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Abstract: This research work deals with the buckling load prediction of reinforced lami-
nated composite panels of aeronautical interest. Being subjected to pure compression, these
panels are characterized by stable post-buckling. Thus, the Vibration Correlation Technique
(VCT) is utilized herein as an effective nondestructive means to extrapolate critical loads
from free vibration measurements. A hierarchical design of experiments, making use of nested
multifactors (i.e., panel replicas, test setups, and measurement repetitions), is employed to
estimate components of variance. The experimental outcomes are compared with the results of
an advanced finite element model with layer-wise kinematics and based on the Carrera Unified
Formulation (CUF). The results show that, although obtained with a low number of tests and
specimens, the VCT experiments are repeatable and provide a good validation of the numerical
simulations, which are demonstrated to be accurate and reliable.

Keywords: Vibration correlation technique; Composite stiffened panel; Layerwise models;
Design of experiments.

1 Introduction

The natural frequencies and mode shapes of structures are functions of the equilibrium con-
dition. Under the assumption that the vibration modes are similar to buckling ones, one can
plot the relationship between the natural frequencies and the progressively higher applied
(compression) loading. Thus, the predicted buckling load can be extrapolated as the load
which causes zero natural frequency [1]. Based on this principle, the Vibration Correlation
Technique (VCT) has been successfully applied as a nondestructuve methodology to predict
the buckling loads of axially loaded columns and panels. In the ideal case of stable buckling
(i.e., Euler buckling), the natural frequency squared and the compressive load are linearly
dependent [2], so that: (

f

f0

)2

+

(
P

Pcr

)
= 1 (1)

1



where f is the natural frequency of the structure under load P , f0 is the natural frequency
of the unloaded structure, and Pcr is the critical buckling load.

Abramovich et al. [3] demonstrated that Eq. (1) holds for simply supported columns,
whereas for other boundary conditions the straight line of the f 2 vs P graph becomes slightly
curved. This is also the case, for example, of shell structures for which the VCT predicts a
buckling load that is higher than the experimental one, mainly because of initial imperfections
[4, 5]. For this reason, many authors have formulated more evolute formulation for the VCT-
based prediction of critical loads of structures with unstable post-buckling. Souza et al. [6, 7],
for instance, proposed a quadratic fit of the f 2 vs P curve, in the form:(

1 − P

Pcr

)2

+
(
1 − ξ2

)(
1 −

(
f

f0

)4
)

= 1 (2)

where, eventually, ξ represents the experimental knock-down factor.
In the present work, VCT in a shape which is similar to Eq. (2) is used for the buckling

prediction of a composite stiffened panel of aeronautical relevance. Literature about VCT
analysis of flat plates is less rich if compared to shells. The main reason is that plates, gener-
ally, have a stable post-buckling, which makes the problem statement simpler. Nevertheless,
Lowrey [8], for example, used pseudo-random test signals and cross-correlation analysis of the
determination of the dynamic-response characteristics of plate systems. Beznea and Chiric
[9] carried out an experimental and numerical study on composite plates. To avoid premature
out-of-plane displacements, Singhatanadgid and Sukajit [10] proposed to use tensile loading
for the prediction of buckling loads of thin plates.

Particular emphasis is given herein to the study of the effects of defects, which are studied
on a statistical basis, and the formulation of an advanced mathematical model for the simula-
tion of the VCT analysis and buckling prediction of the reinforced composite panel. As far as
the former topic is concerned, it shall be underlined that the uncertainty or spread in proper-
ties is usually checked at the coupon level in terms of the material characteristics. However,
it is not only the spread in the material properties, but also the spread of the performance
of the resulting structure that is of interest to the user. As a first step to get a grip on the
uncertainty on part level, three stiffened panels were manufactured and, within the scope of
the proposed research, tested for buckling under uniaxial compression. All stiffened panels
were made one after the other, each placed in the autoclave separately in an attempt to have
the three panels as similar as possible.

Regarding the simulation part, the finite element model used for validation and for as-
sessing the VCT analyses is based on the Carrera Unified Formulation (CUF), see [11]. The
main advantage of this method is that classical to higher-order models can be implemented
with ease and in an automatic way. In fact, the governing equations and the related finite
element arrays are written in terms of theory-independent fundamental nuclei (kernels) in
CUF. When extended to laminated composite structures, it is therefore possible to formulate
advanced models with layer-wise kinematics [12, 13, 14]. CUF-based layer-wise models are
computationally efficient and provide accurate through-the-thickness stress states [15], which
is of fundamental importance in the nonlinear analysis and whenever a rigorous estimation of
the tangent (incremental) stiffness is required, such as in the case of VCT simulations. In this
context, note that CUF was already successfully used for the vibration analysis of pre-stressed
structures [16], including composite ones [17] in pre-buckling and highly post-buckling states.

This paper is organized as follows: (i) first, the test setup is described in Section 2, along
with a few details about the manufactured composite panels and the design of the experiments;
(ii) then, the numerical model and the governing equations in terms of CUF finite element
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Figure 1: The three manufactured stiffened panels.

matrices for the VCT simulation are given in Section 3; (iii) next, numerical results in terms
of model assessment, comparison with experiments and test data analysis are discussed in
Section 4; (iv) finally, the main conclusions are outlined in Section 5.

2 Experimental setup

2.1 Manufacturing and material data

The reinforced composite panels were manufactured at the Delft Aerospace Structures and
Materials Laboratory. The AS4 unidirectional prepreg employed has the following material
properties: E1 = 119 GPa, E2 = 9.8 GPa, E3 = 4.67 GPa, ν12 = 0.316, ν13 = 0.026,
ν23 = 0.33, G12 = 4.7 GPa, G13 = G23 = 1.76 GPa, and ρ = 1580kg/m3. Note that the
properties in the out-of-plane directions (13 and 23) are assumed and not available from the
manufacturer.

As a first step, the layers of the skin were stacked on top of each other, regularly debulking
to ensure good bonding between the layers. The stiffeners were manufactured by making two
parts from the same layup, again often debulking them. In detail, one of the two parts was
flipped before being bent in L format to guarantee that the stringer web was symmetric,
and finally the two L-parts were put back-to-back, obtaining the T-stringer. The noodle at
the bottom between the two L-parts was filled up using uni-directional 0 degree material.
Finally, the stiffeners were carefully placed on the panel and the stiffened composite panel
was co-cured as a whole. During curing, care was taken to ensure that the pressure was evenly
distributed, the stiffeners did not fall over and stayed in their intended position on the panel.

After curing, all sides of the panel were trimmed to their final dimensions. To provide the
clamped boundary conditions on the short edges, the outer 50 mm were moulded in an epoxy.
This epoxy was flattened afterwards to ensure the compression load is applied perfectly in line
with the panel. The final dimension of the panel used for the simulation is the ’free’ length:
the part moulded in the epoxy is not modelled. The three finished panels are shown in Fig.
1 for the sake of completeness.
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Figure 2: MTS machine at the Delft Aerospace Structures and Materials Laboratory.

2.2 Testing machine and data acquisition

The compression tests were performed using a MTS machine with a maximum force of 3500
kN and an accuracy of 1 kN. One of the panels placed in this machine is shown in Fig. 2.
During the initial tests, VCT was performed with loads up to 600 kN; i.e. approximately 80%
of the expected buckling load. A Polytec laser vibrometer was used for the data acquisition.
A shaker was used as excitation device, using a frequency sweep between 0 and 1000 Hz.
The load was gradually changed to ensure the panel does not fail due to dynamic defects. A
measurement with the vibrometer was performed every 100 kN, leading to 6 measurements.
The shortening was measured using 2 linear vertical displacement transducers (LVDT): one
was placed on each side of the panel to ensure the panel was loaded in pure compression and
no moment was induced on it.

The grid used to measure the mode shapes was 3 × 7. This number of grid points was
chosen based on the expected buckling modes: three points in width direction were necessary
to measure whether or not any torsion occurs, seven points in length direction were deemed
necessary to clearly see the number of halfwaves. During the initial run, the full grid was used.
In contrast, in the subsequent runs only nine points were used: the seven on the centre line in
length direction, two additional left and right of the centre point. This coarser grid allowed
to significantly reduce the measurement time while still being able to distinguish between the
different modes.

During the final test to buckling (and failure), the laser vibrometer was removed, the
LVDTs were kept in place. Additionally, three strain gauges were used: two placed back-
to-back in the centre, which is the location where the buckling mode shape is expected to
introduce a rotation, and one on top of the stiffener to check that the stiffener does not
deform more than the panel and the load is indeed pure compression. Finally, also digital
image correlation was used: the flat side of the stiffened panel was painted white and a
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Figure 3: MSE (measurement setup evaluation) schematic design.

random speckle pattern was applied to it, to measure the full-field displacement of the panel.
However, note that VCT is the main subject and detailed full-field strain evaluation is not
discussed in the present study.

2.3 Measurement setup evaluation

Data from an experiment are frequently affected by more than one source of variation. This
fact must be taken into account during the design of experiments and analyses of the results.
According to Montgomery [18], in certain multifactor experiments the levels of one factor (e.g.,
factor B - or setup in our case) are similar but not identical for different levels of another
factor (e.g., factor A - or panel replica in our particular case). Such an arrangement is called a
nested or hierarchical design; with the levels of factor B (testing setup) nested under the levels
of factor A (panel replica). Hierarchical design is an alternative experimental arrangement
often employed to estimate components of variance [19].

In our experiment, there are three panel replicas that are identical panels built with the
same design using the same manufacturing processes and equipment with the same batch
of raw material. Each panel was fixed at the compression testing machine twice in random
order and for each testing setup the panel was subjected to three cycles of compression at
pre-determined loading levels. At each loading level, a set of Frequency Response Functions
(FRFs) were evaluated and used to determine the changes in the panel’s modal frequencies.

The objective is to investigate if the panel design behaviour is the same for each panel
replica taking in account the uncertainties in the measurement system chain, such as variations
that arise from panel preparation (panel adjustment and sensors and shaker positioning) at
testing machine and variations that arise from repeated loading at the same panel replica.
In this design of experiment, there are two testing setups for each panel replica, and three
determinations of FRFs sets for each of the six different compression loading levels, from
100 to 600 kN at every 100 kN load increment. Figure 3 represents the experimental scheme
described above. In this context, four FRFs peaks were monitored, where each peak is related
with a vibration mode shape. By tracking the mode shapes it is possible to measure their
frequency change at each loading level and extrapolate the modal and frequency change to
predict the linear static buckling load in a non-destructive testing scheme.

It is worth to mention that we have adopted a screening experimental strategy where we
selected the bare minimum number of tests able to furnish a quantification of the sources
of variation and its magnitude involved in such arrangement and, at the same time, to keep
the experimental costs as low as possible. Inevitably, some of the observed variability will
be inherent in the units or items that are being measured, and some will result from the
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Figure 4: Repetition level boxplot, R and Mean charts for FRF peak 1 at 200 kN. The green
line is the average; the read lines are the upper and lower control limits.

Figure 5: Repetition level boxplot, R and Mean charts for FRF peak 1 at 600 kN. The green
line is the average; the read lines are the upper and lower control limits.

measurement system that is used. There may also be other factors that impact measurement
system performance, such as setup or calibration activities. The purpose of our MSE (mea-
surement setup evaluation) study is to determine how much of the total observed variability is
due to the measurement chain, isolate the components of variability in the measurement sys-
tem and also assess whether the experimental measurement setup is suitable for the intended
application (in our case, the VCT).

2.4 Test data analysis

Figures 4 and 5 show the boxplot, the range R and the Mean charts for FRF peak 1 at
200 and 600 kN compression loads, respectively. Figure 4 shows that we have more than 5
different levels at R-chart that means an adequate measurement discrimination for a subgroup
with 3 repetitions. In addition, the R-chart is within the control limits which makes possible
the estimation of the natural variance of the system (the variance assigned to repetitions).
On the other hand, the Xbar-chart within the control lines means that the system is not
able to distinguish among setups because the natural variation of the measurement process
(repetitions) has the same order of variation of the setup effects for FRFs peak 1 at 200 kN.
We can interpret this result as the system ability to determine the variance of the repetitions
with an adequate discrimination as well as that the effects caused by different setups are not
distinguishable.

In contrast, Fig. 5 shows that we have only 2 different levels at R-chart and one point
is out of the control line. As opposed to Fig. 4, we do not have an adequate discrimination
and the variance estimate is not possible. However, this R-chart gives us other pieces of
information. We can notice that the FRFs resolution is around 0.3 Hz. Thereby if we want
to have an adequate variance estimate for the repetitions at this load level, we must increase
the FRFs frequency discretization, e.g., to 0.05 Hz or even smaller frequency lines. This
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also means that the experiment repeatability is higher for higher loads and consequently its
variance is smaller.

3 The numerical model

3.1 Geometry and boundary conditions

Figure 6 shows the main geometrical features and the boundary conditions employed for the
generation of the mathematical model. The two-stringer reinforced panel is 690 mm long
and the width is b = 270 mm. Figure 7 shows the dimensions on the cross-section. Here,
the stringer height and thickness are h = 39.3 mm and t = 7.3 mm, respectively, whereas
h1 = 9.52 mm and h2 = 3.66 mm.

Boundary conditions are imposed on displacement components on planes perpendicular
to the y-axis, as shown in Fig. 6. Two rigid bands of 50 mm each are modelled at the panel
ends to simulate the real conditions resulting from the resin blocks. Note that at y = 0 the
cross-section is free to translate, whereas a pressure is applied on the entire plane.

Figure 8 gives a pictorial view of the lamination sequences of the composite panels and
the reinforcement. Note that a full layer-wise model is used in this paper. The stringer is
considered as perfectly bonded to the panel, as failure considerations and stringer detachment
mechanisms are not objects of the present study. Moreover, whenever possible, adjacent
physical layers having the same lamination angle are studied as a single layer. This justifies
the differences in the ply thickness in the figure. Although, this simplification does not
affect the validity of the analysis and does not alter the capability of the proposed layer-wise
model to provide high-fidelity internal stress states, which is of fundamental importance in
the calculation of the geometric stiffness.

3.2 Layer-wise kinematics

Many theories of structure have been introduced in the recent past for the study of the
mechanical response of laminated structures. These theories are usually divided into two
categories: equivalent-single layer (ESL) and layer-wise (LW). In the case of ESL, the number
of variables is independent of the number of layers. ESL theories are very attractive due to
their lower computational costs and they are extensively employed by engineers to acquire

x

yz

50 mm

ux uz= =0

uz=0

uz=0

ux uy= = 0uz=

50 mm

Figure 6: Main geometrical features, loadings and boundary conditions for the simulation of
the reinforced composite panel.
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information about the global response of the composite structure. However, these theories,
which in most cases make use of C1 kinematics across the stack of plies, are not suitable for
providing accurate 3D stress fields at the meso-scale. In contrast, LW theories make use of
independent assumptions for each layer, allowing it to capture the intralaminar deformations
with higher resolution [14]. In fact, LW models are able to capture the zig-zag effect of the
displacements in the thickness direction, which is strongly related to the complex distribution
of transverse stresses in composite laminates, as noted by Carrera [20, 21].

In this context, a LW model has been developed for the study of the composite reinforced
panel. The LW model -subject of the present study- has been obtained in the framework
of the Carrera Unified Formulation (CUF), which allows to generate theories of structures
in a systematic manner. Briefly, as the length of the panel is higher than the cross-section
dimensions, one may assume the 3D displacement field of the kth ply as the generic expansion
of the generalized displacements ukτ (y), which are functions of the coordinate y laying along
the main structural dimension; i.e.,

uk(x, y, z) = Fτ (x, z)u
k
τ (y), τ = 1, 2, ....,M (3)

where Fτ represent functions of the coordinates x and z on the cross-section and determine
the class of the CUF model, M stands for the number of the terms used in the expansion,
and the repeated subscript τ indicates summation.

Lagrange Expansions (LE) CUF models were introduced by Carrera and Petrolo [22] and
are based on the use of Lagrange polynomials as expansion functions Fτ of the cross-sectional
coordinates. The advantages of using Lagrange polynomials at the layer scale to develop LW
models are many:

� the degrees of freedom have a clear physical meaning as they are pure displacements;

� as a consequence, the resulting finite element arrays are well conditioned;

� the displacement compatibility at the layer interface can be imposed automatically,
without the use of artifices.

For the sake of completeness, the explicit expressions of a Fτ nine-node quadratic expansion
(hereinafter denoted to as L9) are reported in the following:

Fτ = 1
4
(r2 + rrτ )(s

2 + ssτ ) τ = 1, 3, 5, 7

Fτ = 1
2
s2
τ (s

2 − ssτ )(1 − r2) + 1
2
r2
τ (r

2 − rrτ )(1 − s2) τ = 2, 4, 6, 8

Fτ = (1 − r2)(1 − s2) τ = 9

(4)

where r and s are the coordinates of the natural plane [-1,1]×[-1,1] and rτ and sτ are the
position of the nodes. L9 approximations are of particular interest for the present research,
because they are used here to approximate the ply kinematics. These LW models have been
demonstrated, in fact, to be effective for the approximation of global response as well as of
the internal stress state of laminates, see [15].

3.3 Finite element approximation

Given the approximation of Eq. (3), the generalized displacements can be approximated along
the y-axis by discretizing the 1D support with finite elements to have:

ukτ (y) = Ni(y) qkτi, i = 1, 2, ..., n (5)
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In Eq. (5), i stands for summation and the generalized displacements are described as a
function of the unknown nodal vector, qkτi, and the 1D shape functions, Ni. When using
Lagrangian shape functions, as in the current work, n stands for the number of nodes per
element. The main advantage of using a compact notation as in Eqs. (3) and (5) is that the
governing equations and the finite element arrays can be formulated in a unified and hierar-
chical manner, which is affected neither by the choice of the theory of structure, represented
by Fτ , nor by the FE shape functions Ni.

The governing equations describing the free vibration around trivial equilibrium states
can be formulated via the principle of virtual work, which holds:

δLint − δLine = 0 (6)

where Lint stands for the strain energy, Line is the work of the inertial loads, and δ represents
the virtual variation. As in this work we are interested to vibration of structures subjected to
initial displacements and pre-stress, Eq. (6) must be linearized around non-trivial equilibrium
states. The linearization of the virtual variation of the internal strain energy holds:

δ2Lint =

∫
l

∫
Ω

δ
(
δεTσ dxdz

)
dy (7)

where l is the dimension of the panel along the y-axis, Ω is the cross-section, and ε and σ
represent the strain and displacement vectors. Now, by using constitutive laws and geometric
relations, Eq. (7) can be expressed in terms of displacements. Thus, by substituting CUF
(Eq. (3)), the finite element approximation (Eq. (5)), and after opportune expansion of the
indexes τ and i, δ2Lint can be written in terms of the tangent stiffness matrix KT :

δ2Lint =
(
δqk
)T

Kk
T δq

k (8)

Note that the tangent stiffness is expressed at the layer scale in this work and, thanks to
CUF, can be generated for any structural finite element, given Fτ and Ni. For more details,
see [23].

In the case of small displacements and linear pre-buckling, the tangent stiffness can be ap-
proximated as the sum of the linear stiffness (K0) and the geometric (pre-stress) contribution
(Kσ) [16].

Kk
T ≈ Kk

0 + Kk
σ (9)

Once the tangent stiffness is obtained for each ply of the composite reinforced laminate, a
LW assembly procedure is performed according to [24, 25] to give the global tangent stiffness
matrix KT . Next, by considering harmonic motion around quasi-static equilibrium states,
and by assuming a linear mass matrix M, Eq. (6) assumes the form of a linear eigenvalue
problem:

(KT − ω2M) q = 0 (10)

where ω is a natural period and q the related amplitude eigenvector.

4 Results

4.1 Model verification and internal stress state

The panels were sized in terms of lamination parameters using an optimisation technique
that resulted in a final design with many active constraints, such as multiple buckling modes
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Table 1: Results from compression static test in terms of shortening and applied compression
loading and comparison with simulations.

Shortening Loading Compression
[mm] [N] modulus [kN/mm]
Experiments

Panel 1 2.61 599’975 229.9
Panel 2 2.61 599’823 229.8
Panel 3 2.61 599’976 229.9

Simulations
Nastran model 2.41 600’000 249.0
Present CUF model 2.41 600’000 249.0

that occurred within less than 10% of the lowest buckling load. Furthermore, the panels
were designed to fail (using open-hole compression allowables) at the buckling load, by using
the slice and swap method [26]. In addition to the lamination parameters, the optimisation
changed the width, height and thickness of the stiffener and the thickness of the panel. Due
to the extreme design requirements, a preliminary static test was performed for validation
purpose and the panels were loaded in compression in the geometrically linear regime, before
any buckling and failure mechanisms are activated.

Table 1 shows the results from these static compression tests. The results demonstrate
a very little scatter between the different panels and a good correlation with the numerical
models. Note that the Nastran model was built by using 2D CQUAD elements, based on a
first-order shear approximation theory (FSDT) and homogenized properties across the thick-
ness. As demonstrated in the previous literature, this model is appropriate for linear static
considerations, but should be avoided whenever the evaluation of internal stress state is of
fundamental importance, e.g. for failure consideration and buckling, see [15, 27].

In contrast, the proposed LW model makes use of CUF fundamental nuclei to build an
advanced-kinematics theory based on multiple L9 subdomain across the panel cross-section.
The LW model has independent unknowns for each single layer of the lamination for a total
of 715’365 degrees of freedom. Although the compression stiffness is the same as the one
provided by the Nastran model and well correlated to the experimental results (see Table
1), the proposed LW model is able to describe accurately the internal three-dimensional
stress state within the entire structural domain. For representative purpose, Fig. 9 shows
some important in-plane and out of plane distributions of stresses within one quarter of the
composite panel, subjected to a generic compression pressure of 1 MPa.

4.2 Stability analysis vs VCT

Because the panels were designed to fail and buckle at roughly the same load, doing repeating
buckling tests was not possible. To overcome this problem first vibrational correlation testing
(VCT) was performed, followed by tests to failure using digital image correlation (DIC). Fail-
ure tests, however, will be discussed in a companion paper and are not part of the discussion
herein.

As a preliminary analysis, Table 2 shows the important natural frequencies and critical
linearized buckling loads according to the proposed numerical model. For completeness rea-
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(a) σxx (b) σyy

(c) σzz (d) σyz

Figure 9: Internal stress state within one quarter of the reinforced composite panel subjected
to a representative compression pressure of 1 MPa. Results are in MPa.

Table 2: First four natural frequencies and linearized buckling loads according to the present
CUF-based LW model of the reinforced composite panel.

Mode Natural frequency [Hz] Buckling load [kN]
1 368 739
2 476 745
3 562 809
4 663 830

12



(a) Vib. mode 1 (b) Vib. mode 2

(c) Vib. mode 3 (d) Vib. mode 4

Figure 10: Free vibration modes of the unloaded reinforced composite panel according to the
present CUF-based LW model.

sons, Fig.s 10 and 11 show the respective mode shapes. Note that, as per design requirements,
the buckling loads are close each other. This aspect makes the simulation and the experi-
mental evaluations very demanding. Also, justification on the use of VCT for the proposed
problem comes from the comparison between free vibration mode shape number 4 and the
first buckling mode.

During the VCT the load was increased in steps of roughly 13.5% up to 80% of the failure
load to ensure the panels were not damaged during these tests. As discussed in Section 2,
this test was repeated three times before placing a different panel in the machine to check the
variability due to repeating the tests. Each panel was placed twice in the machine to check the
variability due to the setup of the test. Finally, by having three panels, the influence of the
replicas could be analysed. The mean values from the VCT measurements are summarized in
Table 3 and the results are compared with those coming from simulation. Generally speaking,
the comparison is acceptable. The slight differences will not affect our conclusions.

Results of the VCT are shown in graphical form in Fig. 12a, where the confidence interval
of the measured data is also depicted. It is clear that there is very little scatter between
the repetitions, the test setup and even the different panels. Interestingly, from Fig. 12a,
it is evident that the confidence interval of the measured data becomes narrow for higher
compression loadings. This aspect confirms that uncertainty and measurement errors become
negligible when internal stress state is higher, see Section 2.4.

From the failure tests, the buckling load can clearly be read from the load-displacement
diagram (not reported here). This kink was at a load of 739.9, 740.3, and 738.0 kN for
the three panels, respectively. Figure 12b shows the dependence of the natural frequencies
squared versus the compression loading. The quadratic fit of the measured vibrations allow
the estimation of the critical buckling load (PV CT = 820 kN). As summarized in Table 4, the
load estimated by VCT shows a knock-down factor of 10%, whereas the proposed FEM model
is perfectly able to predict the structural stiffness loss close to the experimental buckling load
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(a) Buck. mode 1 (b) Buck. mode 2

(c) Buck. mode 3 (d) Buck. mode 4

Figure 11: Buckling modes of the reinforced composite panel according to the present CUF-
based LW model.

Table 3: Free vibration analysis of the composite reinforced panel subjected to compression.
Comparison between the proposed CUF-based LW model and experiments.

Load [kN] f1 [Hz] f2 [Hz] f3 [Hz] f4 [Hz]
CUF Exp. CUF Exp. CUF Exp. CUF Exp.

100 349 348 462 459 550 555 622 -
200 330 339 447 457 537 553 578 -
300 308 324 431 449 523 546 532 -
400 284 304 415 436 513 535 476 514
500 258 281 398 420 499 522 414 462
600 225 253 381 407 487 505 336 394
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Figure 12: Vibration correlation of the first four natural mode shapes from experiments and
simulation (a) and prediction of the critical load (b). PV CT = 820 kN is the critical load
extrapolated from a quadratic fit of the VCT curves. In contrast, Pexp = 739 kN is the
experimental failure load. Mode 1 is shown in blue, mode 2 in red, mode 3 in green, and
mode 4 in yellow.

Table 4: Measured buckling load and comparison between VCT and CUF simulation.

Buckling load [kN] Error % - ref. Exp. Mean
Panel 1 Panel 2 Panel 3

Experimental 739.9 740.3 738.0 -
CUF model 739.0 0.00
VCT 820.0 10.0

(Pexp = 739 kN).

5 Conclusions

VCT buckling load predictions of reinforced composite panels have been investigated by ex-
periments and simulation. Since a hierarchical design of experiments has been used, the test
successfully have provided us with a ballpark estimate about the components of variance
present in this VCT. The results have been obtained with a low number of tests and spec-
imens bringing the valuable information about how repeatable is the experiment and how
reproducible are the panels’ manufacturing process. With this information we can expand
our experimental configuration in order to improve the standard variation estimates and also
include other important factors such as different batches and parts suppliers, for example.

In this context, when accurate and reliable, simulation can play a fundamental role for
the correlation of the experimental results and as a companion tool. This is the case indeed
of the numerical model implemented in this paper, which is based on the Carrera Unified
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Formulation (CUF). CUF makes use of theory-independent kernels for the implementation
of low- to high-order finite elements. Thus, layer-wise models of composite laminates can be
formulated with ease. The use of layer-wise models able to correctly describe the internal
stress state of pre-stressed structure vibrating is of paramount importance for the problem
under consideration. As a matter of fact, the proposed CUF-based model of the reinforced
panel are in agreement with the experimental data and gives a perfect prediction of the
buckling load.
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