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Summary

Many are affected by musculoskeletal disorders, for example rotator cuff tears or knee osteoarthritis.
Disorders affect muscle coordination, which can negatively impact treatment of these disorders. In
order to offer personalized treatment options, muscle recruitment needs to be predicted accurately in
these patients. Musculoskeletal modeling can be used to estimate muscle coordination non-invasively,
but established methods like Static Optimization (SO) underestimate co-contraction of muscles. Pre-
dicting co-contraction is important, because it is associated with musculoskeletal disorders through
joint stability, joint stiffness and compensatory muscle control strategies, e.g. to minimize pain. State-
of-the-art methods used to predict co-contraction include assistance from electromyography (EMG)
measurements or joint stability constraints. The existing Rapid Muscle Redundancy (RMR) solver uti-
lizes a glenohumeral stability constraint to predict co-contraction in the deep rotator cuff muscles. The
addition of EMG-assistance to this solver, might improve it’s capability to predict co-contraction in su-
perficial muscles as well.

Therefore, the main goal of this thesis is to equip the existing RMR solver with an EMG-assisted cost
function. Along with this extension, the RMR solver is revised to be class-based in order to improve
modularity, scalability and user interaction. The new implementation is verified and is able to utilize
EMG-tracking alongside the glenohumeral joint stability constraint.

Because EMG is difficult to normalize reliably and is less practical to acquire outside lab environments,
this study focuses on evaluating the effect of providing one EMG signal at the time. Thus, the sec-
ond goal involves investigating the effect of tracking single EMG signals on muscle activation using as
shoulder model and data. It is revealed that the impact of EMG-tracking single EMG signals on mus-
cle recruitment is minimal, with Mean Absolute Error (MAE) and Zero-normalized Cross-Correlation
(ZNCC) changes that are generally less than 0.005 and 0.03, respectively.

Since the role of muscle coordination on joint loading is crucial in pathologies like knee osteoarthritis,
the third goal is to evaluate the effect of EMG-tracking on knee joint contact force (JCF). To this end
estimations are performed on gait data, which includes in-vivo knee implant reaction forces. EMG-
tracking tasks generally cause higher knee JCF during stance. Tracking the most anterior element of
the Gluteus Medius improves knee JCF accuracy, with respect to ground truth in-vivo data, the most on
average over three subjects and multiple trials, with the Root Mean Squared Error (RMSE) decreasing
with 8% and the Zero-Normalized Cross-Correlation (ZNCC) increasing with 4%, although unreliable
EMG-normalization raises questions regarding the legitimacy of these results. The potential of EMG-
tracking is especially demonstrated with tracking the Rectus Femoris muscle in challenge 6, in which
more co-contractionis present. Through an increase of the the Rectus Femoris activity as well as its
antagonist, Semitendinosus, the knee load estimation is increased at the first peak during stance, which
was previously underestimated without EMG-assistance. However, compared to results from SO and
CEINMS, our EMG-assisted RMR solver only achieves lower RMSE in 2 out of 14 trials, although the
average difference is only 0.03 body weight.

While the new implementation has not proved itself definitively, it seems promising in predicting co-
contraction using EMG-assistance from few EMG signals. In the future this or similar methods might
play a crucial role in investigating changes in muscle coordination due to rotator cuff tears, knee os-
teoarthritis or other musculoskeletal pathologies. This can contribute to more personalized prevention,
intervention or rehabilitation.
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Nomenclature

Abbreviations

Abbreviation Definition

BW Body weight
CEINMS Calibrated, EMG-informed neuromusculoskeletal modeling (tool-

box)
CMC Computed muscle control (method)
EMG Electromyography
GH Glenohumeral (joint)
GRF Ground reaction force
JCF Joint contact force
JRF Joint reaction force
KGC Knee Grand Challenge (data set)
RMR Rapid muscle redundancy (solver)
SO Static optimization (method)
ZNCC Zero normalized cross-correlation

Symbols

Symbol Definition Unit

a, a Muscle activation (vector, scalar) -
e, e Pre-processed EMG (vector, scalar) -
F, F Estimated joint reaction/contact force (vector, scalar) N, Nm or BW
L Measured joint contact force N or BW
J Objective/cost function -
q, q Generalized coordinate (vector, scalar) m or rad
t Time s
τ Time constant -
w, w Weight factor (vector, scalar) -

θ Angle of the GH-JRF vector with respect to the center line ◦ or rad

v



1
Introduction

1.1. Relevance of musculoskeletal studies
Musculoskeletal disorders affect up to a fourth of population of working age [1]. Among secondary
industry workers, the prevalence is even around half [2]. In both groups a significant part of disorders
affects the shoulder [1], [2], which include tendinitis and muscle-tendon tears. These are especially
prominent in the rotator cuff muscles [3], [4], i.e. Infraspinatus, Subscapularis, Supraspinatus and
Teres Minor, which are crucial for the stability in the glenohumeral joint [5]. Here, muscle coordination
strategies play a key role. For example, rotator cuff tears are related to muscle overloading and over-
usage [6]. As a consequence of a tear, muscle recruitment might change to relief the teared muscle,
which can lead to increased loads on other muscles, possibly causing more tears. In rehabilitation a
focus on minimizing loads on the teared muscles as well as preventing overloading of other muscles
may be necessary to improve patient outcomes.

A second musculoskeletal disorder is knee osteoarthritis, which affects 10-13% of people of 60 years
old and up [7] or even 50% of people 80 years old and up in the UK [8] and is associated with self-
reported knee joint instability [9]. Early signs of knee osteoarthritis include increased activity of muscles
that wrap around the knee, e.g. the hamstrings and quadriceps [10]. This can cause increased knee
loading, which is suspected to be related to the progression of knee osteoarthritis [8], [11], [12]. If
increased joint loading due to osteoarthritis increases the progression of osteoarthritis, early treatment
could be crucial to slow its progression.

Both rotator cuff tears and knee osteoarthritis can be caused by increased muscle activity, but also
might result in increasedmuscle activity, creating a loop of cause and effect. Therefore, we would like to
investigate muscle coordination in patients in order to provide personalized treatment, i.e. preventative
measures, interventions or rehabilitation. Measuring biomechanical quantities, such as muscle force
or joint contact force, directly is highly invasive, thus musculoskeletal simulation is used to estimate
them.

1.2. Muscle redundancy problem
In musculoskeletal simulation, the human musculoskeletal system is modeled as a multi-body system,
which enables dynamic simulations. If the kinematics and external forces are measured, muscle forces
can be estimated, but this creates a muscle redundancy problem. Because the human body has more
muscles than necessary to provide all joint torques, an infinite set of muscle force inputs exist that will
result in the measured kinematics. Therefore we need to choose a single muscle recruitment strategy
from an infinite possible set. The goal of a muscle redundancy solver is to choose a solution that best
approximates human muscle control during the measured movement.

Muscle redundancy is often solved using optimization, such as Static Optimization (SO) [13], in which
the best muscle coordination is chosen based on minimizing some cost function, which can be evalu-
ated at any time instant. These methods rely on the idea that humans will learn to use their muscles
in predictable way [14] and that this muscle recruitment is optimal in some way, for example lowest
in metabolic energy cost. Several studies compare cost functions to find the ones that predict muscle
activation the best [15]–[20]. Minimization of the sum of squared or cubed muscle activations provides
accurate estimations for most muscles in healthy subjects during low-effort activities, such as normal
walking [20], [21], simple shoulder movements [22] or even spine movements [15]. These cost func-
tions will always predict muscle recruitment with the least amount of antagonistic activity as possible.

1



1.3. Occurrence of co-contraction 2

This is because antagonistic muscles will oppose the joint torques that are necessary to perform the
given task, therefore increasing the demand on agonistic muscles. This simultaneous activation of ago-
nist and antagonist muscles is called co-contraction and results in increased overall muscle activity. In
a cost function that depends on the sum of muscle activation to some power, muscle recruitment with
co-contraction will be of higher cost, thus be perceived as sub-optimal. The same applies to many other
cost functions, such as those minimizing the sum of muscle forces, muscle stress [18], [23] or metabolic
energy [24], [25]. The problem is that methods using these cost functions cannot accurately predict
muscle recruitment in coordination strategies with co-contraction, for example in knee osteoarthritis
patients [26].

1.3. Occurrence of co-contraction
It is important to be able to predict co-contraction, because it occurs in many situations, i.e. to stabilize
joints, to increase joint stiffness or adapt to impairment or pain.

A stable joint requires compressive forces between bone contact surfaces, which can be provided by co-
contracting muscles. When a joint is subject to tensile loading, muscles that span that joint may contract
to create a net compressive force again. An example are the rotator cuff muscles in the shoulder which
co-contract to push the humeral head into the glenoid fossa of the scapula [5]. Joint instability is
especially relevant during fast movements, due to inertial effects, or during loaded movements. In a
simulation study by Raikova [27] it has been shown that co-contraction can reduce tensile loads in the
elbow joint during flexion, especially fast flexion.

Another reason to use co-contraction is to increase joint or end-point stiffness. Because joint stiffness in-
creases with muscle co-contraction [28], [29], performing a movement or holding a pose with increased
antagonistic activity contributes to better disturbance resistance. It has been shown that this strategy
plays a key role in motor learning [30], [31], in which co-contraction starts high and is decreased during
learning, given disturbances are predictable [32]. For example, subjects asked to walk faster than their
preferred speed, use more co-contraction in gait [10], possible because they are not used to walking
at the increased speed.

Similarly, muscle recruitment can change if a patient needs to adapt to impairments that impact the
musculoskeletal system mechanically, for example in the case of rotator cuff tears which were men-
tioned earlier. Also changed kinematics after joint replacement [33] or decreased muscle capacity after
interventions [34] can change muscle recruitment to contain more co-contraction. The change in me-
chanical capacity requires relearning, during which co-contraction would be higher until new low-effort
muscle control strategies are learned. Besides mechanical change due to impairment, pathologies can
also impact the neurological control. For example, individuals affected by cerebral palsy, a neurologi-
cal disorder, co-contract more during gait than healthy individuals [35]. Also stroke patients use more
co-contraction compared to healthy subjects, according to several studies [36], [37]. Many impairments
also cause pain, which can lead to adapted movements or muscle recruitment in order to minimize this
pain. According to the pain-adaptation theory, muscles that contribute to pain are activated less [38],
while at the same time antagonistic muscles are recruited more, which leads to movements with re-
duced amplitude [39]. In knee osteoarthritis patients, increased co-contraction is present, to increase
knee stability and reduce pain [26]. This example also demonstrates that lack of joint stability can
induce co-contraction through pain, meaning causes of co-contraction can be related.

In addition to these three main reasons for co-contraction, a small amount of co-contraction might
occur in fast movements due to muscle activation dynamics, which causes a delay between excitation
change and activation change [40]. When the agonist is deactivating, while the antagonist is activating,
momentary co-contraction can be present, because the deactivation rate is lower than the activation
rate.

1.4. Muscle redundancy solvers that account for co-contraction
Established methods, such as SO with a lowest effort cost function, will probably underestimate muscle
activity in agonists and antagonists in all co-contraction cases described in the section 1.3. Moreover,
SO ignores passive forces, possibly causing underestimation of minimum muscle force, and activation



1.4. Muscle redundancy solvers that account for co-contraction 3

Figure 1.1: An example of EMG-assisted muscle activation estimation. In black is pre-processed EMG, in blue is
activation estimated based on a lowest effort objective and in orange is activation estimated based on a combination of lowest
effort and EMG-tracking objective. This example demonstrates that EMG-assistance can cause higher activation in case EMG
is higher than lowest effort estimations, or lower activation if EMG is lower than the lowest effort activation. Note that this effect

is not guaranteed and will depend on the musculoskeletal model, data and solver.

dynamics, potentially causing discontinuities in activation patterns. These limitations are addressed by
the Computed Muscle Control method (CMC) by Thelen and Anderson [41], which combines SO and
forward dynamic simulation in a PID-loop, which ensures continuous muscle excitation and activation
patterns, and includes passive force-length relations. However, CMC still relies on SO with a lowest
effort cost function, meaning it will probably predict minimal co-contraction.

While the accuracy of the estimations depends not only on the solver, but also on the musculoskele-
tal model and the recorded data, it seems probable that optimization algorithm is the main bottle-
neck. Therefore, a literature study has been performed to find existing methods that claim to pre-
dict co-contraction [42], as preparation for this thesis. In this study, four main components to predict
co-contraction were identified, which are based on incorporating electromyography (EMG) tracking,
muscle synergies, joint stability or joint stiffness.

EMG-tracking

Methods that are based on EMG-tracking use EMG as additional information to feed to the optimizer.
EMG measures the electrical excitation of muscles, which reveals when muscles are ’turned on’. Ad-
ditionally, the magnitude of EMG signal can also be related to the magnitude of muscle excitation, if
normalized to the maximum EMG measured during maximum voluntary contraction (MVC) [43], which
should correspond to a muscle excitation of 1. Tracking EMG can be done with a cost function that
minimizes the difference between predicted muscle excitation and pre-processed EMG, which is called
EMG-assisted optimization. Several methods base their muscle recruitment estimations entirely on this
EMG-tracking objective [44]–[46]. However, another set of methods uses additional objectives in their
cost functions, such as the sum of squared muscle excitation [47]–[53], sum of squared muscle stress
[54] or sum of joint contact forces [16]. An example of EMG-assisted muscle activation estimation is
given in figure 1.1. The advantage of a multi-objective function over a pure EMG-tracking cost function
is that unmeasured muscles, i.e. deep muscles, can still be predicted using the non-EMG-tracking part
of the cost function. In multi-objective functions, a balance must be achieved between both objectives,
which is controlled through the weight factors for different terms of the cost function [55], which can
be muscle-, subject- or experiment-specific. For example, if EMG measurements are trusted, higher
weights might be applied to the EMG-tracking objective.

In other methods EMG is used to drive a musculoskeletal model in forward simulation, which is called
EMG-driven simulation. In this case, the pre-processed EMG is used to set the excitation of muscle
elements. However, in EMG-driven forward simulations the resulting kinematics are often different than
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Figure 1.2: Conic glenohumeral (GH) joint reaction force (JRF) constraint as used by the Rapid Muscle Redundancy
solver [59]. The angle θk of the JRF vector with respect to the center line is enforced to be at most the maximum angle θmax.
This maximum angle is set to approximately intersect with the outer edge of the glenoid. This figure is part of Figure 4 from Belli

et al. [59].

the kinematics that were measured, e.g. using markers or inertial measurement units. Therefore, it is
more often used for calibration. For example the optimal set of muscle parameters might be found
for which the EMG-driven joint torques approximate the measured joint torques with the smallest error
[47].

Muscle synergy

Another set of methods assumes that groups of muscles will have their own synergistic behavior, i.e.
certain groups of muscles share activation behavior. This behavior is captured in a constraint, which
is enforced during solving of the muscle redundancy problem. The synergy constraint is described
as a function of parameters such as joint angles or loads [56]–[58]. The coefficients of the relations
are calibrated based on EMG from a set of trials. After calibration, the muscle recruitment estimation
routine no longer requires EMG data.

Joint stability

Methods that enforce joint stability also enable the prediction of co-contraction. In practice, it involves
setting requirements for the magnitude and direction of the joint reaction force. Several studies con-
strain the direction of the glenohumeral (GH) joint reaction force (JRF) to a cone aimed at the glenoid
fossa [54], [59], [60], as shown in figure 1.2. The rationale behind this constraint is that there should
be sufficient compressive force between the humeral head and the glenoid fossa to ensure stability.
Some degree of stability is important to prevent strain on ligaments and potential dislocation [5].

Joint stiffness

Similarly to joint stability, joint stiffness requirements can also be used to induce co-contraction in the
muscle recruitment solution. Targets for joint stiffness can be used as part of the cost function [61] or
be set as a constraint [62].

State-of-the-art

In state-of-the-art methods to focus is on EMG-tracking and joint stability components, which is reflected
by two of the most accurate methods found in the literature research.

The first method is the Calibrated, EMG-Informed Neuromusculoskeletal modeling toolbox (CEINMS)
by Pizzolato et al. [47]. CEINMS uses EMG from calibration trials for model parameter and objective
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function calibration. This involves an optimization routine with the objective to minimize the error be-
tween inverse dynamic and EMG-driven torques, and with muscle parameters and objective weights as
optimization parameters. After calibration, muscle recruitment can be predicted for new trials using an
objective function that tracks EMGandminimizes squared excitations. Excitation to activation dynamics
is accounted for. CEINMS is able to more accurately predict joint contact forces during cycling (hip and
knee) [50] and during gait (knee) [63] than conventional methods such as SO. However, the extensive
dependency on EMG is also a limitation, because several aspects can make EMG less reliable. EMG
measurements can be noisy and pick-up signals from other nearby muscles (cross-talk), especially for
surface EMG, which is more accessible and less invasive [43], [64]. Additionally, EMG requires careful
placement of electrodes, to which the signal is very sensitive, which complicates experiments. Beside
the EMG signal, EMG normalization can also be less accurate, because proper normalization requires
an MVC measurements from each measured muscle, which can be hard to obtain. Because CEINMS
relies on EMG during calibration as well as estimation, it is especially sensitive to inaccurate muscle
excitations derived from EMG. Another limitation with CEINMS is the high demand on computational
resources for calibration, which takes multiple hours for each model and cost function [16].

The second method is the Rapid Muscle Redundancy (RMR) solver by Belli et al. [59], which suc-
cessfully implements a joint stability constraint for the glenohumeral joint and accounts for activation
dynamics as well as passive muscle forces. Muscle recruitment is predicted based on a cost function
that minimizes the sum of squared muscle activation and a conic GH-JRF constraint, depicted in fig-
ure 1.2. For simple shoulder movements, the RMR solver is able to accurately predict activation of
superficial muscles, with most Mean Absolute Errors (MAE) below 0.1, as well as co-contraction in the
rotator cuff muscles, which is necessary for GH joint stability [59]. A limitation of the RMR solver is that
it focuses on predicting co-contraction related to GH joint stability in the rotator cuff muscles, not on
co-contraction for other reasons, i.e. end-point stiffness, or in other muscles, i.e. the Trapezius.

1.5. Research gap
If we want to improve the accuracy of co-contraction prediction related to the shoulder, we can consider
combining the GH-JRF constraint with EMG-tracking. These components could be a good combination,
since the GH-JRF constraint predicts co-contraction in the deep rotator cuffs, while EMG-tracking can
predict co-contraction in surface agonist/antagonists. Only one study by Sarshari et al. [54] combines
both a GH-JRF constraint and EMG-tracking, but in this study the EMG-assistance is implemented as a
hard constraint. Alternatively, including EMG-tracking as an objective would softly constrain the activa-
tion estimations to EMG, which seems more appropriate, because of the possible EMG normalization
inaccuracy. The RMR solver [59] already utilizes a GH-JRF constraint, which is verified to predict co-
contraction in the rotator cuffs. It also predicts superficial muscle activation well for low co-contraction
levels and the algorithm has a low computational demand. The addition of EMG-tracking to this algo-
rithm could increase the accuracy of muscle activation prediction, especially in cases with significant
co-contraction.

Since EMG can provide valuable information about muscle recruitment, it seems sensible to use as
many EMG signals as possible to increase the accuracy of predictions. However, preferable we do not
rely on EMG too much, given the concerns stated in State-of-the-art in section 1.4. The EMG signal of
one primary agonist might reveal information on the activation level of it’s antagonists or fellow agonists.
Thus it is hypothesized that tracking a few informative signals could already improve the accuracy of
prediction greatly by accounting for co-contraction in those muscles. If this is the case, experiments
would require less EMG electrodes, which would be especially helpful during data acquisition outside
the lab. However, studies that use EMG-tracking mostly involve many EMG signals at the same time
[47]–[52], [54], while few studies have investigated the effect of tracking just one or a few EMG signals.
In Romanato et al. [53] only one signal of each of four muscle groups is tracked using CEINMS and
this method is already more accurate at predicting muscle recruitment of unused EMG signals than SO.
Nevertheless, CEINMS also relies on EMG for model and cost function calibration. In order to rely less
on EMG, we would like to use the EMG-assisted cost function without the EMG-informed calibration
process.

Thus, the first andmain goal of this thesis is to implement an EMG-assisted cost function for the
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RMR solver and verify that is able to track EMG signals. Existing musculoskeletal models and data
are chosen, such that subject specific scaling, marker allocation and data acquisition can be omitted.
Using a shoulder model and data by Seth et al. [22], the combination of EMG-tracking and the GH-JRF
constraint can be tested. As a second objective of this thesis, the effect of tracking one EMG
signal at the time on muscle activation estimations will be evaluated, using the same shoulder
model and data. Unfortunately, the effect on joint reaction forces in the GH joint cannot be validated,
since no ground truth joint loads are available in this data set. Therefore, we also run estimations with
EMG-tracking using existing lower extremity models by Princelle et al. [65] and normal gait data from
the Grand Challenge to Predict In Vivo Knee Loads [66], which includes in-vivo knee load data. The
third goal of this thesis is to investigate the effect of tracking one EMG signal at the time on
knee joint contact force. Using the same models and data as Princelle et al. [63] also allows us to
compare estimations from the RMR solver to results from SO, an established method for muscle force
prediction, and from CEINMS, a state-of-the-art EMG-assisted method. Thus, the fourth and final
goal is to verify if the knee joint contact force predictions from the RMR solver with and without
EMG-tracking are similar to results using SO and CEINMS, respectively, by Princelle et al. [63].



2
Methodology

The Rapid Muscle Redundancy (RMR) solver from Belli et al. [59] is re-implemented into Python using
classes and EMG-tracking functionality is added. The algorithm is verified using a shoulder model and
shoulder movement data from Seth et al. [22], which was also used by Belli et al. [59]. The same
model and data is also used to investigate the effect of EMG-tracking on muscle activation estimations
for tracking one muscle at the time. Three different weights for EMG-tracking are briefly investigated
and one is chosen for muscle recruitment analysis. A lower extremity model by Princelle et al. [65]
in combination with normal gait movement data from the Grand Challenge to Predict In Vivo Knee
Loads (abbreviated to Knee Grand Challenge or KGC) [66] is used to evaluate the effect of single
EMG-tracking tasks on knee joint contact force during stance. This data is acquired from subjects
with an instrumented knee prosthesis, with force sensors to measure in-vivo knee loads to validate
our estimations. The accuracy of knee load estimations by the RMR solver, with and without EMG-
assistance, are compared to predictions from SO and CEINMS by Princelle et al. [63] using the same
models and data.

2.1. Rapid Muscle Redundancy solver
2.1.1. Original RMR solver algorithm
The method proposed in this thesis is an extension of the Rapid Muscle Redundancy (RMR) solver
by Belli et al. [59]. The RMR solver is able to efficiently optimize muscle activation while taking into
account active as well as passive muscle forces, dynamic activation behavior and constraints on joint
reaction forces. It requires a musculoskeletal model, generalized coordinate data and any external
force data that is not yet embedded in the musculoskeletal model. With this data as input, the RMR
solver performs a constrained minimization of the objective function to find muscle activations at every
time instant.

In short, the RMR solver minimizes muscle effort, while (1) matching experimental accelerations, (2)
ensuring continuous activation and (3) constraining theGH-JRF vector to a cone. The objective function
and each of the constraints will be explained in more detail in the following paragraphs.

Minimal muscle effort cost function

The cost function is based on a lowest effort criterion which minimizes the sum of squared muscle
actuator activation and sum of squared reserve actuator activation:

min
ak

Jk =

Nact∑
i=0

wi(ak,i)
2 , (2.1)

where:

• Jk is the cost of the solution at time step k;
• wi is the weight attributed to actuator i;
• ak,i is the activation of actuator i at time step k.
• Nact is the total number of actuators.

The reserve actuators can provide direct force or torque to a generalized coordinate, thus helping
to fulfill the acceleration constraint in case the muscles are too weak. In order to penalize the use

7
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of reserve actuators, their contribution to the cost function must be higher than that of the muscle
actuators. In equation 2.1, all actuators are lumped together andwi is used to attribute different weights
to muscles and reserve actuators. For the RMR solver, the reserve actuators should be embedded in
the musculoskeletal model as Opensim::CoordinateActuator types. There needs to be at least one
coordinate actuator per unlocked coordinate, which is equal to the number of degrees of freedom.

Experimental acceleration constraint

The first constraint makes sure that the joint acceleration imposed by the muscle recruitment matches
that of the kinematic data at every time step [59]:

Akak = q̈k, ind , (2.2)

where:

• ak is a vector containing the activation of all Nact actuators at time step k;
• q̈k, ind is a vector of actively generated generalized accelerations of allNq coordinates at time step
k, which is equal to the inverse kinematics (experimental) accelerations q̈k, exp minus the passive,
state induced accelerations q̈k,0 (gravity, external forces and passive muscle forces);

• Ak is a Nq ×Nact matrix with each entry (j, i) the effect of each actuator i (activation of 1) on the
acceleration of each coordinate j at time step k.

If this constraint fails, the found muscle recruitment solution will not result in the joint torques necessary
for the movement.

Activation dynamics constraint

The second constraint enforces muscle activation dynamics. Based on the activation of each muscle at
the last time step and the size of the time step itself, boundaries for the muscle activation at the current
step can be calculated [59]:

ai,k, lb = max

[
0,

(
ai,k−1 − ai,k−1

(
1

2
+

3

2
ai,k−1

)
tk − tk−1

τdeact

)]
, (2.3)

ai,k, ub = min

[
1,

(
ai,k−1 −

1− ai,k−1
1
2 + 3

2ai,k−1

tk − tk−1

τact

)]
,

where:

• ai,k, lb and ai,k, ub are the lower and upper activation bounds (respectively) for actuator i at time
step k;

• tk is the time (in seconds) at time step k;
• τact and τdeact are the activation and deactivation time constants, respectively, also in seconds.

These activation boundaries are only applied to all actuators that are muscles. The max and min
operators are used to ensure boundaries never go below 0 or above 1. By enforcing these boundaries,
the muscle recruitment solution will account for muscle activation dynamics.

Glenohumeral stability constraint

The final constraint is the glenohumeral stability constraint, which is used only for the shoulder model in
this thesis. It dictates that the GH-JRF vector must have an angle θk which is less than θmax. The angles
are with respect to center line, which is defined to pass through the middle of the humeral head and
the center of the glenoid fossa, as shown in figure 1.2. The joint reaction force vector Fk (in cartesian
space) at any joint can be calculated as follows [59]:

Fk = AF,kak + F0,k , (2.4)

where:

• AF,k is a 3 × Nact matrix with every column (:, i) the effect of actuator i (activation of 1) on the
JRF vector for time step k;
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• F0,k is the JRF vector of passively generated forces (gravity, external forces and passive muscle
forces) for time step k.

The stability constraint, which concerns the direction of GH-JRF vector, is then formulated as [59]:(
θk(ak)

θmax

)2

− 1 ≤ 0 , (2.5)

where:

• θk(ak) is the angle of the GH-JRF vector at time step k, which is effected by actuator activation;
• θmax is the maximum angle for which the GH-JRF still intersects with the glenoid fossa.

2.1.2. New EMG-tracking extension
EMG-tracking will be established using an EMG-assisted cost function, in which EMG data is asso-
ciated with muscle activation. It is important to note that ’EMG-tracking’ does not necessarily mean
unconstrained tracking of EMG. In this thesis any ’EMG-tracking’ or ’tracking tasks’ are always per-
formed together with a lowest effort objective, namely the minimization of squared muscle activation.
This lowest effort criterion is chosen based on accurate predictions using the original RMR solver in
Belli et al. [59].

EMG-assisted objective function

For the extension, a new EMG-assisted cost function is implemented to replace the original (equation
2.1):

min
ak

Jk =

Nact∑
i=0

w1,i(ai,k)
2 + w2,i(ai,k − ei,k)

2 , (2.6)

where:

• w1,i and w2,i are the weights for minimal effort and EMG-tracking (respectively) for actuator i;
• ai,k and ei,k are actuator activation and pre-processed EMG (respectively) for actuator i at time
step k.

The reason for taking the square of the tracking error, is to penalize large errors exponentially, which
also applied in several other studies [50]–[53], [67].

Pre-processed EMG (e) would more accurately represent excitation than activation. Taking into ac-
count activation dynamics, the excitation signal would precede activation with around 10 to 50 ms [68].
Because the RMR solver uses activation as an optimization parameter, the decision is made to track
EMG with activation and ignore activation dynamics for the tracking task. The pre-processing of EMG
is described in the EMG pre-processing subsection.

In the original cost function described by Belli et al. [59], a distinction was made between muscles
and reserve actuators. Here, this distinction is removed and instead the weight vectors are used as a
general way to differentiate between actuators, which can be muscles as well as reserves actuators.
Thus, the weight vectors allow balancing between actuators as well as between objectives. In the same
way, this means that not all actuators need to be tracked, because weights in w2 can be set to zero. It
should be noted that both activation and tracking error have similar magnitudes (up to 1), thus weights
of similar magnitudes would approximately make both objectives equally important. However, when
picking weights, the number of actuators in the model and the number of actuators that track must be
taken in consideration. For example, take a model with 100 muscles in which we want to track only a
single muscle. If we take w1 = 1 for all muscles, w2 = 1 for the tracking muscle and w2 = 0 for all other
muscles, we end up with a large emphasis on lowest effort, with a total cumulative weight of |w1| = 100,
compared to EMG-tracking, with a total cumulative weight of |w2| = 1.
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Figure 2.1: Example of EMG pre-processing. The data is from the Gastrocnemius Medialis EMG signal from trial 1 of KGC 5.
See section 2.3.2 for more on Knee Grand Challenge data.

EMG pre-processing

In the EMG-assisted cost function presented in equation 2.6 requires pre-processed EMG, because
raw EMG signals are not yet suitable for tracking, since they are noisy and their magnitude cannot be
related to a non-zero excitation level. Therefore, raw EMG needs to be filtered, rectified and normalized.
For filtering, a combination of high-pass filtering, to remove long-term drift, and low-pass filtering, to
remove noise, is used. This can be done subsequently or simultaneously, i.e. by using a band-pass
filter. In this thesis zero-lag 2nd or 4th order Butterworth filters are used with varying cut-off frequencies,
see section 2.2.3 and 2.3.3 for detailed descriptions for the shoulder and gait simulations, respectively.
Rectification and subsequent normalization of filtered EMG is crucial in order to relate the EMG values
in millivolts to muscle excitation on a scale of 0 to 1. This can be achieved by dividing each EMG signal
by the value associated with a muscle excitation of 1. Commonly, this value is determined by taking the
maximum recorded signal during a maximum voluntary contraction (MVC) trial of the targeted muscle.
Alternatively, the maximum value across all available trials could be used to make sure no EMG signal
represents an excitation exceeding a value of 1. Figure 2.1 shows an example of EMG pre-processing.

2.1.3. Class-based revision
Before the EMG-assisted cost function is added to the RMR solver, the base code for the RMR solver
needs to made suitable for this adaptation. The original RMR solver by Belli et al. [59] was written in
MATLAB. Beck et al. [69] have re-implemented the RMR solver in Python, in order to “facilitate the
integration of the RMR solver with the proposed active strain map method and a robotic system” ([69],
p. 4). For this thesis, a new Python implementation is made, which is inspired by the implementation
of Beck et al. [69]. The key features of the revision is that it is generalized and class-based.

Motivation for revision

The advantage of a generalized implementation is that it is more practical to use with different models
and different settings. Since the RMR solver was developed for a shoulder model, the previous versions
made assumptions that could clash when using different musculoskeletal models. The new version
makes less assumptions, e.g. about the order of a list containing model objects, and features more
settings to deal with model differences and user preferences.

Using classes in the new implementation also has several advantages: modularity, scalability and
ease of use. Every class can be seen as a module that is developed to fulfill certain functions and
which has specific interfaces. If certain functions are not necessary, corresponding modules can easily
be removed or replaced by other modules. With this modularity also comes the advantage that the
solver (RMRsolver class) can be used in a live estimation process as well as for pre-recorded data
analysis. RMRsolver allows this by solving the muscle redundancy problem one time step at the time,
without internally looping over data. Live estimation can be used for live muscle strain maps during
robot-assisted shoulder therapy [69]. The version of Beck et al. [69] only worked for pre-recorded data,
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because the looping was integrated, requiring the total number of time steps to be known at setup.
In order to work in a live estimation loop, the previous implementation needs several modifications
throughout the script. A separate, adjusted version can be used in live estimation, but this version
would no longer work on pre-recorded data.

This ties into the second main advantage of the class based implementation, which is improved feature
scalability. The RMRsolver class only needs a single version and within the class script the amount of
duplicate lines of code is minimized, through the use of subclasses and functions. This means that
when a developer wants to add or refine a feature of the RMR solver, it can be done in one place. If
there would be multiple versions or many repeat lines of code, changing a single feature requires the
same edits in multiple locations, increasing the risk to introduce bugs.

A final important advantage of the new implementation is ease of use. In the previous implementation,
user input was required in several places inside the main script which counts hundreds of lines of
code, which made it hard to set up for new users. The class-based implementation requires only top-
level interaction with classes, making it more intuitive to use. With basic programming knowledge a
personalized script can be set up to employ the RMR solver. This top-level script would be similar to
setting options in a GUI (e.g. Opensim [70]), such as selecting file locations and setting filtering cut-off
frequencies. An example of a top-level script can be found in appendix B.1.

Realization of revision

The algorithm used for solving the muscle redundancy problem, as described in section 2.1.1, is imple-
mented into a single class called RMRsolver. However, several more classes are created to assist this
class. Two classes are mandatory to set up the RMRsolver class: EMGtrack for cost function evaluation
and ModelSpecs for musculoskeletal model information. These three classes could be integrated in a
live estimation loop, depicted in figure 2.2. All other classes provide extra functionality for estimations
on pre-recorded data, as shown in figure 2.3. This includes up to four ’manager’ classes for experimen-
tal data management, the MotionAnalysis class for looping data and plotting and the Result class for
storage of simulation results. In this thesis, only the estimation routine for pre-recorded data is used.

Figure 2.2: Block diagram of class interaction for estimation on live data. Blocks represent classes. Solid arrows
represent class initialization, e.g. to initialize an instance of RMRsolver, the solver settings and an instance of ModelSpecs need
to be provided. Dashed arrows represent adding class instances to another class as members, e.g. an instance of EMGtrack

can be added to an instance of RMRsolver by invoking the addObjective() member function of RMRsolver. The dotted
arrows represent estimation of muscle recruitment, which is done per time step by invoking the solve() member function of

RMRsolver. * EMGtrack is the objective class used in this thesis, but could be replaced by another objective class.
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Figure 2.3: Block diagram of class interaction for estimation on pre-recorded data. Blocks represent classes. Solid
arrows represent class initialization, e.g. to initialize an instance of MotionManager, the motion data file location and an

instance of ModelSpecs need to be provided. Dashed arrows represent adding class instances to another class as members,
e.g. an instance of MotionManager can be added to an instance of MotionAnalysis by invoking the addKinematics() member
function of MotionAnalysis. Dotted arrows represent other operations, e.g. time-synchronizing the EMG data series of an
instance of EMGmanager based on the kinematic data series of an instance of MotionManager by invoking the sync() member
function of EMGmanager. * EMGtrack is the objective class used in this thesis, but could be replaced by another objective class.

ModelSpecs has been created to extract and store Opensim model information, e.g. generalized coor-
dinate names or muscle optimal fiber lengths. Extracting this information to the Python environment
takes many Opensim Python API commands, which are performed on initialization of this class. After
initialization, it functions as a data class to be passed to other classes that need model information
(RMRsolver, MotionManager and MotionAnalysis).

The EMGtrack class is used as a configurable cost function. The scipy.minimize() function used
in RMRsolver requires a callable function as an objective function. This function must take at least
optimization parameters as an input and return only solution cost as an output. If a static function
was used, the cost function weight factors would need to be hard-coded or provided at every function
evaluation. Since we set weight factors to be constant over time for estimation routine, it would be
preferred to store the weights inside the function. This is possible with classes, where the weights
can be set on initialization (__init__ method) and the cost function evaluation is performed on call
(__call__ method). Moreover, because the objective is formulated in a separate class, it can easily be
swapped for alternative cost functions in future studies.

RMRsolver needs an instance of ModelSpecs to initialize. In addition, values for several settings can
be passed at initialization, such as acceleration constraint tolerance or reserve actuator bounds. All
settings that are not customized are assigned a default value, which makes setting up the solver easier.
Before RMRsolver can be used to solve muscle redundancy, an objective class (i.e. EMGtrack) needs to
be added using addObjective(). Most computational work is done within the solve() class method,
which solves the muscle redundancy problem for a single time step. solve() requires generalized
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position, velocity and acceleration. If applicable, external forces or EMG data can be passed as well.
The output includes actuator activation, joint reaction forces, optimization result info and muscle forces
(active and passive). Because RMRsolver needs to make many repeat computations, several functions
are implemented, which are collected in a separate file (utilsRMRsolver).

Many studies run musculoskeletal simulations after experimental data is collected. In this thesis, we
also only use the extended RMR solver on pre-recorded data. Therefore a class, MotionAnalysis,
has been implemented to bring experimental data together and loop it through the RMRsolver us-
ing runAll(). For initialization only an instance of ModelSpecs is required, but for looping access
to kinematic data is also necessary. This access is given by adding the kinematic manager class
MotionManager to MotionAnalysis using the addKinematics() method. Since this class has already
access to all the data, it has also been equipped with plotting functionality, which can be used to quickly
interpret results after estimation.

Pre-recorded data is loaded and pre-processed in dedicated manager classes: MotionManager for
kinematic data, EMGmanager for EMG data, GRFmanager for ground reaction forces and JCFmanager
for joint contact forces measured with implants. All manager classes share similar functions. For
initialization, each class needs to be provided with the appropriate data file location, in order to load the
data. Then, data can be filtered (filter()) or cropped and resampled (setTime()). In EMGmanager,
EMG can be normalized using norm() by providing values for normalization, as well as rectified using
rect(). When bringing all this data together, it is important that it is time-synchronized. Thus, a method
sync() can be used to synchronize the data from any manager class instance with respect to data from
another MotionManager instance.

Finally, the Result class is used to store the processed experimental data (manager classes) together
with the estimation for activation, JRFs and muscle forces. Instances of this class can be saved to a
file to use for analysis later.

See appendix A for a link to repository with the revised Python RMR solver code, which also includes
more detailed descriptions for all classes.

2.2. Shoulder movement simulation
For verification of the revised RMR solver and the EMG-assisted cost function, the same shoulder
model and data are used as Belli et al. [59]. This model and data are also used to test the sensitivity of
the EMG-tracking weight and to evaluate the effect of EMG-tracking on muscle activation predictions.
An overview of the simulation routine used is shown in figure 2.4.

2.2.1. Shoulder model
The thoracoscapular shoulder model, shown figure 2.5, is an Opensim [70] model originally by Seth et
al. [22] and adapted by Belli et al. [59] to work with the RMR solver. This model includes the elbow,
shoulder/glenohumeral, acromiumclavicular, sternumclavicular and scapulothoracic joints. In total, it
has 17 degrees of freedom and 33 Millard2012EquilibirumMuscle actuators, listed in table C.1, based
on the muscle model by Millard et al. [71]. Seth et al. [22] scaled the generic model to fit the subject of
the experiment. The bones, joint locations and muscle insertion points were scaled “linearly based on
marker-based distances between the subject and the base (generic) model” ([22], p. 2). Additionally,
the optimal fiber length and tendon slack length from each muscle element are scaled in such a way
that the ratio between the two is consistent to the unscaled model. The ellipsoid that presents the thorax
for the scapulothoracic joint was scaled to result in the lowest marker errors for inverse kinematics. All
the scaling was done by Seth et al. [22] and the scaled model, including minor modifications by [59],
was kindly provided for use in this thesis. No further modifications to the model were made.

2.2.2. Shoulder data
The shoulder movement data is from a single subject experiment performed by Seth et al. [22]. It
consists of three trials for each of three movements (forward flexion, abduction and shrugging) for
two different conditions (unloaded, 2 kg load in hand). For this thesis, only the 9 loaded trials are
considered, because these will involve higher overall muscle activation. The subject is a 26-year-old
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Figure 2.4: Flowchart of the simulation routine used in this thesis. Blocks and arrows in dotted blue are only relevant for
the normal gait simulations.

Figure 2.5: The thoracoscapular shoulder model, created by Seth et al. [22].
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female (mass 52 kg, height 1.62 m) which performs all movements with her dominant (right) shoulder.
All trials start and end in resting position, i.e. with the arm alongside torso. Flexion movements reach
a peak flexion of 140 degrees, while the abduction get to an angle of 160 degrees with respect to torso.
Markers positions are recorded as well as the EMG of 11 muscles, which are listed table C.1. For this
thesis, the motion files containing generalized joint angle data were kindly provided, such that it was
not necessary to perform inverse kinematics. Seth et al. [22] have reported that the marker RMSE is
below 1cm for all motions. The provided EMG and motion data are also time-synchronized.

2.2.3. Shoulder data processing and estimation
The generalized coordinate data, saved in .mot files, is low-pass filtered with a cut-off at 3 Hz (4th-order
Butterworth). EMG is first high-pass filtered at 100 Hz (4th-order Butterworth), then rectified and low-
pass filtered at 4 Hz (2nd-order Butterworth). All filters are zero-lag. Finally, EMG is also normalized
with respect to the highest values found during maximum voluntary contraction (MVC), which are dis-
played in table C.1. For the Infraspinatus_S and LatissimusDorsi_M static offset is removed, based
on the lowest value across the whole trial. Each trial is cropped to a time range in which the motion is
performed, see table C.2. Motion and EMG data is resampled at 10 Hz, before it is evaluated by the
RMR solver.

All muscle actuators and the reserve actuators receive weights of 1 and 10, respectively. The coordinate
actuators that are set as reserves have an optimal force of 1 N(m), meaning they produce a force/torque
of 1 N(m) for an activation of 1. Reserve actuators that control coordinates which cannot be fully
actuated by muscles get weights of zero, making them free to use by the optimizer. Refer to table
C.3 for all weights used. The activation dynamics constraint (with time constants τact = 10 ms and
τdeact = 40 ms) and the GH-JRF constraint (with θmax = 19◦) are active. Other solver settings were set
to default, which is described in appendix B.2.

Everything, except for the resampling, is done to replicate the method used by Seth et al. [22] and Belli
et al. [59]. The reason to subsample the 100 Hz motion data to 10 Hz is to speed up computation,
which takes about 0.2-0.3 seconds per time step. Provided an average trail is around 5 seconds, the
reduced sampling rate saves around 90-135 seconds per trial or 8-12 hours total for all 9 trails, 12 cost
function conditions and 3 tracking weight factors computed for this thesis.

EMG-tracking weights

To investigate the effect of tracking, simulations are run in which a single muscle receives a non-zero
weight for the EMG-tracking objective. This is performed for each muscle that has a corresponding
EMG signal. To determine a balanced tracking weight, a rudimentary sensitivity test is performed. All
shoulder movement trials and tracking tasks are performed with tracking weights of 1, 3 or 5 and results
are assessed using Mean Absolute Error and Zero-Normalized Cross-Correlation metrics, as described
in section 2.2.4. The lowest tracking weight that shows significant impact on the tracking muscle for all
tracking tasks is chosen for all subsequent analysis of shoulder movements.

2.2.4. Muscle activation estimation analysis
Estimated muscle activation is compared to processed EMG using Mean Absolute Error (MAE) and
Zero-Normalized Cross-Correlation (ZNCC) at zero time shift, see equations 2.7 and 2.8, respectively.
A drawback of MAE is that muscles with low activation and EMG will always have a low MAE, regard-
less of their trend over time. At the same time, muscles with similar trends for activation and EMG
might show a high MAE. These trends over time are important, since magnitude error also depends on
the reliability of the normalization to maximum voluntary contraction. Therefore, the Zero-Normalized
Cross-Correlation is used as a secondary metric to comparemuscle activation to EMG. ZNCC is a score
between 1 and -1, with 1 meaning perfectly matching trends, -1 meaning perfectly opposite trends and
0 meaning uncorrelated.

Besides comparisons between estimations and EMG, differences between estimations can also be
presented in MAE or ZNCC, substituting EMG for a second estimation.
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MAE =
1

Nk

Nk∑
k=0

|ak − ek| (2.7)

ZNCC =
1

Nk

Nk∑
k=0

xkyk (2.8)

with xk =
ak − amean

astd

and yk =
ek − emean

estd

• Nk : number of time steps
• ak : muscle activation at time step k

• ek : normalized EMG at time step k

• mean : mean over the whole time series
• std : standard deviation over the whole time series

2.3. Gait simulation
Because the shoulder data has no joint contact forces available, we also perform estimations using
lower extremity models and normal gait data, which includes in-vivo joint load measurements. This
allows use to investigate the effect of EMG-tracking on knee joint loading. Princelle et al. [63] has used
the same models and data for estimation used SO and CEINMS, which enables us to compare the
prediction of RMR to these methods.

2.3.1. Lower extremity model
The lower extremity model used is an Opensim [22] model by Princelle et al. [65]. It consists of the
hip, knee, ankle, subtalar and metatarsophalangeal joints of only one leg (the instumented side of the
corresponding subject). The model has 13 degrees of freedom and 40 Millard2012EquilibriumMuscle
actuators, which are listed in table C.4. The skeletal system is generated from CT scans using the
INSIGNEO pipeline. A patellofemoral joint is added based on the Rajagopal2015 model [72]. The
muscle tendon units from that same Rajagopal2015 model are scaled and mapped onto the skeletal
system, with some adjustments to insertion points and additions of extra wrapping shapes based on
the CT scans if necessary. Muscle parameters are scaled from the Rajagopal2015 model as well, then
morphologically optimized. In this way Princelle et al. [65] have created three scaled models to fit
the three different participants of challenges 4, 5 and 6 from the Knee Grand Challenge, described in
section 2.3.2.

In order to make the models suitable for the RMR solver somemodifications need to be made. For each
coordinate, a coordinate actuator is added to act as a reserve actuator during simulation. Additionally,
the patella constraint, which ensures that the patella rotates with respect to the femur based on the knee
angle, is removed for muscle recruitment estimation. Because its position will already be constrained
though generalized coordinate data during estimation, it is not required anymore and must be removed
to avoid conflicts. For inverse kinematics a separate version with patella constraint is used to acquire
correct generalized coordinate data for the patella.
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Figure 2.6: The lower extremity model of subject PS from challenge 5, created by Princelle et al. [65].

Passive forces

One problem that arises when using these models with the RMR solver are high passive forces, for
example of more than one times the maximum isometric force for the Gastrocnemius Lateralis (gaslat).
The effect of passive forces is increased due to the use of rigid tendons in the RMR solver. With
rigid tendons the muscle fiber length is increased more during stretching than with compliant tendons,
increasing passive fiber force, which is demonstrated in figure C.1. In the study by Princelle et al. [63],
passive forces are not considered, because SO and CEINMS do not include them, as opposed to the
RMR solver.

For solving the problem of unrealistically high passive forces, we consider two different options, which
are both tested in simulation. Option A is to disable passive forces altogether, which can be done with a
simple setting for the RMR solver. Option B is to adjust the model to have more realistic passive forces.
To this end, a B-specification of each model is made by adjusting the passive fiber force curves in an
optimization process to match experimental passive joint torques, using a publicly available MATLAB
script by Uhlrich et al. [73]. The optimization adjusts two parameters of the passive fiber force curve, as
shown in figure 2.7, within a predefined range to change passivemuscle force onset. strainAtZeroForce
(ε0) determines the start of passive force generation and strainAtOneNormForce (ε1) the point at which
the passive force reaches one times the normalized fiber force. An objective function evaluates the fit
of estimated passive joint torque curves to experimental curves from Silder et al. [74] and penalizes
solutions based on the deviation from the starting values. This ensures that the optimizer only changes
the parameters if the fit of passive joint torque curve improves significantly. The default values for ε0 and
ε1 inMillard2012EquilibriumMuscle elements is 0 and 0.7, respectively. In the original application to the
Rajagopal2015model [72], Uhlrich et al. [73] allowed ε0 and ε1 to deviate by 0.2 from the starting value,
in order to keep the change physiological (according to the muscle model). However, this resulted in
several muscles reaching an optimum at this parameter limit, which indicates that a better fit may exist
beyond this limit. Therefore we allow broader parameter ranges for calibration in this study: ε0 ∈
[−0.5, 2] and ε1 ∈ [0, 3].
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Challenge 4 Challenge 5 Challenge 6
Sex Male Male Male

Code JW PS DM
Height [m] 1.68 1.80 1.72
Weight [kg] 66.7 75 70

Intrumented side Right Left Right
Trials (normal gait) 2, 3, 4, 5, 7 1, 8, 9, 11 4, 5, 6, 7, 9

Table 2.1: Information on subjects [76] and trials used for each challenge.

Figure 2.7: Force-length curve for the passive fiber force contribution of a Millard2012EquilibriumMuscle muscle
element [75]. strainAtZeroForce = ε0, strainAtOneNormForce = ε1.

2.3.2. Gait data
Gait data comes from the publicly available set of the Grand Challenge Competition to Predict In Vivo
Knee Loads [66]. Each challenge features a single participant with an instrumented knee prothesis.
Several different exercises are performed, while marker motion data, ground reaction forces, EMG
signals and implant force data are collected.

For this thesis, the normal gait trials of challenges 4, 5 and 6 are used. Table 2.1 shows information
about the participants as well as the trials evaluated for each challenge. The trials evaluated in this
thesis are the same as evaluated in the study of Princelle et al. [63]. Each normal gait trial consists of
four to five steps, corresponding to two to three seconds of data. Positions of 52 (challenge 4) or 48
(challenge 5 and 6) markers are recorded at 120 Hz. Ground reaction forces are available for the middle
three steps (right stance, left stance, right stance) from three different force plates, sampled at 3840
Hz. EMG from 15 muscles of the right leg, listed in table C.4, were measured at 1000 Hz. In challenge
4, the instrumented implant has recorded four uniaxial forces for the medial-anterior, medial-posterior,
lateral-anterior and lateral-posterior contact points on the prosthetic tibia at approximately 50 Hz. For
challenges 5 and 6, forces and torques acting on the tibia are available for all cartesian directions. For
this thesis, the synchronized data set was used, in which all marker, GRF, EMG and implant force data
are time-synchronized. Figure 2.8 shows an overview of the time-synchronization process, in which
the data is filtered and resampled using cubic spline interpolation [66].

The sample frequencies in the downloaded data from challenge 4, 5 and 6 are different than described
in available documentation [66], [76]. The downloaded data frequencies, which are used in this thesis,
are 120 Hz instead of 100 Hz for marker data and implant force data, and 1200 Hz instead of 1000 Hz
for GRF data and EMG data.
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Figure 2.8: “Flowchart describing filtering and synchronization of raw experimental data” from Figure 3 from Fregly et al.
[66] [66].

2.3.3. Gait data processing and estimation
Inverse Kinematics (IK) is performed on marker data to derive generalized coordinate data. Markers
that do not have a valid position, i.e. appearing at x, y, z = 0, 0, 0 due to obscuration, during a large
portion of the motion are omitted from IK tracking objectives, as indicated in table D.1. Many markers
were only obscured at the start or end of the motion. If this was the case, the motion was cropped to
the part were none were obscured, as reported in table D.2. Marker errors were calculated, in order to
evaluate the quality of the IK solution.

The motions resulting from IK are low-pass filtered with a cut-off at 8 Hz (4th-order Butterworth). EMG
is band-pass filtered between 30 and 300 Hz (2nd-order Butterworth), then rectified and filtered again
with a low-pass at 8 Hz (4th-order Butterworth). All filtering is zero-lag. Finally, EMG is also normalized
with respect to the highest value found during MVC trials or any of the normal gait trials available, as
shown in table C.4. Motion and EMG data is resampled at 60 Hz, before it is evaluated by the RMR
solver. All filter settings are chosen to be as similar as possible to the work of Princelle et al. [63] [63].
The sampling frequency of 60 Hz is chosen as a compromise between accuracy and computation time.

Ground reaction forces on the instrumented side are applied to the foot, presented by the calc body
inside the model. Since the models include only the instrumented leg, the ground reaction forces on the
non-instrumented side are applied to the pelvis instead, with the point of application still at the center
of pressure. Because analysis will focus on the stance phase of the instrumented leg, the impact of the
simplification of GRF application for the other leg is deemed minimal, as this GRF will be zero for most
of this time, because the leg is in swing. Ground reaction forces are also used to determine the time
ranges for stance phases. These ranges are detected automatically for each force plate, by finding
the first and last times at which the measured vertical force exceeds 100 N, then increasing the range
with 30 ms at the start and end. The stance phase detection is performed before the low-pass filter
is applied, because filtering causes oscillatory artifacts before force onset (i.e. the filtered force has
a negative peak before unfiltered force sets in). The 100 N threshold allows to ignore measurement
noise up to 100 N, while the 30 ms shift will compensate to include the very start and end of the stance
phase (with GRF between 0 and 100 N).

All muscle actuators and the reserve actuators receive weights of 1 and 10, respectively. The coordinate
actuators that are set as reserves have an optimal force of 1 N(m). Reserve actuators that control
coordinate which cannot be fully actuated by muscles get weights of zero. Table C.5 presents the
cost function weights for all actuators. The activation dynamics constraint is active, but the GH-JRF
constraint is disabled because the lower extremity model does not contain a glenohumeral joint.

For the gait simulations, no tracking weight sensitivity analysis is performed. Instead the best tracking
weight found in shoulder simulations, as described in section 2.2.3, is used, after it is scaled linearly
with respect to total number of muscle actuators.
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As described in Passive forces in section 2.3.1, we consider the models without passive forces (speci-
fication A) as well as those with adjusted passive fiber force curves (specification B). Baseline simula-
tions, without EMG-tracking and only using the lowest effort objective, will be run on both specifications
for all trials and all subjects. Then, the most suitable specification will be used to investigate EMG-
tracking.

2.3.4. Knee load estimation analysis
Estimated joint contact force is compared to measured joint contact force using Root Mean Square
Error (RMSE) and coefficient of determination (R2), which are computed as shown in equations 2.9
and 2.10, respectively. Also ZNCC at zero time shift is calculated, as presented in equation 2.8, but
substituting activation and EMG with estimated and measured joint contact forces. RMSE and R2 are
calculated in order to compare to the results from Princelle et al. [63]. ZNCC is chosen for improved
trend-over-time analysis. Differences between estimations can also be presented in RMSE or ZNCC,
substituting measured joint contact force with another estimation.

RMSE =

√√√√ 1

Nk

Nk∑
k=0

[Fk − Lk]
2 (2.9)

R2 = 1− SSres
SStot

(2.10)

with SSres =

Nk∑
k=0

[Fk − Lk]
2

and SStot =

Nk∑
k=0

[Lk − Lmean]
2

• Nk : number of time steps
• Fk : estimated joint contact force at time step k

• Lk : measured joint load at time step k

• mean : mean over the whole time series
• std : standard deviation over the whole time series



3
Results

3.1. Verification
RMR solver revision

The revised Python implementation achieves similar results compared to the previous Python imple-
mentation by Beck et al. [69]. For a loaded shoulder flexion trial (Flx21), the MAE between muscle
activation predictions of the two implementations is below 0.001 for all muscles, as can be concluded
from figure D.1.

EMG-tracking and the effect of tracking weight

For all eleven tracking tasks, MAE of the tracked muscle decreases and ZNCC increases, with respect
to the estimations without tracking. For higher tracking weights, this effect is stronger. Using a tracking
weight of w2 = 1, LatissimusDorsi_M still has a MAE of 0.10 and TeresMajor has a ZNCC of -0.54. For
a tracking weight of w2 = 3, all muscles have a MAE < 0.10 and a ZNCC > 0.50, which is deemed as
sufficient tracking strength. Therefore w = 3 is used for subsequent analysis of the shoulder model. A
full overview of the effect of EMG-tracking on the muscle activation of the tracked muscles for different
weights is given by figures D.2 and D.3.

Effect of sampling frequency

Simulation of a single loaded forward flexion trial (Flx21) at 10 and 100 Hz did not produce significantly
different muscle activation patterns (MAE < 0.005), justifying the use a sampling frequency 10 Hz
instead of 100 Hz for shoulder movement simulations.

3.2. EMG-tracking in shoulder movement simulations
Validity

The optimizer of the RMR solver converged at almost all time instances and never failed for many
consecutive time steps. Penalized reserve actuators are rarely used. The computation speed for the
RMR solver using the shoulder model is around 3-5 Hz.

Muscle activation estimations

Table 3.1 summarizes the effect of EMG-tracking a single muscle on the estimation accuracy of other
muscles. The best improvement in MAE that occurs in another muscle for any tracking tasks is -0.02 for
the DeltoideusClavicle_A while tracking DeltoideusScapula_P. The maximum improvement in ZNCC,
for any muscle that has an activation higher than 0.1, is +0.28 for DeltoideusScapula_P while tracking
DeltoideusClavicle_A. However, in general muscle tracking tasks do not impact muscle recruitment of
other muscles. The absolute values for MAE and zero-normalized cross-correlation without using the
tracking objective can be found in figure D.4 and D.5, respectively. Figures D.6-D.11 show the full effect
of tracking tasks on activation estimations of other muscles, upon which table 3.1 is based.
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Tracking task Best improvement MAE Best improvement XCORR
Flexion Abduction Shrugging Flexion Abduction Shrugging

DeltoideusClavicle_A 0 -0.01 0 +0.10 +0.28 +0.26
DeltoideusScapula_M 0 0 0 0 +0.02 0
DeltoideusScapula_P -0.01 -0.02 0 +0.05 +0.08 +0.02
TrapeziusScapula_S 0 0 0 +0.01 +0.01 +0.11
TrapeziusScapula_M 0 0 0 +0.05 +0.03 +0.17
TrapeziusScapula_I 0 0 0 +0.01 +0.02 +0.06
Infraspinatus_S 0 0 0 +0.01 +0.02 0
SerratusAnterior_M 0 0 0 +0.06 +0.01 0
LattissimusDorsi_M 0 0 0 +0.02 +0.02 +0.01
PectoralisMajorClavicle_S 0 0 0 +0.03 0 +0.05
TeresMajor 0 0 0 +0.06 +0.02 +0.07

Table 3.1: Best absolute improvement (compared to no tracking) for any other muscle besides the one tracked.
Muscles with EMG peak activation below 0.1 are not considered for best improvement of cross-correlation. Values of 0 are

0.00 and non-zero values are highlighted in bold.

3.3. EMG-tracking in gait simulations
Inverse kinematics

Inverse kinematic mean marker RMSE are all below 20mm, see table D.2. For the trials for challenge
5 these errors are all below 10mm. All marker tracking tasks have equal weights. Table D.1 shows
which markers are tracked.

EMG-tracking weight

The best tracking weight found for shoulder simulations is linearly scaled for use with the lower extremity
model, which has 40 muscle actuators instead of 33. Thus, a weight of w = 3 × 40

33 = 3.64 is used for
the gait simulations.

Model specification choice

Calibration of passive fiber force curve parameters have lead to a model for which the onset and pro-
gression of passive forces is shifted to higher muscle strains. Figure D.12 gives an overview of the
optimized curve parameters. As suspected the original model causes extreme passive joint torque.
Through calibration, the passive torques of the B-specificationmodel inhibit more realistic passive joint
torques, which is presented in figure D.13.

Figure 3.1 shows a comparison for knee JCF between estimations from both specifications against knee
implant ground truth measurements. It considers the stance phase of the instrumented leg, averaged
over all trials. The knee JCF is normalized to bodyweight (BW) of the subject.

When we look at the metrics, RMSE is lower for estimations without passive forces for challenge 4 (0.50
instead of 0.78 BW) and 5 (0.27 instead of 0.44 BW). However, ZNCC for challenge 4 with calibrated
passive forces is 0.91, compared to only 0.60 without passive forces. Based on lower RMSE scores,
it is decided that further evaluations will be performed without passive forces.

In all curves in figure 3.1 we can recognize two peaks, one at around 20-30% of stance and another at
70-80%, with a valley in between. Considering the blue lines, which represent simulation without pas-
sive forces, we see that for challenge 4 estimations without passive forces show peaks within 0.2 BW,
but underestimate forces at the interval in between by almost 0.9 BW. The second peak in challenge
5 is within 0.1 BW, while the first peak is overestimated with 0.3 BW and the valley is underestimated
with 0.1 BW. In Challenge 6, knee loads are underestimated by 0.3-0.8 BW across the whole stance.
This indicates that there is room for improvement of the accuracy of knee JCF estimations.
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Figure 3.1: Comparison of knee joint contact force estimations from different passive force models. In black the
implant measured knee joint contact force (ground truth), in blue the estimations without passive muscle forces and in orange
the estimations with calibrated passive forces, as described in 2.3.1. Forces are normalized for bodyweight. One stance of the

instrumented leg is taken from each trial. RMSE and ZNCC with respect to the ground truth are reported as well.

Validity

The optimizer within the RMR solver converged for the majority of the stance phase for all challenges
and trials. The penalized reserve actuators are also rarely used. Only in challenge 4 around the second
peak (75% stance), some convergence issues occurred, but only ever for less than 0.1s, thus these
trials were not invalidated. In the situations where the solver did come to a solution, it often included
reserve actuators usage (hip and knee 2-5 Nm, ankle 40 Nm). Around this same time in the simulation,
many muscles are estimated to fully activate, see figure D.15. The computation speed for the RMR
solver using the lower extremity models is around 5-10 Hz.

Knee joint contact force estimations

Figure 3.2 and 3.3 show the effect of tracking tasks on knee JCF prediction accuracy. The depicted
change is with respect to the RMSE and ZNCC for the estimations without tracking (baseline estima-
tions). The mean change is calculated as follows: for each trial a single RMSE and ZNCC value is
calculated. Then, the relative change of this value with respect to the baseline estimation is taken. All
these relative changes are averaged over trials within a challenge. Finally these averages (depicted
as markers in figures 3.2 and 3.3) are averaged with all challenges weighed equally.

On average tracking glmed1 increases the accuracy of the knee JCF estimation the most (RMSE -8%,
ZNCC +4%). glmed1 is the most anterior of three Gluteus Medius elements and is responsible for hip
abduction, see figure 3.4. Figure 3.5 shows the improved estimations per challenge over the stance
phase. Most of the improvement is made for challenge 6, in which the tracking task estimates higher
knee loads at the first peak, which was initially underestimated. All other challenges show only minor
improvements. The tracking of glmed1 for each challenge is shown in figure 3.6.

If we consider themeans of individual challenges, tracking vasmed (RMSE -20%, ZNCC+3%), semimem
(RMSE -10%, ZNCC +9%) and recfem (RMSE -6%,ZNCC -9%) perform well for challenge 6, see fig-
ures 3.7. In challenge 6, knee JCFs are underestimated without tracking. Tracking vasmed increases
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estimates for the second knee load peak as well as the interval between peaks, tracking semimem
mainly increases the first peak estimate, while tracking recfem increases the first peak and interval es-
timates. However, it must be noted that EMG for vasmed and semimem are normalized to maximum
values found in gait trials, not MVC trails, meaning that is likely that these EMG values overestimate
muscle excitation.

This means tracking recfem might provide the most legitimate results. Figure 3.8 shows that in esti-
mations without tracking, recfem is inactive. However, EMG from Rectus Femoris indicates significant
activation around 20% stance phase, which corresponds to the first peak in knee loading. Some amount
of this activation remains up till 60% of stance. Through tracking Rectus Femoris EMG with recfem,
the estimated activation of recfem as well as semimem is increased between 15 and 60% of stance.

Tracking all muscles with available EMG significantly overestimates knee JCF: RMSE increases with
147%while ZNCC decreases with 27%. If we only track the muscles that Princelle et al. [63] also tracks,
RMSE increases with 144% and ZNCC decreases with 29%.

Figure 3.2: Percentage change in knee joint contact force RMSE when tracking individual muscles (compared to no
tracking). Markers indicate mean change for all trials within the same challenge, while the gray bar represents the mean

across all challenges. Only the stance phase is considered.
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Figure 3.3: Percentage change in knee joint contact force ZNCC when tracking individual muscles (compared to no
tracking). Markers indicate mean change for all trials within the same challenge, while the gray bar represents the mean

across all challenges. Only the stance phase is considered.

Figure 3.4: The location of a few important leg muscles. Gluteus Medials is used for hip abduction, the Rectus Femoris for
hip flexion and knee extension, and the Semitendinosus for hip extension and knee flexion.
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Figure 3.5: Comparison of knee joint contact force estimations with and without tracking glmed1. In black the implant
measured knee contact force (ground truth), in blue the estimations without tracking and in orange the estimations with
tracking of glmed1. Both estimations ignore passive forces. Forces are normalized for bodyweight. One stance of the
instrumented leg is taken from each trial. RMSE and ZNCC with respect to the ground truth are reported as well.

Figure 3.6: Comparison of muscle activation estimations and EMG with and without tracking glmed1. In black is EMG,
in blue the estimations without tracking and in orange the estimation with tracking glmed1. Estimations are means over all
trials for the indicated challenge. One stance of the instrumented leg is taken from each trial. * indicates that EMG of glmed1

for challenge 4 is normalized with a value found in a gait trial.
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Figure 3.7: Comparison of knee joint contact force estimations with and without tracking vasmed, semimem or recfem
for challenge 6. In black the implant measured knee contact force (ground truth), in blue the estimations without tracking and
in orange the estimations with tracking the muscle indicated in the titles. All estimations ignore passive forces. Forces are

normalized for bodyweight. One stance of the instrumented leg is taken from each trial. RMSE and ZNCC with respect to the
ground truth are reported as well.

Figure 3.8: Comparison of muscle activation estimations with and without tracking recfem. In black is EMG, in blue the
estimations without tracking and in orange the estimation with tracking recfem. Estimations are means over all trials for

challenge 6. One stance of the instrumented leg is taken from each trial. * indicates that EMG of semimem is normalized with a
value found in a gait trial.
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Participant Trial RMSE [BW]
SO CEINMS RMR RMR RMR
[63] [63] No tracking Tracking all Tracking glmed1

KGC 4 og2 0.41 0.43 0.38 0.66 0.38
og3 0.46 0.50 0.64 0.95 0.62
og4 0.51 0.35 0.43 0.59 0.38
og5 0.45 - 0.52 0.83 0.51
og7 0.52 0.37 0.52 0.90 0.50

KGC 5 og1 0.27 - 0.31 1.24 0.28
og8 0.34 0.21 0.26 1.13 0.26
og9 0.33 0.25 0.25 1.17 0.21
og11 0.23 0.21 0.26 1.31 0.22

KGC 6 og4 0.28 0.46 0.39 0.68 0.36
og5 0.40 0.40 0.57 0.67 0.54
og6 0.67 0.53 0.77 1.00 0.62
og7 0.56 0.51 0.57 0.66 0.53
og9 0.47 0.62 0.58 0.74 0.51

Table 3.2: Comparison of knee joint contact force estimation accuracy between methods, measured using RMSE. Only
the stance phase is considered. The most accurate estimation per trial (row) is highlighted in bold.

Participant Trial R2

SO CEINMS RMR RMR RMR
[63] [63] No tracking Tracking all Tracking glmed1

KGC 4 og2 0.70 0.93 0.40 -0.82 0.40
og3 0.71 0.74 -0.07 -1.35 -0.01
og4 0.47 0.79 0.29 -0.34 0.45
og5 0.58 - -0.06 -1.74 -0.03
og7 0.67 0.83 0.32 -1.08 0.36

KGC 5 og1 0.89 - 0.51 -7.08 0.60
og8 0.88 0.93 0.71 -4.39 0.71
og9 0.88 0.94 0.75 -4.73 0.82
og11 0.88 0.90 0.66 -7.33 0.76

KGC 6 og4 0.88 0.78 0.47 -0.58 0.57
og5 0.81 0.76 -0.23 -0.71 -0.12
og6 0.50 0.67 -0.43 -1.44 0.06
og7 0.66 0.73 0.37 0.16 0.46
og9 0.80 0.60 0.25 -0.20 0.43

Table 3.3: Comparison of knee joint contact force estimation accuracy between methods, measured using R2. Only
the stance phase is considered. The most accurate estimation per trial (row) is highlighted in bold.

Comparison to SO and CEINMS

Table 3.2 and 3.2 show comparisons of knee JCF estimation accuracy for different methods, including
RMR without tracking, RMR with tracking glmed1, RMR with tracking all muscles, CEINMS [63] and SO
[63]. Compared to CEINMS and SO, the RMR solver without tracking only achieves lower RMSE for 1
of 14 trials and with tracking glmed1 only for 2 of 14 trials. However, if we consider the averages across
trials per challenge, disregarding CEINMS calibration trials, RMR with tracking glmed1 has the second
lowest RMSE score (after CEINMS) for challenges 4 and 5. For challenge 4, CEINMS has a RMSE of
0.41 BW, RMR tracking glmed1 of 0.47 BW, SO of 0.48 BW and RMR of 0.59 BW. For challenge 5 the
respective scores are 0.22, 0.23, 0.30 and 0.26 BW. For challenge 6 SO has the lowest RMSE (0.48
BW), followed by CEINMS (0.50 BW), RMR tracking glmed1 (0.51 BW) and RMR (0.58 BW). RMR with
tracking all muscles has significantly higher RMSE than all other methods for all trails.

All RMR solver variants have a lower R2 scores than SO and CEINMS for all trials.
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Discussion

4.1. RMR solver and EMG-assisted cost function implementation
The main goal of this thesis is to add an EMG-assisted cost function to the RMR solver and verify its
functionality. A revised RMR solver is created to ease implementation of this new functionality. The
revised RMR solver is verified by comparing it to the original Python implementation by Beck et al. [69],
which yields virtually the same results for the same simulation conditions (MAE < 0.001). The EMG-
assisted cost function also works as intended: estimations for tracked muscles show decreased MAE
and increased ZNCC when compared to EMG. As expected, this effect is stronger for higher tracking
weights.

One other study by Sarshari et al. [54] also implements an EMG-assisted cost functions together with a
glenohumeral stability constraint. However, there are some notable differences between that existing
method and the implementation in this thesis. Firstly, in Sarshari et al. [54] a lowest effort criterion is
based on the sum of squared muscle stress is used instead of the sum of squared muscle activation.
Secondly, the EMG assistance is implemented as a constraint instead of an objective. This constraint
enforces estimated activation to be within a certain margin of EMG, thus reducing the solution space
for the optimizer. The EMG-assisted cost function itself is not novel and similar ones have been used,
for example by Sartori et al. [55]. However, the integration of the EMG-assisted cost function alongside
the GH-JRF constraint novel, to the knowledge of the author.

Limitations of implementation

Regarding the RMR solver revision, several limitations apply. The EMG-tracking objective implemented
in this thesis compares EMG to activation, without accounting for muscle activation dynamics. Activa-
tion dynamics causes a delay between excitation and activation change of 10 to 50 ms [68]. The
impact of this delay is minimal for slow movements, including the movements in this thesis, but is more
significant for faster movements. For simplification, activation dynamics are disregarded for the EMG-
tracking objective in this thesis. However, other methods such as CEINMS [47] or a method by Assila
et al. [49] do account for activation dynamics for the EMG-tracking objective. They do this by defining
the EMG tracking error as the difference between EMG and estimated excitation, instead of activation.
Every set of excitations that the optimizer comes up with needs to be processed to activation, in order
to know the impact on joint moments. There are several options for implementing activation dynamics
in the EMG-tracking objective of the RMR solver. One option is to process the EMG data further to an
signal that represents muscle activation, which is also done in an EMG-driven method by Tahmid et al.
[77]. This would also be possible live, since EMG change would precede activation change. Another
option is to optimize for muscle excitation instead, similar to above-mentioned methods [47], [49]. This
would involve replacing the optimization parameter bounds from activation bounds (equation 2.3) to ex-
citation bounds, as well as modifying the acceleration constraint (equation 2.2) to use muscle excitation.
The activation dynamics equations used in the RMR solver [59], [78] would then be used to construct
a new Ak which captures the effect of muscle excitation, instead of activation, on joint moments.

Another limitation of the current implementation is the lack of flexibility of mapping EMG signals to
multiple muscle actuators in the model. This mapping is done on initialization of EMGmanager and can
only be changed by adding a new case inside __init__. CEINMS features a generalized way, called
Neural Mapping, to map any linear combination of EMG signals to any muscle element. The RMR
solver could also use such a generalized implementation of neural mapping, which could be done by
extension of the EMGmanager class.

29
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A more general limitation to the revised RMR solver, is that all manager classes share some of the
same functionality, such as filtering, sampling and cropping, which leads to unnecessary duplicate
code. The cause is a long development process, in which this shared functionality was not foreseen.
A new revision might collect these functions in a manager superclass, with data-specific functionality
implemented in subclasses. This will reduce duplicate code, improving maintenance and modularity,
which are the main advantages of a well made class-based code base.

4.2. Shoulder movements results
The secondary objective of this thesis is to investigate the effect of EMG-tracking on muscle activation.
To this end, muscle recruitment is estimated for simple shoulder movements while tracking a single
EMG signal. With EMG as ground truth, MAE and ZNCC of all tracking tasks is compared to the MAE
and ZNCCwithout tracking. While the effect of tracking only a singlemuscle at the time is expected to be
low, results indicate very minimal impact. Most tracking tasks do not improve MAE (change < 0.005)
of any other muscle. Similarly, ZNCC is only improved by 0.03 or less for any muscle, most of the
time. It seems that redundancy of this model is so high, that changes in muscle force of one muscle
can be compensated by only slight changes in muscles force of multiple other muscles. Because
single tracking tasks have minimal impact, it is expected that many tracking tasks at the same time are
necessary for a significant impact, given this model and data. Combinations of multiple tracking tasks
were not simulated, because many combinations exist. No attempt was made to qualitatively inspect
the lowest effort estimations together with the available EMG signals, to come to a selection of EMG
signals to track.

It must be noted that simulations using only the lowest effort objective already give good estimations
for muscle recruitment using this model and data, with most MAEs below 0.01 as can be seen in figure
D.4. This indicates that co-contraction levels are low in the measured muscles, in which case EMG-
tracking seems less likely to significantly impact muscle recruitment estimations. Contrary, the MAEs of
estimations without tracking found in this study are slightly different, up to 0.03, to the ones reported by
Belli et al. [59], despite using the same solver (verified), the same model, the same data and replicating
the same filter settings. Based on verification of the first Python RMR solver by Beck et al. [69] and of
the revised Python RMR solver in this thesis, the expected MAE deviations of this implementation to
the original MATLAB implementation should be less than 0.01, but this is not the case. One possible
explanation is that movement time was normalized in different ways, which could alter the contributions
of movement phases to the MAE.

While the RMR solver did not converge for around 2% of the time steps, this never happened for many
consecutive steps or for many steps in the same trial, therefore the impact on the results is deemed
minimal.

Limitations shoulder simulations

The data that was used includes only one subject, three movement types and a low levels of co-
contraction in superficial muscles, based on predictions within 0.1 MAE by the lowest effort criterion.
The original purpose of the data was to investigate muscle contributions in the shoulder using a new
model in combination with SO and CMC, both with lowest effort objectives [22]. This experiment there-
fore did not focus on co-contraction, but rather on the biomechanics of the scapular and glenohumeral
joints, hence the inclusion of the shrugging motion in the experiment. Because of the low trial count as
well as the small changes between tracking conditions, no significance was computed for these results.

Another limitation in this study is that the effect of tracking multiple EMG signals at the same time is not
explored. Simulating all combinations of two, three or even more EMG-tracking tasks at the same time,
would take a considerable amount of time and generate a large set of results. Only testing certain sets
of tracking tasks could introduce bias, thus it would require good intuition or qualitative assessment
to find sensible combinations. It seems likely that the effect of tracking tasks would stack when used
simultaneously. Since the positive effect of single tracking tasks found in this thesis is so small, we
expect many signals (e.g. four) need to be tracked for significant impact.

Only tracking weights of 1, 3 or 5 were investigated (considering all other weights as in table C.3) and
a weight of ’3’ was chosen for all tracking tasks based on tracking performance. However, different
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weights for different EMG signals should be investigated, as well as a finer selection of weights, e.g.
1-10 with intervals of 0.5, because EMG signals that were already close to estimations based on lowest
effort require less weight to track appropriately.

4.3. Gait results
The third goal of this thesis is to analyze the effect of EMG-tracking on knee joint contact forces. Data
fromKneeGrand Challenges 4, 5 and 6 are used together withmodels fromPrincelle et al. [65]. Passive
forces are ignored to prevent unrealistically high muscle forces, e.g. in the Gastrocnemius Medialis and
Lateralis, and simulations are run while tracking one EMG signal at the time. For all tracking tasks MAE
and ZNCC for knee load estimations, with measured implant force as ground truth, are compared to
estimations without tracking. Relative changes in MAE and ZNCC indicate some significant effects of
EMG-tracking on knee JCF estimations. Various tracking tasks decrease RMSE or ZNCC, although
usually not for all challenges.

Tracking the Gluteus Medius EMG signal with glmed1 delivers the most improvement on average over
all challenges. When inspecting the knee JCF curves (figure 3.5), the most significant improvement is
made for challenge 6, where tracking glmed1 increases the first peak estimation from 2.05 BW to 2.45
BW, with ground truth being 2.55 BW. In order to understand how this increase in accuracy is achieved,
we look into the tracked signals with more detail, shown in figure 3.6. The estimated activation of
glmed1 across all three challenges is around 0.8 or higher without tracking, which does not seem
realistic for a low intensity activity. In challenge 6, the Gluteus Medius EMG signal is around 0.1, which
is more as expected. This causes EMG-tracking to reduce glmed1 activation, which indirectly causes
higher knee JCF. Consequently the estimation improves, because the lowest effort knee JCF estimation
underestimated knee loads in challenge 6. However, the legitimacy of the improvements for challenge
4 and 5 is questionable. The processed Gluteus Medial EMG signal is surprisingly high for challenge
4 and 5 (0.5-0.7 and 0.9 respectively), while challenge 6 suggests that glmed1 remains inactive during
stance. Visual inspection of the raw EMG for challenge 5, reveals a constant signal with noise, which
also suggests muscle inactivity. It seems likely that bad normalization causes the processed EMG
signal of challenge 4 and 5 to be high. Therefore, any effect of tracking glmed1 in these challenge is
likely artificial.

Knee load estimation in challenge 6 can also be improved by tracking other muscles, such as vasmed,
semimem or recfem, see figure 3.7. All these tracking tasks increase load estimations. Because the
lowest effort estimations in challenge 6 underestimate knee JCF, increased estimations can lead to
lower RMSE. This suggests that subject DM in challenge 6 uses more co-contraction during gait. The
high standard deviation in implant force data during stance also indicates that subject DM does not
have a steady gait pattern. These ongoing adaptations of gait are likely to be related to increased
co-contraction.

An example of legitimate EMG-assistance is tracking recfem in challenge 6. The Rectus Femoris EMG
signal causes increased recfem activation during the first knee load peak, which would otherwise be in-
active, see figure 3.8. Consequently, the activation of the antagonist semimem is increased, to balance
the induced torque around the knee. Because both muscle elements wrap the knee joint (figure 3.4),
their increased activation directly contributes to increased knee JCF at the first peak. This increased
knee load estimation is closer to the measured knee JCF as can be seen figure 3.7. This example
shows how EMG-tracking can predict co-contraction and corresponding changes in knee loading.

In challenge 4 and 5 there is less room for improvement of knee JCF estimations. In challenge 4 only
mid-stance and the second peak are underestimated. For challenge 5, the RMSE of the lowest effort
estimation without tracking is already low (0.27 BW) and only the first peak overestimated. Higher knee
load estimations for these challenges likely lead to higher RMSE. The combination of low RMSE and
slight overestimation for challenge 5 leads to large relative increases in RMSE for some tracking tasks,
e.g. tracking recfem (+130%), gasmed (+75%) or vaslat (+70%). Since EMG-assisted optimization al-
ways increases total muscle activation with respect to the lowest effort solution, it usually also increases
knee JCF RMSE for challenge 4 and 5.

EMG-normalization seems crucial when it comes to the effectiveness of EMG-tracking. As is the case
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with the Gluteus Medius signal in challenge 5, unreliable MVC values can impact the magnitude of
normalized EMG immensely. Often, EMG is visually inspected in order to exclude any suspected noisy
or faulty EMG signals [16]. Preferably, there should be a way to either get more accurate MVC data
for normalization or have EMG-assisted methods be less dependent on normalization. The first might
be achieved through better experimental protocols, but this cannot be applied on existing data sets.
Less dependency on MVC might be achieved by methods that rely more on EMG trend than absolute
magnitude. Even with a badly normalized EMG signal, we know that muscle excitation will increase
when EMG increases (disregarding other effects, e.g. bad electrode placement and cross-talk); only
the amount of increase will be unclear. However, it might be hard to implement EMG-assistance like
this by optimizing statically. Instead optimization on a window of time might be necessary.

Muscle passive forces

Per default, the RMR solver includes muscle passive forces. However, it turns out that unadjusted
passive forces leads to enormous overestimation of knee JCF, mainly caused by the Gastrocnemius
muscles. This has lead to the consideration of two options: (A) disabling passive forces all together,
or (B) calibrating passive forces to produce realistic joint torques. The calibration process adjusted the
muscle fiber force curve to an unphysiological level with most passive forces starting at a strain of 0.45,
instead of 0, and reaching one normalized muscle force at 1.05 strain, instead of 0.7, as shown in figure
D.12. This does not invalidate the adjusted B-specification model, because the adjustments do result
in realistic passive joint torques, as is demonstrated in figure D.13. The passive fiber force curve is
merely used to enhance the macro properties of the model. It seems likely that adjusting other muscle
properties would have beenmore appropriate, although this would require careful considerations. Since
SO and CEINMS do not model passive muscle force, Princelle et al. [63] will not have accounted for
them while making the models.

When choosing which model to use for EMG-tracking analysis, accuracy measured with RMSE was
given priority. This lead to the choice to estimate without using passive forces. However, the ZNCC
of estimations using the adjusted passive forces were strictly better, especially for challenge 4 (ZNCC
0.91 vs. 0.60 without passive forces). This could indicate that passive forces are playing an important
role, but that this role is not tuned right in this model. However, the results from challenge 6 weaken this
statements. Because both specifications result in virtually the same estimations, it seems that passive
forces do not impact knee JCF at all for this subject.

Comparison to other studies

The fourth goal of this thesis is to verify if the performance of the EMG-assisted RMR solver can achieve
similar estimations as Princelle et al. [63] using SO and CEINMS. All RMR solver variants have lowerR2

than CEINMS and SO, as can be concluded from table 3.3. R2 penalizes occasional larger errors more
than consistent smaller errors, because it squares the prediction error. This sensistivity is probably why
the RMR solver has such low R2 values, while the RMSEs are similar to SO and CEINMS.

As can derived from table 3.2, the RMR solver with tracking glmed1 generally has a higher RMSE than
CEINMS, but lower than SO for challenges 4 and 5. This indicates that the RMR solver with EMG-
tracking has potential for improving knee load estimation compared to the established SO method,
although tracking glmed1 in challenge 4 and 5 does not seem entirely legitimate, as was described
in the second paragraph of section 4.3. Surprisingly, SO achieves lower average RMSE (0.48 BW)
than both CEINMS (0.50 BW) and RMR with tracking glmed1 (0.51 BW) for challenge 6. It is expected
that SO would underestimate knee loads for this challenge, similar to RMR without tracking, because
it likely contains more co-contraction. However, considering individual trials reveals that SO only has
the lowest RMSE in 2 of 5 trials in challenge 6. Given that the measured knee loads for challenge 6
also have the highest standard deviation of all challenges, it may be plausible that SO predicts only the
trials with low co-contraction and lower knee loads accurately. The CEINMS calibration trial og3 was
not used in this thesis, but according to Princelle et al. [63] SO has a RMSE of 0.53 BW for that trial. This
is on the higher side for challenge 6, indicating possible co-contraction. Since CEINMS was calibrated
on trial with more suspected co-contraction, it probably has more trouble accurately prediction the low
co-contraction trails at which SO excels.

The RMR solver without tracking also has significantly higher average RMSE (+0.10 BW) for challenge
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Figure 4.1: Comparison of knee joint contact force RMSE for different methods. The average RMSE of Knee Grand
Challenges 4, 5 and 6 is displayed for stance phases only. Methods used in this thesis are compared to those used in Bennett
et al. [16] and Princelle et al. [63]. Note that this comparison has no statistical significance and is not normalized to bodyweight.

4 and 6 compared to SO. Based on results by Belli et al. [59], the RMR solver should be at least be on
par with SO, since it uses the same muscle model complexity and even considers muscle activation
dynamics, similar to CMC.One possible explanation is that Princelle et al. [63] have adjusted themodels
further, thus that the models used in this thesis [65] are not exactly the same after all.

This brings up the importance of musculoskeletal models and their personalization, which may con-
tribute more to estimation accuracy than EMG-tracking. Assila et al. [49] shows that using SO with an
EMG-calibrated model estimates more stable GH JRFs, even when using SO for solving, suggesting
that CEINMS may be able to compensate for models deficiencies. However, in Bennett et al. [16] es-
timations using CEINMS are worse than using SO in Princelle et al. [63] (RMSE 342 N vs. 286 N),
see also figure 4.1. This difference might be because Bennett et al. [16] uses a lowest joint load cost
function, while Princelle et al. [63] optimizes for lowest effort plus lowest EMG-tracking error. However,
it seems likely that the model used also plays as significant role. Bennett et al. [16] uses a scaled
version of the gait2392model, which uses older Thelen2003Muscle elements, a hinging knee joint and
out-dated muscle properties. Contrary, Princelle et al. [63] has created a personalized model sharing
properties to the Rajagopal2015model [72], usingmore recentMillard2012EquilibirumMuscle elements
and a more realistic rolling knee joint with moving patella. Knee JCF estimations with SO in Princelle et
al. [63], in which the models are suspected to be more personalized than the ones used in this thesis,
also seem to perform better than the best results achieved in this thesis, in particular when considering
the R2 metric, for which SO has higher scores than RMR in all 14 trials. This suggests that there is
more to gain in model personalization than with EMG-assisted cost functions and that EMG-calibration,
as part of the CEINMS routine, might be able to help automate personalization.

Another observation is that tracking all muscles at the same time using the RMR solver, overestimates
knee JCF at the first peak with 1.0 up to 2.0, even though CEINMS also tracks all these muscles without
overestimation. It must be considered that CEINMS has more elaborate mapping of EMG signals to
muscles, which will help. Authors are also selective regarding which EMG to include in tracking. For
example, for challenge 4, Bennett et al. [16] and Princelle et al. [63] ignored EMG for vasmed, glmax
and perlong because of noise, as well as for soleus and sart because they were deemed faulty. Still,
discarding those same muscles and only tracking remaining ones using the EMG-assisted RMR solver,
results in similar knee JCF overestimation. Likely, EMG-tracking only works adequately when themodel
is calibrated to similar EMG. Calibration might even be experiment specific. While EMG-tracking is not
performed on the same trials as EMG-calibration, it is still the same experiment. It would be interesting
to investigate if CEINMS calibration for one experiment would be effective for subsequent experiments
with the same subject. If this is the case, it would confirm that CEINMS calibration enhances subject
specificity and not merely experiment specificity.
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Limitations gait simulations

Some of the same limitations mentioned for the shoulder simulations also apply for the gait simulations.
This includes the low number of trials, meaning statistical significance is not considered. While this data
includes three subjects instead of one, only challenge 6 seems to contain signification co-contractions,
based on underestimation of knee loads with the lowest effort criterion. The increased muscle activity is
probably because of the old age of the subject and its medical history concerning the knee replacement.
Similarly to the shoulder simulations, tracking multiple EMG signals at the same time is not explored
and weight factors are taken the same for every tracking task.

Because the models include only the instrumented leg, the GRF from the other leg is applied to the
pelvis. The point-of-application still lies at the center of pressure, which should account for anymoments
that the GRF applies. Since we only consider the estimations of the stance phase of the instrumented
leg, during which the GRF for the other leg would be mostly zero, the impact of the simplification is
deemed small. Nevertheless, a two-legged model with both GRF applied at the feet may result in more
accurate estimations.

Muscle recruitment, and consequently knee JCF, estimations for challenge 4 are less valid, because
reserve actuator forces are needed to generate the inverse dynamic accelerations. In addition, several
muscles are maximally activated during the second half of the stance phase. This indicates that the
model for the challenge 4 subject is likely not strong enough.

Models of both specifications exhibit unexpected jumps in muscle fiber length in somemuscle elements.
For example the gasmed in the model for challenge 5 has visible wrapping error around−5◦ knee angle,
but also invisible errors around −32◦ and −56◦, see figure D.16. During the visible wrapping error, the
muscle element wraps around the wrong, i.e. unintended, way of the wrapping surface, which can
be caused by a modeling mistake or bug in the wrapping function. The other jumps, however, cannot
be explained. The impact of these muscle wrapping discontinuities could be significant, but further
analysis would be required to capture the full scope of its impact.

4.4. Implications and recommendations
The revised RMR solver with EMG-assisted cost function created in this thesis is meant to be a new
tool to use in state-of-the-art musculoskeletal simulations. The combination of an EMG-assisted cost
function together with the GH stability constraint makes the tool especially suited for shoulder stability
studies. The revised RMR solver has already been adopted by fellow researches, because it is more
practical to set up and customize than the previous implementation, even if EMG-assistance is not
used. Therefore, the revised RMR solver promises to aid future musculoskeletal research.

Recommendations regarding the RMR solver are related to improving the modularity and expanding
function flexibility. The manager classes might be fused into one, in order to reduce code redundancy,
which can be achieved by creating one manager super class. Plotting functionality could be improved
and moved from MotionAnalysis into a separate class in order keep classes clear in their purpose.
More elaborate EMG mapping functionality could be added to allow muscles to track any combination
of EMG signals. For example, a muscle might track half of signal 1 and half of signal 2 (a = 0.5e1+0.5e2).
Or an EMG signal can be tracked by the sum of three muscles (a1 + a2 + a3 = e).

While EMG-tracking can reduce MAE and increase ZNCC of other muscles, or reduce RMSE and
increase ZNCC of knee loads, none of these findings are significant yet. However, the potential of
EMG-tracking few signals in knee JCF estimation is demonstrated using examples, which is especially
promising in gait with suspected co-contraction (challenge 6), meaning it might be of great help in
research with knee osteoarthritis patients. But factors such as EMG normalization and model person-
alization are also crucial for success.

Several interesting research topics might be pursued to improve estimations more. Integrating activa-
tion dynamics with the EMG-tracking might allow more accurate tracking, by accounting for EMG delay.
Tracking multiple EMG signals at the same time can be investigated. It is expected that the impact of
tracking more signals at the same time is stronger, but which combinations of tracking might increase
accuracy in muscle coordination is still unclear, as well as how it would compare to CEINMS.
Applying EMG-tracking to different movement types as well as movements with more co-contraction,
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could also reveal a more significant impact. Forcing different levels of co-contraction through exper-
iment design may offer a way to prove if the accuracy gain of EMG-tracking is stronger for higher
co-contraction.
A more extensive sensitivity analysis of EMG-tracking weight factors in the cost function might lead
to weights that result in more accurate estimations. We would expect that increased accuracy can be
achieved, although it might be hard to find a universal set of weights. It would also be interesting to
see how the resulting weights compare to calibrated weights from CEINMS.
The implementation of normalization-independent EMG-tracking could be researched. It is difficult to
predict what results such amethod would produce, but if a method can be found that results in increased
accuracy, while being insensitive to potentially unreliable EMG-normalization, it could be promising.
Finally, using the RMR solver in combination with a CEINMS calibrated model, might reveal how im-
portant the CEINMS calibration step is compared to EMG-assistance at simulation.



5
Conclusion

The main goal of this thesis is to equip the existing Rapid Muscle Redundancy (RMR) solver, which al-
ready featured a GH stability constraint, with an EMG-assisted cost function. Along with this extension,
the RMR solver is revised to be class-based in order to improve modularity, scalability and user inter-
action. The new implementation is verified to produce identical estimations without EMG-assistance
compared to the previous implementation and is successful at tracking EMG using the EMG-assisted
cost function.

Simulations using a shoulder model and data, reveal that the impact of EMG-tracking single EMG
signals on muscle recruitment is minimal, which is attributed to the lack of co-contraction used by the
subject.

Simulations using a lower extremity model and gait data, result in a more significant impact of EMG-
tracking tasks, which generally cause higher knee joint contact forces (JCFs) during stance. Tracking
the most anterior element of the Gluteus Medius improves knee JCF accuracy, with respect to ground
truth in-vivo data, the most on average over three subjects and multiple trials, with the Root Mean
Squared Error (RMSE) decreasing with 8% and the Zero-Normalized Cross-Correlation (ZNCC) in-
creasing with 4%, although unreliable EMG-normalization may invalidate these results to some extent.

Compared to results from the conventional Static Optimization (SO)method and the state-of-the-art Cal-
ibrated, EMG-Informed Neuromusculoskeletal Modeling toolbox (CEINMS), our EMG-assisted RMR
solver only achieves lower RMSE in 2 out of 14 trials, although the average difference is only 0.03 BW.

The potential of EMG-tracking is especially demonstrated with tracking the Rectus Femoris muscle in
challenge 6, in which more co-contraction is present. Through an increase of the the Rectus Femoris
activity as well as its antagonist, Semitendinosus, the knee load estimation is increased at the first peak
during stance, which was previously underestimated without EMG-assistance.

While the new implementation has not proved itself definitively, it seems promising in predicting co-
contraction using EMG-assistance from few EMG signals. In the future this or similar methods might
play a crucial role in investigating changes in muscle coordination due to rotator cuff tears, knee os-
teoarthritis or other musculoskeletal pathologies, which can contribute to more personalized prevention,
intervention or rehabilitation.
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A
Data availability

Shoulder model & data

The shoulder data and scaled shoulder model by Seth et al. [22] are available at:
https://simtk.org/projects/thoracoscapular.

Gait data

Data from the Grand Challenge Competition to Predict In Vivo Knee Loads is available at: 
https://simtk.org/projects/kneeloads.

Lower extremity models

The scaled lower extremity models from Princelle et al. [65] for use with the Knee Grand Challenge 
data is available at:
https://doi.org/10.6092/unibo/amsacta/7528.

Python code
The Python code used for this thesis is available at a private repository:
https://github.com/PTbot-TUDelft/live-active-strainmaps-florian.

Access may be requested
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B
Revised RMR solver details

B.1. Script example
The example below shows a top-level Python script, in which the RMR solver is employed on a normal
gait trial of KGC 6, with and without EMG-assistance. For the code of all classes, functions and other
run files, please refer to appendix A.

1 """
2 Example script demonstrating the revised Python RMR solver.
3

4 In this script the RMR solver without tracking is compared to the RMR solver with tracking.
5 Data: Grand Knee Challenge 6
6 Trial: DM_ngait_og4
7 Tracking: recfem (Rectus Femoris)
8 """
9

10 ### Import libraries, classes and utility files ###
11 import os
12 import warnings
13 import numpy as np
14

15 from Classes.ModelSpecs import ModelSpecs
16 from Classes.MotionManager import MotionManager
17 from Classes.EMGmanager import EMGmanager
18 from Classes.RMRsolver import RMRsolver
19 from Classes.MotionAnalysis import MotionAnalysis
20

21 import Utilities.utilsObjectives as utilsObj # objective function classes
22 import Utilities.utilsLoadFile as utilsLoad # loading Results
23 warnings.filterwarnings('ignore', category=RuntimeWarning) # suppress scipy.minimize warnings
24

25 ### Set script flags ###
26 run = True
27 save = True
28 plot = False
29 track = 'recfem'
30

31 ### Select file locations ###
32 # Main folder containing all models & data:
33 mainFolder = "Grand-Knee-Challenge"
34

35 # Musculoskeletal model:
36 modelFolder = os.path.join(mainFolder,"Model","Princelle")
37 modelName = "STAPLE_KGC6_RMR"
38

39 # Generalized coordinate data:
40 motionFolder = os.path.join(mainFolder,"Result-IK","Motion","Princelle")
41 motionName = "DM_ngait_og4_new_conv"
42

43 # EMG data:
44 emgFolder = os.path.join(mainFolder,"Experimental","EMG")
45 emgName = "DM_ngait_og4_emg"
46 mvcName = "DM_MVC"
47

48 # GRF data:
49 grfFolder = os.path.join(mainFolder,"Experimental","GRF")
50 grfName = "DM_ngait_og4_grf"
51

43
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52 # JCF data:
53 jcfFolder = os.path.join(mainFolder,"Experimental","JCF")
54 jcfName = "DM_ngait_og4_knee_forces"
55

56 # Result data (will be created if run=True):
57 resultFolder = os.path.join(mainFolder,"Result-RMR")
58 resultName = "DM_ngait_og4_track_none"
59 result_trackName = "DM_ngait_og4_track_" + track
60

61 ### Setup simulation ###
62 # Load model:
63 spec = ModelSpecs(modelFolder,modelName) # load model and its specifications
64

65 # Setup motion:
66 motion = MotionManager(motionFolder,motionName) # load motion data
67 motion.filter(cutoff=8) # low-pass filter
68 motion.setTime(freq=60) # crop & resample
69

70 # Setup EMG:
71 emg = EMGmanager(emgFolder,emgName) # load EMG data
72 emg.norm(emgFolder,mvcName) # normalize with MVC
73 emg.filter(cutoff=[30,300],bandType='bandpass',order=2,filterType='sosfilt') # band-pass

filter
74 emg.rect() # rectify
75 emg.filter(cutoff=8,bandType='lowpass',order=4,filterType='filtfilt') # low-pass filter
76 emg.sync(motion) # synchronize with motion data (crop & resample)
77

78 # Setup GRF:
79 grf = GRFmanager(grfFolder,grfName) # load GRF data
80 grf.sync(motion)
81

82 specs.addPrescribedForce(body='pelvis',name='GRF_left1') # add each GRF to the model
83 specs.addPrescribedForce(body='calcn_r',name='GRF_right1')
84 specs.addPrescribedForce(body='calcn_r',name='GRF_right2')
85

86 # Setup JCF (for result only):
87 jcf = JCFmanager(jcfFolder,jcfName) # load JCF data
88 jcf.sync(motion)
89

90 # Setup solvers:
91 effortWeights = np.concatenate( (1*np.ones(40),
92 0*np.ones(6),
93 np.array([10, 10, 10, 10, 0, 10, 0, 0])) )
94 # weights for lowest effort objective: muscle = 1, penalized reserve = 10, free reserve =

0
95

96 objective = utilsObj.EMGtrack(specs) # without EMG tracking
97 solver = RMRsolver(specs,outputJoint=['knee_r'],prescribedForceIndex=[54,55,56],

musclePassiveForce=False)
98 # output for right knee JRF, no passive forces
99 solver.addObjective(objective) # add objective to solver
100

101 objective_track = utilsObj.EMGtrack(specs,track=track,trackWeights=3) # with EMG tracking
102 solver_track = RMRsolver(specs,outputJoint=['knee_r'],prescribedForceIndex=[54,55,56],

musclePassiveForce=False)
103 solver_track.addObjective(objective_track)
104

105 analysis = MotionAnalysis(specs)
106 analysis_track = MotionAnalysis(specs)
107

108 # Run solver:
109 if run: # run simulations
110 result = analysis.runAll()
111 result_track = analysis_track.runAll()
112

113 if save: # save result
114 result.save(resultFolder,resultName)
115 result_track.save(resultFolder,result_trackName)
116

117 # Setup plotting
118 if plot:
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119 if not run: # load result
120 result = utilsLoad.loadResult(resultFolder,resultName)
121 result_track = utilsLoad.loadResult(resultFolder,result_trackName)
122

123 analysis.addPlot('activation') # add muscle activation plot
124 analysis.addPlot('reserve') # add reserve actuator activation plot
125 analysis.addPlot('jointContactForce',plotRange=['knee_r']) # knee joint contact force plot
126

127 analysis.plotResult([result, result_track],labels=['No␣track','track' + track]) # show all
added plots

B.2. RMRsolver default settings
The following default settings are used for the RMRsolver class in this thesis:

• For the very first time step, RMRsolver uses an initial guess of 0.1 and 0 activation of muscle and
reserve actuators, respectively. In subsequent time steps, the solution of the last time step is
used as an initial guess.

• Reserve actuators have activation bounds of [-1e6, 1e6].
• The experimental acceleration constraint tolerance scales with a constraint tolerance factor (δ).
The expression for the constraint is as follows: q̈i,tol = max [δ, δq̈i], with q̈i the ith entry of the
induced acceleration vector, which needs to be matched, and q̈i,tol the ith entry of the acceler-
ation constraint tolerance. As can be seen, the constraint tolerance assumes a value equal to
δ for induced accelerations below 1 N(m)/s2 and scales with δ for induced accelerations above
1. Within the constraint tolerance, the constraint is deemed satisfied. For the first optimization
attempt at each time step, a tolerance of 0.001 is used. If this first attempts fails to converge, a
second attempt is done using a tolerance of 0.005. If the second attempt fails, RMRsolver fails to
find a solution for that time step.

• For the actual optimization process the scipy.signal.minimize() function is used with the Se-
quential Least Squares Programming method. The following settings are used: maxiter=10000,
ftol= 1e-6, disp= False, eps= 1e-8 (see also https://docs.scipy.org/doc/scipy/reference/
generated/scipy.optimize.minimize.html).

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html


C
Additional method information

C.1. Shoulder movement simulation
Full name Abbreviation EMG signal MVC value
Trapezius TrapeziusScapula_M TM 4.175

TrapeziusScapula_I TI 3.202
TrapeziusScapula_S
TrapeziusCalvicle_S sum = TS 0.547

Serratus Anterior SerratusAnterior_I
SerratusAnterior_M
SerratusAnterior_S

mean = SA 1.862

Rhomboid Rhomboideus_S
Rhomboideus_I

Levator Scapulae LevatorScapulae
Coracobrachialis Coracobrachialis
Deltoid DeltoideusClavicle_A AD 2.225

DeltoideusScapula_P PD 0.706
DeltoideusScapula_M MD 1.378

Latissimus Dorsi LatissimusDorsi_S
LatissimusDorsi_M LatD 0.448
LatissimusDorsi_I

Pectoralis Major PectoralisMajorClavicle_S PM_Clav 0.564
PectoralisMajorThorax_I
PectoralisMajorThorax_M

Teres Major TeresMajor Tmajor 1.155
Infraspinatus Infraspinatus_I

Infraspinatus_S Infra 0.173
Pectoralis Minor PectoralisMinor
Teres Minor TeresMinor
Subscapularis Subscapularis_S

Subscapularis_M
Subscapularis_I

Supraspinatus Supraspinatus_P
Supraspinatus_A

Triceps Brachii Longhead TRIlong
Bisceps Brachii Longhead BIC_long
Biceps Brachii Shorthead BIC_brevis

Table C.1: Muscles in the shoulder model and mapping to experimental EMG signals.
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Movement type Trial name Start time [s] End time [s]
Loaded forward flexion Flx21 0.032 6.972

Flx22 0.967 9.354
Flx23 1.774 9.201

Loaded abduction Abd21 0.639 8.536
Abd22 0.706 8.942
Abd23 0.618 8.768

Loaded shrugging Shrug21 0.544 2.303
Shrug22 0.477 2.924
Shrug23 0.739 2.895

Table C.2: Trials and time ranges used for the shoulder data set. All loaded movements are performed using 2kg handheld
weights. Time ranges are extracted from the PlotMuscleResult MATLAB script in the supplementary materials from Seth et al.

[22], see appendix A for data availability.

w1 = 0 w1 = 1 w1 = 10
ground_thorax_rot_x_actuator All muscles, scapula_elevation_actuator
ground_thorax_rot_y_actuator see table C.1 clav_prot_actuator
ground_thorax_rot_z_actuator clav_elev_actuator
ground_thorax_tx_actuator scapula_abduction_actuator
ground_thorax_ty_actuator scapula_upward_rot_actuator
ground_thorax_tz_actuator scapula_winging_actuator
elbow_actuator plane_elv_actuator
pro_sup_actuator shoulder_elv_actuator

axial_rot_actuator

Table C.3: Weights for vector w1 (lowest effort objective) for the shoulder model.
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C.2. Normal gait simulation
Full name Abbreviation EMG max value

Challenge 4 Challenge 5 Challenge 6
Adductor Brevis addbrev
Adductor Longus addlong

addmagDist
addmagIsch
addmagMidAdductor Magnus

addMagProx

MVC Gait Gait

Biceps Femoris Longhead bflh MVC Gait MVC
Biceps Femoris Shorthead bfsh
Extensor Digitorum Longus edl
Externsor Hallucis Longus ehl
Flexor Digitorum Longus fdl
Flexor Hallucis Longus fhl
Gastrocnemius Lateralis gaslat MVC MVC MVC
Gastrocnemius Medialis gasmed MVC MVC MVC

glmax1
glmax2Gluteus Maximus
glmax3

MVC MVC Gait

glmed1
glmed2Gluteus Medius
glmed3

Gait MVC MVC

glmin1
glmin2Gluteus Minimus
glmin3

Gracilis grac
Iliacus iliacus
Peronius Brevis perbrev
Peronius Longus perlong Gait Gait Gait
Piriformis piri
Psoas Major psoas
Rectus Femoris recfem MVC MVC MVC
Sartorius sart Gait Gait MVC
Semimembranosus semimem MVC Gait Gait
Semitendinosus semiten
Soleus soleus MVC Gait Gait
Tractus Iliotibial tfl Gait Gait MVC
Tibialis Anterior tibant MVC Gait MVC
Tibialis Posterior tibpost
Vastus Intermedius vasint
Vastus Lateralis vaslat Gait MVC MVC
Vastus Medialis vasmed Gait MVC Gait

Table C.4: Muscles in the lower extremity model and the trial type in which the maximum value of EMG is found. This
maximum value is used for normalization of EMG.

w1 = 0 w1 = 1 w1 = 10
pelvis_tilt All muscles, hip_flexion
pelvis_list see table C.4 hip_adduction
pelvis_rotation hip_rotation
pelvis_tx knee_angle
pelvis_ty ankle_angle
pelvis_tz
knee_angle_beta
subtalar_angle
mtp_angle

Table C.5: Weights for vector w1 (lowest effort objective) for the lower extremity model.
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Figure C.1: Passive muscle force of rigid vs. compliant tendons for different muscle-tendon length ratios. Without
active muscle forces and a pennation angle of 0◦, a model with rigid tendons causes higher passive forces than a model with

compliant tendons. In the compliant tendon model, two spring elements act in series, which decreases the net
muscle-tendon-unit stiffness. At the same time, increasing the tendon to muscle length ratio, increases passive

muscle-tendon-unit stiffness, because tendon stiffness is significantly higher than muscle stiffness (one normalized force at 5%
and 70% strain, respectively). Increased stiffness from a rigid tendon model is more pronounced at high tendon to muscle

length ratios.



D
Additional result information

D.1. Verification

Figure D.1: MAE between actuator recruitment of the original Python implantation [69] and the revised implementation
(this thesis).
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Figure D.2: MAE between muscle activation and EMG for different tracking tasks. Each row presents the tracking task as
well as the muscle evaluated. When the named muscle is tracked, its tracking weight is set 1, 3 or 5, while all other muscles

are not tracked.
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Figure D.3: Zero-normalized cross-correlation between muscle activation and EMG for different tracking tasks. Each
row presents the tracking task as well as the muscle evaluated. When the named muscle is tracked, its tracking weight is set 1,

3 or 5, while all other muscles are not tracking.
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D.2. Shoulder movement simulation

Figure D.4: MAE for shoulder movements without any EMG-tracking. For each movement type, an average is taken
across three trials.

Figure D.5: Zero-normalized cross-correlation for shoulder movements without any EMG-tracking. For each movement
type, an average is taken across three trials.
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Figure D.6: The effect of tracking task on MAE of the tracked muscles for loaded forward flexion. Values represent the
mean over all three trials. Empty fields indicate that the change is less than 0.00.

Figure D.7: The effect of tracking task on MAE of the tracked muscles for loaded abduction. Values represent the mean
over all three trials. Empty fields indicate that the change is less than 0.00.
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Figure D.8: The effect of tracking task on MAE of the tracked muscles for loaded shrugging. Values represent the mean
over all three trials. Empty fields indicate that the change is less than 0.00.

Figure D.9: The effect of tracking task on ZNCC of the tracked muscles for loaded forward flexion. Values represent the
mean over all three trials. Empty fields indicate that the change is less than 0.00. Grey values indicate that the maximum

muscle activation is below 0.1.
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Figure D.10: The effect of tracking task on ZNCC of the tracked muscles for loaded abduction. Values represent the
mean over all three trials. Empty fields indicate that the change is less than 0.00. Grey values indicate that the maximum

muscle activation is below 0.1.

Figure D.11: The effect of tracking task on ZNCC of the tracked muscles for loaded shrugging. Values represent the
mean over all three trials. Empty fields indicate that the change is less than 0.00. Grey values indicate that the maximum

muscle activation is below 0.1.
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D.3. Gait simulation

Bodypart Markers Participant
KGC4 KGC5 KGC6

Hip Asis L, R L, R L, R
Psis L, R L, R L, R

Thigh KneeLateral R
KneeMedial R
ThighInferior R L R
ThighLateral R* L R
ThighSuperior R L R

Patella Patella R* L R
Shank AnkleLateral R

AnkleMedial R
ShankInferior R L R
ShankLateral R L R
ShankSuperior R L R

Foot Heel R L R
MidfootLateral R L R
MidfootMedial R L R
MidfootSuperior R L R
Toe R L R
ToeLateral R L R
ToeMedial R L R

Table D.1: Tracked markers for each challenge, grouped per body part. ’L’ and ’R’ indicate if the left and/or right marker is
used. Markers with * are omitted for trial 7, because of obscuration.

Participant Trial Adjusted
start time [s]

Adjusted
end time [s]

Mean RMSE
[mm]

KGC 4 og2 12.8
og3 13.1
og4 13.2
og5 2.14 13.0
og7 13.3

KGC 5 og1 9.8
og8 9.3
og9 8.9
og11 9.2

KGC 6 og4 18.5
og5 3.90 17.8
og6 5.00 18.3
og7 3.15 16.4
og9 17.8

Table D.2: Inverse kinematic mean marker RMSE for each trial for the given time range. Unadjusted start or end times
indicate that the first or last available time in the trajectory data is used.
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Figure D.12: Visualization of the calibrated passive fiber force curve parameters per muscle and challenge. The start of
each bar represents the onset of passive fiber force (ε0), while the end of each bar indicates the point of one times the max
isometric force of the respective muscle (ε1). The y-axis represents muscle strain (ε). The black dotted lines indicate the

default curve parameters (ε0 = 0 and ε1 = 0.7), which are the starting values for the optimization. Calibration and plotting was
done with help from the MATLAB script by Uhlrich et al. [73].
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Figure D.13: Comparison of passive joint torques from experimental data and model specifications for each challenge.
Solid lines represent experimental data from Silder et al. [74], dashed lines represent the original, uncalibrated model

(specification A) and dotted lines represent the calibrated model (specification B). Line colors represent different poses for
adjacent joints, according to the similar colored stick figures. It is clear that the original model exhibits unrealistically high

passive joint moments, which have been corrected through calibration. Calibration and plotting was done with help from the
MATLAB script by Uhlrich et al. [73].
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Figure D.14: Comparison of knee joint contact force estimations with and without tracking all available EMG. In black
the implant measured knee contact force (ground truth), in blue the estimations without tracking and in orange the estimations
with tracking of all muscles with available EMG. Both estimations ignore passive forces. Forces are normalized for bodyweight.
One stance of the instrumented leg is taken from each trial. RMSE and ZNCC with respect to the ground truth are reported.
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Figure D.15: Comparison of muscle activation estimations with and without tracking glmed1 for challenge 4. In black
pre-processed EMG (ground truth), in blue the estimations without tracking and in orange the estimations with tracking of
glmed1. One stance of the instrumented leg is taken from each trial. Muscles indicated with * have been normalized to the

highest value found in normal gait trials, see also table C.4.
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Figure D.16: The effect of knee angle on the fiber length of gasmed for the challenge 5 model. The jumps between 0
and -10deg are caused by a flip in the wrapping direction. The cause of the jump between -30 and -35deg is unknown (similarly

for the jump around -55deg). Ankle angle is set to zero.
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