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The advancement of smart metering and sensor technologies has opened the door to performing exten-
sive in-situ measurements in buildings and a tendency to carry-out detailed energy and indoor climate
monitoring, leading to the availability of the so-called ‘‘on-board monitoring data”. The data obtained
through these measurements is of high value as it can be used for identification of parameters determin-
ing health, thermal comfort, and energy use. In this article, an occupied dwelling has been inspected and
monitored for one year and the in-situ measurement and meteorological data are combined to feed a
physic-based energy model. For the first time, the detailed data cleaning and filtering techniques are
explained to give insight for future similar studies. The data is fed to a 1st – order circuit RC model, equiv-
alent to the building’s thermal model. Next, using Genetic Algorithm in a stated optimization problem,
Inverse Modelling has been applied to identify four main global thermo-physical characteristics of the
building, with a special attention to the heat loss coefficient. The results are compared by analysing three
feed data properties: granularity level, period length, and time period, resulting the best fit in the coldest
periods. The outcomes have shown the importance of these data properties by revealing differences in
the heat loss coefficient in different periods and the weakening of the heat capacitance effect when feed-
ing the model with low granularity level data. The daily values of the heat loss coefficient are then applied
in combination with construction data to determine the daily averages of hourly air change rates. Finally,
the method has been evaluated in terms of accuracy and precision and the air change rates have been
validated using CO2 concentration and wind velocity. Using this method, it is possible to determine build-
ings’ main global thermo-physical characteristics as well as the cold periods’ airborne heat losses.

� 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Determination of buildings’ thermo-physical characteristics is a
necessary step in the assessment of buildings’ thermal behavior
which results in an accurate estimation of building’s energy saving
potential. Along the same line, numerous studies (presented in 1.1)
have been dedicated to determine these characteristics using a
whole range of completely different approaches. Of the most
important thermo-physical characteristics, the thermal transmit-
tance of the building envelope and the air tightness can be named.
A large category of conventional methods involves direct measure-
ment of these parameters using specific instrumentation. For
instance, ISO 9869 [1] prescribes a standard method for
determination of the thermal resistance and thermal transmittance
of façades, using a heat flux meter and a set of two thermocouples
installed on the two sides of the wall. Similarly, ISO 9972 [2] pre-
scribes a fan-pressurization method to determine the permeability
of the building, the results of which can be used for estimation of
air infiltration rate. These specific methods generally require spe-
cialists, specific equipment, intrusion, investment, and long peri-
ods of measurement. For instance, following the measurement
and data analysis procedure prescribed by the standard ISO
98690s Average Method [1], it can take more than a month of mea-
surements to estimate only the thermal transmittance of a single
wall [3]. Accordingly, many pieces of research have been con-
ducted to analyze the results of these tests in alternative ways to
obtain the properties quicker and more reliably [4–6]. Amongst
the various methods of data analysis, inverse modelling has been
widely researched. Opposite to forward modelling [7], where the
inputs of a known system are fed to generate its outputs, in an
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Nomenclature

Symbols
C electric capacitance (F)
Ceq equivalent global thermal capacitance (Jkg�1K�1)
I electric current
k thermal conductivity (Wm�1K�1)
l wall thickness (m)
n maximum number of data points fed to the model
P global solar irradiance (Wm�2)
_Q heat flow (W)
R electric resistance (X)
Req equitant global thermal resistance (m2KW�1)
R�1
eq heat loss coefficient (WK�1)

Rc conductive thermal resistance (m2KW�1)
R2 coefficient of determination
S0 1solar radiation fraction parameter
S1 constant parameter
T temperature (K)
t time (s)
U thermal transmittance (Wm�2K�1)
u model input
V electric voltage (Volt)
8 volume (m3)
_8 air volume flow rate (m3s�1)

Superscripts
1 associated with air medium
ac actual
H horizontal
th theoretical
V vertical
SI interior surface
SO exterior surface

Abbreviations
ACH Air change per hour (h�1)
B1 Bedroom 1
B2 Bedroom 2
DHW Domestic Hot Water
K Kitchen
LR Livingroom
RH Relative humidity
SH Space Heating

Indices
eq equivalent
f floor
gen generation
gl glazing (whole window)
H heating provided for the SH
H=C heating and cooling demand
h associated with horizontal surface
in associated with indoor side
n nth data point
out associated with outdoor side
sol solar radiation
v associated with vertical surface
w wall

Greek letters
a convective heat transfer coefficient (Wm�2K�1)
D difference
q density (kgm�3)
h model parameter vector
g efficiency of the heating system
l model output
O ‘linearization error
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inverse modelling problem, the system (e.g. a wall) is modelled as
a box with unknown parameters. The system’s governing equa-
tions are derived and fed by a large-enough set of known outputs
and inputs to create a large set of equations. The model may be
then identified by finding the parameters which can best satisfy
the whole set of equations. As the number of equations are much
more than the unknowns, a major challenge in inverse modelling
is to research if the thermal system model is identifiable. This
can be at risk when the problem does not have a unique solution
[8]. Accordingly, the reversibility and the stability of the solution
must be checked to identify whether the problem is ill-
conditioned. Inverse modelling can be applied to different levels
of construction.

1.1. State-of-the-art

1.1.1. Inverse Modelling at Component Level
On the element level (using surface boundary conditions),

inverse modelling method with a harmonic approach [9] has been
applied to estimate the thermal properties of walls. Specifically,
Chaffar et al. [10] used inverse method to characterize homoge-
neous walls by estimating their thermal conductivity and volumet-
ric heat capacity. Similarly, Rasooli and Itard [11] applied an in-situ
method and found the same properties through inverse modelling
of a wall’s thermal response factors. Šuklje et al. [12] used inverse
modelling to characterise green façades and likewise, Deconinck
and Roels [13] investigated the ability of stochastic grey-box mod-
elling in characterization of the actual thermal performance of
2

walls suffering from problems such as poor workmanship and con-
sequent phenomena. Their results showed a good agreement
between the calculated and the actual R-profiles on frequently-
occurring surface temperature differences. Along the same line,
Evangelisti et al. [14] used and calibrated a homogeneous wall
equivalent to the multi-layered walls using similar techniques.

1.1.2. Inverse Modelling at Building Level
The advantage of using inverse modelling methods on the com-

ponent level (e.g. walls) is obtaining individual results with high
accuracy. However, this requires separate tests and measurements
for each parameter in each component of interest. Many of these
approaches do not take place due to the hassle and costs associated
with their required procedure, calling for automated methods. Fol-
lowing the advancement and growth of sensors and controllers,
monitoring of buildings is a new trend [15], leading to the avail-
ability of the so called ‘‘on-board monitored” data. With regards
to this technology, many new buildings and HVAC systems are
being equipped with sensors to monitor certain parameters such
as air temperature, relative humidity (RH), and CO2 concentration.
Furthermore, with the introduction of smart meters, a huge poten-
tial of energy monitoring has been introduced [16,17,18]. With the
availability of such large amount of data, using whole building
models has become an alternative to component-level
measurement methods, especially in cases where more informa-
tion (e.g. ventilation rate, energy consumption) are simultaneously
needed and a very high level of accuracy is not necessarily
required. Buildings are accordingly first modelled and analyzed
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to predict parameters such as energy consumption, indoor air tem-
peratures, and thermo-physical characteristics.

Inverse modelling has been used in several pieces of research to
estimate parameters, leasing to a better prediction of energy
behavior. In addition to prediction and characterization of indoor
climate [19], numerous studies have been dedicated to estimation
of energy demand and energy load calculations through data-
driven models. Zhang et al. [20] compared four Inverse Modelling
methods for characterization of hot water energy consumption.
Similar to these methods, Support Vector Machines [21] and Arti-
ficial Neural Networks [22] have been applied to predict energy
consumption in commercial buildings. Likewise, An. et al. [23]
developed and calibrated an inverse PDE-ODE model and
González-Vidal et al. [24] compared a black-box model with a
grey-box one for better prediction of the buildings’ energy demand.
With the same aim, Lam et al. [25] used occupant behaviour data to
calibrate an EnergyPlus model for an office building. Braun and
Chaturvedi [26] applied a grey-box model and trained it with
two weeks of data to accurately predict transient cooling and heat-
ing requirements of buildings.

Despite the huge potential and interest in energy load predic-
tions, the application of inverse modelling and machine learning
is not limited to this area. Gori and Elell [27] showed the advantage
of dynamic grey-box models in reducing the errors when finding
the thermal transmittance. Nordström et al. [28] used the energy
signature method to estimate the effective U-value of the build-
ings, showing the possibility of using static energy signature mod-
els for sufficiently large indoor and outdoor temperature
differences. Most Recently, Senave et al. [29] investigated the level
of accuracy in determination of heat loss coefficient through the
Average Method [1], Energy Signature Method [30], Linear Regres-
sion, and ARX modelling [31]. Along the same line, through sensi-
tivity analysis of the determination of the heat loss coefficient with
these methods in another study [32], it was found that the selected
input data has a higher impact than the applied data analysis
method. Determination of the heat loss coefficient [33–35], also
carried out in the current article, is a highlighted issue in the field.
During 2017–2021, IEA Annex 71 [36] is dedicated to assess build-
ings’ energy performance by determination of parameters as such.
Methods such as QUB [37–39] and ISABELE [40] address the deter-
mination of this parameter by conducting in-situ tests. However,
these methods require heating pulses to the buildings, implying
their feasibility in vacant buildings.

The initial step in inverse modelling is to set-up the most appro-
priate model that suits the problem. Kramer et al. [41] has com-
pared and categorized building thermal models, suggesting the
use of simplified building models with physical meaning. On the
one hand, simplified methods benefit from short computation time
and lower risk of having multiple solutions. On the other hand,
they often fail to present an accurate physical meaning to the iden-
tified parameters since they are lumped values of multiple physical
parameters. Generally, the models are built and the order can be
increased or reduced until a performance criterion is met [42]. Lit-
erature shows that the determination of the best model and its
solution method is case-specific and depends on the type and oper-
ation of the buildings as well as the available input data and the
desired outcome. Along the same line, Berthou et al. [43], Hazyuk
et al. [44], and Trčka and Hensen [45] showed that the complexity
of the model does not necessarily decrease the errors associated
with the predictions. Andrade-Cabrera et al. [42] have recently
shown a trade-off between the complexity of the lumped parame-
ter models and the energy forecasting accuracy by tracking the
annual energy estimation error when reducing a model’s complex-
ity. To find the appropriate model, Bacher and Madsen [16]
described a hierarchy model selection procedure by likelihood
ratio tests and forward selection strategy. The procedure has been
3

applied to a case study to estimate building characteristics such as
thermal conductivity and heat capacity. An et al. [46] patented a
method consisting of a static model which was achieved by inte-
gration of a dynamic model in a long period. By using data regard-
ing temperature, RH and building’s information, the thermal
properties of the building have been determined. Park et al. [47]
used a simple 1R1C (1 resistor-1 capacitor) model to study the
internal gains from the appliances in low-energy buildings. A
well-insulated room was modelled and measurements were
applied to identify the global (lumped) thermal resistance and
the global capacitance. The success of the model led to a second
study [48] where a 2R2C model was used in combination with
an electrical heater to identify the same parameters this time for
appliances and for the thermal (building) model. More recently,
Zeifman et al. [49] used a second order model rather than a first
order one to additionally separate the infiltrative heat loss from
the conductive part. More extensively, from 8 different RC models,
Ramallo-González et al. [50] found the 2R1C model to work best
for their case and was then applied to 6 case studies (houses) to
find properties such as the heat loss coefficient. Wang and Xu
[51] made an energy model consisting of 3R2C roof, a 2R2C internal
mass, and 3R2C external wall to identify the parameters using
genetic algorithm (GA) and validated it with an office building.
They present the method to simplify energy models using easily
available and short-period data. The GA has been often used as a
promising optimization technique for the buildings’ inverse mod-
elling problems [52]. For instance, Costola et al. [18] used GA to
optimize 34 parameters of their model, fed with smart meter
energy data, to show the capability of this method in making reli-
able estimations. However, a trade-off was seen between the vari-
ables and the results sets which was said to be solved by using
realistic bounds and multiple objective functions. Gupta [53]
applied the same method (GA) and fed simulated energy data to
a 2R1C, a 3R1C, and a 4R2C model and found the 3R1C to perform
better than the other two, in determination of the resistance and
capacitance of the buildings.

Over the studied literature, it has been evident that using actual
data to estimate building’s thermo-physical properties, especially
in the occupied residential buildings, has been a well-known sig-
nificant challenge. Large-scale measurements are always associ-
ated with numerous operational and instrumental errors.
Accordingly, in comparison with simulated data, using actual data
has often led to unsatisfactory results [54]. In the building level,
many unidentified random disturbances introduced by occupants
influence the energy consumption. Accordingly, many of the stud-
ies have dealt with office buildings and commercial buildings
where the effects of occupants are limited and therefore easier to
model in comparison with residential buildings. In contrast with
the majority of the conventional studies which either use synthetic
data or study commercial buildings, this research analyses the
actual measured data of an occupied residential building.

The advancement and progress of smart meters, sensors and
monitoring technologies is leading the building sector to include
more and more measurements in their HVAC installations and
their control and automation systems. Besides comfort and energy,
on-board data from the monitoring of parameters such as temper-
ature, RH, and CO2 concentrations are of high value in terms of
revealing health-related aspects. The aim of this study is accord-
ingly to investigate the possibilities of using such data, in combina-
tion with a simple thermal model and inverse modelling, to
determine a number of critical global thermo-physical characteris-
tics of an occupied residential building such as the heat loss
coefficient, global heat capacity, and global solar effect. It is shown
how the different global values of the heat loss coefficient which
includes transmission and air exchange (heat transfer by air move-
ment and mixing through ventilation and infiltration) can lead to
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better understanding of the buildings’ thermal behavior. Further-
more, the importance of using different time periods, period
lengths, and granularity levels in the input data are demonstrated
showing their effect on the outcomes of the parameter identifica-
tion. Additionally, it is shown that by using the thermal resistance
of buildings’ components (either from construction data or from
measurements), it is possible to estimate the daily air flow rates
of a building in the winter. Finally, the results are evaluated and
validated using information available from inspections and con-
struction documents.

Unlike many studies on the same topic, in this research, the pro-
cedure regarding preparation, cleaning, filtering, and processing of
the data are explained in detail in order to significantly help future
similar studies.
1.2. Methodology

The framework of this study begins with measurement of cer-
tain parameters in a building. The work continues with construc-
tion of a simple 1R1C model representing the building and
feeding it with data of different sizes, granularity levels, and time
periods, to estimate its global key parameters. An optimization is
solved and the parameters are estimated. Thereafter, the building
construction information has been applied to find hourly air
change rates. The findings are evaluated using the supplementary
available information.

To prepare the feed data, first, the indoor air and meteorological
measurements were processed and the data has been aggregated
in different levels. Then the indoor sensors’ data have been cali-
brated, using the sensors’ calibration curves. Thereafter, the energy
data were cleaned and filtered using the other sensor’s data. The
procedure of preparing the data and dealing with missing data
points are explained. The required feed data is then prepared:
indoor and outdoor average air temperature, total heating con-
sumption, and global solar radiation. Thereafter, the general proce-
dure of making an electrical circuit analogous to the thermal model
- according to the available input data and the desired output - is
explained briefly for the sake of understanding and examples are
shown. With the aim of determination of the building’s global
thermo-physical characteristics, a 1st order model is built. The
model’s governing equation (energy conservation) is derived based
on the main heat transfer processes. The system’s detailed proper-
ties are lumped into four equivalent parameters: heat loss coeffi-
cient (inverse of global equivalent resistance), global equivalent
capacitance, solar gain factor, and a constant parameter (e.g. inter-
nal heat generation and other unknown effects). The model is then
fed to estimate the four parameters for different periods, durations,
and granularity levels (hourly, daily, and weekly values). The
parameters are found via inverse modelling of the main equation
by defining an optimization problem. The accuracy of the determi-
nation of the four parameters cannot be examined as they are
Table 1
The description of the sensors by which the data have been measured.

Data Source Log

Indoor Air Temperature In-Situ Sensors 5 m
CO2 Concentration In-Situ Sensors 5 m
RH In-Situ Sensors 5 m
Motion In-Situ Sensors 5 m
RH Bathroom In-Situ Sensors 5 m
Gas Consumption Smart Meter 1 h
Power Consumption Smart Meter 10
Outdoor Air Temperature KNMI 1 h
Global Solar Radiation KNMI 1 h
Wind velocity KNMI 1 h

4

lumped parameters and the actual values do not exist. However,
using supplementary information such as the construction docu-
ments, their range, order of magnitude, and behavior can be eval-
uated. Finally, the first parameter, the heat loss coefficient,
includes a constant part (transmission) and a variable part (venti-
lation and infiltration). Accordingly, the construction information
(based on the building documents or obtained from the measure-
ments) are used to estimate the daily air flow rates in the winter.
This is of high importance due to the fact that the ventilation
and infiltration in winter times result in considerable values of air-
borne heat loss in the buildings.

In section 2, the raw data, measuring methods and equipment,
and the required processes before feeding the data to the model are
explained in detail. In section 3, the chosen model is shown and the
inverse modelling of the 1st-order circuit through GA is presented.
Thereafter, in section 4, the results are presented and the method is
evaluated using the construction documents. Finally, in section 5,
conclusions are drawn and recommendations are given.
2. Data: sources, cleaning, and processing

The data used in this study is obtained during a large-scale
measurement campaign of 12 months, starting from June 2017.
The raw data is obtained in different time intervals. The logging
intervals, indoor [55] and outdoor [56] sensor types, instrumenta-
tion, and their accuracies are summarized in Table 1.

All logging intervals are synchronized and aggregated to the
smallest common available level (hourly data) in the analysis.
Since each sensor starts logging at the time it is powered, the log-
ging times are different. Accordingly, the data has been synchro-
nized in such a way that the time shift between the loggings are
minimized for all sensors. Indoor measurements have been carried
out during a large-scale measurement campaign in the Nether-
lands [17]. During the campaign, the houses have been inspected
and the sensors have been installed in the living room, the kitchen,
and the two bedrooms of the houses to measure air temperature,
CO2 concentration, RH, and motion. The sensors used in the houses
are shown in Fig. 1.

2.1. Indoor air measurements

The indoor sensors were carefully placed in the most represen-
tative locations of the room, avoiding the areas in the vicinity of
solar radiation, draught, and moisture. With a logging interval of
5 min, the data were logged for one year. No missing values have
been found, thanks to the local memory of the data loggers
attached with the sensors. To ensure high accuracy, it is essential
to have all sensors recalibrated every 1–2 years. All temperature
and RH sensors have been calibrated via a set of pre- calibrated
sensors which were individually calibrated in a climate chamber.
The calibration has been carried out, having all sensors in a large
ging Interval Sensor Type and Accuracy

in KT Thermistor – 1% per �C (0.15 �C � 0.3 �C)
in GE Telaire: 400 – 1250 ppm: 3% of reading
in Honeywell HiH5031: +/- 3%
in Honeywell IR8M: 11 � 12 m (at 2.3 m height)
in Honeywell HiH5031: +/- 3%

Technolution P1 port reader
s Technolution P1 port reader

RTD Pt 500: 0.1 �C
Pyranometer: 1%
Cup anemometer: 0.5 ms�1



Fig. 1. Sensors used in the measurement campaign, from left to right: motion sensors (4 rooms), CO2-air temperature-RH sensor (4 rooms), RH sensor (bathroom), and smart
meter port reader.
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enclosed environment, exposed to two state points, 20 �C – RH 70%
and 30 �C – RH 40%. The selected points are chosen based on the
operation range of the sensors (indoor environment), assuming a
linear correlation between the two points. An example of linear
calibration correlations of the sensors are shown in Table 2:

The CO2 sensors are self-calibrating type and therefore, not
manually recalibrated. The instantaneous values of CO2 concentra-
tions were used only as an indication to the occupants and the
evaluation of the findings. In Fig. 2, the results of four parameters
measured in the case study (See 3.2) are presented. At the top, left
to right, the average room air temperatures and the CO2 concentra-
tion are shown respectively. At the bottom left and the bottom
right, average room RH and motion (in binary) are shown for
1 week. The motion measurements help as an indication of pres-
ence, showing 0 as no motion and 1 as at least one motion during
that hour.

2.2. Meteorological measurements

Meteorological measurements including outdoor air tempera-
ture, wind velocity, and solar radiation are provided from the KNMI
(Koninklijk Nederlands Meteorologisch Instituut: Royal Nether-
lands Meteorological Institute) [56]. The local meteorological data
is approximated by averaging the measurement values between
two nearest stations in province Zuid Holland, both located within
10 km range of the building. These values have shown to be the
closest to the actual local values measured via a weather station
which has been locally installed after the measurement campaign
period. In Fig. 3, local measurements are compared to the assumed
(averaged) KNMI values during the same measurement period.

The R2 values regarding the fit between the KNMI location-
based average value, the two locations, and the in-situ measure-
ments for air temperature, solar radiation, and wind velocity are
presented in Table 3:

Despite the small difference, the average of the values reported
for the two KNMI locations still shows to be the closest to the
actual in-situ measurements and therefore has been applied as
the input outdoor data.

2.3. Energy consumption recordings and filtering

Energy usage data has been gathered via a Technolution Cloudia
smart meter port reader, connected to the P1 port of the smart
Table 2
Calibration correlations for correction of the measured air temperatures.

Sensor / Readings Point 1 (�C)

Pre-Calibrated Sensor 21.2
Temperature Sensor Living Room 22.7
Temperature Sensor Kitchen 22.8
Temperature Sensor Bedroom 1 22.7
Temperature Sensor Bedroom 2 22.9

5

meter. The logging intervals of the smart meter data from electrical
power (kW) and the accumulated gas consumption (m3) are 10 s
and 1 h respectively. The hourly rates of heating consumption
are found by deducting two consecutive recordings and multiply-
ing by the standard average calorific value of the gas in the Nether-
lands (35.17 MJ/m3). The long-time missing values (due to the port
reader and communication faults) of the gas and electricity con-
sumption are left blank and not used in the analysis (see Fig. 7).
The short period missing values (3–5) hours are filled by the data
of the points with similar conditions (e.g. air temperature and time
of the day). For shorter periods, the gaps of the missing values have
been filled by the average of the values at the beginning and the
end of the gaps.

Separation of SH and DHW-related heating from the total heating
consumption

The smart meter data shows the hourly total amount of gas con-
sumed for domestic hot water (DHW), space heating (SH), and
noise (cooking and boiler set-point heating). Consequently, deter-
mination of each category in higher resolution (e.g. per minute)
is not possible, unless separate measurements are carried out.
Due to the availability of a whole year data in the case study
(3.2), rough differentiation between different categories can take
place aided by comparing the summer and winter period. During
the summer, heating (gas) is not consumed for SH. This knowledge
helps in filtering the data in the winter period where both SH and
DHW take place. The data due to the DHW can be filtered simply
by comparing the magnitude of its peaks in summer. The SH peaks
observed in the winter are clearly much larger than the other
peaks. The only peaks large enough to be confused with SH values
are the shower DHW peaks. Accordingly, the shower times are
detected via an RH sensor placed in the bathroom. By observing
the data in different period lengths, much information is conveyed.
For better observation of the results of filtering and its effect in dif-
ferent scales, Figs. 4–6 are plotted for different durations. In Fig. 4,
the bathroom RH (blue) and the total heat consumption (orange)
are plotted for 21 days (left), one week (middle), and one day
(right) in summer.

To estimate the SH-related heating consumption, the following
procedure is carried out:

First, the noise regarding the frequent heating up of the boiler is
filtered. This noise is the heat consumed by the boiler to maintain
the minimum set point temperature to ensure instantaneous hot
Point 2 (�C) Calibration Correlation

29.8 –
31.9 Tcorrect ¼ 0:93Tmeasured

31.0 Tcorrect ¼ 1:05Tmeasured � 2:7
31.8 Tcorrect ¼ 0:94Tmeasured � 0:2
31.4 Tcorrect ¼ Tmeasured � 1:7
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water supply. Note that the very short periods of using DHW can-
not be distinguished from this noise and therefore are eliminated
during the noise filtering. Second, all DHW-related heating con-
sumption should be removed from the remaining data to achieve
the SH-related heating consumption. Comparing the winter period
(frequent SH) with the summer (no SH), the magnitude of the SH
6

and the frequent DHW can be estimated. Ever since the frequent
DHW consumption values are much smaller than the SH values
and the shower time DHW data points, they can be filtered by
omitting the values smaller than a certain level. For this case study,
the observed range in summer was 0.9 kW for every hour section.
This eliminates the majority of the small DHW-related consump-



Table 3
R2 values in comparison between the parameters in two locations and their average
values and the in-situ measured values. December 2018-February 2019.

Location / Parameter Outdoor Air
Temperature

Solar
Radiation

Wind
Velocity

Location 1 R2 = 0.96 R2 = 0.90 R2 = 0.78
Location 2 R2 = 0.95 R2 = 0.90 R2 = 0.78
Average of the two locations R2 = 0.97 R2 = 0.92 R2 = 0.81
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tions except showering times. Finally, an approximation of the
shower DHW consumption can be found following the high peaks
of the bathroom RH profile. Accordingly, the heating consumption
values taking place during the shower times (when the RH of the
bathroom rises above 70%) have been filtered. The same procedure
is repeated by filtering based on the RH level at one time step
before. This repetition eliminates the consumption from a short
period of the hour before. In Fig. 5, the bathroom RH (blue) and
heat consumption (orange) raw data (left) and the DHW-filtered
one (right) is presented for 21 days of summer.

Similarly, the raw data (left) and the DHW-filtered one (right) is
presented in Fig. 6.

Filtering out (the majority of) the DHW-related heating con-
sumption from the total heating consumption (left side in Fig. 6),
the SH-related heating consumption is presented (right side in
Fig. 6). To validate the filtering methods, the sum of the DHW-
related gas consumption (filtered out) is presented as a percentage
of the total consumption, in different periods and presented in
Table 4. Note that the found values are half of what is assumed
in the literature (approximately 20%). However, the difference is
explainable due to the low frequency and the short duration of
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showers (as illustrated from the bathroom RH data and the
answers in a separate survey) which are lower than what is
assumed in the literature.

The limitation of using hourly data can be mentioned in possi-
ble scenarios where the DHW and SH cannot be separated cor-
rectly, causing uncertainty:

� The SH starting during a last short period of one hour (e.g.
10:50) and ending at an early period of the logging hour (e.g.
11:10). This results in the peak to break into two smaller peaks
which can be confused with DHW use during two hours.

� The case where DHW and SH take place during the same hour.

2.4. Input data for the model

The raw data is processed before being fed to the model of the
building (3.2). The average indoor temperature has been obtained
from the volume-based average value of the room temperatures.
The hourly global solar radiation, initially available in (Jm�2) is
converted to (Wm�2) and later to (W) using the transparent sur-
face areas. Finally, the total heating consumption is filtered as
explained in Section 2.3 to SH values. The data regarding indoor
(top left) and outdoor (top right) air temperatures, total heating
consumption (bottom right), and solar radiation (bottom left) are
plotted in Fig. 7.
3. Inverse modelling of the building’s thermal model

In addition to the statistical methods mentioned in the litera-
ture, the choice of model highly depends on the availability of
the measured data, the range of parameters, and the desired level
0.0

0.6

1.2

1.8

168 H
ea

ti
n

g
 C

o
n

su
m

p
ti

o
n

 (
k
W

h
)

e (h)

umption 1 

mer

0.0

0.6

1.2

1.8

0

20

40

60

80

100

0 20 H
ea

ti
n

g
 C

o
n

su
m

p
ti

o
n

 (
k
W

h
)

B
at

h
ro

o
m

 R
H

 (
%

)

Time (h)

Total Heat Consumption 1 

Day Summer

RH_BR

Q_H

or 21 days of summer. (For interpretation of the references to colour in this figure

0.0

0.5

1.0

1.5

0

20

40

60

80

100

0 200 400

H
ea

ti
n

g
 C

o
n

su
m

p
ti

o
n

 

(k
W

h
)

B
at

h
ro

o
m

 R
H

 (
%

)

Time (h)

SH Heat Consumption 21 Days Summer

RH_BR Q_H

W-filtered one (right). (For interpretation of the references to colour in this figure



0

5

10

15

20

0

20

40

60

80

100

4512 4612 4712 4812 4912 5012 H
ea

ti
n

g
 C

o
n

su
m

p
ti

o
n

 

(k
W

h
)

B
at

h
ro

o
m

 R
H

 (
%

)

Time (h)

Total Heat Consumption 21 Days Winter

RH_BR Q_H

0

5

10

15

20

0

20

40

60

80

100

4512 4612 4712 4812 4912 5012

H
ea

ti
n

g
 C

o
n

su
m

p
ti

o
n

 

(k
W

h
)

B
at

h
ro

o
m

 R
H

 (
%

)

Time (h)

SH Heat Consumption 21 Days Winter

RH_BR Q_H

0

5

10

15

20

0

20

40

60

80

100

4512 4536 4560 4584 4608 4632 4656 4680
H

ea
ti

n
g
 C

o
n

su
m

p
ti

o
n

 

(k
W

h
)

B
at

h
ro

o
m

 R
H

 (
%

)

Time (h)

Total Heat Consumption 1 Week Winter

RH_BR Q_H

0

5

10

15

20

0

20

40

60

80

100

4512 4536 4560 4584 4608 4632 4656 4680

H
ea

ti
n

g
 C

o
n

su
m

p
ti

o
n

 

(k
W

h
)

B
at

h
ro

o
m

 R
H

 (
%

)

Time (h)

SH Heat Consumption 1 Week Winter

RH_BR Q_H

0

5

10

15

20

0

20

40

60

80

100

4512 4518 4524 4530 4536

H
ea

ti
n

g
 C

o
n

su
m

p
ti

o
n

 

(k
W

h
)

B
at

h
ro

o
m

 R
H

 (
%

)

Time (h)

Total Heat Consumption 1 Day Winter

RH_BR Q_H

0

5

10

15

20

0

20

40

60

80

100

4512 4518 4524 4530 4536

H
ea

ti
n

g
 C

o
n

su
m

p
ti

o
n

 

(k
W

h
)

B
at

h
ro

o
m

 R
H

 (
%

)

Time (h)

SH Heat Consumption 1 Day Winter

RH_BR Q_H

Fig. 6. Bathroom RH (blue) and heat consumption (orange) raw data (left) and the DHW-filtered one (right) for 21 days (top), 1 week (middle), and 1 day (bottom) of winter.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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of outputs (e.g. lumped or local parameters). In Section 3.1 exam-
ples of thermal models are shown and in section 3.2 the case study
is presented.

3.1. The choice of the model

As already pointed out, there is never a single way of describing
the thermal behavior of a building. The use of high-resolution ther-
mal networks requires an abundance of input data and informa-
tion, which is often not present or cannot be measured.
Additionally, with a high-resolution of a model, the chance of find-
ing multiple solutions increases. Accordingly, the accuracy of the
estimations does not increase with the increase of the resolution.
Therefore, lower resolution models are achieved through model
reduction, in which some nodes are neglected or nodes of similar
thermal behavior are lumped. A dwelling in a form of detached
house for instance, where the sides are in contact with outdoor
air, can be modelled in a mid-resolution circuit as shown in
Fig. 8 with 11R4C circuit. This model consists of 2 nodes placed
on air and 9 on the surfaces of the roof, the floor, the façades (4 ori-
entations). The capacitors (C) are placed on the construction and on
the indoor air. Apart from the floor, all components are in contact
with outdoor and indoor air. Accordingly, resistances R between
the air and the components relate to convective (lumped with IR
radiation), and the ones at the boundaries of a circle, relate to con-
ductive heat transfer. Indices i and o denote indoor and outdoor air
and indices H and V indicate horizontal and vertical alignments.
8

When reducing this model, the circles (components) can be taken
as single nodes whose conductive resistances are lumped with
convective resistance(s). Alternatively, parallel branches can be
lumped into a single branch, following the resistance summation
rules. Note that the resistance Rvent+inf is a variable parameter and
therefore has a different value in different periods. Accordingly,
when lumping this branch with one with (approximately) constant
resistance such as the wall’s thermal transmittance, the lumped
resistance is also a non-constant.

The same modelling procedure is standard to follow for any
type of building. For an apartment, one wall (edge apartment),
two walls (middle apartment), or three walls (mid-floor apartment
with three neighbors), the floor and the roof (except the highest
and lowest floors) are adjacent to the neighbor apartments. Assum-
ing similar indoor temperature in these adjacent media, the heat
transfer (air to air) and therefore the thermal resistance R from
these components can be neglected in the calculations. In an apart-
ment in the middle floors, two main nodes can be considered: the
interior air and the exterior air. The nodes are connected via resis-
tors and internal nodes, the surface temperatures. The thermal
mass capacitors are the same as the house. In Fig. 9, an example
electrical circuit analogous example to the case study apartment
is shown.

According to Kirchhoff’s current law, the sum of the currents
towards a node (e.g. air) are equal to zero:X

I ¼ 1
R

DV0 þ C
@V0

@t
þ Isource ¼ 0 ð1Þ



10

15

20

25

30

0 2000 4000 6000 8000

A
ir

 T
em

p
er

at
u

re
 (
°C

)

Time (h)

Average Indoor Temperature

-10

0

10

20

30

0 2000 4000 6000 8000

A
ir

 T
em

p
er

at
u

re
 (
°C

)

Time (h)

Average Outdoor Temperature

0

1000

2000

3000

0 2000 4000 6000 8000

G
lo

b
al

 S
o

la
r 

R
ad

ia
ti

o
n

 (
W

m
-2

)

Time (h)

Global Solar Radiation

0

5

10

15

20

0 2000 4000 6000 8000

H
ea

ti
n

g
 C

o
n

su
m

p
ti

o
n

 (
k
W

h
)

Time (h)

Total Heat Consumption

Fig. 7. Indoor (left top), outdoor (right top) air temperatures, Solar radiation (bottom left), and the total heating consumption (bottom right) for one year in the case study.

Table 4
Total, SH-related and DHW-related gas consumption in different periods.

Duration Total heating
consumption
(kWh)

SH- heating
consumption
(kWh)

DHW to total
gas consumption (%)

7 Days 230.21 211.62 8.07
21 Days 716.07 636.86 11.06
2 Months 1925.77 1747.20 9.27
3 Months 2849.30 2591.38 9.05

Fig. 8. The 11R4C model for a detached house: Thermal resistances and capaci-
tances are modeled as resistors and capacitors.
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where DV0 is voltage drop, R is resistance, C is capacitance, and I is
the electrical current. Following the analogy between the circuit
and the thermal system (the building), the currents (heat flow)
can be computed from the voltages (temperatures), resistances
(thermal resistances), and capacitances (thermal masses). This is
in fact a visualization of what was always done in building
simulation.

Of the most important parameters defining the resolution of the
model, is the feed data, which should match not only the physics
involved, but also, the available level of detail in the input and out-
put data. Finding a balance between the desired accuracy and level
of outputs, the available data, and the potential of the model to be
identifiable, one can make an appropriate choice of the model’s
resolution. Note that in high resolution models, the risk of finding
multiple sets of answers increases and therefore these models are
not always suitable for inverse modeling [41].
9

3.2. The case study

The case study building is one-floor, four-room apartment of
72 m2, located in the West of the Netherlands. The building con-
struction year is 2014 and certain standards regarding the energy



Fig. 9. The 12R4C model for a mid-floor apartment.
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efficiency have been carefully followed (Energy label A: windows
HR++, the façade walls’ and the roof’s thermal resistances 4 m2K�1-
W�1 and 5 m2K�1W�1 respectively). The apartment unit is adjacent
to two neighbors on west and east sides and has a south façade and
a north façade which faces the patio. The heating system is a com-
bination condensing boiler which heats all 4 rooms. The ther-
mostat is set at 21 �C at all times. For the input data, the air
temperature is taken from the measurements and not the ther-
mostat settings. The house is occupied all day, by a single
middle-aged occupant, and is ventilated via a mechanical ventila-
tion system at medium stand. The indoor air temperature of four
rooms are available whereas no surface temperature has been
measured. Accordingly, a zonal model with four indoor air nodes
as shown in Fig. 10 is a better choice than the one previously
shown in Fig. 9.

As seen in Fig. 10, due to the lack of data of the surface temper-
atures, the corresponding nodes are omitted. Therefore, the capac-
itors and resistors are lumped parameters of more detailed actual
ones.
3.3. Building the 1st – order circuit

The aim here is to apply the simplest model that can work with
minimum measurements (e.g. no surface temperature data) to
estimate parameters such as the heat loss coefficient. Reducing
the circuit to the simplest possible dynamic model, a 1R1C model
Fig. 10. The high-resolution electrical circuit model analogous to the case study,
according to the available measured data.

10
is built, shown in Fig. 11. This model is used in the inverse mod-
elling of its four global parameters, using the available input and
output data. Analogous to the thermal system (the building), the
building’s resistance against transmission and advection heat
loss/gains translated into an equivalent global thermal resistance
Req , including the resistance of all exterior walls, roof and floor,
ventilation and infiltration. Similarly, equivalent thermal capaci-
tance Ceq, represents the buildings total equivalent thermal mass,
showing the dynamic ability of the system to accumulate/release
heat. Note that this capacitance is not the air capacitance but
reflect the behaviour of the building (air + construction). Other
heat sources such as internal gains are taken as a separate flow

source _Qgen in the circuit. S0 indicates the portion of solar heat that
enters the system.

The state equation of this system, based on energy conservation
is as follows:

_Qadvection þ _Qtransmission

� �
þ _QH þ _Qsol þ _Qgen ¼ _Qstorage ð2Þ

where the sum of the heat flows is stored in the system. It is of high
importance to state the model equation in such a way that in the
governing equations, parameters would not have the possibility to
compensate for each other during the inverse modelling. Deriving
the energy conservation equation for indoor air, the following equa-
tion is obtained:

qcp _8
� �

air
þ
X4
i¼1

UiAi

" #
T1
out � T1

in

� ��X
i

@T
@t

qc8ð Þi þ g: _QH

h i

þ _Qsol

h i
þ _Qgen

h i
¼ 0 ð3Þ

where U is the thermal transmittance (air to air) of each building
envelope component, T is the air temperature, q is the density, cp
is the specific heat capacity, 8 is the volume, _QH is the heating con-
sumption recorded by the smart meter, g is the nominal efficiency
of the boiler which according to the manual of the boiler is taken as
0.9, _Qsol is the global solar radiation, A is the surface area, t is time,
and i is the index for different components which accumulate heat
(walls, celling, floor, and air). Note that here it is not possible to sep-
arate air advection heat transfer from transmission losses as the
driving forces are the same. Taking a global equivalent resistance
between indoor and outdoor air, Req, and a global capacitance Ceq

which stores and releases the heat from/to the air and the construc-
tion, (6.3) can be translated to the following:

R�1
eq T1

out � T1
in

� �� Ceq
@T1

in

@t

� �
þ g: _QH

h i
þ S0: Psol½ � þ S1 ¼ 0 ð4Þ

In which R�1
eq is the heat loss coefficient, S0 is the average frac-

tion of the solar irradiance that enters the system and influences
the indoor air, and S1 is a constant for all the other effects including
the internal heat gains. The global heat loss coefficient R�1

eq is the
equivalent summation of all transmission resistances and ventila-
tion advection resistances:

R�1
eq ¼ 1

Rvent
þ
X

jf ; r; w; g

¼ qcp _8
� �

air
þ UAð Þw þ UAð Þr þ UAð Þgl ð5Þ

where floor is neglected due to the existence of adjacent unit with
similar indoor temperature. The storage parameter Ceq is an indirect
equivalent thermal mass of the system, roughly approximated by:

Ceq � qcp8
� 	

construction þ qcp8
� 	

air ð6Þ



Fig. 11. The first order model: 1R1C analogized electrical circuit with two nodes of air temperatures (indoor and outdoor) heat transfer phenomena are the electrical currents
towards the indoor air node.

Table 5
Upper and lower bounds of the parameters defined in the optimization problem.

Parameter Lower Bound Upper Bound

Rw 0.2(m2KW�1) 8 (m2KW�1)
Rr 0.2(m2KW�1) 8 (m2KW�1)
Rgl 0.1 (m2KW�1) 0.7 (m2KW�1)
ACH 0.1 (h�1) 2 (h�1)

qcp _8
� �

air

6.8 (WK�1) 145 (WK�1)

1=Req 10 (WK�1) 180 (WK�1)
qc8ð Þconstruction 8 E6 (JK�1) 4 E7 (JK�1)
S0 0 1
S1 0 2000
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where qcp8 is the thermal mass of the construction (floor, roof,
walls, and internal walls) and of the air. Where qcp8 is the thermal
mass of the construction (floor, roof, walls, and internal walls) and
the air.

The parameter S0 is taken as a fraction of the global solar radi-
ation transmitted through the windows. Accordingly, the heat pen-
etration to the system via solar radiation can be computed as
following:

_Qsol ¼ So:Agl:Psol ð7Þ
where Agl is the total glass surface and Psol is the global solar irradi-
ance. Note that S0 should not be confused with the g-value of the
glass, in this building equal to 0.58 (HR++ type). The first, shows
the seasonal/daily fraction of solar radiation, entering the house
and affecting the heating consumption and indoor temperature,
whereas the latter is a constant window property. The advantage
of using S0 rather than the g-value is that the S0 is based on the
specific building and not solely on the window.
3.3.1. Objective function and inverse modelling
The generic definition used for inverse modelling can be stated

as following:
A recording the actual inputs u tð Þ and outputs l tð Þ is available.

A prediction lth t; hð Þ is then generated by feeding u tð Þ to a model
consisting of parameters h. Inverse modelling takes place by deter-
mining the parameter vector heq that minimizes a (usually quadra-
tic) norm rð Þ of the predicted error [57]:

heq ¼ argmin
h

X
t

r lth t; hð Þ � l tð Þ� 	 ð8Þ

To incorporate the long-time dynamic effect of the thermal
mass, the state equation targets indoor air temperature. Accord-
ingly, for the current problem, heq is the vector [R�1

eq Ceq S0 S1]
which is estimated from the input u tð Þ being the heating consump-
tion, outdoor temperature, and solar irradiance, and the output
l tð Þ the indoor air temperature. The prediction function is then
as following:

T1
in



th
t ¼ g _QH þ

1
Req

T1
out

� �þ S0 _Qsol þ S1ÞþCeq T1
in



th
t�1

h i� �
=

1
Req

þCeq

� �
ð9Þ

The objective is to minimize the norm rð Þ, taken as the RMSE
(Root Mean Square Error) between actual and theoretical indoor
air temperature. The objective function of the optimization prob-
lem is accordingly stated as follows:

min
1

Req
; C; S0 ; S1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

g _QH þS0 _Qsol þS1 þ 1
Req

T1
out

� �
i þCeq T1

in



th
t�1

h i
i

� �
1
Req

þCeq

� ��1

�Tac
i

 !2
vuut s:t: R�1

eq

2 10; 180½ �; Ceq 2 1E 5; 1E 9½ �; S0 2 0; 1½ �; S1 2 0; 2000½ �
ð10Þ
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Ranges of the global parameters presented in the constrains are
estimated based on the possible ranges of the physical properties
they are computed from. The possible ranges of the properties in
building industry are presented in Table 5. Note that the global R
and C are found case-specific since the surface areas are included
in the calculation. The surface areas used in the calculations are
presented later in Table 8.

The optimization problem presented is solved using GA through
MATLAB. Using other methods including Quasi-Newton and
interior-point have resulted in nearly the same values and there-
fore are not presented here. Customized settings used for the GA
are population size of 20000, generations of 4000. The mutation
and crossover values are the default ones in MATLAB. The results
of the optimization in this problem have shown to be insensitive
to the changes of these values. As the GA, due to its stochastic nat-
ure, does not lead to a unique solution, the optimization is run
multiple times and the solution with the lowest objective function
value (RMSE) is reported. The variation in the results has not been
significant.
3.3.2. Granularity level, time period, and the size of the input data
The model has been fed with the data from different periods

and granularity levels. First, the data from the whole year and then
the data from the available two months of winter period (January-
February) are fed to the model. Then, the data is reduced from one
month (February) to the data from two weeks, one week, and
finally one day in February 2018. February is chosen here because
it is statistically known to be the coldest month of the year in the
Netherlands. Separately, data from November and January are used
to examine the method’s performance. The meteorological winter
is defined as December- January- February. However, due to the
large energy data gaps in December 2018, this month unfortu-
nately could not be used. For each period, hourly, daily, and weekly
data has been fed to the model. Using different periods and
granularity levels, the method can be validated in terms of preci-
sion and the performance of the method as a function of input data
can be expressed.
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4. Results and discussion

The outcomes and the results of the inverse modelling are pre-
sented here. The findings and outcomes are later evaluated using
the construction data taken from the energy and construction
detailed reports and the floor plans available from the municipal-
ity. For this case, due to the construction year and the quality of
the reports and the corresponding organizations, this data has
appeared to be reliable.
4.1. Outcomes of the inverse modelling

For each of the mentioned periods, the problem has been solved
using different granularity levels of hourly, daily and weekly (when
applicable). The results of the optimization are presented in
Table 6.

To test the reliability of the method further, data sets from two
other periods have been tested. In Table 7, the outcomes of the
optimization for November 2017 and January 2018 are presented.

As seen in Tables 6 and 7, the first parameter R�1
eq takes different

values when different periods are used. These differences are
attributed to the different infiltration and ventilation rates in dif-
ferent periods. The average values of hourly, daily, and weekly heat
loss coefficient are in a close range. Opposite to this, the values of
Ceq become smaller in lower granularities (e.g. weekly), showing
the weakening of the dynamic effect when analyzing longer time
periods. From building physics point of view, it is known that the
response time of the buildings is in the order of days. Accordingly,
using low granularity levels (daily/weekly), the dynamics cannot
be captured. Consequently, in terms of granularity level, the use
of hourly data is expected to result in the best estimation of Ceq

in this problem. Note that the determination of the second param-
eter, Ceqis not always reliable, due to its high magnitude in the
equation: a small temperature measurement error (inevitable in
measurement equipment) multiplied by the large Ceq results in a
large difference in its term in the equation. Generally, when build-
ing a model with one capacitance, the Ceq will have a large quantity
and therefore less accurate, whereas in a higher resolution of
model, the capacitance breaks down into smaller ones in each
Table 6
Results of the optimization for different period lengths using different granularity levels.

Duration Granularity Level R�1
eq [

Complete year June 2017-June 2018 Hourly 81
Daily 82
Weekly 81

2 months winter: January-February 2018 Hourly 148
Daily 148
Weekly 149

1 month: February Hourly 138
Daily 138

2 Weeks: February 1–14 Hourly 115
Daily 110

1 Week: Feb 1–7 Hourly 157
Daily 148

Day 1 Feb Hourly 100

Table 7
Results of the optimization for November 2017 and January 2018 using different granular

Duration Granularity Level R�1
eq [WK�1]

November 2017 Hourly Daily 101
108

January 2018 Hourly Daily 128
130

12
component, leading to higher accuracy. This is in agreement with
the findings of Bacher and Madsen [16]. The solar factor S0 remains
below 1 and varies in different values and when analyzing hourly,
daily, and weekly data due to the difference in averaged and
detailed data points and the difference in gain in different periods
of the year. Similarly, the last parameter, S1 varies in different gran-
ularity levels and periods, giving an indication of the heat genera-
tion and other changes in the system (e.g. occupant behavior)
which have no correlation with the air temperature, temperature
change, and solar radiation. The obvious sources of uncertainty
for this method include:

- The choice of model in terms of resolution and lumped param-
eter modelling

- Limitation in addressing any level of the stochastic user behav-
ior in the model

- Assumption of constant parameters such as heat transfer coef-
ficients and air exchange rates

- The uncertainty of the measured data and the choice of process-
ing (e.g. using average indoor temperature)

- The uncertainty of the SH filtering of the heating consumption
data.

- Averaging variable parameters including S0, S1, and R�1
eq .

The method in general works best for the coldest months of the
year (winter) attributable to the large sizes of peaks in energy data.
Such data helps in better training of the model. Additionally, for the
same reason, the filtering of the DHW is also more accurate during
thewinter period. Usingwarmer periods, the heating values are in a
smaller range and steadier, which results in inaccurate DHW data
filtering and a poorer training of the model. This issue amplifies
especially in a well- insulated house, such as the case study, where
the indoor air temperature is stable. The summer period is not dis-
cussed due to the lack of heating consumption data. In the summer
period, the heating is off, no cooling takes place (in the Nether-
lands), andmanual ventilation generally occurs more often through
thewindows and doors. Using the results of the optimization, a pre-
dicted temperature function is fitted to the actual one. The results
of the comparisons are presented in Fig. 12. The hourly (on top)
and daily (bottom) data have been fed to the model. The estimated
WK�1] Ceq [JK�1] S0 [–] S1 [W] RMSE [K]

3.4E 8 0.10 98 0.95
1.5E 7 0.10 114 0.89
1.6E 6 0.10 88 0.78
1.7E 8 0.30 994 0.21
7.2E 7 0.55 676 0.18
1.0E 7 0.20 1399 0.05
1.4E 8 0.25 914 0.26
1.6E 7 0.20 1222 0.10
2.1E 8 0.48 60 0.19
1.2E 7 0.31 310 0.02
2.0E 8 0.66 486 0.13
1.1E 7 0.55 697 0.03
1.0E 8 0.34 72 0.10

ity levels.

Ceq[JK�1] S0 [–] S1 [W] RMSE [K]

2.0E 8 0.25 169 0.18
2.9E 7 0.42 56 0.09
2.3E 8 0.80 125 0.21
3.1E 7 0.90 44 0.13
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Fig. 12. Actual and computed hourly (top) and daily (bottom) estimated (in black) and actual (in red) temperatures for January 2018 (left), February 2018 (middle), and
November 2017 (right). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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temperatures (in black) and the actual temperatures (in red) are
shown for January 2018 (left), February 2018 (middle) and Novem-
ber 2017 (right). As seen in Fig. 12, for the hourly data, opposite to
the trend which is well captured, the peaks are not always well pre-
dicted. Using daily data, a good agreement is seen between the
actual and theoretical (computed) values of temperature.

The same procedure is repeated and shown in Fig. 13, by using
hourly (left), daily (middle), and weekly (right) data for two
months of January 2018 and February 2018:

4.2. Evaluation based on the construction data

The outcomes of the optimization are only average values of
variable parameters. To evaluate the findings of the models and
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analyses, the results are compared to the actual approximation
of the parameters based on construction data. The properties of
the components and parameters needed in the evaluation are
obtained from the inspections and the official construction report
documents (energy report) and are tabulated in Table 8. Note that
the thermal capacitance values (right column) are roughly
approximated from the construction materials and have not been
mentioned in the reports. The missing values (e.g. floor’s Rc-
value) are the ones that have not been relevant for this case
study.

As for the first parameter, the inverse equivalent resistance
(heat loss coefficient) R�1

eq should be equal to the inverse summa-
tion of the parallel resistances:
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ht) temperatures for two months of January 2018 and February 2018.



Table 8
The building’s components and their properties.

Component Area (m2) – Volume (m3) Type-Configuration Rc (m2KW�1) qcp8(WK�1)

North window 8 (m2) HR ++ (4–15-4) 0.55 –
South window 5 (m2) HR ++ (4–15-4) 0.55 –
Side walls 52.4 (m2) Reinforced Concrete – 3.3E7
Opaque façade 26.2 (m2) Insulated Brick and Gypsum 4 1.3 E7
Roof 72 (m2) – 21.6 (m3) 5 4.5 E7
Floor 72 (m2) – 21.6 (m3) Insulated Concrete – 4.5 E7
Internal Walls 133.4 (m2) – 14 (m3) Insulated Concrete – 1.1 E7
Indoor Air 195 (m3) Gypsum – 2.4 E5

Properties at 21� C
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R�1
eq ¼ qcp _8air þ Ar

ðaH
iÞ
�1 þ Lrk

�1
r þ ðaH

oÞ�1

þ Aw

ðaV
iÞ
�1 þ Lwk

�1
w þ ðaV

oÞ�1
þ Agl

ðaV
iÞ
�1 þ Lglk

�1
gl þ ðaV

oÞ�1
ð11Þ

where the a is the convective (lumped with IR radiation) heat trans-
fer coefficient with superscripts V as vertical and H as the horizontal
orientations. Due to the small influence of this parameter in the R�1

eq

and its limited range, here it has been taken as a constant with the
average values (common values often used in the literature and
building simulation) shown in Table 9:

According to the values of Table 8 and Table 9 in equation (11),
the actual range of the heat loss coefficient R�1

eq for the specific
building can be estimated.

In this case study, the transmission part of the heat loss coeffi-
cient is relevant only for the North and South opaque facades, the
roof, and the windows with a total value of 37 WK�1. The expected
range is therefore as follows:

1
Req

� 65þ 5:25þ 13:68þ 18 ¼ 102 WK�1 at 1 ACH

1
Req

� 97:5þ 5:25þ 13:68þ 18 ¼ 134:5 WK�1 at 1:5 ACH

1
Req

� 130þ 5:25þ 13:68þ 18 ¼ 167 WK�1 at 2 ACH

8>>><
>>>:

ð12Þ
According to the building’s air tightness report, the air rate is is

approximately 95 WK�1. Summing up this value with the trans-
mission resistance, an average heat loss coefficient of 132 WK�1

is expected. Values obtained from the model show a maximum
of 23% deviation with this value. Note that the heat loss coefficient
is not a constant due to the variable ventilation and infiltration
rates in addition to the occupant-related air exchange rates.
Accordingly, the assumed value is just an indication of the possible
range of this parameter. Similarly, the global capacitance Ceq is
roughly approximated from the summation of all heat storing
components, assuming the indoor air and the construction as a sin-
gle node and therefore the same behavior:

Ceq� qc8ð Þf þ qc8ð Þwþ qc8ð Þglþ qc8ð Þrþ qc8ð Þinternal wallsþ qCp8
� 	

air

ð13Þ
In which the air has the smallest thermal mass. According to the

values in Table 8, the global capacitance takes a minimum value of
1.5 E8 JK�1. This value is expected to be higher due to the solids
other than the construction (e.g. furniture). The values obtained
Table 9
Indoor and outdoor assumed average convective heat transfer coefficients.

Property Vertical aV (Wm�2K) Horizontal aH (Wm�2K)

Indoor convective HTC 7.5 7.5
Outdoor convective HTC 25 18.5

14
from the model show to be in the expected range. However, the
exact value of the capacitance cannot be discussed here as a conse-
quence of the assumptions made and the simplicity of the model.
The third parameter, the solar gain fraction S0 requires in-situ mea-
surements. However, the obtained range of [01] as expected from
the physics point of view (only a fraction of solar radiation heats
the building) confirms the relative validity of the findings. The last
parameter S1 is not evaluated due to the limited knowledge regard-
ing the actual internal gains and unknown effects in the case study.
In all cases, this value has taken a positive number, showing the
positive rate of heat generation in the system.

4.3. Determination of air flow rates

In the previous section, an average global heat loss coefficient
was sought. This parameter includes a fixed part (relating to trans-
mission losses assuming constant convection heat transfer coeffi-
cients) and variable parts relating to air exchange and movement
(ventilation and infiltration). In the current case study, according
to the survey, occupancy and the user behavior during the week-
days is the same as in the weekends. Accordingly, here, it is
assumed that the major part of the changes in the daily change
of energy use are associated with variations in air change rates.
Obtaining the global capacitance, solar fraction, and the internal
gain from the optimization, the ventilation and infiltration rates
can be estimated by recalculating the heat loss coefficient by the
following equation:

1
Req

� �
i

¼
Ceq

@T1in
@t

� �
i
� g: _QH

h i
i
� S0: _Qsol

h i
i
� S1

T1
out

� �
i � T1

in



th
i

ð14Þ

In which, the differentiation has been approximated, using
high-order approximation central difference, using 5 points (two
before and two after):

@T1
in

@t

� �
i
¼ �T1

in




tþ2 þ 8 T1

in




tþ1 � 8 T1

in




t�1 þ T1

in




t�2

� �
=12 Dt

þ O Dtð Þ4; Dt ¼ 1 hð Þ ð15Þ

Computation of the daily heat loss coefficient rates, term R�1
eq

can be found. Here, the daily rates are used rather than hourly rate
due to the better fit shown in Fig. 12 and the absence of undesired
meaningless noise. The outcomes of (14) are presented in Fig. 14.
Note that the first and last two days are not presented here due
to the discretization method used in (15) which uses 2 days before
and after the current time. In case of using another discretization
method (e.g. forward with one point), these days can also be added
to the estimations. For lower granularity levels (e.g. week), the
capacitance term can be neglected.

Using (11), and the resistance properties of the construction
(the transmission part of 37 WK�1), the air change rate fraction
can be separated. Using (12), these values are converted to air
flow rates (ACH) and plotted in Fig. 15. Note that for an old
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Fig. 14. The computation results of the heat loss coefficient for November 2017, January 2018, and February 2018.
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building where the construction is unknown, the thermal resis-
tances or the thermal transmittances of the façades can be mea-
sured following a measurement method (e.g. ISO 9869 [1]). This
needs the same time as what is needed for training the model
(one month

As seen in Fig. 15, the daily average approximations of air
change rates are in the acceptable range of their values in reality.
According to the inspection and the survey, the apartment is being
manually and randomly ventilated 13–24 h a day. For a personal-
ized advice, the data in Fig. 15 can be compared to the standard
daily recommended ACH value for the specific building. To investi-
gate the validity of the results, the average monthly values found
from Fig. 15 are compared to the wind velocity. The wind velocity
is known to have a direct influence on the infiltration rate and on
outdoor convective heat transfer coefficient. As seen in Table 10
and Fig. 16 (left), the higher wind velocities are associated with
higher values of ACH. Furthermore, the CO2 concentration values
of the bedroom (where the highest peaks of CO2 occur), show to
be lower in the higher values of ACH, shown in Table 10 and
Fig. 16 (right). This is an indication of the validity of the ACH
approximations.

According to the building construction report, the average ven-
tilation rate for this building is 1.84 ACH. The values found in
Table 10 are in the same range of the assumed value and the aver-
age of the three months (1.53 ACH) leads to 3% deviation with the
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assumed average value, showing the reliability of the approxima-
tion. The values presented in Table 10 are depicted in Fig. 16.

Note that the accurate real values of ACH cannot be obtained
since apart from the actual air-tightness of the building, the venti-
lation rate changes manually by the occupant. In addition to what
is known as ventilation rate, random unknown factors such as the
openings of the doors, ventilation grilles, and windows and the
cleanness of the exhaust air channels can highly influence the ACH.

5. Conclusion

5.1. Conclusions

This study aimed to illustrate the extent to which it is possible
to extract buildings’ global thermo-physical characteristics, by
measuring air temperature, and heating consumption data and
feeding it to an inverse modelling problem of a simple 1R1C model.

From the entire process of measurement, collection, and han-
dling the data and feeding it to the model, many important
detailed practical lessons are learned. These are very important
since in many pieces of research, the difference between
computer-generated data and actual data and the consequent
departures

are underestimated. In the actual circumstances, the occupants
can apply significant levels of changes in many important variables
such as ventilation rates and thermostat settings, resulting in a sys-
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efficient and the construction’s thermal resistance.
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tem behavior that is difficult to mathematically model. The details
for data filtering and cleaning are shared and explained. For filter-
ing the data, the RH level in the bathroom has shown a critical role
in the separation of the DHW and SH gas consumption from the
smart meter readings. The air temperature also showed to help
in filling the short-term heating consumption data gaps. The use
of pattern recognition algorithms in combination with the applied
method is recommended in the future studies.

During the optimization, unlike using heating demand for the
RMSE function, by using temperature, the dynamic nature of the
temperature history effect can be fully incorporated in the model.
This is due to the fact that discretization methods can only cover a
limited number of time steps before the present time. The opti-
mization showed to work at its best during the winter period. This
is suspected to be the consequence of the fact that the winter per-
iod contains heating data with a long range of values (e.g. large
peaks), leading to a better training of the model. This limitation
is no a barrier since the air heat losses are mainly critical in the
winter, as a consequence of a need for enough air exchange while
minimizing the heat losses.

The feed of data to the 1R1C model with different granularity
levels has shown different results. This, for the solar gains and
for the internal gains are due to the differences in hourly values
and aggregated values. The dynamic effect of thermal mass shows
to weaken as the granularity level increases. This is also in-line
with the physics involved since by averaging the heating during
a longer time period, the dynamic effects fade. Consequently, using
hourly data, a better estimation of the global capacitance can be
obtained. The estimation of the capacitance is expected to improve
in houses with lower insulation, where the air temperature drifts
are higher, improving the feed data to the model. The estimated
heat loss coefficient showed very little differences when using
different granularity level in the feed data. This is logical since a
large part of this value is the transmission loss which is a static
parameter. The differences in this value for different periods are
due to the difference in different ventilation and infiltration rates.
The range of this parameter, as well as the capacitance and solar
fraction parameter is logical when evaluated with the construction
data. After finding the four parameters, the heat loss coefficient
Table 10
Monthly average values of estimated ACH, average wind velocity, and average CO2

concentration.

Parameter November
2017

January
2018

February
2018

Average ACH (h�1) 1.37 1.84 1.38
Average Wind Velocity (ms�1) 4.3 5.7 4.7
Average CO2 Concentration

(ppm)
846 725 745
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was recalculated using the other three and the feed data, assuming
the majority of changes to be associated with the changes in ven-
tilation and infiltration losses. Using temperature data, losses can
also be estimated. This however, requires the thermal transmit-
tance of the building envelope, which can be found from the con-
struction data and or preferably by making in-situ
measurements. The values found with this approach have been
validated using CO2 concentration, average wind velocity, and
the building’s documented average air change rate. The expected
trends and the values have shown a good agreement with the find-
ings of the model, showing the reliability of the method and its
outcomes.

In this case study, as expected, the year’s coldest months have
shown to result in the best fit in the optimization. This is a conse-
quence of the large quantity of heating hours with large variations
in the heating consumption data, resulting in better training of the
model. Regarding the fact that the year of the measurements
(2018) has had one of the hottest winters in the Netherlands, the
shown performance of the method is expected to improve in other
years when the cold period is longer and more extreme. It is impor-
tant to note that the current study and the ones alike, by nature, do
not lead to a high accuracy of parameter estimation as many
parameters are lumped using assumptions. However, they serve
other critical purposes such as comparative processes (e.g. choos-
ing the candidate apartments for renovation in a block of many),
general evaluation of buildings’ performance with little effort and
expense, and automated diagnosis of buildings’ performance.

5.2. Recommendations for future studies:

As the outcomes for the solar radiation cannot be validated, this
data should be measured on site, preferably per orientation, since
the unknown local circumstances (e.g. a balcony extension on
the top floor) can highly influence the solar gains. It is highly rec-
ommended to use orientation-specific solar radiation data for the
input and to break down the solar gain term into different orienta-
tions in the equation to increase the accuracy of the predictions.
For the present research, this data has not been available. Follow-
ing the difference between actual and theoretical material proper-
ties, it is recommended to measure the in-situ thermal
transmittance for the building envelope, following a standard
method, during the data acquisition. This can lead to a higher accu-
racy when estimating air exchange rates. Along the same line, the
data from the surface temperatures and heat fluxes can be used to
feed a model of higher resolution to separate the construction’s
thermal resistance. Comparing the results of such model with the
one used in this research is highly recommended. Furthermore, it
is recommended to test the models by feeding the indoor air tem-
perature of the living room and compare the results with the ones
obtained based on the average air temperature. From a more gen-
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eral perspective, it is recommended to explore a method to find the
most important zone to measure its air temperature for the model.
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