Dr.One Friday, 27 June 2014

"Realizing a small UAV for medical transport in developing countries" Master thesis: Ferdinand Peters

Definition

Drone (bee)

From Wikipedia, the free encyclopedia

Drones are male **honey** bees. They develop from eggs that have not been fertilized, **and they cannot sting**.

In the 16th century it was given the figurative sense of **'idler**' or **'lazy worker**', as male bees make no honey, which is sometimes given as a [folk etymology](http://en.wikipedia.org/wiki/Folk_etymology) of the word 'drone' itself.

Google Search (present)

Google dr.one

 $\overline{\bullet}$ $\overline{\bullet}$

Web Afbeeldingen Maps Shopping Meer * Zoekhulpmiddelen

Bedoelde u: drone

 $\frac{1}{\pi}$

 $\mathop{\mathbb{H}}\limits^{**}$

Safe Search

Inloggen

立

Drone Camera

Drone Nederland

Drone Politie

Drone Police

Drone

https://www.google.nl/search?hl=nl&biw=1536&bih=841&tbm=isch&q=drone+nederland&revid=55184275

Google Search (future)

Dr.One Friday, 27 June 2014

"Realizing a small UAV for medical transport in developing countries" Master thesis: Ferdinand Peters

Outline presentation

- Problem definition
- Design
- Design Tool
	- Body
	- Wings
	- Propulsion
- Example design
- Dynamics & Control
	- Dynamic analysis
	- Control design

Problem Definition

Source: www.fayzwordz.wordpress.com

Dr.One 7

Problem Definition

Possible applications

- Urgent medical supply
- Final link in the supply chain
- Unreachable locations
- Blood sample collection & Lab on a chip

Requirements

- Vertical take-off and landing (VTOL)
- Long range
- High flight speed
- Autonomous flight

- Mechanically simple
- Low cost
	- Unit
	- **Maintenance**
	- Manufacturing
	- Mechanically simple
- Locally produced and designed

Source: www.unmannedgroup.com

Dr.One 10

Design

Chosen configuration

- 4 motor
- Hybrid flying wing
- Electric powered
	- Inexpensive materials
	- Minimize moving parts

• Automatic sizing for different payloads

Design Tool

Main focus points

- Scalability
- Easy to use
- Modular approach
- Affordibility

Design Tool

Sequence

- Body sizing
- Wing sizing
- Motor selection
- Propeller selection

 $\widetilde{\mathbf{T}}$ UDelft

NLR

Front-plane: **Cosine**

- l_r = chord at the root of the wing
- $l_t =$ chord at trailing edge of the wing
- \bullet b = wingspan
- ψ = sweep angle

- $L = \text{lift force}$ [N]
- $D = \text{drag force}$ [N]
- $W =$ total weight of the aircraft [N]
- F_T = total thrust of the propulsion [N]

Wing sizing

Objective function

$$
D(lr, lt, b) = \frac{1}{2}\rho V^2 A C_d(Cl(W(lr, lt, b)))
$$

Propulsion sizing

Motor performance characteristics

• Performance data can be acquired from the manufacturer

Not always available

• A test to determine experimentally.

Source:mikrokopter.de

Dr.One 19

Test comparison

Propeller Selection

Propeller performance characteristics

• Windtunnel data Source: http://aerospace.illinois.edu/

 ϵ

 $\eta_{prop} = J\left(\frac{C_T}{C_P}\right)$

$$
J=\frac{V}{\omega d}
$$

Propeller Motor matching Static

Static thrust with Robbe Roxxy

Propeller Motor matching

Dynamic

$$
Q_{prop} = \frac{C_p}{2\pi} \rho \omega^2 d^5
$$

$$
Q_m = -a_\omega \omega + b_\omega
$$

Example design GUI

• Are you ready to design your first Dr.One?

Production 3D-milling & hot wire cutter

Outline presentation

- Problem definition
- Design
- Design Tool
	- Body
	- Wings
	- Propulsion
- Example design
- Dynamics & Control
	- Dynamic analysis
	- Control design
	- Validation of dynamic model

 $\frac{1}{2}$ UDelft NLR

Control

Horizontal mode

Possible control loop

- PID Feedback controller
- Input: 4 rotational velocities
- Output: 12 states (3 translations, 3 rotations and their velocities)

Dynamic model

Modified model by Skander Tamallaah (NLR)

Rigid body dynamics

$$
\mathbf{Y}_{\mathbf{rb}} = \begin{bmatrix} \mathbf{x} \\ \mathbf{q} \\ \mathbf{v} \\ \boldsymbol{\omega} \end{bmatrix} \qquad \mathbf{q} = \begin{bmatrix} \lambda_1 & \lambda_2 & \lambda_3 & \lambda_4 \end{bmatrix}
$$

$$
\dot{\mathbf{Y}}_{\mathbf{rb}} = \begin{bmatrix} \dot{\mathbf{x}} \\ \dot{\mathbf{q}} \\ \dot{\mathbf{v}} \\ \dot{\boldsymbol{\omega}} \end{bmatrix} \qquad \dot{\mathbf{x}} = \mathbf{v}
$$
\n
$$
\dot{\mathbf{q}} = \frac{1}{2} \begin{bmatrix} \lambda_0 & -\lambda_1 & -\lambda_2 & -\lambda_3 \\ \lambda_1 & \lambda_0 & -\lambda_3 & \lambda_2 \\ \lambda_2 & \lambda_3 & \lambda_0 & -\lambda_1 \\ \lambda_3 & -\lambda_2 & \lambda_1 & \lambda_0 \end{bmatrix} \begin{bmatrix} 0 \\ \omega \end{bmatrix}
$$
\n
$$
\dot{\mathbf{v}} = \sum_{\dot{\omega}} \mathbf{F}(\mathbb{M})^{-1}
$$
\n
$$
\dot{\omega} = \mathbf{J}^{-1} (\mathbb{M}_{\mathbb{G}} - \omega \times (\mathbf{J} \cdot \omega))
$$

Dynamics Analysis Trim

Dynamics Analysis

Linearized system

$$
\mathbf{x}^{\circ} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}
$$

$$
\mathbf{y} = \mathbf{C}\mathbf{x} + \mathbf{D}\mathbf{u}
$$

$$
A = [12x12]
$$

\n
$$
B = [12x4]
$$

\n
$$
C = [12x12]I
$$

\n
$$
D = [12x4][0]
$$

Pitch control

Yaw and roll control check

Table 11.1: Gains at vertical and horizontal flight

Validation of dynamic model

Flight tests

- Accurate flight data
- High frequency (100 Hz)

Log platform:

- IMU
- Barometer
- RPM sensors

Validation of the log platform

Flight test

Dr.One 36

Body sizing

Cosine vs Spline

NLR

Wing Sizing

Airfoil

MH-60

Tailless aircraft:

• Zero pitch airfoil

Wing Sizing

Lift and drag forces

$$
L = \frac{1}{2}\rho V^2 SC_l
$$

$$
D = \frac{1}{2}\rho V^2 SC_d
$$

- $C_l = \text{lift coefficient}$ [-]
- C_d = drag coefficient [-]
- $V = \text{flight speed } |m/s|$
- $S = \text{wing area} [m^2]$
- $\rho =$ density of air $\left[\frac{kg}{m^3}\right]$

Wing sizing Lift and drag coefficients

$$
C_l = \frac{W}{\frac{1}{2}\rho V^2 A}
$$

$$
C_d = C_{d_i} + C_{d_p} \t C_{d_i} = \frac{C_l^2}{\pi ARe} \t C_{d_p} = C_{d_0} + C_{d_1} C_l
$$

- $AR =$ aspect ratio $\lbrack \rbrack$
- $e =$ Oswald factor $\lceil \rceil$
- π = ratio of circumference of circle to its diameter [-]
- C_{d_0} = zero lift drag coefficient [-]
- C_{d_1} = induced drag coefficient [-]

Wing Sizing

Minimum drag

Motor performance characteristics

 $\widetilde{\mathbf{T}}$ UDelft

NLR

Motor performance characteristics

Motor performance characteristics

$$
\eta = \frac{P_{in}}{P_{out}} = \frac{P_{elec}}{P_{mech}}
$$

Total Efficiency Curve(1)

Consistent variables

Total Efficiency Curve(1)

Consistent variables

Pitch control

 $\widetilde{\mathbf{T}}$ UDelft

NLR

Pitch control: Differential gain

 $\widetilde{\mathbf{T}}$ UDelft

NLR

Pitch control: PI controller gain scheduling

Pitch control: simulation

Pitch control: simulation PI

Pitch control: simulation PID

Validation of dynamic model

Procedure

Cross reference flight data output with model input

Validation of dynamic model

Flight tests

• Accurate flight data:

- Attitude
- Velocities (translational and rotational)
- Accelerations (translational and rotational)
- High frequency (100 Hz)

Dynamic model

Modified model by Skander Tamallaah (NLR)

State vector

$$
\mathbf{Y} = \int \dot{\mathbf{Y}} dt \qquad \qquad \mathbf{Y} = \begin{bmatrix} \mathbf{Y}_{\mathbf{rb}} \\ \mathbf{Y}_{\mathbf{F}_i} \\ \mathbf{Y}_{\mathbf{r}_{\mathbf{pm}_i}} \\ \mathbf{Y}_{\mathbf{v}_i} \end{bmatrix} \qquad \qquad \mathbf{Y}_{\mathbf{rb}} = \begin{bmatrix} \mathbf{x} \\ \mathbf{q} \\ \mathbf{v} \\ \omega \end{bmatrix}
$$

$$
\mathbf{Y}_{\mathbf{F}_i} = [F_x F_y F_z]
$$

$$
\mathbf{Y_{M_i}} = [M_x M_y M_z]
$$

Dynamic analysis Dutch roll

 ϕ, β, p and r are coupled

