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 A B S T R A C T

Advancements in large language models (LLMs) have opened new avenues for mental health monitoring 
through social media analysis. In this study, we present an iterative prompt engineering framework that 
significantly enhances the performance of the general-purpose LLM, GPT-4, for stress detection in social media 
posts, leveraging psychologist-informed hints. This approach achieved a substantial 17% accuracy improvement 
from 72% to 89% for the January 2025 version of GPT-4, alongside an 80% reduction in false positives 
compared to baseline zero-shot prompting. Our method not only surpassed domain-specific models like Mental-
RoBERTa by 5% but also uniquely generates human-readable rationales. These rationales are crucial for 
mental health professionals, assisting them in understanding and validating the model’s outputs—a key benefit 
for sensitive mental health applications. These results highlight prompt engineering as a resource-efficient, 
transparent strategy to adapt general-purpose LLMs for specialized tasks, offering a scalable solution for mental 
health monitoring without the need for costly fine-tuning.
. Introduction

Large Language Models (LLMs) have revolutionized applications in 
ealthcare, education, and industry by processing vast, diverse datasets 
ith billions to trillions of parameters (Beghetto, Ross, Karwowski, & 
lăveanu, 2025; Caruccio et al., 2024; Zahid et al., 2024; Zhang et al., 
025). In mental health, LLMs enable early detection of stress or depres-
ion through analysis of social media posts, offering scalable insights 
nto emotional states (Chang, Shi et al., 2024). General-purpose LLMs, 
or instance GPT-4 with its trillion-parameter architecture, provide 
trong capabilities in generalization and explainability compared to 
omain-specific models. These include, specifically, Mental-RoBERTa, 
hich are fine-tuned on targeted datasets derived from Reddit’s men-
al health communities (Chang, Wang et al., 2024; Chebbi, Kniesel, 
bdennadher, & Dimarzo, 2024; Devlin, Chang, Lee, & Toutanova, 
019; Ji et al., 2022; Raffel et al., 2020; Yang et al., 2023). How-
ver, domain-specific models often outperform general-purpose ones 
n specialized tasks due to their tailored training, yet they require 
esource-intensive, expert-labeled datasets (Gandy, Ivanitskaya, Bacon, 
 Bizri-Baryak, 2025). Fine-tuning large models like GPT-4 is equally 
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challenging, constrained by computational costs and closed-source ar-
chitectures, limiting customization for sensitive domains (Yang, Tao 
et al., 2024). Explainability is crucial in mental health, where stake-
holders, including psychologists and patients, demand transparent rea-
soning to trust model outputs (Tufano, Dabić, Mastropaolo, Ciniselli, 
& Bavota, 2024). Explainability, which involves generating human-
readable justifications that psychologists can validate, is distinct from 
interpretability, which requires insight into internal mechanisms such 
as feature weighting—often infeasible with proprietary models such as 
GPT-4. By utilizing GPT-4’s explainability, this study ensures outputs 
align with psychological expertise, fostering trust and supporting re-
sponsible deployment in stress detection. These challenges highlight the 
need for innovative approaches to adapt general-purpose LLMs without 
extensive retraining (Wang et al., 2024).

Prompt engineering offers a resource-efficient solution to tailor 
general-purpose LLMs for domain-specific tasks through carefully de-
signed prompts, bypassing the need for fine-tuning (Priyadarshana, 
Senanayake, Liang, & Piumarta, 2024). Techniques, specifically zero-
shot and few-shot learning, enable LLMs to perform tasks with minimal 
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or no task-specific training by embedding task descriptions or examples 
in prompts (Brown et al., 2020; Kojima, Gu, Reid, Matsuo, & Iwasawa, 
2022). These methods have enhanced LLM performance in diverse 
natural language processing (NLP) tasks, such as sentiment analysis 
and question answering, by eliciting robust reasoning capabilities (Pal, 
Bhattacharya, Lee, & Chakraborty, 2024; Yang, Zhang et al., 2024). In 
mental health, where data heterogeneity and ambiguity (e.g., nuanced 
expressions or emojis) pose challenges, prompt engineering can guide 
models to focus on domain-relevant cues, reducing computational bar-
riers while maintaining scalability (Chung et al., 2024; Taori et al., 
2023). Despite its promise, the application of prompt engineering 
to stress detection remains underexplored, particularly in leveraging 
expert feedback to refine model outputs (Priyadarshana et al., 2024).

This study employs prompt engineering to enhance GPT-4’s per-
formance in detecting stress in social media posts from the Dreaddit 
dataset, labeled by psychologists as ‘‘stressful’’ or ‘‘non-stressful’’ (Ji 
et al., 2022). The dataset’s complexity, with ambiguous posts and di-
verse linguistic patterns, tests GPT-4’s ability to distinguish subtle stress 
indicators. We iteratively refined prompts using psychologist-informed 
hints, incorporating feedback from misclassifications to improve rea-
soning and accuracy. This approach achieved a 17% accuracy improve-
ment, surpassing Mental-RoBERTa by 5%, without accessing GPT-4’s 
internal parameters (Brown et al., 2020; Kojima et al., 2022). By lever-
aging GPT-4’s explainability, we aligned outputs with mental health 
expertise, demonstrating a scalable, transparent method for adapt-
ing general-purpose LLMs to sensitive tasks. Our findings highlight 
prompt engineering’s potential to bridge the gap between generaliza-
tion and specialization, offering a practical solution for mental health 
applications (Chung et al., 2024; Taori et al., 2023).

The remainder of this paper is organized as follows: Section 2 
reviews related work, focusing on prompt engineering for general-
purpose and domain-specific LLMs for mental health. Section 3 details 
our methodology, including the dataset, preprocessing, prompt design, 
experimental setup, and evaluation steps. Section 4 presents the results, 
analyzing error patterns, the impact of psychologist-informed hints, 
and comparisons with domain-specific models and zero-shot and few-
shot baselines. Section 5 discusses key findings, including performance 
differences across GPT-4 versions, limitations in handling ambiguous 
cases, and implications for explainability. Finally, Section 6 concludes 
with key insights and directions for future research.

2. Related work

This section reviews the literature relevant to our study, focusing 
on advancements in prompt engineering and the application of LLMs in 
mental health. It explores prompt engineering techniques for general-
purpose LLMs, such as zero-shot and few-shot learning, and their role 
in enhancing performance for tasks like stress detection. Addition-
ally, domain-specific LLMs tailored for mental health are discussed, 
highlighting their strengths, limitations, and resource requirements.

2.1. Prompt engineering for general-purpose LLMs

General-purpose LLMs, such as PaLM, GLaM, Llama, Mistral, Grok, 
and GPT-4, demonstrate remarkable versatility across tasks like trans-
lation, summarization, question answering, and sentiment analysis, 
processing human-like text with trillions of parameters (Chuang, Tang, 
Jiang, & Hu, 2024; Lee, Bahukhandi, Liu, & Ma, 2025; Shao, Yu, Wang, 
& Yu, 2023; Singhal et al., 2025; Viggiato & Bezemer, 2024; Zhu, Pan, & 
Xiong, 2024). In mental health, these models analyze social media posts 
to detect stress or provide conversational support, capturing complex 
language patterns and contextual nuances (Kortemeyer, 2024; Tufano 
et al., 2024; Zhang, Deng, Liu, Pan, & Bing, 2024). Their explainability, 
generating transparent reasoning, is critical for stakeholder trust in 
sensitive domains like psychology (Chang, Shi et al., 2024). However, 
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their general-purpose design often results in lower accuracy for special-
ized tasks compared to fine-tuned models, as they may overlook subtle 
mental health cues, such as implicit stress indicators (Bauer et al., 2024; 
Yang, Tao et al., 2024). Additionally, closed-source architectures and 
high fine-tuning costs limit customization, particularly for researchers 
with constrained resources (Gandy et al., 2025), while data noise, such 
as ambiguous or mislabeled posts, exacerbates challenges in mental 
health applications (Pal et al., 2024).

Prompt engineering has transformed the adaptability of general-
purpose LLMs for domain-specific tasks, offering a cost-effective al-
ternative to fine-tuning (Priyadarshana et al., 2024; Wang et al., 
2024). Recent advancements highlight the efficacy of zero-shot and 
few-shot learning paradigms. For example, zero-shot learning, intro-
duced by Brown et al. (2020), enables LLMs to perform tasks without 
training by using descriptive prompts, while Kojima et al. (2022) 
showed that few-shot learning, which incorporates labeled examples, 
yields robust reasoning comparable to that of fine-tuned models. These 
approaches have enhanced LLM performance in tasks like sentiment 
analysis and question answering (Pal et al., 2024; Yang, Zhang et al., 
2024). In mental health, where social media posts exhibit ambigu-
ity (e.g., nuanced emotions, emojis, or slang), prompt engineering 
guides models to prioritize relevant cues, such as emotional inten-
sity or contextual triggers (Chung et al., 2024; Taori et al., 2023). 
Techniques like chain-of-thought prompting further improve reason-
ing by encouraging step-by-step analysis, critical for complex tasks 
like stress detection (Priyadarshana et al., 2024). Despite these ad-
vances, applying prompt engineering to mental health remains under-
explored, particularly in integrating expert feedback to refine prompts 
iteratively. Our study addresses this gap by designing prompts with 
psychologist-informed hints, optimizing GPT-4’s accuracy for stress 
detection in Dreaddit posts, aligning with broader prompt engineering 
literature (Yang, Zhang et al., 2024). This approach demonstrates that 
prompt engineering can effectively tailor general-purpose LLMs for 
sensitive tasks, offering a scalable, resource-efficient solution without 
altering model architecture.

2.2. Domain-specific LLMs for mental health

Domain-specific LLMs, fine-tuned on mental health datasets, are 
customized to detect emotional states, stress, or disorders, ensuring 
ethical, privacy-conscious, and contextually relevant outputs (Hu et al., 
2024). Mental-RoBERTa, built on RoBERTa and fine-tuned with Red-
dit posts from communities like r/depression and r/Anxiety, excels 
in classifying stress, depression, and suicidal ideation by leveraging 
domain-specific linguistic patterns (Ji et al., 2022). MentalQLM, a 
lightweight model with 0.5 billion parameters, employs instruction 
tuning and dual Low-rank Adaptation (LoRA) for efficient binary and 
multi-class classification, supporting real-time mental health applica-
tions (ShiJiayu et al., 2024). Mental-Flan-T5 utilizes chain-of-thought 
reasoning and instruction tuning to analyze complex texts, adapting to 
mental health tasks with robust few-shot performance (Chung et al., 
2024; Xu et al., 2024). Mental-Alpaca, optimized for user-friendly 
interactions, enhances contextual reasoning for diverse mental health 
scenarios (Taori et al., 2023; Xu et al., 2024). However, these mod-
els require fine-tuning, demanding large, expert-labeled datasets and 
significant computational resources, which are often inaccessible in 
low-resource settings (Gandy et al., 2025). Data heterogeneity, such as 
varying expressions of stress across platforms, further complicates train-
ing (Yang, Tao et al., 2024). Our approach mitigates these challenges 
by using prompt engineering to achieve comparable performance with 
GPT-4, bypassing the need for resource-intensive fine-tuning.
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3. Methodology and experimental design

In this section, the dataset, specifically designed for stress detection 
in social media posts, is first explored. Subsequently, the minimal 
preprocessing approach adopted to preserve the data’s authenticity 
and nuanced emotional and contextual cues is described. This strategy 
ensures the model processes posts as they appear in real-world social 
media environments, thereby enhancing the practical applicability of 
our stress detection methodology.

3.1. Dataset and preprocessing

To develop and evaluate our prompt engineering approach for stress 
detection, we utilized the Dreaddit dataset, a Reddit-based resource 
specifically designed for stress analysis in social media posts (Xu et al., 
2024). The dataset comprises 3553 annotated segments derived from 
2929 posts, with an average length of 420 tokens per post, distinguish-
ing it from shorter-form platforms like Twitter. These segments, sourced 
from Reddit communities, capture a diverse range of linguistic patterns, 
emotional narratives, and situational triggers, making Dreaddit an ideal 
testbed for evaluating LLMs like GPT-4 in detecting nuanced stress 
indicators. The dataset is split into an initial prompt evaluation set 
(2838 segments, 80%) and an independent test set (715 segments, 
20%), maintaining near-balance with 51.6% and 52.4% stressful labels, 
respectively. Each segment was annotated by at least five annotators, 
with labels determined through majority voting to ensure robustness 
despite subjective interpretations of stress. This annotation process 
mitigates challenges such as linguistic diversity (e.g., slang, idioms), 
cultural nuances, and potential label noise, which are common in 
user-generated content (Raffel et al., 2020). Prompt hints are explicit, 
actionable insights derived from error analysis, serving as strategic 
suggestions to guide the LLM’s reasoning. To prevent data leakage, 
these hints were derived exclusively from the evaluation set during 
error analysis, with updated prompts evaluated on the independent test 
set. Dreaddit’s rich, context-heavy content provides a robust foundation 
for validating our prompt engineering methodology, offering deeper 
insights into stress detection compared to traditional mental health 
datasets.

Given the dataset’s complexity, we adopted a minimal preprocess-
ing approach to preserve the authenticity of social media posts and 
capture nuanced emotional and contextual cues critical for stress detec-
tion (Esmi, Shahbahrami, Gaydadjiev, & de Jonge, 2025). All textual 
elements, including emojis, hashtags, misspellings, and punctuation, 
were retained to reflect the natural tone and affective significance of 
the posts. Emojis, such as sadness ( ) or anxiety ( ), are particularly 
important for signaling stress, especially among younger users, and 
were preserved to leverage their emotional weight. No tokenization, 
normalization, or spelling corrections were applied, as such interven-
tions could alter the posts’ emotional intent or contextual meaning. 
Data noise, such as ambiguous phrases or inconsistent formatting, 
was addressed by relying on GPT-4’s robust contextual understanding, 
effectively guided by carefully designed prompts. This strategy ensures 
that the model processes posts as they appear in real-world social 
media environments, enhancing the practical applicability of our stress 
detection methodology. By preserving the dataset’s inherent complex-
ity, our approach aligns with Dreaddit’s design to reflect authentic 
user-generated content, enabling robust analysis of diverse, nuanced 
expressions of stress.

3.2. Prompt engineering framework

To adapt GPT-4 for stress detection on the dataset, we developed 
a structured prompt engineering framework, grounded in established 
principles (Liu & Chilton, 2022). Fig.  1 illustrates a zero-shot prompt 
example, comprising, part A, a social media post with an associated 
3 
question, and part B, GPT-4’s response to that question. The zero-
shot prompt (𝑃𝑍𝑆 ), designed to obtain binary classifications (‘‘Yes’’ for 
stressful, ‘‘No’’ for non-stressful), comprises four components: a task 
description (𝑇 ), the social media post (𝑃𝑆 ), a classification query (𝑃𝑄), 
and an output modifier (𝑂𝑀 ). The task description (𝑇 ) instructs GPT-4 
to classify posts based on linguistic and emotional cues, such as tone, 
sentiment, or trigger words relevant to mental health (e.g., expressions 
of anxiety or distress). The social media post is presented verbatim 
to preserve its raw content, ensuring that contextual nuances, includ-
ing emojis and slang, are retained. The classification query requests 
a binary ‘‘Yes’’ or ‘‘No’’ response to minimize ambiguity, while the 
output modifier enforces standardized outputs for consistency and re-
producibility, as shown in Eq.  (1). This structure, minimizes response 
variability and ensures that GPT-4 focuses on stress detection across 
diverse posts. 
𝑃𝑍𝑆 = 𝑇 + 𝑃𝑆 + 𝑃𝑄 + 𝑂𝑀 (1)

While the initial prompt provided a clear framework, it lacked 
domain-specific guidance, leading to errors in capturing subtle stress 
indicators, such as implicit anxiety or situational stressors. To address 
this, we implemented an iterative refinement process informed by 
psychologist expertise, following a structured error analysis as depicted 
in Fig.  2. After zero-shot prompting (Step 1), we extracted posts with 
false positive (FP) and false negative (FN) outcomes from the initial 
prompt evaluation set (Steps 2 and 3). These misclassified posts were 
reviewed by psychologists, who identified root causes of errors, such 
as misinterpretation of neutral linguistic cues or failure to detect con-
textual triggers (e.g., financial or social stressors) (Esmi et al., 2025). 
The psychologists’ analyses were grouped into categories, including 
linguistic ambiguity, contextual oversight, and emoji misinterpretation, 
and ranked by frequency of occurrence. Each category was distilled 
into concise, hints to guide prompt updates. For example, one hint 
instructed GPT-4 to prioritize situational context (e.g., references to 
job loss) over isolated emotional keywords, reducing false positives in 
ambiguous posts (Steps 4, 5, and 6) in Fig.  2.

These psychologist-informed hints (𝐻) were incorporated into the 
prompt, enhancing its ability to capture stress-related patterns, as 
shown in Eq.  (2) (Step-7). The updated prompt structure explicitly 
guided GPT-4 to focus on domain-relevant cues, such as emotional 
intensity or situational triggers. For instance, a hint might direct the 
model to consider phrases like ‘‘overwhelmed with work’’ as indicators 
of stress, even in the absence of explicit emotional terms. This itera-
tive refinement process was also evaluated to measure the impact of 
psychologists’ hints on GPT-4’s responses (Steps-8, 9). 
𝑃𝑍𝑆 = 𝑇 + 𝑃𝑆 + 𝑃𝑄 + 𝑂𝑀 +𝐻 (2)

This approach highlights the importance of iterative, domai-
n-specific prompt refinement in addressing the challenges of stress 
detection. By leveraging psychologist-informed hints, our approach 
bridges the gap between general-purpose LLMs and specialized tasks, 
offering a scalable, resource-efficient alternative to fine-tuning (Priyadar
shana et al., 2024).

3.3. Experimental design

To evaluate the efficacy of the prompt engineering framework 
for stress detection, experiments utilized GPT-4, specifically the Jan-
uary 2025 version of the OpenAI Application Programming Interface 
(API) (Kojima et al., 2022). The model was configured with specific 
parameters to balance response creativity and coherence, thus ensuring 
reliable binary classifications. We set the temperature to 0.7 based 
on preliminary empirical evaluations. This value allowed moderate 
response variability, which was beneficial for eliciting nuanced indi-
cators of stress in diverse social media contexts. At the same time, 
reproducibility was ensured by constraining the task to binary outputs 
(‘‘Yes’’ or ‘‘No’’) with a standardized prompt design. In this way, the 
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Fig. 1. Structure of the initial prompt for stress detection, showing textual components: task description (T), social media post (𝑃𝑆 ), classification query (𝑃𝑄), 
and output modifier (𝑂𝑀 ), as per Eq.  (1).
Fig. 2. Proposed approach with nine stages for enhancing GPT-4’s stress detection via prompt engineering. Blue lines indicate steps on the initial prompt evaluation 
set before hints, and green lines represent steps on the test set with updated prompts.  (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)
slightly higher temperature encouraged sensitivity to subtle linguistic 
cues while avoiding inconsistent classifications, thus maintaining both 
robustness and task focus across runs. The top-p parameter was 
set to 0.9 to support diverse yet relevant token sampling. A fre-
quency_penalty of 0.0 was applied, as the binary output format 
does not require the suppression of repetition and thus avoids penal-
izing repeated tokens. These settings were chosen to optimize GPT-4’s 
performance for concise, consistent outputs, while accommodating the 
linguistic diversity of the dataset (Xu et al., 2024).

For the Llama model, the psychologist-informed prompt engineering 
protocol was not fully applied due to practical limitations, with its 
inclusion primarily serving as an open-weight baseline. The model 
was executed with the following parameters: ture 0.7, top-p 0.8, 
and frequency-penalty 0.0. Furthermore, the model’s context 
window was limited to 2048 tokens. Model inference was conducted 
via the Together AI API for the Llama 3.1 405B model (Arora, Sayeed, 
Licorish, Wang, & Treude, 2024; Together, 2025).

For all domain-specific baseline models (M-Alpaca, M-Flan-T5, M-
QLM, and M-RoBERTa), a consistent fine-tuning protocol was applied 
to ensure reproducibility and optimize performance on the dataset. All 
models were fine-tuned using Parameter-Efficient Fine-Tuning (PEFT) 
methods, primarily LoRA, with a learning rate of 5e−5. Training was 
conducted for 3 epochs, utilizing an AdamW optimizer with a weight 
decay of 0.01 and a warmup ratio of 0.05. A per-device batch size of 
4 was used, with gradients accumulated over 4 steps to achieve an 
effective batch size of 16. Mixed precision training (FP16/BF16) was 
employed for computational efficiency. For consistent results across all 
runs, a seed of 42 was set, and the best performing checkpoint for each 
model was selected based on its F1-score on the validation set.

Experiments were executed on a cloud-based platform equipped 
with sufficient computing resources to handle API requests efficiently, 
minimizing latency and ensuring scalability, which was critical for 
concurrently processing the 3553 segments of the dataset. This setup 
allowed for efficient management of numerous API calls without sig-
nificant queuing or delays. We monitored API response times and 
error rates to maintain stability, addressing potential challenges in real-
time deployment scenarios. Each social media post was processed in 
a single API call, with no additional preprocessing or post-processing 
4 
beyond the output modifier (𝑂𝑀 ) defined in the prompt structure. 
This approach ensured consistency across evaluations and supported 
reproducibility despite GPT-4’s proprietary nature (Brown et al., 2020; 
Together, 2025). The experimental protocol involved applying the 
initial and refined prompts to the dataset, split into an evaluation set 
(80%) and an independent test set (20%). The initial zero-shot prompt, 
formatted as Eq.  (1), was first applied to the evaluation set to establish 
a baseline performance (Step 1) in Fig.  2. Following error analysis and 
prompt refinement with psychologist-informed hints (Steps 4–6), the 
updated prompt, based on Eq.  (2) was applied to the test set to as-
sess performance improvements (Steps 8–9). This two-phase approach 
ensured that prompt refinements were derived solely from the evalu-
ation set, preventing data leakage and enhancing generalizability. The 
binary responses generated by GPT-4 were compared against Dread-
dit’s ground-truth labels to evaluate classification performance, with 
results analyzed using confusion matrices and performance metrics. 
This experimental design facilitated a robust evaluation of our prompt 
engineering approach, enabling systematic comparisons between zero-
shot and hint-enhanced prompting scenarios. By leveraging a stable 
API configuration and scalable computing resources, we ensured ef-
ficient processing of the dataset while maintaining methodological 
rigor (Priyadarshana et al., 2024).

3.4. Evaluation and performance metrics

To evaluate the effectiveness of our prompt engineering framework 
for stress detection using GPT-4 on the dataset, we implemented a 
systematic evaluation process, as outlined in Steps 2, 3, 8, and 9 of 
our methodology. The evaluation involved comparing GPT-4’s binary 
outputs against the ground-truth labels provided by the dataset (Xu 
et al., 2024). The process was conducted in two phases: first, ap-
plying the initial zero-shot prompt (Eq.  (1)) to the evaluation set to 
establish a baseline, and second, applying the refined prompt with 
psychologist-informed hints (Eq.  (2)) to the independent test set. This 
two-phase approach ensured that prompt refinements were derived 
solely from the evaluation set, preventing data leakage and supporting 
generalizability (Kojima et al., 2022).
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Fig. 3. Example of prompt engineering for a non-stressful text: GPT-4, with hints, correctly classified the text. Part A shows the prompt with psychologist-informed 
hints, and Part B presents GPT-4’s response and reasoning.
 

For each phase, GPT-4’s responses were categorized into four out-
comes: True Positive (TP, correctly identified stressful posts), True Neg-
ative (TN, correctly identified non-stressful posts), False Positive (FP, 
non-stressful posts incorrectly classified as stressful), and False Negative 
(FN, stressful posts incorrectly classified as non-stressful). These out-
comes were used to construct confusion matrices for both the zero-shot 
and hint-enhanced prompting scenarios, providing a structured frame-
work to analyze classification performance (Brown et al., 2020). The 
confusion matrices capture the distribution of TP, TN, FP, and FN cases, 
enabling a detailed assessment of the model’s ability to distinguish 
between stressful and non-stressful posts. This approach facilitated 
the identification of error patterns, such as false positives due to 
misinterpretation of neutral cues, which informed prompt refinements.

Performance was assessed using four standard metrics: Accuracy, 
Precision, Recall, and F1 Score, calculated from the confusion matri-
ces (Kojima et al., 2022). These metrics computed for both prompting 
scenarios to quantify the impact of psychologist-informed hints on 
GPT-4’s performance (Esmi et al., 2025).

4. Experimental results

This section examines the psychologists’ reasoning behind GPT-
4’s errors, analyzes the impact of incorporating this reasoning into 
zero-shot prompting, and compares GPT-4’s performance with domain-
specific models tuned for mental health analysis (Xu et al., 2024).

4.1. Error analysis and hint development

On the initial prompt evaluation set, GPT-4 exhibited a 33% error 
rate, primarily due to false positives, which accounted for  90% of 
errors (Esmi et al., 2025). Psychologists analyzed these errors (Steps 
4–6) in Fig.  2, identifying eight hint sentences, ranked by frequency 
of occurrence (44%, 26%, 10%, 6%, 4%, 4%, 4%, 2%), as shown in 
Fig.  3. These hints addressed common misclassification causes, such as 
overreliance on neutral linguistic cues or failure to detect contextual 
triggers (e.g., financial stressors). For example, one hint instructed GPT-
4 to prioritize situational context over isolated emotional keywords, 
reducing FPs in ambiguous posts (Yang, Tao et al., 2024). This process 
highlights the critical role of expert-guided error analysis in refining 
prompts for mental health applications (Chung et al., 2024).
5 
Table 1
Performance comparison between zero-shot prompting and added hints.
 Method Acc. (%) Pre. (%) Rec. (%) F1. (%) 
 Zero-shot 72.0 66.3 94.6 77.9  
 Added hints 89.0 87.9 91.4 89.5  

4.2. Impact of hints on performance

Fig.  4 presents the confusion matrix for the test set in two sce-
narios: zero-shot prompting and after incorporating hints. In the zero-
shot scenario, FPs dominated errors, reflecting GPT-4’s tendency to 
misinterpret neutral posts as stressful.

Adding hints significantly reduced FPs (from 133 to 12 cases), 
though it slightly increased FNs by 12 cases, indicating a trade-off in 
sensitivity (Kojima et al., 2022). This shift suggests that hints improved 
GPT-4’s ability to discern nuanced stress indicators, aligning its outputs 
more closely with human annotations (Pal et al., 2024).

Table  1 compares performance metrics between zero-shot and added
hints scenarios. The added hints scenario improved accuracy by 17% 
(from 72.0% to 89.0%), precision by 21.6% (from 66.3% to 87.9%), 
and F1 score by 11.6% (from 77.9% to 89.5%), despite a slight recall 
decrease (from 94.6% to 91.4%) due to increased FNs (Liu & Chilton, 
2022).

To validate the generalizability of our prompt engineering approach 
and address concerns about overfitting to Dreaddit’s patterns, we con-
ducted a 5-fold cross-validation experiment. The dataset was divided 
into five equal folds, with each fold serving as the test set while the 
remaining four were used for deriving hints (Steps 4–6) in Fig.  2. 
While hints were initially derived from the training data of each fold, 
our analysis of these derivations revealed significant commonalities; 
consequently, a single, representative set of eight hints was applied 
consistently across all cross-validation folds. Updated prompts were 
evaluated on the test fold (Steps 7–9) in Fig.  2, and this process was 
repeated for each fold. The average accuracy across folds was 88.5% 
(standard deviation 1.2%), compared to 72.0% for zero-shot prompting, 
confirming consistent performance gains.
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Fig. 4. Confusion matrix for test set posts: zero-shot prompting vs. using hints. Adding hints significantly reduced the false positive rate.
Fig. 5. Comparison of GPT-4 in zero-shot and Added Hint (A.H) modes with fine-tuned mental health models on the Dreaddit test set.
Table 2
Comparison of models for stress detection on Dreaddit, sorted by accuracy. Models are evaluated by type (General-Purpose, G-P; Domain-Specific, D-S), parameter 
count (Para. in billions), fine-tuning requirement (F-T), accuracy, key features, pre-training data, and pros and cons.
 Model Type Para. F-T Acc. Key features Pre-train data Pros & Cons  
 Llama-3-405B G-P 405 No 67.5 Open source Diverse datasets Lower accuracy, fine-tunable  
 GPT-4 G-P 1700 No 72.0 General capabilities Diverse datasets Low initial accuracy, no fine-tuning  
 M-Alpaca D-S 7 Yes 80.2 Contextual reasoning Mental health data Strong performance, instruction-limited 
 M-Flan-T5 D-S 11 Yes 81.6 Few-shot learning Mental health data Good accuracy, resource-heavy  
 M-QLM D-S 7 Yes 82.5 LoRA adaptation Mental health data Lightweight, less powerful  
 M-RoBERTa D-S 0.5 Yes 84.0 Transfer learning Reddit High accuracy, resource-intensive  
 GPT-4_A.H G-P 1700 No 89.0 Prompt engineering Diverse datasets High accuracy, no fine-tuning  
4.3. Comparison with domain-specific models

Fig.  5 compares GPT-4’s accuracy in zero-shot and Added Hints 
(A.H) scenarios with four domain-specific LLMs fine-tuned for mental 
health: Mental-RoBERTa, Mental-Flan-T5, Mental-Alpaca, and Mental-
QLM. GPT-4 (A.H) achieved the highest accuracy (89.0%), surpassing 
Mental-RoBERTa (84.0%) by 5% and others by larger margins (Ji et al., 
2022; ShiJiayu et al., 2024). The zero-shot GPT-4 (72.0%) had the 
lowest accuracy, underscoring the necessity of hints for competitive 
performance (Taori et al., 2023).

Table  2 provides a detailed comparison of models for stress de-
tection, including General-Purpose (G-P) and Domain-Specific (D-S) 
LLMs, sorted by accuracy. Llama-3-405B, a G-P model with 405 bil-
lion parameters, achieved 67.5% accuracy in zero-shot settings, lim-
ited by its lack of D-S tuning (Taori et al., 2023). GPT-4 (zero-shot) 
scored 72.0%, while D-S models such as Mental-RoBERTa (0.5B param-
eters, 84.0%) and Mental-Flan-T5 (11B parameters, 81.6%) benefited 
from fine-tuning on mental health data (Chung et al., 2024). How-
ever, GPT-4 (A.H) reached 89.0% without fine-tuning, highlighting 
prompt engineering’s cost-efficiency compared to resource-intensive 
fine-tuning (Priyadarshana et al., 2024). Mental-QLM (7B parameters, 
82.5%) and Mental-Alpaca (7B parameters, 80.2%) showed strong 
performance but required significant computational resources (ShiJi-
ayu et al., 2024). These results demonstrate that prompt engineering 
can optimize general-purpose LLMs to outperform specialized models, 
especially in resource-constrained settings (Gandy et al., 2025).
6 
4.4. Comparison with zero-shot and few-shot baselines

To contextualize our prompt engineering approach, we compared 
it to standard zero-shot and few-shot learning baselines using GPT-4 
on the dataset test set (Brown et al., 2020). The zero-shot baseline 
used a simple prompt instructing GPT-4 to classify posts as stressful or 
non-stressful without hints. The few-shot baseline included five labeled 
examples (three stressful, two non-stressful) from the evaluation set to 
guide predictions, as shown below: Few-shot sample:
Classify the following post as stressful (Yes) or non-stressful (No). Examples:
1. Post: ‘‘Feeling crushed by deadlines and no one cares’’. Answer: Yes
2. Post: ‘‘Just got a promotion, so excited!’’ Answer: No
3. Post: ‘‘I’m anxious about my exams and failing’’. Answer: Yes
4. Post: ‘‘Had a great day at the beach!’’ Answer: No
5. Post: ‘‘Can’t handle this stress anymore, I’m breaking’’. Answer: Yes
Now classify:
Post: ‘‘I’m so overwhelmed with work and can’t sleep’’. Answer: 

As depicted in 3, our method, with psychologist-informed hints, 
achieved 89.0% accuracy, compared to 72.0% for zero-shot and 78.5% 
for few-shot baselines. The few-shot approach improved over zero-
shot by providing contextual examples, but it underperformed com-
pared to our method, which leveraged expert-derived hints to address 
nuanced stress indicators (Kojima et al., 2022). It is worth noting 
that the few-shot examples, primarily structured around emotional 
valence (positive vs. negative), might have biased the model towards 
sentiment detection rather than the multifaceted construct of stress, 
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Table 3
Comparison of prompt engineering with zero-shot and few-shot baselines on 
Dreaddit test set.
 Method Accuracy (%) 
 Zero-shot (No Hints) 72.0  
 Few-shot (5 Examples) 78.5  
 Prompt engineering (With Hints) 89.0  

potentially contributing to its relatively weaker performance. This em-
phasizes the superiority of iterative, domain-specific prompt refine-
ment over generic prompting strategies, aligning with advancements 
in task-specific optimization (Shao et al., 2023).

5. Discussion

The following discussion evaluates the effectiveness of our prompt 
engineering approach for stress detection using GPT-4 on the dataset. 
We analyze key findings, including performance variations across GPT-
4 versions, limitations in handling ambiguous cases, and the implica-
tions of relying on post-hoc explanations. These insights highlight the 
strengths and challenges of adapting general-purpose LLMs for mental 
health applications through prompt engineering.

5.1. Different GPT-4 versions comparison

Our study on stress detection using GPT-4 with the dataset re-
vealed notable performance differences between the January 2025 and 
May 2025 model versions (Xu et al., 2024). In January, psychologist-
informed hints improved classification accuracy by 17%, from 72% to 
89%, highlighting GPT-4’s reliance on explicit guidance to detect stress-
related cues like emotional intensity or situational triggers (Esmi et al., 
2025). Conversely, the May version achieved a baseline accuracy of 
87% without hints, with hints yielding a modest 3% improvement to 
90%. This suggests significant advancements in the May model, likely 
due to enhanced training on diverse, social media-like texts or architec-
tural refinements improving generalization (Brown et al., 2020). The 
diminished impact of hints indicates that the model has internalized 
many stress indicators previously provided externally, reducing their 
necessity. The model’s high initial accuracy may be limited by unclear 
or noisy data in Dreaddit’s user-generated posts (Pal et al., 2024). To 
improve further, future prompts should focus on complex, unclear posts 
where the model struggles. This shows the need to update prompt 
engineering strategies to work with more advanced models, ensuring 
prompts tackle specific weaknesses in mental health applications (Liu 
& Chilton, 2022).

5.2. GPT-4 incorrect classification analysis with Grok

Despite psychologist-informed hints, GPT-4 occasionally misclas-
sified non-stressful Dreaddit posts as stressful, revealing limitations 
in our prompt engineering approach (Kojima et al., 2022). We ana-
lyzed 20 misclassified posts where updated prompts altered GPT-4’s 
output but still failed, using Grok due to resource constraints pre-
venting comparisons with fine-tuned models like Mental-RoBERTa (Ji 
et al., 2022). Grok agreed with GPT-4 in most cases but identified 
deficiencies in five, such as overreliance on neutral linguistic cues or 
misinterpretation of emojis, aligning with psychologists’ critiques of 
prompt specificity (Esmi et al., 2025). Fig.  6 illustrates a case where 
GPT-4 misinterpreted neutral expressions (Part A: prompt with hints; 
Part B: GPT-4’s response; Part C: Grok’s analysis highlighting keyword 
overemphasis). This suggests that prompts require further refinement 
to handle ambiguous or contextually nuanced posts robustly.
7 
5.3. Post-hoc explanations

Our prompt engineering approach significantly improved GPT-4’s 
stress detection performance, but its reliance on post-hoc explanations 
for explainable outputs poses challenges (Chang, Shi et al., 2024). 
These explanations, while valuable for validating outputs and building 
stakeholder trust in mental health applications, lack true algorithmic 
transparency, as GPT-4’s closed-source nature obscures internal mech-
anisms like attention patterns or parameter weights (Gandy et al., 
2025). This limitation hinders full understanding of decision-making 
processes, critical in sensitive domains where precise reasoning is es-
sential (Yang, Tao et al., 2024). Additionally, as of April 2025, potential 
discontinuation risks for GPT-4 threaten reproducibility, a broader 
challenge with proprietary models (Bauer et al., 2024). To address 
this, our methodology is designed to be model-agnostic, adaptable to 
open-weight models like Llama or Mistral, leveraging general reasoning 
capabilities rather than model-specific features (Taori et al., 2023).

5.4. Limited dataset

The Dreaddit dataset, with 3553 annotated segments, provides a 
robust foundation for evaluating our prompt engineering approach, 
capturing nuanced stress expressions in Reddit posts (Hu et al., 2024). 
However, its platform-specific linguistic and contextual patterns may 
limit generalizability to other social media platforms like Twitter or 
Instagram, which differ in post length, user demographics, and ex-
pression styles (Priyadarshana et al., 2024). For instance, Twitter’s 
concise format or Instagram’s visual-heavy content may require tailored 
prompts to detect stress effectively. Additionally, dataset’s reliance on 
human annotations introduces potential label noise, which may affect 
model performance (Pal et al., 2024). Incorporating cross-platform 
datasets could enhance data quality and generalizability.

5.5. Reasoning in just incorrect cases

Our study has focused on analyzing GPT-4’s reasoning primarily for 
incorrect classifications, aiming to identify prompt improvement op-
portunities (Esmi et al., 2025). While for correct classifications, GPT-4 
typically provided reasoning aligned with expert expectations (as veri-
fied by psychologists), we did not systematically evaluate the soundness 
of this reasoning or quantify the model’s weighting of factors (e.g., emo-
tional versus contextual cues). This approach, though pragmatic for 
prompt refinement, potentially masked logical discrepancies even in 
accurate predictions (Shao et al., 2023). This restricts a comprehensive 
understanding of GPT-4’s decision-making process, which is critical for 
mental health applications demanding robust reasoning (Kortemeyer, 
2024).

Furthermore, this limitation underscores a broader challenge in 
interpreting LLM outputs: discerning genuine reasoning from sophis-
ticated pattern matching. Recent work highlights the complexities of 
detecting and measuring reasoning in LLMs, questioning whether ob-
served behaviors reflect true cognitive processes or merely ‘‘the illusion 
of thinking’’ (Shojaee et al., 2025). Studies on the measurement of rea-
soning in LLMs emphasize the need for rigorous evaluation frameworks 
beyond simple task performance (Marjanović et al., 2025). Similarly, 
ongoing debates around methods like Chain-of-Thought prompting cau-
tion against over-interpreting step-by-step outputs as definitive proof 
of reasoning (Chen et al., 2025). While our prompt engineering aims 
to guide the model towards more structured problem-solving, our cur-
rent analytical framework does not conclusively differentiate between 
these underlying mechanisms. Future work should incorporate more 
advanced methodologies, inspired by these discussions, to critically 
evaluate the nature of reasoning exhibited by LLMs in high-stakes 
domains like mental health.
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Fig. 6. Prompt engineering example for a non-stressful Dreaddit post misclassified by GPT-4 despite hints. Part A: Prompt with psychologist-informed hints. Part 
B: GPT-4’s response and reasoning. Part C: Grok’s analysis highlighting deficiencies.
5.6. Explainability

In this study, explainability refers to the model’s generation of 
human-readable, post-hoc verbal rationales for its stress detection out-
puts. These explanations are invaluable for mental health professionals 
to understand and validate model predictions. However, large lan-
guage models like GPT-4 are inherently opaque due to their propri-
etary and black-box nature, which limits direct access to their internal 
mechanisms. Consequently, quantitatively measuring the fidelity (how 
accurately the explanation reflects model behavior) and faithfulness 
(how well it reflects true internal decision-making) of these rationales 
remains a significant challenge. This is a general and widely recognized 
limitation within the field of eXplainable AI (XAI) for large language 
models. Nevertheless, the qualitative utility of providing interpretable 
justifications is paramount in sensitive domains such as mental health, 
where trust and clinical validation are essential.

6. Conclusions

This research demonstrates the efficacy of prompt engineering in 
tailoring GPT-4 for stress detection in social media, achieving a 17% 
accuracy increase to 89% on the Dreaddit dataset, surpassing domain-
specific models like Mental-RoBERTa. By integrating psychologist-
informed hints, our approach significantly reduced false positives and 
generated human-readable rationales that prove crucial for foster-
ing trust and aiding professionals in mental health applications. The 
methodology’s model-agnostic design ensures adaptability to other 
large language models, enhancing accessibility for resource-constrained 
settings. Future work should validate this approach on open-weight 
models, such as Llama or Mistral, to enhance accessibility and trans-
parency, ensuring long-term reproducibility for resource-constrained 
communities. Additionally, validating the methodology across diverse 
datasets from multiple platforms, like Twitter and Instagram, will 
confirm the robustness of psychologist-informed hints across varied 
linguistic styles and conventions, strengthening real-world stress detec-
tion capabilities. Incorporating advanced prompting techniques, such 
8 
as chain-of-thought prompting, could further improve contextual un-
derstanding, reducing errors in complex cases and encouraging a more 
critical examination of whether observed behaviors reflect actual rea-
soning or sophisticated pattern matching. Analyzing outputs across all 
classifications using techniques like attention visualization or feature 
attribution will ensure consistency and reliability, refining prompt de-
sign to enhance GPT-4’s ability to handle complex stress detection tasks 
and improve stakeholder trust. Moreover, hybrid methods combining 
prompt engineering with interpretability techniques could mitigate 
transparency issues while maintaining high performance, leveraging 
tools like Grok for external validation to guide iterative improvements 
in stress detection.
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