
Attention LSTM - ”A comparison of ALSTM and LSTM performance in airline 
passenger forecast”

Sina Sen 4821629
1TU Delft

Abstract

The introduction of Attention Long Short Term
Memory (ALSTM) produces an alternative to Long
Short Term Memory (LSTM) by aiming to opti-
mize information passing via removing the com-
plexity of the cells in LSTM. In this work, the re-
sults and comparison of the performance of LSTM
algorithms versus ALSTM architectures is assessed
through the forecast of airline passenger numbers
over months. The results are analyzed through
qualitative and quantitative data. The hypothesis
made in this paper is that ALSTM will perform bet-
ter than the LSTM, and the results shows that the
hypothesis was correct under some circumstances,
although by a small margin.

1 Introduction
Long Short Term Memory machines [3] are recurrent neu-
ral network architectures used mostly with time series data
set for the purpose of prediction, forecast and classification
[6]. Over years, they have been the industry standard when
it comes to forecasting, prediction, and classification tasks
of time series data. However, in LSTM architectures, as in-
formation passed from one time step to another has to pass
through all other time steps, this may lead to loss of per-
formance in LSTMs. A potential solution, or improvement,
that is being researched is essentially the Attention LSTM.
Multi headed self-attention layers can potentially be used to
increase the performance of LSTMs and speed up the learn-
ing process. [7] These attention mechanisms are similar to
cognitive attention, as they are believed to focus on impor-
tant parts of the time series data and compute its task based
more on relevant information. [7] In other words, they opti-
mize the information passing process. In this research, how
the freshly introduced architecture of ALSTM performs for
flight passenger forecast, compared to normal LSTMs is eval-
uated. The evaluation metrics used are test loss, defined as
Root Mean Square Error (RMSE) to see how well each model
learns, and qualitative visualizations to see how well each one
of the two architecture performs.

Main question that is researched in this project is: “How
well does ALSTM perform in flight passenger forecast com-

pared to the normal LSTM?”. Breaking down the main ques-
tion, some subquestions are:

• “How to construct ALSTM from LSTM?”, “How to ap-
ply ALSTM into a prediction/regression task?”

• “How does LSTM and ALSTM perform at the task of
flight delay prediction in terms of accuracy?”

• “How does ALSTM perform at the task of flight delay
prediction in terms of accuracy?”

• “Which metrics to use for evaluation and comparison of
both the LSTM and the ALSTM?”

• “Under which conditions does ALSTM perform more
accurately than LSTM and vice versa?”

The hypothesis is that ALSTM will perform better com-
pared to LSTM in the forecast task of flight passenger num-
bers. LSTMs are designed to use the past data to produce
forecasts for the future, or predict an outcome of steps of
time ahead. [3]. However, due to its complex architecture in
terms of amount of mathematical operations and information
passing from one cell to another, LSTMs can suffer from loss
of relevant information. ALSTM aims to tackle this prob-
lem through parallel processing, unlike sequential processing
of LSTMs, and through its simplified architecture via atten-
tion mechanisms[7]. This is the main reason underlying the
hypothesis. By choosing this particular project and research
question, it is aimed to provide a better alternative to LSTMs
as potential outcome of this research is a useful tool for im-
portant real life cases, such as weather prediction, stock mar-
ket prediction, natural language processing, and many more.
Furthermore, it is believed that this work can contribute to the
better development of science and indirectly help lives on the
cases that are have mentioned.

Through numerous experiments conducted, it is found out
that, while LSTM has superior performance in some cases,
ALSTM slightly performs better compared to LSTM under
several scenarios that will be discussed later in the paper.
More future work should be put into the research of ALSTMs
as there may be performance improvements regarding the ar-
chitecture, implementation and test scenarios to find out suit-
able uses cases for ALSTM.

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering



2 Background Information
To understand why and how ALSTM is expected to perform
better, it is vital to introduce the previous architectures on
time series forecasting. The most important one is the LSTM
architecture, which is compared to ALSTM in this research.
Recurrent neural networks (RNN) are the building blocks of
LSTM, which uses RNN architecture as its basis and intro-
duces new concepts on top of it.

2.1 RNN Architecture
Long Short Term Memory architectures are often used with
time series forecast and prediction problems. They are built
on top of recurrent neural networks (RNN), which are often
utilized for NLP problems like text generation and speech
recognition [6]. RNNs process sequential information and
its output on each time step depends on previous computa-
tions. [2] This allows RNNs to communicate with, or have a
memory of, past information. [2]

Figure 1: Broad representation of a RNN architecture. Dark circles:
x: input node, h: hidden node, y: output node. Squares of Wh

i and
Wh

h represent weight matrices of input, hidden and output weights.
The weights are optimized in the training process via gradient de-
scent.

[2]

While RNNs achieve forecasting the future on the short
term, they can neglect the context behind the input and the
information passed through long sequences and long term de-
pendencies. The main reason this occurs is because of van-
ishing and exploding gradient, which refers to the rapid in-
crease of the gradient during the training . [1] [5] To tackle
this problem, along with increasing the longevity of architec-
ture’s memory in terms of understanding the context of long
sequences of input, LSTM was built. [3]

2.2 LSTM Architecture
LSTMs are built to improve the performance and solve the
problems of RNNs which are vanishing gradient and under-
standing the context of long term dependencies. LSTMs es-
sentially achieve this through a newly introduced method, the
cell state. Information passes through the cell state at each

step and information can be modified during the passes. This,
importantly, allows LSTM to remember or forget pieces of
information along the training. Without a deep mathematical
explanation, LSTM architecture can be described through the
following states and gates:

• Forget gate: As the name suggest, forget gate’s function
is to determine whether or not to forget information that
are no longer relevant for the context. The gate takes the
hidden state of the previous cell ht − 1 and the input xt
at that time step. Then the encoding of the ht − 1 and
xt is multiplied by the weights and the bias is added.
After that, sigmoid function is applied on this value and
an output vector including 0s or 1s is calculated. This
vector is transmitted to the cell state, telling cell state to
forget the information piece if its corresponding position
is a 0, and keep it if it is a 1. Finally, this output is
multiplied with the previous cell state Ct − 1

• Input gate: This gate creates an extra piece of informa-
tion that is also transferred to the cell state, after a series
of operations is done. Firstly, similarly to forget gate,
input gate follows the same process to understand which
values should be transferred to the cell state. Then a vec-
tor that has all the possible values from the encoding of
ht−1 and xt is created through a tanh function that out-
puts values from -1 to 1. Lastly, these two vectors are
multiplied, then added to the cell state.

• Output gate: Fits the values of cell state into a vector of
values of -1 to 1 by using a tanh function. Then, again
similarly to the forget gate, uses a sigmoid function to
choose which values to keep to be outputted. Then, the
result of the sigmoid and tanh is multiplied and fed into
the next time step cell as the hidden state hi.

• Cell state: Uses the information from the previous cell
state, and gets additional input from forget and input
gates, and passes its information to the next cell state,
while also contributing to the next hidden state h+ i.

Figure 2 and Figure 3 display this architecture visually.
The part with the first sigmoid operation represents the for-
get gate, the calculation of the second sigmoid, the first tanh
and multiplication of these two represents the input gate, and
the last sigmoid function and tanh function’s multiplication
represents the output gate. Figure 3 and Figure 4 give a more
abstract overview on the operations under LSTM architec-
ture.

Within this research, it is believed that the performance of
LSTM’s information transmission can be further increased.
Although LSTMs have shown a drastic improvement com-
pared to RNNs [3], they still have some limitations that can
be further overcome. Due to LSTM’s complex architecture
and the necessity of information passing from one step to an-
other and through lots of different intermediary steps, LSTMs
might result in a loss of performance in terms of the ability to
assess distant past inputs and to learn patterns. This above-
mentioned optimization is not an improvement on LSTM, but
rather an alternative approach to using time series using Multi
Headed Attention Layers.



Figure 2: LSTM Architecture
[4]

Figure 3: LSTM Architecture on a more abstract level
[4]

Figure 4: Notation on Figure 3
[4]

2.3 ALSTM Architecture
Attention mechanism has become a vital part of sequence
modeling and forecast models in various tasks, as they enable
modelling of dependencies and patterns while not regarding
their distance in the input or output. [9] The core idea of AL-
STM is to unpack the sequence of hidden states so that none
of the gate function depend on the hidden state.

The newly introduced ALSTM architecture is designed to
improve the information transmission of LSTMs. This ar-
chitecture enables parallel processing of the input data, thus
speeding up the learning process and removing the necessity
to process time series data in order. It is aimed to have better
recognition of important features and parts of the input, thus
extracting more context relevant information and better infor-
mation transmission for long dependencies. Furthermore, as
LSTMs pass information one by one from one cell to another,

the information transmitted is vulnerable in terms of the po-
tential to forget important information from time steps before.
This may not be a problem for short sequences, but for long
sequences it is vital not to discount these information during
the forecast. Instead, ALSTM allows the information tran-
mission directly from each of the previous time steps. This
can potentially lead to better recognition of the patterns and
information passing between time steps, while also respect-
ing causality.

Attention Mechanism
It is stated by [7] that ”An attention mechanism can be ex-
plained as mapping a query and a set of key-value pairs (k, v)
to an output, where the query, keys, values, and output are all
vectors.” [7]

The output is a computation of the weighted sum of the val-
ues, where the weight assigned to each value is computed by
a compatibility function of the query with the corresponding
key. [7]

Scaled Dot Product Attention
Another introduced concept on [7] is the scaled dot product
attention. The input includes queriesQ and keysK of dimen-
sion dk, and values V of dimension dv. Attention is com-
puted by computing the dot products of the query set with
all keys and dividing each by the square root of dk. Lastly,
a softmax function is applied to compute the weights of the
values. [7]

Attention(Q,K, V ) = softmax(
QkK√
dk

)V

[7]

Multi-Headed Attention (MHA)
Scaled Dot Product Attention can be used to perform atten-
tion in parallel. This can be achieved by linearly projecting
the queries, keys and values h to dk, dk and dv dimensions,
respectively.[7] Then, the attention can be computed in par-
allel for the projected inputs, which results in dv dimensional
output values. Finally, these values are concatenated and once
again projected.

MultiHead(Q,K, V ) = concat(head1, .., headn)WO

Headi = Attention(QWQ
i ,KW

K
i , V WV

i )

[7] The projections are parameter matricesWQ
i ε Rdmodel∗dk ,

WV
i ε Rdmodel∗dv , and WO εRdmodel∗hdv .
Figure 5 and Figure 6 are visual representations.

Attention LSTM
ALSTM architecture introduces the concept of reformulat-
ing LSTM as a self attention network and builds its archi-
tecture on top of the concept of multi-headed self attention.
The cell state and the forget gates are ignored in this architec-
ture. The input gate corresponds to d = 1 dimensional keys
in the MHA, and the output gates become the corresponding
queries. The causality is respected by multiplying the weights
with the lower triangular matrix. It is expected that increas-
ing the dimension d of the messages, ALSTM can yield better
message passing between time steps.



Figure 5: (Left) Scaled Dot Product Attention (Right) Multi Head
Attention Architectures

[7]

Figure 6: The calculation of Q, K, V matrices

The mathematical representations of what is discussed
above are as follows:

Sk := exp(
1√
d
XQkKkXT )� L (1)

L is the lower triangular matrix. To respect the causality be-
tween the time steps, L is multiplied in Equation (1). � is
the point-wise Hadamard product. After that, the weight ma-
trix W and hidden message H are computed according to the
following equations:

W k := Sk � (Sk11T ) (2)

H :=

m′∑
k=1

σC(XΘk) (3)

Here σC is a hyperbolic tangent (tanh) function that is of-
ten assumed as identity function, and � denotes a point-wise
division.

3 Methodology
3.1 Implementation of ALSTM and Tools
The ALSTM model is implemented using Python 3.8 and Py-
Torch library developed by Facebook. The LSTM implemen-
tation used in this research is also default LSTM class of Py-
Torch. Matplotlib library is used visualize the results. Pandas

and Scikit-learn is used to preprocess the data and fit it into a
time series.

3.2 Dataset
The dataset used to compare the performance of LSTM with
ALSTM is the airline passenger numbers data published open
source by Github user jbrownlee is used. The dataset is
a rather simple one, with month and passengers as its two
columns. The dataset contains a span of 12 years, so 144
months. This data set is also one of the PyTorch’s default
data sets. Thus, it has been used in many machine learning
projects and its validity has been proven.

The first month on the dataset is January of 1949, whereas
the last month is the December of 1960. The data is in
chronological order so there is no need to reorder the data.

The only other column that the dataset contains is the num-
ber of passengers. The data is visualized in the figure below.

Figure 7: The number of passengers through months

Loading data into time series format
All the data from the time steps 0 to t-1 is fed to the model to
forecast the values at time t so that forecast at time t will be
based on all previous time steps, rather than just the previous
one. This is done essentially to favor ALSTM’s behaviour of
being able to pass on information from earlier time steps and
recognizing long term patterns and dependencies.

However, for comparison purposes, a sliding window ap-
proach is also used alternatively with a window length of 4 to
see how ALSTM performs under a windowed approach.

3.3 Forecasting Task
The main goal of the forecasting task is to predict how many
passengers will fly with the airline at the next time step. For
this research, time step intervals used are months, as the data
set used was convenient for this type of forecast. The result
of this forecasting task may potentially be used in many real
life areas like the analysis of customer behavior, or the im-
provement sales and marketing strategies (as the exact same
algorithm can be applied to sales forecast instead of flight
passanger forecast). While it is believed that, as there are no
other features used other than the date and the number of pas-
sengers, the results produced in this research has no bias in



terms of features. However, the data set used is extremely
old and simple that the forecasting done in this paper may not
perfectly reflect the forecasting of current time airlines, and
may potentially perform worse than it does in this paper.

3.4 Performance Metrics
• Qualitative:

– Root Mean Squared Error: This is a frequently used
metric to assess how well the model performs and
outputs the quality of the prediction

– Average and Standard Deviation of Test Loss: The
average and standard deviation of 5 different runs
will be taken, to asses the performance of both
models on a bigger scale. If the average test losses
are more than two standard deviations separated, it
can be said that one model is better than the other
one.

• Quantitative:

– Visual Forecast: With the visual forecast of ”Fore-
casted versus Actual” values, one can see how each
architecture performed on a less abstract metric.
After all, loss functions give us numbers whereas
on a visual forecast it can be seen how accurate and
close each architecture performs.

4 Experimental Setup and Results
The experiment that is conducted to reflect the performance
of ALSTM and LSTM is:

• Monthly forecast experiment: with this experiment the
total number of passangers of the current time step,
which is the current month, is evaluated considering all
previous time steps (months)

As input, time steps and their corresponding values of number
of passengers are taken. And as output, the forecasted number
of passengers for the current time step, is computed.

All of the following computations are averaged on 5 differ-
ent runs to reduce variance. Furthermore, root mean squared
error function is used to compute the loss. The graphs com-
puted with loss values are all test losses.

Data pre-processing is done to fit the data in between 0 and
1 before feeding it to the models. During the training, adap-
tive learning rates are used for better learnings of the mod-
els. Then hyperparameter optimization is applied to figure
out what values of learning rate and number of epochs does it
work the best with. After this optimization, the hyperparam-
eters determined that work the best with ALSTM are:

• Learning Rate: Starting from 10−5, and adjusting it
down through training to 10−7

• Number of Epochs: 5000, after 5 thousand, the loss
starts to rise back up, thus potentially leading to an over-
fit. That is why the value of 5000 is used.

• Message passing: A message passing value of 3 is used.
It was observed that ALSTM performs the best on the
value 3 and the worst on value 1.

Firstly the experiments are decided on the following met-
ric; in 5 different runs with the training to test ratios of %90,
%80, %75, %70, %60, the average and standard deviation of
the test losses will be determined, and compared. Learning
decay is used to adjust the learning rate during the training
for better learning, and gradient clipping is used to prevent
jumps in losses and in gradient descent. As the optimizer
for the training of the models, Adam optimizer is used, with
RMSE as the loss function.

Then, the models are trained with different number of
epochs and learning rates to optimize these hyperparameters.

The goal of the first experiment with different splits is to
realize under which splits does ALSTM perform better than
LSTM, and how do their average performance through all
splits compare.

On Table 1 and Figure 9, the average best test loss through
5 run on each of the 5 splits is displayed. It can be seen that
ALSTM has an advantage, in terms of loss, for all splits ex-
cept 0.90. This is promising for our hypothesis. As the train-
ing set gets smaller, LSTM starts to learn worse, and ALSTM
learns better. Thus, the difference between the losses of two
models increases. This may lead to a realization that ALSTM
learns better on smaller training sets, and may start slightly
overfitting after a threshold. On the other hand, for LSTM,
there is a drastic difference of 0.015 between its best and
worst loss across the splits. This may mean that compared to
ALSTM, LSTM needs more data to be more accurate in terms
of the test loss. This is also parallel with the claim made in
this paper that ALSTM can potentially transmit information
better than LSTM.

Train split LSTM Test Loss Average ALSTM Test Loss Average

0.90 0.099 0.100
0.80 0.105 0.098
0.75 0.106 0.095
0.70 0.108 0.096
0.60 0.114 0.097

Table 1: Average test loss through different training splits

The averages turned out that ALSTM performs better, but
a statistical test of averages and standard deviations of all 5
splits is a good metric to compare both.

Looking at Table 2, it is seen that the average loss of AL-
STM in 5 different splits is less than that of LSTM. The differ-
ence between two averages equals 0.09. Also, LSTM’s stan-
dard deviation is 2 times worse than that of ALSTM. The dif-
ference of the averages between two models are separated two
standard deviations away from each other, for both LSTM’s
and ALSTM’s standard deviation. Thus, ALSTM has per-
formed better than LSTM on this experiment.

Method Mean Standard Deviation

LSTM 0.106 0.004
ALSTM 0.097 0.002

Table 2: Mean and St. Dev of both methods through 5 different
splits

Figure 8 visualises the learning process of the models on
different splits. Although the end result of test loss is not dis-



tinguishable, it can be stated that, although less accurate, the
LSTM model has learned faster than those of ALSTM. In-
deed, after around 1500 epochs, LSTM’s loss seems to con-
verge, and increase slightly. The reason behind this can be the
eagerness for overfitting for LSTM, which has been stated by
other scientific works before [8].

Figure 8: Test loss at different splits through 5000 epochs

Figure 9: Best achieved test loss through 5 different splits

On Table 1, it is obersvable that the ALSTM performed the
best on the split of %75. To have another qualitative metric,
Figure 10 displays, just like a stock price chart, how both
models forecast the number of passengers on a %75 split.
This is displayed on Figure 10. Although the forecasts of
LSTM and ALSTM are extremely close, ALSTM is closer to
the original line (blue) on some parts.

Sliding Window Approach
In this paper’s general approach, the data from time steps 0 to
ti − 1 is used to forecast the outcome of time step ti. How-
ever, sliding window approach is a commonly used method
in LSTM architecture to convert a data set into a time series.

Figure 10: Passenger Number Forecasts of LSTM and ALSTM

In the windowed approach, based on sequence length s. The
outcome of the current time step ti is forecasted based on the
time steps t(i− s) to ti − 1.

In this approach, the results were drastically different.
LSTM performed nearly two times better than ALSTM.
These can be displayed on the tables and Table 3, Figure 11,
and Figure 12.

Train split LSTM Test Loss Average ALSTM Test Loss Average

0.90 0.088 0.154
0.80 0.091 0.151
0.75 0.093 0.148
0.70 0.101 0.148
0.60 0.109 0.145

Table 3: Average test loss through different training splits under slid-
ing window approach

Figure 11: Best achieved test loss through 5 different splits under
sliding window approach

Contrary to Figure 10, there is a distinct seeable advantage



Figure 12: Passenger Number Forecasts of LSTM and ALSTM un-
der sliding window approach

of LSTM over ALSTM on Figure 12. This is both due to a
slight performance increase of LSTM, and a drastic perfor-
mance decrease of ALSTM.

Also, LSTM’s performance at %75 split that is displayed
on Table 3, is even better than ALSTM’s performance in the
non-windowed approach. This is reasonable in the sense that,
the sequntial, non windowed approach should favor ALSTM
on paper due to its ability to pass information between all
time steps, whereas LSTM architecture only allows for one
by one transmission.

5 Responsible Research
5.1 Research Integrity
During this research, university resources like library articles,
and books were used. There was no use of pirated research
papers. As this was a research that did not need any human on
animal data, no one was harmed in that sense. Public health
and safety, is considered when producing the results of the
research. And it is safe to say that this research does not
harm public health or safety in any way as it just uses flight
passenger data. During the research process, no copyrighted
work is used without referencing or permission. None of the
data is copied from anywhere, and everything is produced by
the researcher.

5.2 Reproducibility
The results produced in this project can easily be reproduced
by following the train split ratios specified in the experimen-
tation section. If a researcher has the implementations of an
LSTM and an ALSTM, they can use these numbers to de-
rive similar results from the same data. The experimentation
process is specified step by step.

6 Discussion
In the Experimentation section, the yielded results have
shown that ALSTM has an advantage over LSTM in the scope

of this project. However, LSTM performs much better un-
der a sliding windowed approach, which only uses previous
t(i− s) time steps to predict ti.

6.1 Performance Comparison in the
Non-Windowed Approach

The new ALSTM architecture to allow information transmis-
sion from all time steps 0 to ti. Thus, to see if that works as
expected in practice, the method to convert the data set into
a time series, was not the sliding window approach, which is
common in time series forecasting tasks. Instead, a fully se-
quential method is used. What this means is that, the forecast
of time step ti was done based on all of the time steps 0 to
ti − 1. This is called the non-windowed approach in this pa-
per. In a sense, this approach can be thought of as a sliding
window of sequence length increasing by 1 each time step so
that the window contains all previous time steps.

In the non windowed approach, it is seen that ALSTM has
a big advantage over LSTMs. This adheres to the hypothesis
made in this research. The average of ALSTM for different
splits for was 2 standard deviations seperated, or smaller, than
the average of LSTM. This suggests that it is indeed a reason-
able claim to conclude ALSTM performs better than LSTM
in this approach.

However, on the quantitative analysis side, the difference in
the forecasted values of ALSTM and LSTM is so tiny that the
two lines on Figure 10 are not distinguishable. This raises the
question on if the advantage gained by ALSTM is significant
enough, and leads to the idea of ALSTM model and archi-
tecture implemented in this project can be improved further
so that the accuracy of ALSTM will become more superior
to that of LSTM. As can be seen on Figure 10, ALSTM per-
formed extremely good for the training set, but the forecasts
on the test set still have room for improvement. Also, Figure
8 suggests that ALSTM’s learning was slower compared to
LSTM, in terms of the reduction in the test loss.

Overall, this experiment showed that ALSTM has superior
performance to LSTM’s performance, but ALSTM architec-
ture should be further improved to make this difference more
significant.

6.2 Performance Comparison in the Sliding
Window Approach

While this is not the main focus of this research, the slid-
ing window approach is also utilized to convey how ALSTM
makes a difference when the data is in the structure that time
step ti can gather information from all previous timesteps.

This thinking turned out to be correct, as LSTM has shown
significant advantage over ALSTM in terms of performance,
and LSTM’s performance reduced by almost %100, while
LSTM performance increased slightly. It is important to note
that, if the best test loss scores of both windowed and non
windowed approaches are compared, LSTM’s test loss of
0.088 on Table 3 is better than ALSTM’s loss of 0.095 on Ta-
ble 2. Also, on Figure 12 it can be seen that the performance
deficit between LSTM and ALSTM in the sliding window
approach is much higher, in the favor of LSTM architecture.



7 Future Work and Conclusion
7.1 Future Work
In this research, ALSTM’s performance is only tested within
a small dataset over a monthly forecasting task. Because of
this, the results of this research may not reflect the ability of
ALSTM in general, and more research should be put into it
to discover its capabilities within other scopes and domains
of machine learning, and within other real life cases.

Also, the ALSTM implementation done as well as its archi-
tecture can be improved further so that ALSTM can perform a
bit better not only under sliding window approach, but also on
non-windowed approach in a sense that it will be able to fore-
cast much more accurately. Lastly, more work on finding out
scenarios which ALSTM performs better than its alternatives
can be done, either by faster training, or higher performance.

7.2 Conclusion
In this paper, the performance of Attention Long Short Term
Memory (ALSTM) and Long Short Term Memory (LSTM)
architectures are compared in the scenario of forecasting the
passenger numbers. ALSTM is designed to have better in-
formation transmission compared to LSTM due to its ability
to pass information from all previous time steps to the cur-
rent time step. That is why the hypothesis made in this re-
search, ”ALSTM will perform better compared to LSTM in
the forecast task of flight passenger numbers” was reason-
able on paper with a correctly structured time series data set.
After experiments, it was seen that the hypothesis held, and
the research was successful in the sense that capabilities of
ALSTM versus LSTM were discovered. Although ALSTM’s
performance was better in terms of the average loss, this im-
provement was not super high.

To further prove that our hypothesis held and was reason-
able, a sliding window approach was also tried alternatively.
It is observed that because this approach uses limited data,
it also limits ALSTM’s ability to transmit information from
all previous time steps, which is the main design goal behind
ALSTM’s architecture. Thus, ALSTM performed drastically
worse under this approach, making LSTM a better alternative
to use under a sliding window approach.

From this paper, it can be concluded that within the scope
of this project, ALSTM performed better than LSTM, but
there is still room for improvement.

References
[1] Simard P. Bengio, Y. and P. Frasconi. Learning long-term

dependencies with gradient descent is difficult, 1994.

[2] Maiorino E. Rizzi A. Bianchi F., Kampffmeyer M. Re-
current Neural Network Architectures.

[3] S. Hochreiter and Schmidhuber. Long short-term mem-
ory, 1735–1780, 1997.

[4] Sungho Jung. Application of Long Short-Term Memory
(LSTM) Neural Network for Flood Forecasting, 2019.

[5] Y.Bengio R. Pascanu, T. Mikolov. On the difficulty of
training recurrent neural networks, 2013.

[6] J.; Sankar S.; Barfett J.; Colak E. Salehinejad, H.; Baarbe
and S Valaee. Recent advances in recurrent neural net-
works, 2018.

[7] N.; Uszkoreit J.; Jones L.; Gomez A. N.; Kaiser L.
Vaswani A.; Shazeer, N.; Parmar and Polosukhin. Atten-
tion is all you need. In Advances in neural information
processing systems, 2017.

[8] Oriol Vinyals Wojciech Zaremba, Ilya Sutskever. Recur-
rent Neural Network Regularization, 2015.

[9] Luong Hoang Yoon Kim, Carl Denton and Alexander M.
Rush. Structured attention networks. In International
Conference on Learning Representations, 2017.


	Introduction
	Background Information
	RNN Architecture
	LSTM Architecture
	ALSTM Architecture
	Attention Mechanism
	Scaled Dot Product Attention
	Multi-Headed Attention (MHA)
	Attention LSTM


	Methodology
	Implementation of ALSTM and Tools
	Dataset
	Loading data into time series format

	Forecasting Task
	Performance Metrics

	Experimental Setup and Results
	Sliding Window Approach

	Responsible Research
	Research Integrity
	Reproducibility

	Discussion
	Performance Comparison in the Non-Windowed Approach
	Performance Comparison in the Sliding Window Approach

	Future Work and Conclusion
	Future Work
	Conclusion


