Dr.One Friday, 27 June 2014

"Realizing a small UAV for medical transport in developing countries" Master thesis: Ferdinand Peters

Definition

Drone (bee)

From Wikipedia, the free encyclopedia

Drones are male <u>honey bees</u>. They develop from eggs that have not been fertilized, **and they cannot sting**.

In the 16th century it was given the figurative sense of **'idler**' or **'lazy worker**', as male bees make no honey, which is sometimes given as a <u>folk etymology</u> of the word 'drone' itself.

Google Search (present)

Google dr.one

© Q

Web Afbeeldingen Maps Shopping Meer * Zoekhulpmiddelen

Bedoelde u: drone

Drone Nederland

11

Ш

Safe Search

Inloggen

Ċ

Drone Police

Drone

https://www.google.nl/search?hl=nl&biw=1536&bih=841&tbm=isch&q=drone+nederland&revid=55184275

Google Search (future)

Dr.One Friday, 27 June 2014

"Realizing a small UAV for medical transport in developing countries" Master thesis: Ferdinand Peters

Outline presentation

- Problem definition
- Design
- Design Tool
 - Body
 - Wings
 - Propulsion
- Example design
- Dynamics & Control
 - Dynamic analysis
 - Control design

Problem Definition

Source: www.fayzwordz.wordpress.com

Dr.One 7

Problem Definition

8

Possible applications

- Urgent medical supply
- Final link in the supply chain
- Unreachable locations
- Blood sample collection & Lab on a chip

Requirements

- Vertical take-off and landing (VTOL)
- Long range
- High flight speed
- Autonomous flight

- Mechanically simple
- Low cost
 - Unit
 - Maintenance
 - Manufacturing
 - Mechanically simple
- Locally produced and designed

Source: www.unmannedgroup.com

Dr.One 10

Design

Chosen configuration

- 4 motor
- Hybrid flying wing
- Electric powered
 - Inexpensive materials
 - Minimize moving parts

Dr.One	11
--------	----

Automatic sizing for different payloads

TUDelft 👮

Design Tool

Main focus points

- Scalability
- Easy to use
- Modular approach
- Affordibility

Design Tool

Sequence

- Body sizing
- Wing sizing
- Motor selection
- Propeller selection

TUDelft

NLR

Side-plane

Front-plane: Cosine

- $l_r = chord$ at the root of the wing
- $l_t = chord$ at trailing edge of the wing
- b = wingspan
- $\psi = \text{sweep angle}$

- L = lift force [N]
- D = drag force [N]
- W = total weight of the aircraft [N]
- F_T = total thrust of the propulsion [N]

Wing sizing

Objective function

$$D(lr, lt, b) = \frac{1}{2}\rho V^2 A C_d(Cl(W(lr, lt, b)))$$

Propulsion sizing

Motor performance characteristics

 Performance data can be acquired from the manufacturer

Not always available

• A test to determine experimentally.

Source:mikrokopter.de

19

Dr.One

Test comparison

Propeller Selection

Propeller performance characteristics

Windtunnel data Source

Source: http://aerospace.illinois.edu/

 $\eta_{prop} = J\left(\frac{C_T}{C_P}\right)$

$$J = \frac{V}{\omega d}$$

Propeller Motor matching Static

prop	T [g]	T_{tot} [kg]
8x3.8	281	1.12
8x6	235	0.94
9x3.8	400	1.60
9x4.7	382	1.53
9x6	315	1.26
10x4.7	465	1.86
10x7	385	1.54
11x3.8	673	2.69
11x4.7	568	2.27

Static thrust with Robbe Roxxy

Propeller Motor matching

Dynamic

$$Q_{prop} = \frac{C_p}{2\pi} \rho \omega^2 d^5$$
$$Q_m = -a_\omega \omega + b_\omega$$

Example design

• Are you ready to design your first Dr.One?

Production 3D-milling & hot wire cutter

Outline presentation

- Problem definition
- Design
- Design Tool
 - Body
 - Wings
 - Propulsion
- Example design
- Dynamics & Control
 - Dynamic analysis
 - Control design
 - Validation of dynamic model

TUDelft 🖻

Control

Horizontal mode

Possible control loop

- PID Feedback controller
- Input: 4 rotational velocities
- Output: 12 states (3 translations, 3 rotations and their velocities)

Dynamic model

Modified model by Skander Tamallaah (NLR)

Rigid body dynamics

$$\mathbf{Y_{rb}} = \begin{bmatrix} \mathbf{x} \\ \mathbf{q} \\ \mathbf{v} \\ \mathbf{w} \\ \mathbf{\omega} \end{bmatrix} \qquad \begin{array}{l} \mathbf{q} = \begin{bmatrix} \lambda_1 & \lambda_2 & \lambda_3 & \lambda_4 \end{bmatrix} \\ \mathbf{v} = \dot{\mathbf{x}} \\ \mathbf{w} \\ \mathbf{\omega} \end{bmatrix}$$

$$\begin{split} \dot{\mathbf{Y}}_{\mathbf{rb}} &= \begin{bmatrix} \dot{\mathbf{x}} \\ \dot{\mathbf{q}} \\ \dot{\mathbf{v}} \\ \dot{\boldsymbol{\omega}} \end{bmatrix} & \dot{\mathbf{x}} = \mathbf{v} \\ \dot{\mathbf{q}} &= \frac{1}{2} \begin{bmatrix} \lambda_0 & -\lambda_1 & -\lambda_2 & -\lambda_3 \\ \lambda_1 & \lambda_0 & -\lambda_3 & \lambda_2 \\ \lambda_2 & \lambda_3 & \lambda_0 & -\lambda_1 \\ \lambda_3 & -\lambda_2 & \lambda_1 & \lambda_0 \end{bmatrix} \begin{bmatrix} 0 \\ \omega \end{bmatrix} \\ \dot{\mathbf{v}} &= \sum \mathbf{F}(\mathbb{M})^{-1} \\ \dot{\boldsymbol{\omega}} &= \mathbf{J}^{-1} \left(\mathbb{M}_{\mathbb{G}} - \boldsymbol{\omega} \times (\mathbf{J} \cdot \boldsymbol{\omega}) \right) \end{split}$$

Dynamics Analysis Trim

Dynamics Analysis

Linearized system

$$\mathbf{x}^{\circ} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$$

 $\mathbf{y} = \mathbf{C}\mathbf{x} + \mathbf{D}\mathbf{u}$

$$A = [12x12] B = [12x4] C = [12x12]I D = [12x4][0]$$

Pitch control

Yaw and roll control check

$V \left[m/s \right]$	0				10			
pitch	+	-	-	+	-	+	+	-
roll	-	-	+	+	-	-	+	+
yaw	+	-	+	-	-	-	+	+

 Table 11.1: Gains at vertical and horizontal flight

Validation of dynamic model

Flight tests

- Accurate flight data
- High frequency (100 Hz)

Log platform:

- IMU
- Barometer
- RPM sensors

35

Validation of the log platform

Flight test

Body sizing

Cosine vs Spline

Wing Sizing

Airfoil

MH-60

TUDelft

NLR

Tailless aircraft:

Zero pitch airfoil

Lift and drag forces

$$L = \frac{1}{2}\rho V^2 SC_l$$
$$D = \frac{1}{2}\rho V^2 SC_d$$

- $C_l = \text{lift coefficient } [-]$
- $C_d = \text{drag coefficient } [-]$
- V =flight speed [m/s]
- $S = \text{wing area } [\text{m}^2]$
- $\rho = \text{density of air } \left[\frac{\text{kg}}{\text{m}^3}\right]$

Wing sizing Lift and drag coefficients

$$C_l = \frac{W}{\frac{1}{2}\rho V^2 A}$$

$$C_d = C_{d_i} + C_{d_p}$$
 $C_{d_i} = \frac{C_l^2}{\pi A R e}$ $C_{d_p} = C_{d_0} + C_{d_1} C_l$

- AR = aspect ratio [-]
- e = Oswald factor [-]
- π = ratio of circumference of circle to its diameter [-]
- $C_{d_0} = \text{zero lift drag coefficient } [-]$
- C_{d_1} = induced drag coefficient [-]

Wing Sizing

Minimum drag

″uDelft

NLR

Motor performance characteristics

43

TUDelft

NLR

Motor performance characteristics

Motor performance characteristics

$$\eta = \frac{P_{in}}{P_{out}} = \frac{P_{elec}}{P_{mech}}$$

Total Efficiency Curve(1)

Consistent variables

Total Efficiency Curve(1)

Consistent variables

Pitch control

TUDelft

NLR

Pitch control: Differential gain

Pitch control: PI controller gain scheduling

Pitch control: simulation

Pitch control: simulation PI

Pitch control: simulation PID

53

Validation of dynamic model

Procedure

Cross reference flight data output with model input

Validation of dynamic model

Flight tests

• Accurate flight data:

- Attitude
- Velocities (translational and rotational)
- Accelerations (translational and rotational)
- High frequency (100 Hz)

Dynamic model Modified model by Skander Tamallaah (NLR)

State vector

$$\mathbf{Y} = \int \dot{\mathbf{Y}} dt \qquad \mathbf{Y} = \begin{bmatrix} \mathbf{Y}_{\mathbf{rb}} \\ \mathbf{Y}_{\mathbf{F_i}} \\ \mathbf{Y}_{\mathbf{M_i}} \\ \mathbf{Y}_{\mathbf{rpm_i}} \\ \mathbf{Y}_{\mathbf{V_i}} \end{bmatrix} \qquad \mathbf{Y}_{\mathbf{rb}} = \begin{bmatrix} \mathbf{x} \\ \mathbf{q} \\ \mathbf{v} \\ \boldsymbol{\omega} \end{bmatrix}$$
$$\mathbf{Y}_{\mathbf{F_i}} = \begin{bmatrix} F_x F_y F_z \end{bmatrix}$$

$$\mathbf{Y}_{\mathbf{M}_{\mathbf{i}}} = [M_x M_y M_z]$$

Dynamic analysis Dutch roll

 $\phi,\beta,\,p$ and r are coupled

