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ARTICLE INFO ABSTRACT

Keywords: Advancements in large language models (LLMs) have opened new avenues for mental health monitoring
Large language model through social media analysis. In this study, we present an iterative prompt engineering framework that
Prompt engineering significantly enhances the performance of the general-purpose LLM, GPT-4, for stress detection in social media

Stress recognition

Social medi posts, leveraging psychologist-informed hints. This approach achieved a substantial 17% accuracy improvement
ocial media

from 72% to 89% for the January 2025 version of GPT-4, alongside an 80% reduction in false positives

GPT-4 compared to baseline zero-shot prompting. Our method not only surpassed domain-specific models like Mental-
RoBERTa by 5% but also uniquely generates human-readable rationales. These rationales are crucial for
mental health professionals, assisting them in understanding and validating the model’s outputs—a key benefit
for sensitive mental health applications. These results highlight prompt engineering as a resource-efficient,
transparent strategy to adapt general-purpose LLMs for specialized tasks, offering a scalable solution for mental
health monitoring without the need for costly fine-tuning.

1. Introduction challenging, constrained by computational costs and closed-source ar-

chitectures, limiting customization for sensitive domains (Yang, Tao

Large Language Models (LLMs) have revolutionized applications in et al., 2024). Explainability is crucial in mental health, where stake-
healthcare, education, and industry by processing vast, diverse datasets holders, including psychologists and patients, demand transparent rea-
with billions to trillions of parameters (Beghetto, Ross, Karwowski, & soning to trust model outputs (Tufano, Dabié¢, Mastropaolo, Ciniselli,

Glaveanu, 2025; Caruccio et al., 2024; Zahid et al., 2024; Zhang et al., & Bavota, 2024). Explainability, which involves generating human-

2025). In mental health, LLMs enable early detection of stress or depres- readable justifications that psychologists can validate, is distinct from

sion through analysis of social media posts, offering scalable insights interpretability, which requires insight into internal mechanisms such

into emotional states (Chang, Shi et al., 2024). General-purpose LLMs,
for instance GPT-4 with its trillion-parameter architecture, provide
strong capabilities in generalization and explainability compared to
domain-specific models. These include, specifically, Mental-RoBERTa,
which are fine-tuned on targeted datasets derived from Reddit’s men-
tal health communities (Chang, Wang et al., 2024; Chebbi, Kniesel,
Abdennadher, & Dimarzo, 2024; Devlin, Chang, Lee, & Toutanova,
2019; Ji et al., 2022; Raffel et al., 2020; Yang et al., 2023). How-
ever, domain-specific models often outperform general-purpose ones
in specialized tasks due to their tailored training, yet they require
resource-intensive, expert-labeled datasets (Gandy, Ivanitskaya, Bacon,
& Bizri-Baryak, 2025). Fine-tuning large models like GPT-4 is equally shot and few-shot learning, enable LLMs to perform tasks with minimal

as feature weighting—often infeasible with proprietary models such as
GPT-4. By utilizing GPT-4’s explainability, this study ensures outputs
align with psychological expertise, fostering trust and supporting re-
sponsible deployment in stress detection. These challenges highlight the
need for innovative approaches to adapt general-purpose LLMs without
extensive retraining (Wang et al., 2024).

Prompt engineering offers a resource-efficient solution to tailor
general-purpose LLMs for domain-specific tasks through carefully de-
signed prompts, bypassing the need for fine-tuning (Priyadarshana,
Senanayake, Liang, & Piumarta, 2024). Techniques, specifically zero-
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or no task-specific training by embedding task descriptions or examples
in prompts (Brown et al., 2020; Kojima, Gu, Reid, Matsuo, & Iwasawa,
2022). These methods have enhanced LLM performance in diverse
natural language processing (NLP) tasks, such as sentiment analysis
and question answering, by eliciting robust reasoning capabilities (Pal,
Bhattacharya, Lee, & Chakraborty, 2024; Yang, Zhang et al., 2024). In
mental health, where data heterogeneity and ambiguity (e.g., nuanced
expressions or emojis) pose challenges, prompt engineering can guide
models to focus on domain-relevant cues, reducing computational bar-
riers while maintaining scalability (Chung et al., 2024; Taori et al.,
2023). Despite its promise, the application of prompt engineering
to stress detection remains underexplored, particularly in leveraging
expert feedback to refine model outputs (Priyadarshana et al., 2024).

This study employs prompt engineering to enhance GPT-4’s per-
formance in detecting stress in social media posts from the Dreaddit
dataset, labeled by psychologists as “stressful” or “non-stressful” (Ji
et al., 2022). The dataset’s complexity, with ambiguous posts and di-
verse linguistic patterns, tests GPT-4’s ability to distinguish subtle stress
indicators. We iteratively refined prompts using psychologist-informed
hints, incorporating feedback from misclassifications to improve rea-
soning and accuracy. This approach achieved a 17% accuracy improve-
ment, surpassing Mental-RoBERTa by 5%, without accessing GPT-4’s
internal parameters (Brown et al., 2020; Kojima et al., 2022). By lever-
aging GPT-4’s explainability, we aligned outputs with mental health
expertise, demonstrating a scalable, transparent method for adapt-
ing general-purpose LLMs to sensitive tasks. Our findings highlight
prompt engineering’s potential to bridge the gap between generaliza-
tion and specialization, offering a practical solution for mental health
applications (Chung et al., 2024; Taori et al., 2023).

The remainder of this paper is organized as follows: Section 2
reviews related work, focusing on prompt engineering for general-
purpose and domain-specific LLMs for mental health. Section 3 details
our methodology, including the dataset, preprocessing, prompt design,
experimental setup, and evaluation steps. Section 4 presents the results,
analyzing error patterns, the impact of psychologist-informed hints,
and comparisons with domain-specific models and zero-shot and few-
shot baselines. Section 5 discusses key findings, including performance
differences across GPT-4 versions, limitations in handling ambiguous
cases, and implications for explainability. Finally, Section 6 concludes
with key insights and directions for future research.

2. Related work

This section reviews the literature relevant to our study, focusing
on advancements in prompt engineering and the application of LLMs in
mental health. It explores prompt engineering techniques for general-
purpose LLMs, such as zero-shot and few-shot learning, and their role
in enhancing performance for tasks like stress detection. Addition-
ally, domain-specific LLMs tailored for mental health are discussed,
highlighting their strengths, limitations, and resource requirements.

2.1. Prompt engineering for general-purpose LLMs

General-purpose LLMs, such as PaLM, GLaM, Llama, Mistral, Grok,
and GPT-4, demonstrate remarkable versatility across tasks like trans-
lation, summarization, question answering, and sentiment analysis,
processing human-like text with trillions of parameters (Chuang, Tang,
Jiang, & Hu, 2024; Lee, Bahukhandi, Liu, & Ma, 2025; Shao, Yu, Wang,
& Yu, 2023; Singhal et al., 2025; Viggiato & Bezemer, 2024; Zhu, Pan, &
Xiong, 2024). In mental health, these models analyze social media posts
to detect stress or provide conversational support, capturing complex
language patterns and contextual nuances (Kortemeyer, 2024; Tufano
et al., 2024; Zhang, Deng, Liu, Pan, & Bing, 2024). Their explainability,
generating transparent reasoning, is critical for stakeholder trust in
sensitive domains like psychology (Chang, Shi et al., 2024). However,
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their general-purpose design often results in lower accuracy for special-
ized tasks compared to fine-tuned models, as they may overlook subtle
mental health cues, such as implicit stress indicators (Bauer et al., 2024;
Yang, Tao et al., 2024). Additionally, closed-source architectures and
high fine-tuning costs limit customization, particularly for researchers
with constrained resources (Gandy et al., 2025), while data noise, such
as ambiguous or mislabeled posts, exacerbates challenges in mental
health applications (Pal et al., 2024).

Prompt engineering has transformed the adaptability of general-
purpose LLMs for domain-specific tasks, offering a cost-effective al-
ternative to fine-tuning (Priyadarshana et al., 2024; Wang et al.,
2024). Recent advancements highlight the efficacy of zero-shot and
few-shot learning paradigms. For example, zero-shot learning, intro-
duced by Brown et al. (2020), enables LLMs to perform tasks without
training by using descriptive prompts, while Kojima et al. (2022)
showed that few-shot learning, which incorporates labeled examples,
yields robust reasoning comparable to that of fine-tuned models. These
approaches have enhanced LLM performance in tasks like sentiment
analysis and question answering (Pal et al., 2024; Yang, Zhang et al.,
2024). In mental health, where social media posts exhibit ambigu-
ity (e.g., nuanced emotions, emojis, or slang), prompt engineering
guides models to prioritize relevant cues, such as emotional inten-
sity or contextual triggers (Chung et al., 2024; Taori et al., 2023).
Techniques like chain-of-thought prompting further improve reason-
ing by encouraging step-by-step analysis, critical for complex tasks
like stress detection (Priyadarshana et al., 2024). Despite these ad-
vances, applying prompt engineering to mental health remains under-
explored, particularly in integrating expert feedback to refine prompts
iteratively. Our study addresses this gap by designing prompts with
psychologist-informed hints, optimizing GPT-4’s accuracy for stress
detection in Dreaddit posts, aligning with broader prompt engineering
literature (Yang, Zhang et al., 2024). This approach demonstrates that
prompt engineering can effectively tailor general-purpose LLMs for
sensitive tasks, offering a scalable, resource-efficient solution without
altering model architecture.

2.2. Domain-specific LLMs for mental health

Domain-specific LLMs, fine-tuned on mental health datasets, are
customized to detect emotional states, stress, or disorders, ensuring
ethical, privacy-conscious, and contextually relevant outputs (Hu et al.,
2024). Mental-RoBERTa, built on RoBERTa and fine-tuned with Red-
dit posts from communities like r/depression and r/Anxiety, excels
in classifying stress, depression, and suicidal ideation by leveraging
domain-specific linguistic patterns (Ji et al., 2022). MentalQLM, a
lightweight model with 0.5 billion parameters, employs instruction
tuning and dual Low-rank Adaptation (LoRA) for efficient binary and
multi-class classification, supporting real-time mental health applica-
tions (ShiJiayu et al., 2024). Mental-Flan-T5 utilizes chain-of-thought
reasoning and instruction tuning to analyze complex texts, adapting to
mental health tasks with robust few-shot performance (Chung et al.,
2024; Xu et al.,, 2024). Mental-Alpaca, optimized for user-friendly
interactions, enhances contextual reasoning for diverse mental health
scenarios (Taori et al., 2023; Xu et al., 2024). However, these mod-
els require fine-tuning, demanding large, expert-labeled datasets and
significant computational resources, which are often inaccessible in
low-resource settings (Gandy et al., 2025). Data heterogeneity, such as
varying expressions of stress across platforms, further complicates train-
ing (Yang, Tao et al., 2024). Our approach mitigates these challenges
by using prompt engineering to achieve comparable performance with
GPT-4, bypassing the need for resource-intensive fine-tuning.
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3. Methodology and experimental design

In this section, the dataset, specifically designed for stress detection
in social media posts, is first explored. Subsequently, the minimal
preprocessing approach adopted to preserve the data’s authenticity
and nuanced emotional and contextual cues is described. This strategy
ensures the model processes posts as they appear in real-world social
media environments, thereby enhancing the practical applicability of
our stress detection methodology.

3.1. Dataset and preprocessing

To develop and evaluate our prompt engineering approach for stress
detection, we utilized the Dreaddit dataset, a Reddit-based resource
specifically designed for stress analysis in social media posts (Xu et al.,
2024). The dataset comprises 3553 annotated segments derived from
2929 posts, with an average length of 420 tokens per post, distinguish-
ing it from shorter-form platforms like Twitter. These segments, sourced
from Reddit communities, capture a diverse range of linguistic patterns,
emotional narratives, and situational triggers, making Dreaddit an ideal
testbed for evaluating LLMs like GPT-4 in detecting nuanced stress
indicators. The dataset is split into an initial prompt evaluation set
(2838 segments, 80%) and an independent test set (715 segments,
20%), maintaining near-balance with 51.6% and 52.4% stressful labels,
respectively. Each segment was annotated by at least five annotators,
with labels determined through majority voting to ensure robustness
despite subjective interpretations of stress. This annotation process
mitigates challenges such as linguistic diversity (e.g., slang, idioms),
cultural nuances, and potential label noise, which are common in
user-generated content (Raffel et al., 2020). Prompt hints are explicit,
actionable insights derived from error analysis, serving as strategic
suggestions to guide the LLM’s reasoning. To prevent data leakage,
these hints were derived exclusively from the evaluation set during
error analysis, with updated prompts evaluated on the independent test
set. Dreaddit’s rich, context-heavy content provides a robust foundation
for validating our prompt engineering methodology, offering deeper
insights into stress detection compared to traditional mental health
datasets.

Given the dataset’s complexity, we adopted a minimal preprocess-
ing approach to preserve the authenticity of social media posts and
capture nuanced emotional and contextual cues critical for stress detec-
tion (Esmi, Shahbahrami, Gaydadjiev, & de Jonge, 2025). All textual
elements, including emojis, hashtags, misspellings, and punctuation,
were retained to reflect the natural tone and affective significance of
the posts. Emojis, such as sadness (%) or anxiety ({.2), are particularly
important for signaling stress, especially among younger users, and
were preserved to leverage their emotional weight. No tokenization,
normalization, or spelling corrections were applied, as such interven-
tions could alter the posts’ emotional intent or contextual meaning.
Data noise, such as ambiguous phrases or inconsistent formatting,
was addressed by relying on GPT-4’s robust contextual understanding,
effectively guided by carefully designed prompts. This strategy ensures
that the model processes posts as they appear in real-world social
media environments, enhancing the practical applicability of our stress
detection methodology. By preserving the dataset’s inherent complex-
ity, our approach aligns with Dreaddit’s design to reflect authentic
user-generated content, enabling robust analysis of diverse, nuanced
expressions of stress.

3.2. Prompt engineering framework

To adapt GPT-4 for stress detection on the dataset, we developed
a structured prompt engineering framework, grounded in established
principles (Liu & Chilton, 2022). Fig. 1 illustrates a zero-shot prompt
example, comprising, part A, a social media post with an associated
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question, and part B, GPT-4’s response to that question. The zero-
shot prompt (P, ), designed to obtain binary classifications (“Yes” for
stressful, “No” for non-stressful), comprises four components: a task
description (T), the social media post (Pg), a classification query (Pp),
and an output modifier (O,,). The task description (T') instructs GPT-4
to classify posts based on linguistic and emotional cues, such as tone,
sentiment, or trigger words relevant to mental health (e.g., expressions
of anxiety or distress). The social media post is presented verbatim
to preserve its raw content, ensuring that contextual nuances, includ-
ing emojis and slang, are retained. The classification query requests
a binary “Yes” or “No” response to minimize ambiguity, while the
output modifier enforces standardized outputs for consistency and re-
producibility, as shown in Eq. (1). This structure, minimizes response
variability and ensures that GPT-4 focuses on stress detection across
diverse posts.

Py =T+ Pg+ Py+0y @

While the initial prompt provided a clear framework, it lacked
domain-specific guidance, leading to errors in capturing subtle stress
indicators, such as implicit anxiety or situational stressors. To address
this, we implemented an iterative refinement process informed by
psychologist expertise, following a structured error analysis as depicted
in Fig. 2. After zero-shot prompting (Step 1), we extracted posts with
false positive (FP) and false negative (FN) outcomes from the initial
prompt evaluation set (Steps 2 and 3). These misclassified posts were
reviewed by psychologists, who identified root causes of errors, such
as misinterpretation of neutral linguistic cues or failure to detect con-
textual triggers (e.g., financial or social stressors) (Esmi et al., 2025).
The psychologists’ analyses were grouped into categories, including
linguistic ambiguity, contextual oversight, and emoji misinterpretation,
and ranked by frequency of occurrence. Each category was distilled
into concise, hints to guide prompt updates. For example, one hint
instructed GPT-4 to prioritize situational context (e.g., references to
job loss) over isolated emotional keywords, reducing false positives in
ambiguous posts (Steps 4, 5, and 6) in Fig. 2.

These psychologist-informed hints (H) were incorporated into the
prompt, enhancing its ability to capture stress-related patterns, as
shown in Eq. (2) (Step-7). The updated prompt structure explicitly
guided GPT-4 to focus on domain-relevant cues, such as emotional
intensity or situational triggers. For instance, a hint might direct the
model to consider phrases like “overwhelmed with work” as indicators
of stress, even in the absence of explicit emotional terms. This itera-
tive refinement process was also evaluated to measure the impact of
psychologists’ hints on GPT-4’s responses (Steps-8, 9).

Pys=T+Ps+Py+0y+H (2)

This approach highlights the importance of iterative, domai-
n-specific prompt refinement in addressing the challenges of stress
detection. By leveraging psychologist-informed hints, our approach
bridges the gap between general-purpose LLMs and specialized tasks,
offering a scalable, resource-efficient alternative to fine-tuning (Priyadar-
shana et al., 2024).

3.3. Experimental design

To evaluate the efficacy of the prompt engineering framework
for stress detection, experiments utilized GPT-4, specifically the Jan-
uary 2025 version of the OpenAl Application Programming Interface
(API) (Kojima et al., 2022). The model was configured with specific
parameters to balance response creativity and coherence, thus ensuring
reliable binary classifications. We set the temperature to 0.7 based
on preliminary empirical evaluations. This value allowed moderate
response variability, which was beneficial for eliciting nuanced indi-
cators of stress in diverse social media contexts. At the same time,
reproducibility was ensured by constraining the task to binary outputs
(“Yes” or “No”) with a standardized prompt design. In this way, the
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Post: If | go to an interview for example, I'll know that I'm a good candidate, I'll know that if | don't get it there will always be other
opportunities and it's no big deal. Yet | still get nervous because it's something that | want, | want that employer to like me. If | go
to an interview with no expectations at all, not even wanting the job (I've done this a few times for practice interviewing), it'll turn
Al out great. What are your thoughts on this? Edit: FYI I'm talking mostly about social anxiety, though it has happened that | get
anxiety in the most random places like just going upstairs in a building.

Consider this post on social media to answer the question: Is the post stressful? Return Yes or No. Please reason step-by-step.

Yes. The reasoning behind this is quite clear from the content of the post. The poster specifically mentions experiencing
anxiety in social situations such as job interviews, even when they understand the circumstances and potential
B consequences. They also mention feeling anxiety in random situations like going upstairs in a building. These
experiences and feelings are consistent with those reported by individuals dealing with stress and anxiety disorders.

M Textual Data (T) M Prompt Specifications (Ps)

M Prompt Question (P,) M Output Modification (q,)

Fig. 1. Structure of the initial prompt for stress detection, showing textual components: task description (T), social media post (P), classification query (Pp),

and output modifier (0,,), as per Eq. (1).

| |

|

Zero-shot g False Results Reasons by Classify Add to Zero- q
[ Prompting H CompiEa }‘[ Extraction }_{ Psychologists Reasons shot Prompts CaripRiEe
J 6J 6] J

J eJ U

BJ

Evaluation
Criteria

— Initial Prompt Evaluation
—— Updated Prompt Evaluation

Evaluation
Criteria

Fig. 2. Proposed approach with nine stages for enhancing GPT-4’s stress detection via prompt engineering. Blue lines indicate steps on the initial prompt evaluation
set before hints, and green lines represent steps on the test set with updated prompts. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)

slightly higher temperature encouraged sensitivity to subtle linguistic
cues while avoiding inconsistent classifications, thus maintaining both
robustness and task focus across runs. The top—p parameter was
set to 0.9 to support diverse yet relevant token sampling. A fre-
quency_penalty of 0.0 was applied, as the binary output format
does not require the suppression of repetition and thus avoids penal-
izing repeated tokens. These settings were chosen to optimize GPT-4’s
performance for concise, consistent outputs, while accommodating the
linguistic diversity of the dataset (Xu et al., 2024).

For the Llama model, the psychologist-informed prompt engineering
protocol was not fully applied due to practical limitations, with its
inclusion primarily serving as an open-weight baseline. The model
was executed with the following parameters: ture 0.7, top-p 0.8,
and frequency-penalty 0.0. Furthermore, the model’s context
window was limited to 2048 tokens. Model inference was conducted
via the Together AI API for the Llama 3.1 405B model (Arora, Sayeed,
Licorish, Wang, & Treude, 2024; Together, 2025).

For all domain-specific baseline models (M-Alpaca, M-Flan-T5, M-
QLM, and M-RoBERTa), a consistent fine-tuning protocol was applied
to ensure reproducibility and optimize performance on the dataset. All
models were fine-tuned using Parameter-Efficient Fine-Tuning (PEFT)
methods, primarily LoRA, with a learning rate of 5e—5. Training was
conducted for 3 epochs, utilizing an AdamW optimizer with a weight
decay of 0.01 and a warmup ratio of 0.05. A per-device batch size of
4 was used, with gradients accumulated over 4 steps to achieve an
effective batch size of 16. Mixed precision training (FP16/BF16) was
employed for computational efficiency. For consistent results across all
runs, a seed of 42 was set, and the best performing checkpoint for each
model was selected based on its F1-score on the validation set.

Experiments were executed on a cloud-based platform equipped
with sufficient computing resources to handle API requests efficiently,
minimizing latency and ensuring scalability, which was critical for
concurrently processing the 3553 segments of the dataset. This setup
allowed for efficient management of numerous API calls without sig-
nificant queuing or delays. We monitored API response times and
error rates to maintain stability, addressing potential challenges in real-
time deployment scenarios. Each social media post was processed in
a single API call, with no additional preprocessing or post-processing

beyond the output modifier (0,,) defined in the prompt structure.
This approach ensured consistency across evaluations and supported
reproducibility despite GPT-4’s proprietary nature (Brown et al., 2020;
Together, 2025). The experimental protocol involved applying the
initial and refined prompts to the dataset, split into an evaluation set
(80%) and an independent test set (20%). The initial zero-shot prompt,
formatted as Eq. (1), was first applied to the evaluation set to establish
a baseline performance (Step 1) in Fig. 2. Following error analysis and
prompt refinement with psychologist-informed hints (Steps 4-6), the
updated prompt, based on Eq. (2) was applied to the test set to as-
sess performance improvements (Steps 8-9). This two-phase approach
ensured that prompt refinements were derived solely from the evalu-
ation set, preventing data leakage and enhancing generalizability. The
binary responses generated by GPT-4 were compared against Dread-
dit’s ground-truth labels to evaluate classification performance, with
results analyzed using confusion matrices and performance metrics.
This experimental design facilitated a robust evaluation of our prompt
engineering approach, enabling systematic comparisons between zero-
shot and hint-enhanced prompting scenarios. By leveraging a stable
API configuration and scalable computing resources, we ensured ef-
ficient processing of the dataset while maintaining methodological
rigor (Priyadarshana et al., 2024).

3.4. Evaluation and performance metrics

To evaluate the effectiveness of our prompt engineering framework
for stress detection using GPT-4 on the dataset, we implemented a
systematic evaluation process, as outlined in Steps 2, 3, 8, and 9 of
our methodology. The evaluation involved comparing GPT-4’s binary
outputs against the ground-truth labels provided by the dataset (Xu
et al.,, 2024). The process was conducted in two phases: first, ap-
plying the initial zero-shot prompt (Eq. (1)) to the evaluation set to
establish a baseline, and second, applying the refined prompt with
psychologist-informed hints (Eq. (2)) to the independent test set. This
two-phase approach ensured that prompt refinements were derived
solely from the evaluation set, preventing data leakage and supporting
generalizability (Kojima et al., 2022).
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Post: If 1 go to an interview for example, Il know that I'm a good candidate, I'll know that if | don't get it there will always be other opportunities and it's
no big deal. Yet | still get nervous because it's something that | want, | want that employer to like me. If | go to an interview with no expectations at all,
not even wanting the job (I've done this a few times for practice interviewing), itll turn out great. What are your thoughts on this? Edit: FY| I'm talking
mostly about social anxiety, though it has happened that | get anxiety in the most random places like just going upstairs in a building

Consider this post on social media to answer the question: Is the post stressful? Return Yes or No. Please reason step-by-step.

To improve the prompt and reduce false positives, focus on emphasizing specific indicators of stress and providing clearer distinctions between
stressful and non-stressful scenarios. Here are some guiding sentences for refining the prompt:

1.Distinguish Stress Attribution: Ensure the prompt explicitly directs the model to evaluate the speaker's tone, emotional language, and the context
of frustration or tension rather than focusing on generic descriptions or neutral statements. 2.Highlight Emotional Cues: Add guidance to identify
words or phrases that signify stress, such as "frustrated," "overwhelmed," "angry," "worried," or contextually negative sentiments, while avoiding
misinterpretation of neutral or positive remarks. 3.Avoid Misinterpreting Neutrality: Instruct the model to avoid labeling as stressed individuals who
provide factual, calm, or constructive reflections on challenging situations, even if the context involves difficulties. 4.Incorporate Contextual Analysis:
Guide the model to consider the broader context of the text to determine if the described person is managing the situation effectively, suggesting they
are not stressed, rather than solely relying on specific phrases. 5.Focus on Self-Reported Feelings: Emphasize that stress detection should primarily
consider self-reported indicators of stress or clearly implied emotional distress, rather than assumptions based on situational descriptions. 6.Reduce
Assumptions: Add instructions to minimize assumptions about stress based on third-party actions or external circumstances unless explicitly linked to
the person's emotional state. 7.Weight Responses Over Situations: Highlight the importance of prioritizing how the person discusses and responds
to their situation rather than the situation itself. 8.Clarify Ambiguity: Encourage the model to flag ambiguous cases where stress is unclear instead of
confidently labeling them as stressed, reducing overgeneralization.

Is the post stressful? No.

Reasoning step-by-step:

Distinguish Stress Attribution: The post reflects on feelings of nervousness during interviews and social anxiety in certain situations. However, the
tone is reflective and self-aware rather than overtly stressed. The speaker does not express frustration, overwhelming worry, or anger. Highlight
Emotional Cues: Key phrases such as "Il know that I'm a good candidate" and "it's no big deal" indicate confidence and acceptance. Although they
mention "nervous” and "social anxiety," these are framed in a matter-of-fact way rather than as overwhelming stress. Avoid Misinterpreting
Neutrality: The speaker describes past experiences and general reflections about managing social anxiety. These are constructive observations
rather than negative or di: remarks. P ysis: The broader context shows the speaker has strategies to manage their
feelings (e.g., practicing interviews without expectations) and is not consumed by stress. Focus on Self-Reported Feelings: The self-reported feelings
include nervousness and social anxiety, but there are no indicators that these feelings are debilitating or causing significant distress. Reduce
Assumptions: There is no explicit mention of stress beyond the nervousness associated with specific situations. Assumptions about distress are
unnecessary as the speaker discusses their experiences calmly. Weight Responses Over Situations: The speaker responds to situations
thoughtfully and with perspective, acknowledging their nervousness but not dwelling on it negatively. Clarify Ambiguity: There is no ambiguity; the
tone is self-reflective, indicating awareness rather than distress.

Conclusion:

The post discusses nervousness and social anxiety in a calm, reflective, and constructive manner, indicating the speaker is managing their emotions
effectively. This does not meet the criteria for stress as outlined in the refined prompt.

. Textual Data (T) [ | Prompt Specifications (Ps)

| Prompt Question (P)

[ ] Output Modification (Q) B Hints

Fig. 3. Example of prompt engineering for a non-stressful text: GPT-4, with hints, correctly classified the text. Part A shows the prompt with psychologist-informed

hints, and Part B presents GPT-4’s response and reasoning.

For each phase, GPT-4’s responses were categorized into four out-
comes: True Positive (TP, correctly identified stressful posts), True Neg-
ative (TN, correctly identified non-stressful posts), False Positive (FP,
non-stressful posts incorrectly classified as stressful), and False Negative
(FN, stressful posts incorrectly classified as non-stressful). These out-
comes were used to construct confusion matrices for both the zero-shot
and hint-enhanced prompting scenarios, providing a structured frame-
work to analyze classification performance (Brown et al., 2020). The
confusion matrices capture the distribution of TP, TN, FP, and FN cases,
enabling a detailed assessment of the model’s ability to distinguish
between stressful and non-stressful posts. This approach facilitated
the identification of error patterns, such as false positives due to
misinterpretation of neutral cues, which informed prompt refinements.

Performance was assessed using four standard metrics: Accuracy,
Precision, Recall, and F1 Score, calculated from the confusion matri-
ces (Kojima et al., 2022). These metrics computed for both prompting
scenarios to quantify the impact of psychologist-informed hints on
GPT-4’s performance (Esmi et al., 2025).

4. Experimental results

This section examines the psychologists’ reasoning behind GPT-
4’s errors, analyzes the impact of incorporating this reasoning into
zero-shot prompting, and compares GPT-4’s performance with domain-
specific models tuned for mental health analysis (Xu et al., 2024).

4.1. Error analysis and hint development

On the initial prompt evaluation set, GPT-4 exhibited a 33% error
rate, primarily due to false positives, which accounted for 90% of
errors (Esmi et al., 2025). Psychologists analyzed these errors (Steps
4-6) in Fig. 2, identifying eight hint sentences, ranked by frequency
of occurrence (44%, 26%, 10%, 6%, 4%, 4%, 4%, 2%), as shown in
Fig. 3. These hints addressed common misclassification causes, such as
overreliance on neutral linguistic cues or failure to detect contextual
triggers (e.g., financial stressors). For example, one hint instructed GPT-
4 to prioritize situational context over isolated emotional keywords,
reducing FPs in ambiguous posts (Yang, Tao et al., 2024). This process
highlights the critical role of expert-guided error analysis in refining
prompts for mental health applications (Chung et al., 2024).

Table 1

Performance comparison between zero-shot prompting and added hints.
Method Acc. (%) Pre. (%) Rec. (%) F1. (%)
Zero-shot 72.0 66.3 94.6 77.9
Added hints 89.0 87.9 91.4 89.5

4.2. Impact of hints on performance

Fig. 4 presents the confusion matrix for the test set in two sce-
narios: zero-shot prompting and after incorporating hints. In the zero-
shot scenario, FPs dominated errors, reflecting GPT-4’s tendency to
misinterpret neutral posts as stressful.

Adding hints significantly reduced FPs (from 133 to 12 cases),
though it slightly increased FNs by 12 cases, indicating a trade-off in
sensitivity (Kojima et al., 2022). This shift suggests that hints improved
GPT-4’s ability to discern nuanced stress indicators, aligning its outputs
more closely with human annotations (Pal et al., 2024).

Table 1 compares performance metrics between zero-shot and added
hints scenarios. The added hints scenario improved accuracy by 17%
(from 72.0% to 89.0%), precision by 21.6% (from 66.3% to 87.9%),
and F1 score by 11.6% (from 77.9% to 89.5%), despite a slight recall
decrease (from 94.6% to 91.4%) due to increased FNs (Liu & Chilton,
2022).

To validate the generalizability of our prompt engineering approach
and address concerns about overfitting to Dreaddit’s patterns, we con-
ducted a 5-fold cross-validation experiment. The dataset was divided
into five equal folds, with each fold serving as the test set while the
remaining four were used for deriving hints (Steps 4-6) in Fig. 2.
While hints were initially derived from the training data of each fold,
our analysis of these derivations revealed significant commonalities;
consequently, a single, representative set of eight hints was applied
consistently across all cross-validation folds. Updated prompts were
evaluated on the test fold (Steps 7-9) in Fig. 2, and this process was
repeated for each fold. The average accuracy across folds was 88.5%
(standard deviation 1.2%), compared to 72.0% for zero-shot prompting,
confirming consistent performance gains.
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Fig. 5. Comparison of GPT-4 in zero-shot and Added Hint (A.H) modes with fine-tuned mental health models on the Dreaddit test set.

Table 2

Comparison of models for stress detection on Dreaddit, sorted by accuracy. Models are evaluated by type (General-Purpose, G-P; Domain-Specific, D-S), parameter
count (Para. in billions), fine-tuning requirement (F-T), accuracy, key features, pre-training data, and pros and cons.

Model Type Para. F-T Acc. Key features Pre-train data Pros & Cons

Llama-3-405B G-P 405 No 67.5 Open source Diverse datasets Lower accuracy, fine-tunable

GPT-4 G-P 1700 No 72.0 General capabilities Diverse datasets Low initial accuracy, no fine-tuning
M-Alpaca D-S 7 Yes 80.2 Contextual reasoning Mental health data Strong performance, instruction-limited
M-Flan-T5 D-S 11 Yes 81.6 Few-shot learning Mental health data Good accuracy, resource-heavy
M-QLM D-S 7 Yes 82.5 LoRA adaptation Mental health data Lightweight, less powerful

M-RoBERTa D-S 0.5 Yes 84.0 Transfer learning Reddit High accuracy, resource-intensive
GPT-4 A.-H G-P 1700 No 89.0 Prompt engineering Diverse datasets High accuracy, no fine-tuning

4.3. Comparison with domain-specific models

Fig. 5 compares GPT-4’s accuracy in zero-shot and Added Hints
(A.H) scenarios with four domain-specific LLMs fine-tuned for mental
health: Mental-RoBERTa, Mental-Flan-T5, Mental-Alpaca, and Mental-
QLM. GPT-4 (A.H) achieved the highest accuracy (89.0%), surpassing
Mental-RoBERTa (84.0%) by 5% and others by larger margins (Ji et al.,
2022; ShiJiayu et al., 2024). The zero-shot GPT-4 (72.0%) had the
lowest accuracy, underscoring the necessity of hints for competitive
performance (Taori et al., 2023).

Table 2 provides a detailed comparison of models for stress de-
tection, including General-Purpose (G-P) and Domain-Specific (D-S)
LLMs, sorted by accuracy. Llama-3-405B, a G-P model with 405 bil-
lion parameters, achieved 67.5% accuracy in zero-shot settings, lim-
ited by its lack of D-S tuning (Taori et al., 2023). GPT-4 (zero-shot)
scored 72.0%, while D-S models such as Mental-RoBERTa (0.5B param-
eters, 84.0%) and Mental-Flan-T5 (11B parameters, 81.6%) benefited
from fine-tuning on mental health data (Chung et al., 2024). How-
ever, GPT-4 (A.H) reached 89.0% without fine-tuning, highlighting
prompt engineering’s cost-efficiency compared to resource-intensive
fine-tuning (Priyadarshana et al., 2024). Mental-QLM (7B parameters,
82.5%) and Mental-Alpaca (7B parameters, 80.2%) showed strong
performance but required significant computational resources (ShiJi-
ayu et al., 2024). These results demonstrate that prompt engineering
can optimize general-purpose LLMs to outperform specialized models,
especially in resource-constrained settings (Gandy et al., 2025).

4.4. Comparison with zero-shot and few-shot baselines

To contextualize our prompt engineering approach, we compared
it to standard zero-shot and few-shot learning baselines using GPT-4
on the dataset test set (Brown et al., 2020). The zero-shot baseline
used a simple prompt instructing GPT-4 to classify posts as stressful or
non-stressful without hints. The few-shot baseline included five labeled
examples (three stressful, two non-stressful) from the evaluation set to
guide predictions, as shown below: Few-shot sample:

Classify the following post as stressful (Yes) or non-stressful (No). Examples:
1. Post: “Feeling crushed by deadlines and no one cares”. Answer: Yes

2. Post: “Just got a promotion, so excited!”” Answer: No

3. Post: “I'm anxious about my exams and failing”. Answer: Yes

4. Post: “Had a great day at the beach!” Answer: No

5. Post: “Can’t handle this stress anymore, I'm breaking”. Answer: Yes
Now classify:

Post: “I'm so overwhelmed with work and can’t sleep”. Answer:

As depicted in 3, our method, with psychologist-informed hints,
achieved 89.0% accuracy, compared to 72.0% for zero-shot and 78.5%
for few-shot baselines. The few-shot approach improved over zero-
shot by providing contextual examples, but it underperformed com-
pared to our method, which leveraged expert-derived hints to address
nuanced stress indicators (Kojima et al., 2022). It is worth noting
that the few-shot examples, primarily structured around emotional
valence (positive vs. negative), might have biased the model towards
sentiment detection rather than the multifaceted construct of stress,
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Table 3
Comparison of prompt engineering with zero-shot and few-shot baselines on
Dreaddit test set.

Method Accuracy (%)
Zero-shot (No Hints) 72.0
Few-shot (5 Examples) 78.5
Prompt engineering (With Hints) 89.0

potentially contributing to its relatively weaker performance. This em-
phasizes the superiority of iterative, domain-specific prompt refine-
ment over generic prompting strategies, aligning with advancements
in task-specific optimization (Shao et al., 2023).

5. Discussion

The following discussion evaluates the effectiveness of our prompt
engineering approach for stress detection using GPT-4 on the dataset.
We analyze key findings, including performance variations across GPT-
4 versions, limitations in handling ambiguous cases, and the implica-
tions of relying on post-hoc explanations. These insights highlight the
strengths and challenges of adapting general-purpose LLMs for mental
health applications through prompt engineering.

5.1. Different GPT-4 versions comparison

Our study on stress detection using GPT-4 with the dataset re-
vealed notable performance differences between the January 2025 and
May 2025 model versions (Xu et al., 2024). In January, psychologist-
informed hints improved classification accuracy by 17%, from 72% to
89%, highlighting GPT-4’s reliance on explicit guidance to detect stress-
related cues like emotional intensity or situational triggers (Esmi et al.,
2025). Conversely, the May version achieved a baseline accuracy of
87% without hints, with hints yielding a modest 3% improvement to
90%. This suggests significant advancements in the May model, likely
due to enhanced training on diverse, social media-like texts or architec-
tural refinements improving generalization (Brown et al., 2020). The
diminished impact of hints indicates that the model has internalized
many stress indicators previously provided externally, reducing their
necessity. The model’s high initial accuracy may be limited by unclear
or noisy data in Dreaddit’s user-generated posts (Pal et al., 2024). To
improve further, future prompts should focus on complex, unclear posts
where the model struggles. This shows the need to update prompt
engineering strategies to work with more advanced models, ensuring
prompts tackle specific weaknesses in mental health applications (Liu
& Chilton, 2022).

5.2. GPT-4 incorrect classification analysis with Grok

Despite psychologist-informed hints, GPT-4 occasionally misclas-
sified non-stressful Dreaddit posts as stressful, revealing limitations
in our prompt engineering approach (Kojima et al., 2022). We ana-
lyzed 20 misclassified posts where updated prompts altered GPT-4’s
output but still failed, using Grok due to resource constraints pre-
venting comparisons with fine-tuned models like Mental-RoBERTa (Ji
et al.,, 2022). Grok agreed with GPT-4 in most cases but identified
deficiencies in five, such as overreliance on neutral linguistic cues or
misinterpretation of emojis, aligning with psychologists’ critiques of
prompt specificity (Esmi et al., 2025). Fig. 6 illustrates a case where
GPT-4 misinterpreted neutral expressions (Part A: prompt with hints;
Part B: GPT-4’s response; Part C: Grok’s analysis highlighting keyword
overemphasis). This suggests that prompts require further refinement
to handle ambiguous or contextually nuanced posts robustly.
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5.3. Post-hoc explanations

Our prompt engineering approach significantly improved GPT-4’s
stress detection performance, but its reliance on post-hoc explanations
for explainable outputs poses challenges (Chang, Shi et al., 2024).
These explanations, while valuable for validating outputs and building
stakeholder trust in mental health applications, lack true algorithmic
transparency, as GPT-4’s closed-source nature obscures internal mech-
anisms like attention patterns or parameter weights (Gandy et al.,
2025). This limitation hinders full understanding of decision-making
processes, critical in sensitive domains where precise reasoning is es-
sential (Yang, Tao et al., 2024). Additionally, as of April 2025, potential
discontinuation risks for GPT-4 threaten reproducibility, a broader
challenge with proprietary models (Bauer et al., 2024). To address
this, our methodology is designed to be model-agnostic, adaptable to
open-weight models like Llama or Mistral, leveraging general reasoning
capabilities rather than model-specific features (Taori et al., 2023).

5.4. Limited dataset

The Dreaddit dataset, with 3553 annotated segments, provides a
robust foundation for evaluating our prompt engineering approach,
capturing nuanced stress expressions in Reddit posts (Hu et al., 2024).
However, its platform-specific linguistic and contextual patterns may
limit generalizability to other social media platforms like Twitter or
Instagram, which differ in post length, user demographics, and ex-
pression styles (Priyadarshana et al., 2024). For instance, Twitter’s
concise format or Instagram’s visual-heavy content may require tailored
prompts to detect stress effectively. Additionally, dataset’s reliance on
human annotations introduces potential label noise, which may affect
model performance (Pal et al., 2024). Incorporating cross-platform
datasets could enhance data quality and generalizability.

5.5. Reasoning in just incorrect cases

Our study has focused on analyzing GPT-4’s reasoning primarily for
incorrect classifications, aiming to identify prompt improvement op-
portunities (Esmi et al., 2025). While for correct classifications, GPT-4
typically provided reasoning aligned with expert expectations (as veri-
fied by psychologists), we did not systematically evaluate the soundness
of this reasoning or quantify the model’s weighting of factors (e.g., emo-
tional versus contextual cues). This approach, though pragmatic for
prompt refinement, potentially masked logical discrepancies even in
accurate predictions (Shao et al., 2023). This restricts a comprehensive
understanding of GPT-4’s decision-making process, which is critical for
mental health applications demanding robust reasoning (Kortemeyer,
2024).

Furthermore, this limitation underscores a broader challenge in
interpreting LLM outputs: discerning genuine reasoning from sophis-
ticated pattern matching. Recent work highlights the complexities of
detecting and measuring reasoning in LLMs, questioning whether ob-
served behaviors reflect true cognitive processes or merely “the illusion
of thinking” (Shojaee et al., 2025). Studies on the measurement of rea-
soning in LLMs emphasize the need for rigorous evaluation frameworks
beyond simple task performance (Marjanovi¢ et al., 2025). Similarly,
ongoing debates around methods like Chain-of-Thought prompting cau-
tion against over-interpreting step-by-step outputs as definitive proof
of reasoning (Chen et al., 2025). While our prompt engineering aims
to guide the model towards more structured problem-solving, our cur-
rent analytical framework does not conclusively differentiate between
these underlying mechanisms. Future work should incorporate more
advanced methodologies, inspired by these discussions, to critically
evaluate the nature of reasoning exhibited by LLMs in high-stakes
domains like mental health.
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Post: How can | be a good boyfriend in this situation? | don't think she should a€cegive up having friendsa€-and | think she should hold on to the ones who suffer from
similar issues and understand (and some of them are also great, kind people that she should hold on to regardless). | think spending time with other people than me is
good for her, but she is so afraid of ruining things for others. TL;DR: Girlfriend has anxiety attacks and cancels plans with friends, not all friends are very understanding. |
know how to comfort her when she's feeling down, but how do | otherwise support and advise her in the best possible way?

Consider this post on social media to answer the question: Is the post stressful? Return Yes or No. Please reason step-by-step.

To improve the prompt and reduce false positives, focus on emphasizing specific indicators of stress and providing clearer distinctions between stressful and non-
stressful scenarios. Here are some guiding sentences for refining the prompt:

1.Distinguish Stress Attribution: Ensure the prompt explicitly directs the model to evaluate the speaker's tone, emotional language, and the context of frustration or
i Cues: Add guidance to identify words or phrases that signify stress,
such as "frustrated,” "overwhelmed," "angry," "worried," or contextually negative sentiments, while avoiding misinterpretation of neutral or positive remarks. 3.Avoid
Misinterpreting Neutrality: Instruct the model to avoid labeling as stressed individuals who provide factual, calm, or constructive reflections on challenging situations,
even if the context involves difficulties. 4.Incorporate Contextual Analysis: Guide the model to consider the broader context of the text to determine if the described
person is managing the situation effectively, suggesting they are not stressed, rather than solely relying on specific phrases. 5.Focus on Self-Reported Feelings:
Emphasize that stress detection should primarily consider self-reported indicators of stress or clearly implied emotional distress, rather than assumptions based on
situational descriptions. 6.Reduce Assumptions: Add instructions to minimize assumptions about stress based on third-party actions or external circumstances unless
explicitly linked to the person's emotional state. 7.Weight Responses Over Situations: Highlight the importance of prioritizing how the person discusses and responds
to their situation rather than the situation itself. 8.Clarify Ambiguity: Encourage the model to flag ambiguous cases where stress is unclear instead of confidently labeling
them as stressed, reducing overgeneralization.

Is the post stressful? No.

Reasoning step-by-step:

Emotional Language and Tone: The author expresses concern and care for his girlfriend, which in itself is not stressful. However, he also shows signs of emotional
strain and uncertainty with phrases like “How can | be a good boyfriend in this situation?”, “I don't think she should...”, and “she is so afraid of ruining things for others.”
These indicate he is emotionally engaged and possibly burdened by the complexity of the situation. Contextual Difficulty: The girlfriend’s anxiety attacks and the impact
on her friendships are serious emotional challenges. While the poster is not the one experiencing the anxiety directly, being close to someone who is suffering from it —
and trying to help without overstepping — is inherently a stressful situation. Self-Reported Emotional Cues: Though he doesn't explicitly say “I'm stressed,” his tone

B| conveys concern, confusion, and a desire to do the right thing, which often come with emotional strain. This is particularly visible in “I know how to comfort her... but how

do | otherwise support and advise her in the best possible way?” which suggests he feels a sense of pressure or inadequacy. Constructive Reflection but Not Neutral:
He is trying to be constructive, but his effort to navigate a delicate balance between supporting his girlfriend and respecting her independence points to mental and
emotional effort, a hallmark of stress. The lack of resolution or clear direction adds to the tension.

Conclusion:

While the tone is not overtly panicked or distressed, the emotional weight, complexity, and uncertainty reflected in the post indicate that the author is under some level of
stress. Therefore, the correct classification is Yes, the post is stressful.

The response from GPT, which concludes that the post is stressful, is partially accurate but overlooks key nuances in the poster's tone and intent, leading to a potential
overgeneralization. GPT's reasoning correctly identifies the emotional weight and complexity of the situation, noting phrases like “she is so afraid of ruining things for
others” and the poster's uncertainty about how to best support his girlfriend. However, it misinterprets the poster's constructive and empathetic tone as inherently
stressful, despite the absence of explicit self-reported distress or negative emotional cues from the poster himself. The focus on the girlfriend’s anxiety and the situation’s

C| challenges seems to drive GPT’s conclusion, but the poster’s calm, reflective approach—emphasizing support and understanding—suggests he is managing the situation

thoughtfully rather than being overwhelmed. By prioritizing the situation’s difficulty over the poster’s response, GPT’s analysis risks conflating a challenging context with
personal stress, which contrasts with the prompt's guidance to focus on self-reported feelings and avoid assumptions. A more precise conclusion, aligning with the
refined prompt's emphasis on emotional cues and contextual analysis, would be that the post is not stressful for the poster, as his tone reflects concern and proactive
problem-solving rather than personal distress.

I Textual Data (T) | Prompt Question (Pg) B output Modification (q,) W Hints

| Prompt Specifications (Ps)

Fig. 6. Prompt engineering example for a non-stressful Dreaddit post misclassified by GPT-4 despite hints. Part A: Prompt with psychologist-informed hints. Part
B: GPT-4’s response and reasoning. Part C: Grok’s analysis highlighting deficiencies.

5.6. Explainability

In this study, explainability refers to the model’s generation of
human-readable, post-hoc verbal rationales for its stress detection out-
puts. These explanations are invaluable for mental health professionals
to understand and validate model predictions. However, large lan-
guage models like GPT-4 are inherently opaque due to their propri-
etary and black-box nature, which limits direct access to their internal
mechanisms. Consequently, quantitatively measuring the fidelity (how
accurately the explanation reflects model behavior) and faithfulness
(how well it reflects true internal decision-making) of these rationales
remains a significant challenge. This is a general and widely recognized
limitation within the field of eXplainable AI (XAI) for large language
models. Nevertheless, the qualitative utility of providing interpretable
justifications is paramount in sensitive domains such as mental health,
where trust and clinical validation are essential.

6. Conclusions

This research demonstrates the efficacy of prompt engineering in
tailoring GPT-4 for stress detection in social media, achieving a 17%
accuracy increase to 89% on the Dreaddit dataset, surpassing domain-
specific models like Mental-RoBERTa. By integrating psychologist-
informed hints, our approach significantly reduced false positives and
generated human-readable rationales that prove crucial for foster-
ing trust and aiding professionals in mental health applications. The
methodology’s model-agnostic design ensures adaptability to other
large language models, enhancing accessibility for resource-constrained
settings. Future work should validate this approach on open-weight
models, such as Llama or Mistral, to enhance accessibility and trans-
parency, ensuring long-term reproducibility for resource-constrained
communities. Additionally, validating the methodology across diverse
datasets from multiple platforms, like Twitter and Instagram, will
confirm the robustness of psychologist-informed hints across varied
linguistic styles and conventions, strengthening real-world stress detec-
tion capabilities. Incorporating advanced prompting techniques, such

as chain-of-thought prompting, could further improve contextual un-
derstanding, reducing errors in complex cases and encouraging a more
critical examination of whether observed behaviors reflect actual rea-
soning or sophisticated pattern matching. Analyzing outputs across all
classifications using techniques like attention visualization or feature
attribution will ensure consistency and reliability, refining prompt de-
sign to enhance GPT-4’s ability to handle complex stress detection tasks
and improve stakeholder trust. Moreover, hybrid methods combining
prompt engineering with interpretability techniques could mitigate
transparency issues while maintaining high performance, leveraging
tools like Grok for external validation to guide iterative improvements
in stress detection.
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