A feasibility study on the acceleration
and upscaling of bone ingrowth
simulation

An investigation into the feasibility of applying a homogenization scheme to bone
ingrowth model as well other options of accelerating the bone ingrowth model
developed by A. Andreykiv.
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Introduction

Uncemented Shoulder Implant

Total Shoulder Arthroplasty
Osteoarthritis, rheumatoid arthritis
Porous surface i in WhICh bone can

Cemented implant
— Immediate fixation
— Tissue necrosis
— Cement fracture




Introduction

* Finite Element Modelling of uncemented
implants — 2 approaches

Andreykiv, 2006 Folgado, 2009

 How to transfer knowledge from the detailed
model to the larger (macroscopic) model?
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* Coupled Simulation

* Prendergast tissue differentiation model for the
production of bone, cartilage and fibrous tissue
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Mechanical Model Biophysical Stimulus Biological Model Numerical Implementation



* Biological Tissue response
— Non-linear

— History dependent
— Viscoelastic

* Biphasic Model
— 80% is made up of fluid
— Solid & Fluid component

Biophysical Stimulus Biological Model

Numerical Implementation



The Original Bone Ingrowth Model

Mechanical Model

* Solid (3 displacements)

— Neo-Hookean Hyperelastic Material
model

* Fluid (pressure)

— Mass balance




* |nput for the biological model

 Determines the preference of the
formation of bone, cartilage of
fibrous tissue

e Based on maximal shear strain
and fluid velocity

Biological Model Numerical Implementation



Diffusion
— Mesenchymal stem cells
— Fibroblast

Cell Proliferation

Cell Differentiation

Tissue Production

Tissue Degradation
As a function of the biophysical stimulus

Mechanical Model

Biophysical Stimulus

Numerical Implementation
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Implemented in subroutines of MSC Marc

* Non Linear equations requires an iterative

solver
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Model Optimization

Possibilities for model simplification (1)

* |[nvestigate the necessity of the biphasic model

Weighted Fluid Velocity = Weighted Shear Strain

Potential Simplifications(1)



* Linearization of the biological model

de
> 4
dc,, B 5
= D, Vc,, + (Pm{i —c.—¢)—F—F(1—¢)+F,(1- ﬂa}) € + (Ff €

*ﬁm

* Acceptable approximation?

Results: Removing the fluid phase Results: Linearized Biological Model Results: 1D Diffusion



Model Optimization

Possibilities for model simplification (3)

e 1-D Diffusion approximation

Potential Simplifications(3)



* Fluid phase is essential for correct calculations

* |ncreased fibrous tissue production

* Reduced bone & cartilage production

Effect of removing the fluid phase
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 Simulations failed

— Non-Positive definite stiffness matrix

— Snap back behaviour? Causing the Newton-Raphson
method to fail?

— Perhaps an arc length method can improve the
results

e Potentially gained simulation time is marginal

— A estimated decrease of 200 seconds over the
complete simulations.

Potential Simplifications Results: Removing the fluid phase Results: Linearized Biological Model






Code Optimizations

Potential for increasing speed

e Culprit: Disk operations

 Example: Reading the stimuli.dat file
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e Reduce the number of disk writes.

e Store all variables in memory and write at the
end of an iteration

* Keep in mind data sharing

e Reduction of 65% in computation time

Potential Optimizations Results:MINISLEEP
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Computational Homogenization
Theory (2)

undeformed deformed

df(-df:&’:

 Macroscopic deformation
* Microscopic deformations / microfluctuations

Deformation Tensor



Computational Homogenization
Theory (3) - Localisation

* Translation between microscopic and
macroscopic deformation tensor

K, = VL .[Fde
0¥, —




 Hill-Mandel condition oW, =W,

* Work conjugated couple:

— Deformation tensor & 1st Piola-Kirchhoff stress

P, Zrijﬁ)?dro
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Global Idea



 Tangent describes how small variations affect
the stresses in the system

e Numerical differentiation

* Very cumbersome method, but Miehe (1996)
developed a more efficient method.

Global Idea




Computational Homogenization
Implementation in MSC Marc

 Macroscopic Model

— Loading

T, =(F-D-%,

— Deformation tensor

— Macroscopic tangent

easily be adapted
= Use material properties to ealeulate Lame's
P N e ;

-
tissuie fractions. For now tissue fractions are
specified in the subroutine, but this can

* Microscopic Model

/ Build the tangent and the stress matrix.
M—]
0= 200a1) - ) () + 2606
$=Aa)Ct 41— )

— Periodic Boundary
Conditions

— Upscale stresses

UEDH
* Surn element volumes to get total RVE
volume

» Cakulate sveraged stress tensor

Py =257, X
o Comvert 1 2™ PK: Sy = F3lPy

?

Implementation



Computational Homogenization
Results / Issues

* CH implementation requires a lot a additional
computing time

— Computational overhead in the numerical
differentiation scheme

* Application of loading

Effect of different loading
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Summary & Conclusions

e Sections of the constitutive equations that are
responsible for long calculations cannot be
neglected

— Fluid phase, non-linear biological model, diffusion
* Acceleration of the simulation was obtained by
efficiently directing disk activity.

 Computational Homogenization increases
simulation time and cannot account for specific
loading

Summar y & Conclusions



Recommendations
alternatives for upscaling results

* How to bridge the gap?

— Use the model to investigate time to fixation under
different loadings

— Use a larger model to asses post-surgery
micromotions

— Develop an element that adapts the stiffness in
order to ensure that at the time to fixation the
micromotions are reduced to zero.
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