built with a certain redundancy, typically twice the required
capacity based on the combined connections of industrial, commercial and household users. As
mentioned in the introduction, new technologies like datacenters and electric cars have been asking
more capacity of the grid in the past years. This means the two-fold redundancy has been increasingly
let go by DSO’s [47]. Comparing the grid capacities with the peak loads and production in relevant
years, it is clear that this leniency is also a requirement for the future if costly grid reinforcements
are to be avoided.

In terms of production, the solar capacity peaks reach a maximum of 36.5% of grid capacity in 2030,
staying within the two-fold redundancy rule. The total load peak in 2020 is still well within the limits
at 23.7% of grid capacity for BAU (see but 2025 shows a BAU load peak coming close
to the redundancy limit at 45.6% of capacity. The effectiveness of flexibility is proven by the Flex
peak equalling only 31.4% of capacity. The 2030 peaks pose the biggest threat to grid stability at
75.1% of capacity for the BAU scenario which surpasses the historically desired two-fold redundancy.
Flexibility has the highest effectiveness here, reducing the peak with 33% and reaching only 50.3%
of total capacity.

5.1.2 Battery Operation

This section will present and analyse the results of the battery model. It will go over the most
important results for 2025 and 2030 using graphs that show the two years together as much as
possible. The effect of time-shifted demand on the workings of the battery is reflected by including
both BAU and Flex traces. As mentioned earlier, 2020 is not included because of the low solar
penetration in this reference year. To reiterate, the dual goal of the model is to increase solar energy
use and decrease evening demand peaks and as mentioned in Chapter 4. A decision was made to
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focus on the evening peak because this is typically the highest peak of the day and because decreasing
the morning peak requires nightly charging, using (mainly non-renewable) grid energy.

The section starts by showing the results of a battery test. In this test, an artificial demand profile
with a block shape is fed to the system to see if it responds as expected. After this is demonstrated,
an example day is chosen to compare grid-interaction for Business as Usual, Flex and Flex + Battery
output data. This demonstrates if demand flexibility application and the battery system influence
energy exchange with the grid as desired; decreasing grid draw and dump. Then, the contrast between
winter and summer days is illustrated. Two plots containing State Of Charge (SOC), mismatch and
grid interaction traces show the functioning of the storage system for two three-day periods: one in
June, falling inside the ’battery active period’ and one in November, falling outside this period. The
active period runs consecutively from day 78 to day 260 and is equal to the 50% of the year with
the highest cumulative positive mismatch. A positive mismatch generates surplus energy that can
be stored for later use by the battery and allows it to perform peak shaving. A third plot shows
the contrasting impact of demand flexibility in the two periods. After this, peak shaving and CO2
reduction results for the full year, and battery active period, are presented and related to the size of
the battery system.

Battery Test

The battery test simulation is performed with the parameters in the table below. A mismatch profile,
which forms the input of the model for this test, has been designed to answer two questions: 1. Is
the energy balance correct when running the model? I.e. do the mismatch energy amounts carry
over to the simulation results. 2. Does Simulink execute the tasks in the model in the correct order,
generating the desired battery system behaviour? If both questions are answered positively, it can be
assumed that the model also works as designed when given normal demand and production profiles.
The profile stays at a constant 9 MW for three hours, or 12 timesteps, and then switches to a constant
negative mismatch of -9 MW for the same duration. This is repeated for one year to see if the model
performs as predicted for all 35040 timesteps. Because the battery has a minimum SOC of 20%
and a maximum SOC of 80%, it can use 60% of its storage capacity, which means that at a total
capacity of 45 MWh, the effective capacity is 27 MWh. It thus follows that the battery should be fully
charged after the three hours of positive mismatch, and fully discharged after three hours of negative
mismatch. Consequently, grid-interaction should be zero because mismatch switches to positive in
the immediate timestep after the battery is empty. When the model operates on regular demand
data, a mismatch threshold is implemented to delay battery discharge until the evening peak. For
this test, the threshold is set at 0 MW to see if discharge starts immediately when mismatch switches
signs.

Table 5.6: Properties of the data and model for the simulation in [Figure 5.1

Battery algorithm properties

Battery Storage Capacity 45 MWh
Transformer efficiency 100%

Charge efficiency 100%

Discharge efficiency 100%

Min/max SOC 0.2/0.8

Mismatch profile properties Load Duration
Positive 9 MW 3 hrs
Negative -9 MW 3 hrs

Repeated for the duration of one year
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The graph in shows the result of the test simulation for eight three-hour periods, or 24
hours. Looking at the SOC trace relative to the mismatch, it is clear that the battery is completely
charged (at 0.8 SOC) after three hours of positive mismatch and completely discharged (at 0.2 SOC)
after three hours of negative mismatch. The start of the first positive period exactly coincides with
a vertical grid-line. At the same line, SOC is at the minimum level and starts to increase to the
right of this line. This demonstrates immediate charging at positive mismatch. The end of the
third positive period exactly coincides with another vertical grid-line. At the same line, SOC is at
a peak and starts to decrease in the next timestep. This indicates that the battery model starts to
discharge immediately when mismatch crosses zero towards negative. Lastly, zero grid-interaction
for the entire 24 hr period confirms a correct energy balance and indicates that the battery model
evaluates mismatch and SOC at the same timestep, ensuring an immediate response of the system.
These test results answer both test questions posed above positively, and therefore prove the correct
functioning of the battery model.

Figure 5.1: Simulink plot showing a Mismatch block-profile, and the resulting SOC and Grid-
interaction.

Grid-interaction Comparison

An important question to answer is how the e-flows flexibility algorithm works in conjunction with
the battery model. The way they are implemented, e-flows does not take the battery into account,
but the battery does in effect take e-flows into account because the demand profiles are 'made flexible’
before they are fed into the battery algorithm. However, this research is not an exercise in optimizing
a specific combination of flexibility and storage, that is out of its scope. It does aim to show how
these two likely additions to our future energy interface influence each other. Depending on the way
that demand response and storage will be implemented in the real world, situations will probably
occur where a neighbourhood battery has to deal with the flexible heatpump demand of a large
apartment building, which does not necessarily base its load-shifting decisions on the solar energy
feeding into the battery because it focuses, for instance, on minimizing electricity cost. More on this
in the Discussion and Conclusion.

To establish if demand response and the battery system perform as designed and desired, it is useful to
see how grid-interaction changes from Business As Usual (BAU) demand, to demand where flexibility
is applied, to demand where flexibility and the battery algorithm are combined. Grid-interaction
occurs when electricity is drawn from the grid (grid-draw) or is supplied to the grid (grid dump).
The mismatch between supply and demand determines if grid-draw or dump is needed. If supply (of
renewable energy) is greater than demand, mismatch is positive. If vice versa, mismatch is negative.
The three traces in show the grid interaction on the 31st of March 2030 for BAU-demand,
Flex-demand and as output of the battery system. To clarify, BAU demand and Flex demand both
represent the total load profile for the Eastern Docklands, but for Flex demand heatpump- and EV-
data have gone through the e-flows algorithm where flexibility of demand is applied. Grid-interaction
for BAU and Flex is equal to the mismatch, incorporating the inverter efficiency, which is computed
by subtracting demand from the solar production profile. The third trace is the result of running the
battery algorithm with Flex demand as input. The 31st of March is chosen because it has enough
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solar production to fully utilize the battery and also enough heatpump demand to clearly demonstrate
its use. The simulation run uses a 45 MWh battery, based on the sizing in Section 5.2.
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Figure 5.2: Graph showing the grid-interaction on the same day, for three levels of smart energy
technology implementation.

Moving through the day, and starting by comparing the BAU and Flex traces, the first obvious
difference is a higher Flex load at night: this decreases strain on the grid in the morning. The result is
a much lower grid draw peak. At the peak-production hour around noon, demand flexibility manages
to decrease grid dump significantly by shifting demand there, providing a higher self-consumption.
From 14:00-16:00, flexible load again surpasses non-flexible load to generate a lower grid draw evening
peak. To take it out of abstraction, this is electrical heating by heapumps being advanced in time.
EV-charging for home-profile consumers is not advanced and therefore not involved in increasing
afternoon load, but shaves the evening peak by being delayed until the night. The demand of work-
chargers (charging during the day) is shifted to midday.

The battery tries to minimize grid-interaction. Grid-dump is prevented by storing solar energy and
grid draw peaks are kept to a minimum by discharging this energy at the right time. Peak shaving
is made effective by holding energy delivery until the mismatch between supply and demand reaches
a certain threshold, equal to the average mismatch between 17:00 - 21:00 on the same day one week
earlier. This behaviour is clearly visible in The battery trace follows the Flex trace (with
a 1-timestep delay, an artefact of outputting from Simulink to the Matlab workspace) until the y-axis
zero crossing. Here a positive mismatch occurs - solar production is greater than demand - and while
in the BAU and Flex scenarios this electricity is dumped on the grid, the battery trace has zero
grid-interaction as all surplus is stored. Once mismatch becomes negative again, the battery trace
rejoins the Flex trace until the mismatch threshold is reached and the battery starts to discharge. At
this point grid-interaction jumps to zero as all electricity demand is provided by the battery. Once
storage is depleted, the grid needs to provide the necessary electricity again and the battery trace
rejoins the Flex trace. The battery system has decreased the evening peak from 13 to 11 MW, a
difference of 20%.
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Seasonal Comparison

Solar production varies a lot throughout the year due to seasonal weather variations. This means
that during spring and summer the battery system has more energy to work with and therefore a
higher effect on grid-interaction. To illustrate this, two three-day sets of battery output are shown
in and The different traces show the mismatch, SOC, grid-interaction, total load
and solar production at each timestep, for a simulation run with a 45 MWh battery. Demand and
solar production profiles from the 2030 BAU scenario are used as input for the simulation. The
data corresponds to three days in June, with high solar production, and November, with low solar
production. A third figure only depicts total load and solar production for the same three-day sets,
but with demand flexibility applied and shows the combination of battery and demand response in
different seasonal circumstances.

The red vertical lines in at the onset of a SOC decrease indeed confirm that energy delivery
does not start immediately when mismatch is negative. There already is a clear delta between the
total load and solar production lines, mismatch is between 5 MW and 7.5 MW below zero, once SOC
reduces. Grid interaction is zero from the red line point while the battery delivers its energy. The
last June day might fool the viewer in thinking that SOC decreases at the zero-crossing of mismatch,
but the total load trace shows that a sudden decrease in solar production causes mismatch to cross
the threshold needed to activate the battery.

The flattening SOC curve at 80% shows that a 45 MWh battery cannot store all available solar
energy during peak production times. This surplus energy is ’dumped’ on the grid, indicated by
a positive grid interaction trace. While this may feel intuitively not right in light of maximizing
self-consumption, shows that the battery must be 2.5 times larger to completely eliminate
grid dump. This would not make economic sense, as will be demonstrated in Section 5.2. One way
to decrease the magnitude of dump or draw peaks is to decrease the charging/discharging rate of the
battery. Taking charging as an example, slowing this down spreads out charging over the positive
mismatch period and thereby ’shaves off” a portion of the entire positive mismatch curve. When done
right, the energy charged is still the same as with charging at the same power as the mismatch. A
disadvantage of slower charging is that in real-life it is unknown if potentially there is a cloud coming
that will decrease solar production for a period of time. When the battery has been charging at a
lower rate until that point, energy will have been wasted. The same thing holds on days without
any cloud cover but with less sun-hours and lower solar intensity. Here you would want to charge
at full-speed because the battery will not be full without doing so, and consequently charging at a
lower speed would have also wasted energy. Slower discharging spreads out the available energy over
the negative mismatch period and thereby shaves off a portion of a broader piece of the curve. The
disadvantage of this is that when a large power peak comes the battery is not capable to deliver
the required power, because its discharging rate is limited. This shows that the optimal charging
and discharging speed depends on the situation and that ideally it could adapt to the (predicted)
circumstances. This level of complexity has not been implemented in the model but could be a good
avenue to explore for further research.
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Figure 5.3: Battery operation plot showing how the battery responds (in terms of SOC) to a mismatch
in supply and demand during three days in June, falling in the battery active period with high solar
production. The red lines indicate the start of energy delivery by the battery once a certain mismatch
threshold is reached. Grid interaction is electricity going into or coming from the grid. The x-axis
units are the 15m timesteps x 10%. The y-axis units are in kW.

Much less solar production and more electricity demand can be observed during the three November
days in Production peaks at just above 10 MW on the first day in the graph, whereas
the June peaks approach 20 MW. A difference in peak width also indicates a smaller amount of
hours in which energy is produced. The total load trace has two distinct peaks in the morning and
evening because heating and lighting are turned on, bringing the evening total load peaks to a value
of about 20 MW on each day, compared to a maximum of 10 MW on the third June day. Higher
demand usurps supply completely, leaving the battery effectively powerless to perform peak shaving.
As a result the SOC only slightly leaves the minimum level of 20%. However, this is an opportunity
to put it to work on other grid services like frequency control or congestion services. While solar
production is normally less in winter, wind energy with an intermittent character peaks during the
colder months. This intermittency causes frequency derivations and endangers grid stability, which
is why an Frequency Containment Reserve market is launched where flexibility providers can bid
their capacity to accept or deliver energy when needed. While no wind energy is modelled in this
thesis research, the battery will be connected to the energy grid and as such could be used for
these additional services. More information on FCR and congestion management, and their revenue
potential, is given in the Financial Results section.
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Figure 5.4: Battery operation plot showing how the battery responds (in terms of SOC) to a mismatch
in supply and demand during three days in November, falling in the battery inactive period when
solar production is low.

To further show the symbiosis of Flex and battery, and to see the shifting of loads from day to day, the
total load and production curves from the earlier three-day sets have been combined in
The upper graph evidently depicts three November days with its relatively low solar production.
What stands out compared to |[Figure 8.6| are the non-existent morning and evening load peaks. The
evening heating peak has been back-shifted to the afternoon which results in a load trace that is
slightly higher than production, meaning production is completely used up. This removes the very
small energy amount that went into the battery without demand flex and means that the complete
capacity is available for other grid services. The morning load is back-shifted to the night which has
no effect on battery operation, because this peak occurs before any solar production, thus before the
battery can come into play. Some fore-shifted evening EV-load joins the back-shifted morning load
of the next day in the middle of the night, raising the nightly minimum load.

The bottom graph in [Figure 5.5 shows the June days. Almost no difference is visible compared to
the BAU trace, there is not enough heatpump demand to shift and the relatively small EV-demand
does not have enough impact on the total load. This indicates that flexibility of demand has the
most impact on cold days when heatpump demand is high. Conversely, the battery system works
best during sunnier (warmer) days when there is solar energy to store. So, when taking a year-round
view, demand response and battery storage complement each other nicely with peak-shaving.
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Figure 5.5: Battery operation plot during the same two sets of days, June below November from a
simulation run with flexibility of EV- and heatpump-demand applied.

Peak shaving and grid interaction: Full Year

This section starts with an analysis of the peak power exchanges with the battery, before the rest of
the results are related to storage capacity. It is important to know these power peaks when sizing the
battery because satisfactory operation not only depends on how much energy can be stored in the
system, but also how fast it can respond to charge/discharge requests. To see the power requirements
of a battery the peak battery charge/discharge power at an increasing storage capacity is plotted in
This is a relevant comparison because as more storage capacity is available, more energy
can also be stored or discharged, increasing the likelihood of larger power exchanges.
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Figure 5.6: Battery charge/discharge power peak at increasing energy storage capacity.

Looking at the graph, this theory holds until a certain amount of storage capacity, depending on
the year and scenario, when the peak power exchange remains constant. The point of constant peak
exchange increases with increasing solar power and energy demand (2030 vs. 2025) and is higher
for BAU than Flex. This makes sense, as higher supply and demand will generate higher power
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exchanges with the battery, and demand response aims to match the two to minimize the size of the
exchanges. The constant peak power exchange point implies that after this point power capacity is
not an issue anymore, and storage capacity is the bottleneck for further utility. See the much higher
storage capacities at which traces reach their asymptotes in and [5.8/ and ?? and beyond.
contains the peak power exchange values for each year and scenario, which can be read as
the minimum power capacity of the battery system for each circumstance.

Table 5.7: Peak Power Exchanges with the battery, for each year and scenario. These are the

maximum values for each trace in

Peak Power Exchange Peak Power Exchange

(BAU) [MW)] (Flex) [MW]
2025 3.70 2.87
2030 5.50 3.79

The top graph in shows the average evening grid demand (draw) in 2025 and 2030 for
battery sizes ranging from 0 to 140 MWh, with and without demand flexibility. As mentioned in
Chapter 4, the depth of discharge (DoD) setting in the model is 60%. The battery capacity sizes
on the x-axes are the total capacities, before DoD is considered. The effective capacity is thus 60%
of these values. Evening is defined as 16:00 to 20:00, capturing the majority of residents arriving
home from work and corresponding to the observed evening heatpump peak in [6]. The 2025 traces
have lower absolute values and there is less difference between BAU/Flex traces, owning to the lower
absolute total loads and less (flexible) EV and heatpump demand. It is clear that the battery system
has a substantial impact on the evening peak. The traces show diminishing returns at increasing
battery sizes, with a constant value reached around 50 MWh (shown by the red lines). These points
correspond to possible battery sizes. At this size, for 2025 the decrease in the average peak compared
to having no battery is 19.8% for the BAU (non-flex) trace and 18.5% for the Flex trace. For 2030
the values equal 29.5% (BAU) and 23.3% (Flex). The peak-shaving difference between BAU/Flex in
2030 exists because there is more more peak-shaving potential for the battery system without demand
flexibility, provided there is enough PV load. This last point is important because this is evidently
not yet the case in 2025 which has 3/4 of the PV rated power of 2030.

Also notable is how the difference between BAU /Flex traces progresses. The 2030 difference is equal
to 14.9% from x = 0 and converges to 9.5% from a battery size of 50 MWh onwards, whereas 2025
starts at a difference of 6.1% and converges to 4.4% at the same battery size. It is worth looking at
the relative heatpump, EV and PV penetrations between the two years. 2030 has 2x the amount of
heatpumps, 2.5x the amount of EV’s and 1.33x the amount of PV. This means that towards 2030
loads increase more than production, increasing the load/production ratio. More ’relative load’ in
2030 puts more emphasis on flexibility at small battery sizes. This effect decreases when storage
increases and the battery is better suited to handle the evening peak. More ’relative production’, or
a smaller load/production ratio, in 2025 means there is relatively less potential flexible load to move
to midday, and relatively more production that can be used in the evening. So, the effect of Flex is
decreased, explaining the smaller difference between BAU and Flex in 2025. This demonstrates that
the ratio between production and consumption influences the joint effectiveness of demand flexibility
and battery storage.

It is evident from the y-axis in the bottom graph in that absolute values are lower for
grid dumps than draws. Converging can be observed for the 2030 BAU /Flex traces in an absolute
value sense, but the percentual difference diverges, starting at 32.8% and, while absolute dump values
decrease as the battery size increases, maximizing at 480% for a battery size of 42 MWh (at this point
the Flex trace has almost reached zero while the BAU trace is still firmly positive). Both traces start
converging towards zero around the 50 MWh mark. Because a larger battery can store more energy
less is dumped on the grid. The Flex algorithm performs essentially the same function, moving load
to high solar yield periods so production is usurped. This is why the algorithm has less impact at
higher battery sizes when the battery snaps up a larger chunk of production. When storage has a
certain size no energy is dumped anymore, annihilating the difference between a system with and
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without demand flexibility.

Less relative load in 2025 decreases the flexibility potential. The absolute differences between the
BAU/Flex traces are thus smaller. Traces show the same diverging/converging behaviour as 2030
but zero dump is reached at a higher battery size, owning to the higher production/load ratio. This
even causes the BAU trace to cross the 2030 Flex trace around 37 MWh.
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Figure 5.7: Avg. evening grid draw/midday grid dump in 2025/2030.

Peak shaving and grid interaction: Battery Active Period

shows the average evening draw and midday dump for the battery active period. During
these days temperatures are highest, the weather is sunnier and therefore heatpump demand is lowest
while PV-yield peaks. This translates to lower average evening draws and higher average midday
dumps for both years. The large drop in evening draws compared to the full year is testament to the
large influence of heatpumps on total demand. At 50 MWh, the traces are all between 1600-1700 kW
and 2030 BAU draw is 2.34 times lower compared to zero storage, a 67.3% decrease. For Flex the
reduction equals a factor 2.24, equalling a 52.7% decrease. 2025 draw is reduced by 51.5% (BAU)
and 48.1% (Flex) at 50 MWh. This is due to more installed solar power in 2030, which allows the
battery to deliver more energy in the evening to lower peaks. The 2030 BAU/Flex traces converge
from a 20.5% to a 10.7% difference at 50 MWh. For 2025 traces converge from 7.11% to 6.59% at 50
MWh.

Grid dump traces look similar to the full year but show a higher battery effect, i.e. a slightly steeper
drop at increasing battery sizes, especially for 2030 with its higher PV-yield. Absolute values are
higher overall than the draw peaks, but the traces show the same converging behaviour for BAU/Flex
at the same battery sizes.
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Figure 5.8: Avg. evening grid draw/midday grid dump in 2025/2030, for battery active period.

shows the peak dumps for 2025 and 2030. There is no difference between the full year
and the battery active period because they all occur during the latter. The 2030 BAU/Flex traces
are close together, the difference increasing at larger battery sizes when less production is 'unstored’,
and it becomes easier for the Flex algorithm to shift load to cover it.
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Figure 5.9: Peak midday grid dump in 2025/2030.

The battery system does not manage to decrease the yearly draw peaks from [Table 5.2 for either
year or scenario, as is reflected by the constant load traces in [Figure 5.100 These peaks come from

heatpump demand peaks which occur in January when there is not enough solar to counter them,
and thus the battery has no effect.
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Figure 5.10: Peak midday grid dump in 2025/2030.

CO2 reduction

As mentioned in the introduction, the city of Amsterdam wants to decrease CO2 emissions by 55%
compared to current levels, the maximum value of a 21-55% bandwidth set by the local government.
This reduction must be achieved by 2030 with a combination of different policies. The pillars of these
policies are the electrification of heating, mobility and more renewable energy generation in the city,
primarily from solar panels. This section assesses the CO2 reductions achieved with predicted solar
power levels in 2025 and 2030, and the impact flexibility in demand and the neighbourhood battery
system have on this. Flexibility should move demand to solar production hours, thereby increasing
the self-consumption of solar energy. The battery system aims to do the same by storing during the
day and supplying in the evening.

Autarky and self-consumption are two important terms here that have been briefly described in
Chapter 3. To reiterate: Autarky is the degree in which an electricity user is self-sufficient with
renewable energy generation. So: what fraction of demand is provided by renewable generation,
see [Equation (4.5) Self-consumption is the fraction of generated renewable energy that is used, see
Equation (4.4)} These fractions can be increased by storage or flexibility. When autarky and self-
consumption increase, less energy is dumped on the grid and less is drawn from the grid. Because
around 9% of the total amount of energy used in the Netherlands is currently from renewable sources
(a large fraction coming from carbon-neutral biomass plants), most of the grid-drawn electricity has
a CO2 footprint |48]. This means that, at the current energy mix, every kWh that is not coming
from the grid but is generated by solar and used directly or through the battery, saves CO2. That is
the way how CO2 savings are calculated in this results section and means future savings are always
in relation to textitcurrent emissions, just like the CO2 goals of the Netherlands and Amsterdam are
related to 1990 levels.

presents the relation between battery size and autarky/self-consumption. The BAU
autarky in 2030 starts at 25% and increases towards 33% when it joins the Flex trace. Demand
flexibility increases autarky in 2030 by 1.5% at zero capacity. BAU and Flex traces converge when
battery capacity increases and the battery can store more solar power, removing the need for Flex to
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transfer load. The higher impact of Flex at small capacities is illustrated by a higher Flex autarky
in 2025 compared to BAU 2030, at zero battery capacity, while absolute solar production is much
higher in the later year. Autarky reaches a maximum of 30.4% in 2025, for which both traces are
much closer together due to less Flex potential, around 50 MWh.

There is more solar power in 2030 compared to 2025 but not enough matching load when it is
produced, which is visible in the bottom graph of While there is more load in 2030,
this is mostly heatpump demand that exists in the evenings when there is no solar production. Flex
has a big impact here, increasing 2030 self-consumption by 5% at zero battery capacity. All traces
naturally converge towards 100% at very high battery capacities. 95% self-consumption is reached at
a much lower battery capacity in 2025 than 2030, 25 MWh for Flex compared to 40 MWh in 2030,
an almost two-fold difference. This argues for a modular battery structure that can be upgraded to
match solar installation.
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Figure 5.11: Autarky and self-consumption in 2025/2030 for BAU /Flex.
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Normalised CO2 emissions in 2025/2030 for BAU/Flex
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Figure 5.12: Normalised CO2 emissions in 2025/2030, for BAU/Flex.

The result of increased self-consumption at higher battery capacities is visible in where
normalised CO2 savings are shown at different battery capacities. These values come from calculating
the marginal CO2 impact of each kWh electricity drawn from the grid, using the Marginal Emission
Factors from [49} |45]. It is noteworthy that all traces overlap until about 20 MWh, after which they
start to diverge and the 2030 BAU scenario shows the highest maximum savings of 11.4% compared
to no battery. The overlapping occurs because below 20 MWh there are peaks in production in all
years that the battery is unable to store, and thus dumps on the grid. This requires grid draw at a
later time when this dumped energy is required. Above 20 MWHh, the battery is able to store the solar
peaks and 2030 BAU shows the largest CO2 emission reduction because its higher production peaks
necessitate less grid draw, explaining why the 2030 traces are below 2025. The maximum emission
reduction in 2025 is 7.8% for the BAU scenario. The BAU scenarios can make bigger gains in both
years than Flex because the battery has a higher influence on self-consumption without flexibility
of demand, the difference is 2% in 2030 and 0.8% in 2025. The larger difference between the 2030
traces compared to the 2025 traces, like in the self-consumption graph in is due to more
flexibility potential in demand and production in 2030.

Relating these CO2 savings to the city goals requires a clear definition of what city emissions are
attributable to the ED. is useful in this regard and shows the total CO2 equivalent
emissions in the city of Amsterdam, per source. The area is mainly residential and does not contain
any heavy industry or harbour activity (anymore, despite the name), so this is excluded from the
calculation. No highways run through the ED which makes the case for discarding highway emissions
from the equation. The rest of the mobility emissions, ’Amsterdamse wegen’ (Amsterdam roads) are
relevant. They include CO2 emissions of vehicles driving on roads within the city. Also included are
the built environment (” Gebouwde Omgeving”) and Electricity (”Elektriciteit”) emissions (except for
industry). These include CO2 emissions from gas heating and the CO2 footprint of grid electricity
use. This leaves a total of 72% of emissions that are relevant to living and working activity in the
ED. To end up with an emissions number attributable to the ED, this number has to be multiplied
with the fraction of Amsterdam residents living in the area. While this discards the number of people
working there and also emitting CO2, the fact that it is mainly a residential area still makes it a fair
way to attribute emissions. The calculation is given in with Fgp the emissions that
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are attributable to the ED, Pgp the population of the ED, Pa,,s the population of Amsterdam, Cgp
the fraction of city emissions attributable to the ED and Fy,; the total city emissions in 1990. What
this means in terms of total emission values is given in The 1990 level is used because the
55% reduction percentage in the city’s statement is relative to 1990 levels.

Pgp
PAms

Egp = * Cep * Eiotal (5.1)

Table 5.8: CO2 emissions in the ED, calculated using [Equation (5.1)

Variable Value Unit
ED emissions fraction (Cgp) 0.72 /
Total Amsterdam emissions in 1990 (Ea.,s) 3810 kilotonnes
ED population (Pgp) 20564 /
Amsterdam population (Pay,s) 872779 /
ED emissions 84.82 kilotonnes

Using these facts, it is possible to compute how much the solar, Flex and battery save as a fraction
of total ED emissions. The amount of CO2 saved is equal to the product of the consumed solar
electricity and the Marginal Emission Factor per timestep. Solar consumption increases with storage
capacity and is larger when flexibility of demand is applied, recall When the total amount
of CO2 saved is divided by the total emissions attributable to the ED, the result is the fraction saved.
Comparing this to the city reduction goal will show how much these technologies can help in reaching
it. This is visualised in which shows that BAU and Flex are very similar at 16.6% and
17.6% saved in 2030 (zero battery capacity) respectively. For 2025 it is even closer at 13.4% and
13.7% respectively. The 2030 traces converge to a maximum of 22.0% and 2025 plateaus at 16.5%.
The solar, Flex and battery can thus drive 33% - 40% of the envisioned maximum CO2 emission
reduction of 55% in 2030, mentioned at the start of this chapter. It should be noted that this figure
is likely negatively influenced by how CO2 emissions are calculated in [2]. Amsterdam quotes the
CO2 equivalent emissions, which includes other greenhouse gasses besides CO2. However, it does not
disclose what percentage of equivalent emissions actually is CO2. It is therefore possible that the total
emission value for the city is inflated compared to the CO2-only value, which decreases the emission
reduction calculated here using the Marginal Emission Factor. More on this in the discussion.
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Figure 5.14: CO2 (equivalent) emissions per sector, adapted from .
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5.2 Financial Results and Analysis

The financial results and analysis section will dive into the costs associated with grid energy, and
how solar, Flex and the battery system can save on these costs. It will also present the results of
a new idea regarding compensation for home owners’ surplus electricity. This will be related to the
coming changes in the balancing regulation which has compensated home energy producers until
now. A sizing and cost estimation will be done for a battery system. The potential of the battery to
generate revenue using the new compensation method, along with performing existing grid services
will be assessed. These other grid services will be mentioned and revenues estimated, but they are
not implemented in the battery model and as such are not explored in detail.

Cost of grid electricity

Prices for the day ahead market in the Netherlands are published on a transparency platform from
ENTSO-E [50]. 2019 data is used in this thesis to compute the costs of grid draw, and how much
can be saved by implementing demand flexibility and a battery system. Fach consumed kWh of
electricity generated by solar, either directly or via the battery system is a kWh less that has to
come from the grid. Of course energy prices will change as more renewable will enter the mix in the
future. They are predicted to become much more volatile, even reaching zero at peak production
times but increasing compared to current levels at times of high demand [51]. This further increases
the potential for a battery system to generate revenue. Therefore, the 2019 prices used for the graph
below serve only as an illustration for the financial impact of flexibility and storage. The section on
neighbourhood balancing shows a realistic way of maximizing the economic worth of solar energy in
the future.
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Figure 5.15: The total cost of grid draw for each year.

The almost constant lines for 2020 indicates that Flex and the battery system have a negligible
impact on grid draw, the low amount of solar capacity necessitating the majority of electricity to
come from the grid. Demand flexibility reduces grid draw costs by € 3000,- per year for 2020 by
slightly increasing solar self-consumption. It is still included as a reference to the 2025 level. Even
though total energy consumption in 2025 is much larger than in 2020, due to more heatpumps and
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EV’s, the grid draw cost level is more than 20% lower at 50 MWh storage because a larger share
of demand is serviced by solar. At this capacity, the battery saves € 150.000,- per year on grid
electricity. Demand flexibility reduces necessary grid electricity by € 29.000,- compared to BAU at 0
MWh storage, the difference decreasing with increasing storage capacity. This is because the battery
does the same thing as Flex, increase self-consumption, and the law of diminishing returns applies: at
some point so much demand is serviced by stored energy that shifting the remaining demand has less
effect. This is why the traces show the typical BAU/Flex convergence for grid draw derived variables
at higher battery capacities. In the 2030 scenario a 50 MWh battery saves € 216.000,- of grid energy
for BAU and € 185.000,- for Flex per year. If customers pay a fair price for neighbourhood generated
energy, which could even be below retail, there is a margin to be earned by the battery. This will be
assessed in the next section on neighbourhood balancing.

Neighbourhood balancing

The Dutch minister of Economic Affairs and Climate has decided to tail off the existing compensation
ruling from 2023 by 9% per year until 2030 [52]. From 2031 onwards there is no compensation from
the government, the only compensation will come from the energy supplier and is equal to 80% of the
quoted variable energy price. This reduces the average price a customer receives for feeding-in energy
by around 15 cents per kWh. shows the impact this has on the total revenue that producers
in the ED will receive for their energy. If a neighbourhood battery is implemented to complement
growing solar installations, it could facilitate a new way of compensation, dubbed 'neighbourhood
balancing’ by this author. The idea is that energy producers get a fee for their energy which is
above the variable price, to incentivize connections to the battery and solar panel installations, and
consumers pay a ‘normal’ electricity price for energy from the battery. The spread is income for the
battery. The different prices are summarised in

Table 5.9: Impact of changing balancing compensation between 2030/2031.

Scenario Year Balancing revenue Difference

BAU 2030 €705.660,-
BAU 2031 €349.610,- -49.5%
Flex 2030 €575.900,-
Flex 2031 €285.320,- -49.5%

Table 5.10: Energy prices used for financial calculations.

Variable Price [€ /kWh]

Average variable energy price

(Jun-19 - Jun-20) 0-0756
Average Dutch commercial energy price 0.92
(Jun-19 - Dec-19) ’
Neighbourhood balancing bid price 0.125
Neighbourhood balancing ask price 0.22
Neighbourhood battery margin 0.095

Choosing a bid and ask price is of course arbitrary, but two values have been chosen for the purpose of
this thesis. The bid price is 5 cents above the state-mandated price payable by the energy suppliers,
reducing the drop in balancing income for solar panel owners between 2030 and 2031 by a third.
Consumers buying from the battery pay a fee of 22 cents/kWh, equal to the current electricity price.
However, it can be expected that energy prices will grow with at least the inflation rate per year in
the next 10 years. This means 22 cents will be below the regular commercial electricity price in 2030,
again incentivizing consumers to connect to the battery.

With the prices in one can compute battery income from neighbourhood balancing. The
margin per kWh is multiplied with the amount of energy going through the battery to end up with a
total yearly trading income. How much energy goes through the battery depends on its capacity (and
the solar production) and is thus closely related to the self-consumption. A higher capacity results
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in less grid draw and dump. That is why the graph in looks very similar to [Figure 5.12]

but inverted, as it is also dependent on grid dump. The same differences between BAU/Flex exist,
with more energy going into the battery without Flex, as Flex tries to prevent this by transferring
load. That is why the BAU revenues are higher than Flex. The revenues are used to compute the
payback period of the estimated costs associated with a battery system. For this purpose, a scaling
is done based on the results in this chapter. Additionally, a brief review will be made of other grid
services and their potential revenues for a battery of this scale.
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T T T T

600.000 T
wijksaldering 2030
— — wijksaldering 2030 Flex S
wijksaldering 2025 L
— — wijksaldering 2025 Flex o
500.000 i E
rd P =T e
i
400.000 |- / I .
7
@ /
g 300.000 "/ ; B
@ ' / i
> / N —
D A R
o A T
/ 7
200.000 | o4 1
S
y
//
/7
100.000 |- // :
/
/4
/
0 1 1 Il L Il L
0 20 40 60 80 100 120 140

Battery Capacity [MWh]

Figure 5.16: Total margin revenue of neighbourhood balancing, for 2025 and 2030.

Sizing, costs and payback period of the battery

Once the problematic impact of foresaid energy scenarios is clear, a battery storage system is identified
as a possible solution and a possible revenue stream is suggested, the next step is sizing the system [53].
A battery can be sized based on a variety of desired results, but in the case of the neighbourood battery
two focus points are identified: capacity to increase self-consumption and autarky, and generating
revenue to improve its business case. Self-consumption and autarky are the basis of all other results.
When they increase, by definition (average) grid draw/dump and thus CO2 emissions decrease and
revenues increase. A ’huge’ battery which could store every last kWh of solar can generate more
revenue in the neighbourhood battery scenario, as more energy can be bought and sold, but it
would be far too expensive. Conversely, a battery that does not make a substantial impact on the
grid because of its relatively small size will perhaps not get the necessary backing from important
stakeholders like the municipality and TSO/DSO as it is non-essential. There is a sweet spot to be
found, and the fact that grid draw/dump, autarky and self-consumption results show diminishing
marginal returns at higher storage capacities is helpful in finding it. However, a neighbourhood
battery must first and foremost have a substantial positive impact on grid stability and renewable
energy use. This is the pre-requisite for it to be built and generate revenue. "Positive impact’ is still a
very vague term which must be defined with hard demands that in the end generate a desired battery
size. Then, the financial implications of this size must be assessed with respect to cost, revenue and
payback time.
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In order to have the positive impact mentioned above the battery needs to be functional in relation
to self-consumption and autarky, the two driving Key Points of Interest (KPI’s). Functional can
be defined by setting a desired value for the KPI's as a fraction of the maximum values, while
recognizing their asymptotic nature, and then seeing at which storage capacity this value is reached.
After analysing a 95% fraction is identified as a good intermediate between performance
and size because it falls before the asymptote is reached for both KPI’s and is close to maximum
performance. To prevent unnecessary complicating the sizing of the system one required capacity
per scenario year is determined. As BAU and Flex traces differ and reach this fraction at slightly
different battery sizes, a middle point between the two traces is chosen from which the size is derived.
The required power capacities come from the BAU scenario in|[Table 5.7 The desired fraction of 95%

results in the battery capacities displayed in

Table 5.11: Battery capacities at 95% of the maximum KPI values in each year.

Storage capacity Required power capacity
Year  KPI 95% value (middle point of BAU /Flex) (from |Table 5.7))
2025  Autarky 28.8% 23.8 MWh 3.70 MW
2025  Self-cons 95% 26.6 MWh 3.70 MW
2030 Autarky 31.4% 44.8 MWh 5.51 MW
2030  Self-cons 95% 44.8 MWh 5.561 MW

Before deciding on a definitive battery sizing, battery degradation must be taken into account.
Research on Lithium-ion batteries has shown that degradation depends on a various factors like
charge/discharge power, depth-of-discharge (DoD), outside temperature etc [54]. This type of bat-
tery is widely used in EV’s and other storage devices and its degradation characteristics are used for
estimating the degradation of the battery system in this thesis. The DoD implemented in the model
is 60%, which is seen as an optimal compromise between battery life and capacity usability. That
means that the battery is charged to a maximum state of charge (SOC) of 80%, and discharged to a
minimum SOC of 20%. Battery testing results in [54] show that batteries exhibit linear degradation
for a certain DoD at an increasing number of cycles. With a 60% DoD, this degradation is 1.4% per
1000 cycles. shows the number of cycles that the battery system experiences for each year

and scenario.

Table 5.12: Cycles per year and degradation of the battery after 25 years.

Year Scenario Number of cycles Degradation after

25 years
2030 BAU 159 5.6%
Flex 129 4.5%
2025 BAU 146 5.1%
Flex 149 5.2%

A battery capacity of 95% after 25 years does not require overdimensioning of the battery, as a
60% DoD is still achievable without coming near the maximum capacity of the battery. The sizes
in therefore do not have to be increased, and have only been rounded for calculation
purposes; to 25 MWh for 2020 and 45 MWh for 2030. There is a large difference in income between
BAU and Flex for 2030 so these will be stated individually, as will the payback periods. The 2025
BAU/Flex traces are very close together at 25 MWh, so one revenue figure will be used for both.
This results in a neighbourhood balancing income for the battery of € 215.200,-. For 2030 the values
are 406.400,- (BAU) and 328.400,- (Flex). The Net Present Value of the investment in the battery

system is computed with using these revenues [55].

n

NPV = ; ufi)t (5.2)
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In this equation, R; are the balancing revenues in year ¢t. These are discounted with the denominator
using a discount rate ¢, which is equal to the return that can be achieved with an alternative invest-
ment. This discount rate consists of a risk-free rate and a risk-premium, see The
risk-free rate is usually equal to the rate on a long-maturity state bond. The risk-premium accounts
for the additional risk that the investment poses relative to a risk-free bond (assuming that the state
has a low default risk). In this case, the investment can be classified as low risk because it is assumed
that there is a guaranteed demand for the battery services once the system is implemented. The
risk-free rate can be taken zero, corresponding to the 30 year bond yield for the Netherlands. A risk
premium of 5% was chosen based on [56| 57]. For this computation the revenues have been scaled
with yearly inflation equal to 2%, the average yearly inflation in the Netherlands over the past 25

years [58]. The results are displayed in [Table 5.13
i=R;+R, (5.3)

Table 5.13: NPV of the battery system for 2025 and 2030.

Start year End year NPV (Flex NPV)

2025 2050 € 3,698,029
2030 2055 €13,017,114
(€10,518,750)

The costs of a battery system are expressed in € /kWh and a cost of € 350/kWh is used from a report
from the company DNV-GL [59]. This is based on a 25 MWh/10MW system and is a conservative
estimation because the 2030 battery size will likely give it an economies of scale advantage. The
storage and power capacity of the reference system is scaled for the 2030 scenario. shows
the costs for the battery systems in 2025 and 2030, including all subsystems and associated costs.

Table 5.14: Cost of the battery systems in 2025 and 2030.

Scenario Storage capacity Power capacity Battery costs

2025 25 MWh 10 MW € 8,750,000,-
2030 45 MWh 18 MW € 15,750,000,-

Comparing these costs with the NPV of 2025 and 2030, it is clear that the balancing income is not
enough to cover the investment costs. While 2025 is a long way off, the 2030 NPV is only 20%
below the costs for BAU. In any case, additional forms of income are needed for both years. A short
overview of other services the battery could provide, along with an estimation of the revenue these
services could provide is given in the next section.

Other battery services

Two types of battery services are often mentioned in conjunction with peak shaving: Frequency Con-
tainment Reserve (FCR) and congestion services on the new GOPACS market. FCR is production
capacity made available by Balancing Service Providers (BSP’s) for discretionary increasing or re-
ducing of the energy output, in order to balance the energy grid. The capacity must have a minimum
size of 1 MW and a fast response time (j5m) [60]. This function has been historically provided by gas
and coal turbines, but as these are being phased out in favor of renewable production capacity, new
forms of FCR are being evaluated - for example wind turbines and battery systems [61]. A European
auction market has been set up where providers can bid their daily capacity and country TSO’s can
select the desired capacity /price bid. A separate system then calculates the optimal combination of
bids incorporating all TSO submitted bids. A single price is then determined, equal to the highest
price in an accepted bid, which is payed to the individual BSP’s. The European Network of Transmis-
sion System Operators for electricity (ENTSO-E) publish FCR prices in € /MW /week. The average
price over a year lies around € 2500/ MW /week [62].
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Because FCR capacity is expressed per MW the power characteristics of the reserve system are
important. Again, the costs per kWh storage used in the computations above are based on a 25
MWh/10 MW system. The power capacity in this reference, copied for 2025 and scaled for 2030, is
larger than the required power capacities in but this gives the system redundant capacity
in case (a part of) the battery malfunctions or there is further growth in demand and to perform more
FCR and congestion services. Using (part of) its power capacity for FCR can generate a lucrative
extra value stream for the system. The results of the battery model have shown that the year can
be divided between a battery active period and a battery inactive period. During the active period
most of the capacity is needed most of the time to store solar power and perform peak shaving. The
largest FCR potential lies in the inactive period. This period covers autumn and winter when wind
production is typically highest (which is why solar and wind are complementary energy sources) which
often causes big production surpluses [63] during the day. At the same time, the highest demand
peaks occur during this period because of a much larger heating demand. These surpluses will only
become larger as more wind farms go into operation, and threaten the stability of the grid. The
battery system can act as a BSP and store excess wind energy when solar production is low, and
as such could use up to 100% of its capacity for FCR in the inactive period. To be conservative it
is assumed that the system has, on average, 75% of capacity available for FCR on each day during
the battery inactive period, and the battery only performs FCR, this would generate the estimated

revenues displayed in [Table 5.15

Table 5.15: Estimated yearly revenues for performing FCR-services during the battery inactive period.
75% of max. battery capacity available.

2025 2030
Number of days in battery inactive period 183 183
Estimated battery capacity available for FCR [MW] 7.5 13.5
Average FCR revenue [€ /MW /week] 2500 2500
Estimated yearly FCR revenue [€] 487.500,- 877.500,-
NPV of FCR revenue over lifetime [€] 8.377.273,- 28.106.588,-

These yearly revenues are 2-3 times greater than the neighbourhood balancing revenue and the NPV
of the FCR revenues in the 2030 is almost two times greater than the cost of the system, given in
This signifies the importance of including FCR in the battery services portfolio to solidify
the business case of a neighbourhood battery system and to even make a profit over its lifetime.

Grid congestion can be caused by too much demand as well as too much production. Congestion
problems therefore occur in urban area’s like Amsterdam, where datacenters and EV’s are demanding
an ever bigger slice of the energy pie, but also in rural areas where solar farms are being built and
the grid is not designed for the associated large energy inflows. These congestion issues can thus be
solved by increasing demand or production locally, and must be mitigated to prevent premature and
costly grid reinforcements. To do this, a new congestion market called GOPACS has been launched
as an initiative of Dutch TSO’s and DSO’s [19]. GOPACS is coupled to the intraday market platform
EPTA and allows flexibility providers to bid their production or demand capacity. When there is a
local congestion problem, the TSO/DSO can buy this capacity to solve it. However, there must be
an overall grid balance at all times. So, when a party increases consumption or production, an equal
but opposite action must be done at another, uncongested, grid location to preserve this balance. In
order to guarantee that this counter-action takes place, the TSO/DSO pays the spread between the
GOPACS ask price of the first party at the congestion location, and the bid price of the second party
at the non-congested location.

Congestion services are estimated to generate around € 2850/MW /month [59]. Applying the same
assumptions as in the FCR estimation, i.e. 75% of capacity available for congestion services on each
day in the battery inactive period, operating on the GOPACS market would generate the estimated
revenues presented in
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These estimated revenues equate to 50-60% of the neighbourhood balancing revenues and therefore are
a good addition to the battery system. Especially during the otherwise inactive autumn and winter
period. The NPV of the revenues in the case of 2030 would amount to about 50% of the cost of
the battery system. A combination of FCR and GOPACS services could also be implemented, where
FCR can be performed during high wind production periods, mostly during the day, and GOPACS
services are mostly performed during the evening peak. The battery could then be charged with wind
energy during the day, with a zero CO2 footprint, but it could also accept (partly) non-renewable
electricity to cover the windless days during the battery inactive period. As more renewable energy
enters the mix, the average CO2 footprint of grid electricity will naturally decrease.

Table 5.16: Estimated yearly revenues for performing congestion services on the GOPACS market
during the battery inactive period. 75% of max. battery capacity available.

2025 2030
Number of days in battery inactive period 183 183
Estimated battery capacity available for GOPACS 7.5 13.5
Average GOPACS revenue [€ /MW /month] 2850 2850
Estimated yearly GOPACS revenue [€] 128.250,- 230.850,-
NPV of GOPACS revenue over lifetime [€] 2.203.867,- 7.394.195 -
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6 Discussion

This thesis set out to estimate the impact of electrification on demand peaks in the distributed
electricity grid of the Eastern Docklands in Amsterdam. It also explored how demand flexibility
and a neighbourhood battery system can decrease demand peaks, increase self-consumption of solar
energy and aid in the CO2 reduction plans for the city of Amsterdam. It adds to existing research,
which often focuses on one type of load [64], by including all relevant electricity loads that currently
exist and predicting how they will progress by making a substantiated prognosis of heatpump and
EV penetration. Furthermore, it contributes by proposing a new way of compensating prosumers
for their surplus solar energy when existing compensation is abated by the Dutch government, called
neighbourhood balancing. This not only incentivizes solar panel installations but increases local
consumption of renewable energy and lowers grid dump. It also provides a reliable income stream
for the operator of the neighbourhood battery while this storage system provides valuable services to
the grid. Lastly, the thesis also contributes by showing how such storage can decrease CO2 emissions
by using newly developed Marginal Emission Profiles, and relates the gains to governmental and
municipal climate plans. The following sections will answer these questions following the sub-questions
posed in section 2.1 of the Research Design chapter.

6.1 Impact on the grid

The electrification of heating and mobility will substantially increase both the average as the peak
power demand of the grid. In the 2030 scenario, peak demand will increase more than three-fold
compared to 2020. In the 2025 scenario the rise is two-fold. This is mostly because of the large
impact that heatpump load has on total demand. On the day of the maximum total demand peak,
the heatpump peak equals almost 75% of this total demand peak. This is number is large but
not unrealistic when comparing it to findings in a British literature article [6]. In this research on
heatpump penetration in Great Britain, a 20% heatpump adoption rate among all households in the
country led to a 14% rise in peak grid demand. The adoption rate in this thesis is larger at 49% and
the absolute user base is smaller, leading to a less spread out and more peaky demand profile. Also,
the outside temperature in the dataset from the article rarely went below zero degrees, whereas the
average outside temperature in the heatpump dataset (from reference year 1987) in this thesis is -0.44
C in January and February, and the minimum temperature is -15 C. The average temperature in the
Netherlands in 2019 during the same months was 4.73 C, indicating that the reference temperatures
in the dataset are relatively low. This is supported by the fact that the average yearly temperature in
the Netherlands has risen by 2 C since 1987 [65]. Because outside temperature is very influential on
heatpump demand, adapting the demand profile with more recent temperature data could result in
lower load peaks. EV-charging has a much smaller role to play, despite a dramatic rise in the number
of charging sessions, the average charging power and the fact that the evening EV-peak coincides
with the heatpump peak. The maximum peak in 2025 and 2030 equals about 10% of the heatpump
peak. Possible explanations for the small impact of EV’s are:

1. EV-charging is not as peaky has heatpump demand and has a better spread throughout the
day.

2. EV-charging does not require as much power as a heatpump.

3. The estimated number of sessions in the scenario is too low.

The first explanation is partly true, looking at EV-demand has a better spread throughout
the day and a less pronounced evening peak than heatpumps, but a peak none the less. The second
explanation is not true when looking at individual charging sessions. A modern EV can charge at 11
kW whereas a heatpump will use around 1 kW during normal operation. There are also more EV’s
than heatpumps predicted in 2030 (5934 vs. 4846). One would therefore expect a larger peak than
is present in the data. The most plausible explanation for this is an underestimation of the number
of charging sessions.
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Average grid demand, computed for the evening peak during the whole year, increases by 32.5% in the
2030 scenario compared to 2020. For 2025 the increase is 4.4%. While a less impressive figure than
the three-fold difference in peak demand, this is still a substantial rise considering that it is computed
over the whole year and therefore includes summer days where heatpump demand is minimal.

Solar production reaches a peak of 19.7 MW in 2030, almost half of the yearly total load peak, making
it an important factor when considering the strain of peak loads on the grid. Its 2025 peak is almost
equal to the heatpump peak and both are more than half of the total load peak in that year.

Relating these results to the estimated capacity of the grid, only the 2030 peak threatens the stability
of the grid, reaching 75.1% of capacity. This violates the two-fold redunacy rule that the Dutch
TSO’s have adhered to, but which has been increasingly let go in the past years. It must be said
that estimating grid capacity is a difficult exercise because so little information is made available by
the TSO. The estimation is based on a capacity value per low-voltage consumer that is mentioned in
an EU TSO/DSO observatory document [12], and is an average across all EU countries. The actual
grid capacity could therefore be both higher and lower than the estimate made here.

6.2 Effect of demand flexibility

Demand flexibility (”Flex”), also named demand response in literature and this thesis, has a substan-
tial impact on peak power demand. Flex decreases the BAU total load peak by 33% in 2030 and 31%
in 2025. This means only 31.4% and 50.3%, respectively, of grid capacity is reached. While demand
shifting creates a higher peak for EV-charging, this does not cause the absolute Flex total load peak to
increase. In fact they decrease by figures similar to BAU and occur on other dates. Peak shaving gains
between 29-31% are made for heatpumps. This is very promising for future implementation given the
predictable nature of heatpump demand. While the overall potential of demand response is great, its
application requires near-perfect load prediction and control over load generating appliances. Even
as the accuracy of predicting solar production and electricity demand has gotten very reliable [39,
40], controlling demand requires the large-scale implementation of a new generation of interconnected
technology that employs control strategies that both respond to individual user requirements and the
needs of the greater grid [64]. This implementation problem poses a great challenge for the future.

6.3 Effect of neighbourhood battery storage

Literature considers the integration of batteries in a local energy grid along two main lines: as one
central MW-scale system, or as connected but smaller distributed units at prosumer level [66, 53|
67]. This thesis models a system of the first kind and investigates how it can work together with
flexibility of demand to reduce peak loads on the electricity grid. The model is general in its technical
characteristics, it does not incorporate specific properties of the Eastern Docklands. This presents an
advantage for further application at other locations where demand and production data is available.
The disadvantage is that the exact location where congestion or capacity problems will occur cannot
be pinpointed.

Demand response and the battery system work well together on days with enough solar production.
The comparison in shows that flexibility decreases the morning peak, maximizes self-
consumption at noon and displaces some evening demand to the afternoon and night. This leaves
the remaining solar surplus for the battery to store and discharge during the evening peak, which
is already lowered by Flex. Reducing average grid demand is helpful to the DSO as it deals with
peak loads, which dictate grid operation and reinforcement costs. The battery is powerless on cloudy
(winter) days when there is no, or little, surplus, which promotes the idea of charging with grid-
electricity during cold, sunless periods. This is further made attractive by the increasing penetration
of renewables, decreasing the CO2 footprint of grid-electricity and leading to lower electricity prices
[51]. The system also has more capacity available in the winter period to perform grid-services like
frequency control and congestion management.
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The battery algorithm focuses on minimizing evening grid draw by supplying solar electricity. In the
2025 scenario, the average evening grid draw, between 16:00 and 20:00, over a full year is decreased
by 19.8% at a typical battery size of 50 MWh compared to no storage. More solar in 2030 empowers
the battery to reduce evening draw even more at a 29.5% reduction. Applying flexibility reduces
the relative impact of storage by 1-6%, as demand peaks are already lowered, but it does decrease
absolute draw values by another 10%. Awverage midday grid dump is almost zero with a 30 MWh
battery in 2025 and a 50 MWh one in the 2030 scenario but peak dump still exists at these sizes.
In the battery active period, the period running from day 78 to 260 with the highest cumulative
positive mismatch, the relative effect of the battery is dramatically greater. Here, average evening
draw is decreased by a maximum of 67.3% in 2030 and 51.5% in 2025. A potential improvement for
the model could be to implement an adaptable charging/discharging-rate. The adaptable charge rate
could be increased when a short positive mismatch is foreseen, and decreased when the predicted
surplus is large and lasts long. In the latter case, charging is spread-out over the surplus period and
the size of grid dump peaks is decreased. The same thing hold for the discharge rate, which could
be decreased when a long negative mismatch period is predicted, and increased when the shortage
is short-lasting. The peak values for draw and dump are not easily abated. Peak grid dump shows
little elasticity at increasing battery capacities and only starts to decrease substantially at very large
sizes. The dump loads are not insignificant, reaching 25% of grid capacity at 11 MW in 2030, which
could necessitate connect/disconnect control of installed solar power to prevent sudden spikes in grid-
voltage and frequency. Peak grid draw cannot be influenced at all by a battery system, similar to
what has been found in [13]. This is due to insufficient solar generation when the peaks occur in
January. So, curtailing these loads must come from demand response.

Autarky and self-consumption results benefit from the existence of a battery system which is advanta-
geous for local prosumers. Autarky, which is limited by the energy that the installed solar power can
produce, can be increased by 8 percentage points, reaching a maximum of 33%. An autarky of 31% is
already reached at the typical battery size of 50 MWh, a 20% increase compared to zero storage, and
gains after this capacity are therefore minimal. Self-consumption is between 75% and 80% without
storage and increases towards 100% at very large battery sizes (2100 MWh). At a typical battery
size of 50 MWh, self-consumption is more than 90% in each scenario. Demand flexibility improves
this compared to BAU by 2%, but only for 2030. These results lie in the same bracket as found in
[13].

Increasing the self-consumption of solar energy by applying demand response and implementing bat-
tery storage lowers the necessity for grid draw. This reduces the CO2 footprint of energy consumption
at the current Dutch electricity mix, where on a yearly basis about 9% comes from renewable sources
[48]. Battery storage can decrease CO2 emissions with a maximum of 11.4% compared to no bat-
tery for the 2030 BAU scenario. Flexibility decreases the impact of the battery by 2% because it
takes away some self-consumption potential. In 2025 the battery has less effect as there is less solar
generation and the largest emission reduction is for the BAU scenario at 7.8%. The absolute emis-
sions can be related to CO2 emissions in Amsterdam that are attributable to the Eastern Docklands.
Making this relation shows that a battery system can save 21% of the total current CO2 emissions
in the area in the 2030 scenario at a typical battery size of 50 MWh. Given the city of Amsterdam’s
emission reduction goal of 55% by 2030, neighbourhood battery storage could thus drive 40% of this
goal. It should be noted that this calculation relies on two sources for CO2 emissions. One contains
the marginal emission CO2 emission profiles for electricity production in the Netherlands, described
in [49], the other is the CO2 equivalent emissions in Amsterdam. While the first only considers
CO2 in the total emissions of electricity generators, the latter also includes other greenhouse gasses
besides CO2, like NOx, in the calculation. It is therefore likely that the fraction of CO2 saved is
underestimated in this thesis.
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The financial benefit of battery storage is assessed in three ways: how much it reduces grid-electricity
costs, how much it can earn by performing neighbourhood balancing and what potential revenues
come from other grid-services. First, it was explored how consuming less grid-electricity reduces
grid-costs using day-ahead market prices for 2019. The results show that consuming solar energy
lowers the yearly cost of consuming grid-electricity by 20% in 2025 compared to 2020, even though
demand in the later year is much greater. At a typical battery size of 50 MWh, grid costs in 2025
are € 150.000,- lower compared to no battery. Demand flexibility adds another €29.000,- to these
savings. The same storage capacity saves € 215.000,- in the BAU scenario and € 185.000,- for Flex
in 2030.

A desired battery size for each year was found by setting a self-consumption and autarky requirement
of 95% of their maximum values. This results in a 25 MWh and 45 MWh battery for 2025 and 2030
respectively, at a build cost of €8.75M and € 15.75M, excluding maintenance costs. Neighbourhood
balancing at a margin of 9.5 cents per kWh generates € 3.7M over a 25 year lifetime for the 2025
scenario and € 13M for 2030. The difference is due to greater energy exchange in 2030. To achieve
a positive business case other grid-services must be added to the functional portfolio of the storage
system. Two services were included, one focusing on maintaining a constant grid frequency by
bidding capacity on the Frequency Containment Reserve (FCR) market, and one aimed at reducing
grid congestion by offering flexibility on the GOPACS market. Performing FCR services using 75% of
capacity on each day during the battery inactive period could generate € 8.4M over the battery lifetime
in 2025 and € 28M in 2030, 1-2 times the cost of the system in the respective years. Participating on
the GOPACS market for the same hours also generates a healthy income for the battery at € 2.2M
and € 7.4M for 2025 and 2030 respectively. This income provides a robust buffer against potentially
higher prices that could occur during the building or operation of the system and could impact its
turn-key and lifetime costs.

An optimal combination of FCR and GOPACS can probably increase these revenues even further. The
battery inactive period falls in the autumn and winter when wind energy production is typically high
[68]. As mentioned earlier, the frequency issues caused by intermittent wind present an opportunity
for the battery system to perform FCR during an otherwise inactive period. At the same time
the capacity can be used to store wind surplus and solve congestion issues during peak evening
demand on the GOPACS market. The intermittency of renewables will also cause more volatile
prices, presenting an arbitrage opportunity for a battery system to 'charge low’ and ’sell high’. The
revenue from neighbourhood balancing could also be improved by using a dynamic pricing scheme,
where the ask price depends on energy demand. If a consumer charges their car at midday using
solar electricity from their neighbour, stored in the battery system, they pay less than if they charge
in the evening when everyone arrives home from work. This increases the margin for the battery
system further improving its business case.

So, a battery system has positive effects on the distributed grid and can create a revenue stream which
can cover its costs. However, all this depends on how many prosumers and consumers are connected
to the storage. The installed solar power modeled in this research utilizes all suitable roofs in the
ED, meaning there are households that cannot install solar panels. These people will most likely not
acquire generation capacity in the future but will continue to use electricity that could come from the
grid or the battery. They will need a (financial) incentive to connect to the battery but at the same
time, this incentive cannot lower the margin for the battery system excessively. The selling price for
battery energy is taken the same as the current commercial electricity price in this research. This
might have to be lowered to spur on non-producing households to connect to the battery. Another
solution could be that the DSO or another party operating the battery pays for the connection of the
homeowners, like suggested in [69]. The DSO has an overriding interest in maximizing the number
of connections, as optimal peak shaving could avoid costly grid reinforcements.
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6.4 Limitations of the research

Some limitations have already been mentioned, like the likely underestimation of charging sessions
and CO2 savings, and the rough estimation that had to be made for the grid capacity. Regarding
the charging sessions, when extrapolating the sessions to private charging the same profile fraction
as for public charging was used. One can imagine that private charging would include more nightly
charging and less worktime charging. This was not considered when scaling demand and could have
had an impact on the aggregated EV-charging profile. The estimation on grid capacity means that
it is less obvious how negative the consequences of the foreseen demand increase will be. However,
to a stakeholder that does have exact knowledge of grid capacity the results will be very relevant.

The results show that the demand increase will be driven mainly by heatpumps. While detail has
been added to the upscaling of the heatpump profiles by differentiating with the type of technology
and insulation level, scaling a single profile to several thousand users has some inherent drawbacks. It
houses the implicit assumption that the control strategy of one heatpump will be copied to all other
users. This means that every peak occuring in the profile remains there and is increased with the
scaling factor. In practice, the control strategies of thousands of heatpumps will be slightly different,
depending on make, model and user preference, and thus the profiles will have peaks at slightly
different times which evens them out when a large number of them is aggregated. A similar note
should be added for solar production. The installed solar power is modeled as one big solar field,
where in practice the panels will be distributed over several roofs. The panels will have a slightly
varying orientation on almost every roof, not all are oriented optimally, and as such real energy
generation will be different both in magnitude and profile shape. More or less energy produced can
influence the peak-shaving results the battery can achieve positively or negatively. Aggregating the
profiles of several thousand solar panels will even out any singular peakiness which could be positive
for the battery in terms of the peak power influx that it needs to cope with.

The e-flows flexibility algorithm which is used to apply demand response on the data in this research
serves as an illustration of the power of load flexibility to decrease power peaks and increase self-
consumption of solar energy. The way it is implemented in the model, assuming perfect prediction
of supply and demand, does not make any qualifications on the practical implementation of the
technology. Flexibility in EV-charging and heatpump operation must come with advanced levels
of control by the user (agreeing with delaying charging or setting a desired temperature for when
one arrives home) or by the technology, energy supplier or DSO itself (unilaterally shutting down
charging at peak demand or self-learning the temperature requirements of the user and deciding
the optimal strategy given the demand of other heatpumps). The best results are achieved when
flexibility is coordinated [13] which requires uniform communication protocols and comes with its
own legal issues. Many hurdles still have to be taken, although the Flexpower project in Amsterdam,
while not demand response in the purest sense, has taken steps in the right direction [21].

The battery system model in the research is a standalone storage facility that allows analysis on
power flows and energy quantities given a demand and supply profile. It does not consider technical
characteristics of the grid like voltage and frequency or integration on a grid-node level. Therefore,
simulating it produces results that are meaningful in view of load peaks, autarky and self-consumption,
but they do not say where problems will occur or how much the grid balance metrics are impacted.
This translates to the explorational nature of FCR and GOPACS income calculations. These were not
modelled but only estimated based on battery capacity and time available during inactive periods.
Performing these grid services can also decrease the battery lifetime by increasing the number of
cycles which needs to be explored further and in more detail. Another thing that could be added
to the model is a variable charge/discharge rate. This could improve the peak-shaving performance
and decrease grid-dump peaks further. Lastly, the cost of the battery system was based on another
use-case and does not consider the local circumstances in the Eastern Docklands or maintenance
costs. These could have a large impact on both the turn-key and lifetime costs when such a system
is built.
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7 Conclusion and Next Steps

Governmental policies are playing a catalysing role in the roll-out of novel heating and mobility
technology. The electricity needed to power these innovations must come from renewable sources,
in light of the overarching objective to decrease greenhouse gas emissions in an effort to slow down
climate change. While the share of wind and solar energy in the Dutch electricity mix has been growing
over the last decade, it has become clear that their intermittent characteristics can pose a threat to the
stability of the grid by causing large supply peaks. When the simultaneous electrification of mobility
and heating takes off as anticipated in the coming years, a similar spike in demand is expected that
could render the current grid capacity insufficient. It is therefore of paramount importance that
new smart ways to deal with supply and demand peaks are developed, tested and implemented on a
nationwide scale. These can prevent expensive grid reinforcements, or worse, power outages.

This thesis has approached the problem of high renewable penetration coupled with electrification
in the context of a realistic urban neighbourhood in Amsterdam. It has made a prediction of future
aggregated load profiles, based on an estimation of the solar, heatpump and electric vehicle potential
in the area, and compared this with current levels. Secondly, it has assessed the potential of demand
response to abate excessive demand peaks in the morning and evening. In addition, a comprehensive
evaluation of a neighbourhood battery system was done by simulating a modeled battery system, with
three objectives in mind. One, to see how storing local solar energy surpluses can be used to perform
peak shaving in the evening. Two, to analyze how increasing self-consumption of locally produced
electricity can reduce CO2 emissions from grid-electricity. Three, to assess if a healthy business case
can be built around local battery storage.

The results show that realising the potential for heatpumps and electric vehicles in the Eastern
Docklands can increase peak power demand by a factor of three in 2030. Realising all solar potential
can cause power supply peaks equalling 50% of grid capacity. Demand response is very effective in
reducing demand peaks year-round, shaving off more than 30% of the maximum aggregated load
peak and 10% of the average evening peak. The battery system is only functional during half the
year when enough solar energy is produced, and reduces the average evening peak by two-thirds in
this period. Taking the average over a full year the reduction equals 30%. At a typical battery size,
self-sufficiency of the neighbourhood is increased by 20% to around 30% in the 2030 scenario. Self-
consumption can be increased to over 90%. The combination of solar, demand response and storage
can help the city of Amsterdam achieve 40% of its CO2 reduction goals. A battery storage system
can turn a profit over its lifetime with an optimal combination of neighbourhood balancing, FCR-
and congestion-services.

This research contributes to existing literature by taking a holistic view of the problem in a realistic
environment, encompassing all demand types encountered in the distributed grid and proposing a new
use-case for local storage. Further research can build on this by focusing on the following aspects.
The Eastern Docklands are surrounded by water which could provide a source of heat for a, less
conventional, water-water heatpump. Exploring the suitability of this technology to provide heat to
the area could broaden the scope of electric heating possibilities. A collaborating investigation with
DSO Liander can shed light on the exact grid capacity situation in the neighbourhood. Important
things to assess would be where they see congestion happening based on observable trends and
technical grid characteristics, and if storage could be a practical solution. This should incorporate a
more detailed estimation of costs, evaluate legal hurdles and specify the location-specific potential of
grid-services, including charging the battery with grid-electricity.

These recommendations call for more theoretical research on a practical subject. Above all it is time
to put theory into practise. Existing experiments on local smart grids that have taken place in the
Eastern Docklands profit from the forward-looking mentality of its residents. The municipality and
grid-operator should take advantage of this mindset by putting their weight behind the upscaling of
these trials and initiating new ones. There is a need for more funding and less constrictive rules when
communities want to install solar panels, participate in demand response or experiment with energy
storage. This is the fastest way to assess what works and what does not work in the real world. Only
then the city of Amsterdam can truly move towards a sustainable future and reach its climate goals.
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8 Appendix

The Matlab script, raw data and Simulink model are available digitally
upon request. The Appendix contains extra figures that are output from
the script.

8.1 Extra figures
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Figure 8.1: One week of solar production data for four different months.
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Figure 8.3: Mismatch during one week in June, for the three scenarios.
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Figure 8.4: Mismatch during a full year, for the three scenarios.
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Figure 8.5: Absolute CO2 savings by the battery for different sizes, in kT. No flexibility is applied.
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Figure 8.6: Absolute CO2 savings by the battery for different sizes, in kT. Flexibility is applied.
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