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HIGHLIGHTS

e We analyze 260 near-optimal energy system designs for Portugal in 2050 using LCA.

o Near-optimal system designs can outperform the cost-optimal one regarding environmental impacts.

e More technological diversity in the energy system can lead to higher environmental impacts.

o System designs emphasizing wind over solar PV and batteries consistently yield lower environmental impacts.
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Energy system optimization models (ESOMs) can be used to guide long-term energy transitions but often
overlook environmental impacts and the diversity of solutions close to the cost-optimal one. Here, we combine an
ESOM using Modelling to Generate Alternatives (MGA) with Life Cycle Assessment (LCA) to evaluate 260 near-
optimal and technologically diverse carbon-neutral energy system designs for Portugal in 2050 across five
environmental indicators: climate change, land use, water use, ecotoxicity, and materials. Using the Calliope
energy modelling framework and ENBIOS for environmental assessment, we find that system designs whose cost
is within 10 % of the minimum feasible cost provide up to 50 % lower environmental impacts. Our results reveal
a trade-off between technological diversity and environmental performance, showing that while diversity en-
hances resilience, this may come with a significant increase in environmental drawbacks. Solar photovoltaic and
battery technologies dominate the environmental impacts, particularly in water consumption and critical ma-
terial use. This study shows that traditional cost-optimal energy system designs may not be environmentally
optimal. Exploring near-optimal alternatives reveals lower-impact solutions and supports more inclusive plan-
ning for energy transitions.

1. Introduction limitations. First, ESOMs equate the ‘“cheapest” solution (techno-

economically optimized) with the “best” solution. By doing so, they

Energy system optimization models (ESOMs) are widespread tools to
inform policymaking [1]. They do so by finding the system design or
planning strategy that enables achieving a given policy target, such as
carbon neutrality, at the minimum cost. In order to optimize the energy
system design, ESOMs use projected assumptions on system cost and
renewable resource availability, energy demands, network topology,
and various technical constraints [2].

Despite their value for decision-making, ESOMs have two key

* Corresponding authors.

ignore the fact that slightly more “expensive” but different alternatives
may offer advantages such as better political agreement, transition
speed, or public opinion [2-8]. Second, ESOMs often lack transparency
and robust handling of structural and parametric uncertainties [9].
While methods like stochastic programming mitigate parametric un-
certainty (related to the input data), structural uncertainty-arising from
the difference between the model and the real world- has gained
attention in recent years.
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As a perfect example of a “wicked problem” [10], the energy tran-
sition is ambiguous and constrained by the interdependencies between
technological, societal, and environmental factors. This complexity
amplifies the uncertainties in modelling, especially when key social and
environmental aspects are overlooked. A narrow focus on technological
or economic goals can result in overly optimistic, unrealistic transition
pathways, ignoring constraints like resource limits or social resistance.
Excluding these factors risks creating inefficient, inequitable solutions
that can lead to unforeseen challenges and impractical, disruptive out-
comes [11].

The Modelling to Generate Alternatives (MGA) method [12], first
applied to energy system models by DeCarolis [13], addresses part of
this structural uncertainty by searching the feasible, near-optimal region
of the energy system design space for alternative configurations that
may account for “unmodelled” objective. This method acknowledges
that achieving a perfect representation of real-world behaviour is un-
attainable and that practically viable solutions may not align with the
modelled cost-optimum nor with the “Pareto-optimal” solutions
reflecting a handful of explicit objectives. The near-optimal region of
solutions in MGA provides a regional and technological diversity of
configurations, making it possible to generate debate with stakeholders
with different interests and visions, and evaluation of dimensions that
are difficult to insert in an optimization function. This methodological
exploration of near-optimal solution spaces for enhanced multi-criteria
performance finds parallels in diverse fields, such as the use of meta-
heuristic approaches to explore energy-efficient and demand-
responsive production scheduling in manufacturing systems under
time-of-use electricity pricing [14]. The MGA approach has been mostly
used to design electricity supply systems [2,4,13,15-19]. In some cases,
it has also addressed the whole energy system [20-22]. This approach
has sometimes addressed direct greenhouse gas and particulate matter
emissions [4,16]. However, an MGA analysis has not yet been used to
assess a wide array of environmental impacts.

Resilience theory offers one approach to understanding a system’s
ability to cope with changing circumstances and disruptions [23].
Although the concept of resilience can be broad and somewhat ambig-
uous, in the context of energy systems, it is closely associated with di-
versity and interconnectedness [24]. Several studies have analysed how
diversity contributes to resilience in energy matters [25-27]. However,
while the positive link between diversity and resilience is well estab-
lished [25], the potential trade-offs between resilience and environ-
mental impacts remain underexplored.

In light of global challenges such as climate change and geopolitical
instability, building resilient energy systems is increasingly critical. A
diverse array of electricity production sources can help mitigate risks
and ensure continuity under disruptive conditions. For example, Miih-
lemeier et al. [25], demonstrated this concept by quantifying the di-
versity and connectivity of energy systems to assess the resilience of the
transition to an energy system based on renewable sources. Yet, despite
the recognized benefits of diversity for resilience, its environmental
implications are still not understood. On the other hand, while the
positive relationship between energy system diversity and resilience is
well-established, there remains a significant gap in our understanding of
the environmental implications of highly diversified energy systems.

This study contributes to closing the gap between energy system
optimization models based on the Modelling to Generate Alternatives
(MGA) and broad-spectrum environmental impact assessment. We pre-
sent the environmental analysis of a techno-economically defined option
space of 261 different energy transition configurations in Portugal for
2050. This methodological integration serves a dual purpose. First, it
highlights the benefits of presenting policymakers with a range of en-
ergy transition alternatives, which can be evaluated based on criteria
that go beyond what is accounted for by the original ESOM. This enables
better-informed and flexible decision-making. Second, specific to our
LCA assessment, it helps policymakers better understand environmental
impact trade-offs, facilitating that sustainability considerations are
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integrated into long-term planning.

To achieve this, we link two open-source frameworks: Calliope, an
energy system modelling framework, and the Environmental and Bio-
economic System Analysis (ENBIOS) tool, an analytical tool that in-
tegrates Life Cycle Assessment (LCA) with the Multi-Scale Integrated
Analysis of Societal and Ecosystem Metabolism (MuSIASEM) frame-
work. These tools allow us to address three research questions: (1) How
do the environmental impacts of a single-solution optimization compare
to the impacts of a range of alternatives produced by an MGA method?
(2) In what ways do environmental impact trade-offs shift with varia-
tions in the technological mix? (3) What is the relationship between
technological diversity in electricity production and environmental
impacts?

By addressing these questions, this study not only contributes to
answering the calls for closing the sustainability gap in energy system
modelling but also contributes to generating insights into the under-
standing of the complex interplay between system diversity, techno-
logical choices, and environmental outcomes.

This work has been carried out in the context of the project CHIST-
ERA project SEEDS (Stakeholder-Based Environmentally-Sustainable
and Economically Doable Scenarios for the Energy Transition) [28],
which aimed to integrate stakeholders co-design, energy modelling, and
environmental assessment.

2. Methods

To address the research questions outlined in Section 1 (linking
system diversity, technological choices, and environmental outcomes),
we integrate two computational frameworks: Calliope for energy system
modelling (Section 2.2) and ENBIOS for environmental impact assess-
ment (Section 2.3). We demonstrate this approach through Portugal’s
2050 energy transition (Section 2.1).

2.1. Case study

We assess the environmental performance of a techno-economically
defined option space of 261 different energy transition configurations in
Portugal for 2050. Portugal has set highly ambitious goals in its National
Energy and Climate Plan. These goals include reducing greenhouse gas
emissions in 45-55 % by 2030 (compared to the baseline year of 2005),
with 80 % of its electricity production sustained by renewable sources,
and a reduction of 65 % in energy dependency. Its decarbonisation
policies will entail significant investments in solar, wind, offshore wind,
and green hydrogen technologies. Despite these ambitious goals,
Portugal is highly vulnerable to climate change impacts and environ-
mental degradation [29]. The country is equally financially constrained
in the European context [30], with wide-ranging energy poverty prob-
lems [31]. Portugal, thus, offers a good case study to leverage trade-offs
between technological choices, socioeconomic challenges, and envi-
ronmental concerns.

Part of the parameters considered in energy modelling were fine-
tuned according to the narrative assessment completed within the
SEEDS project [32]. The narratives were identified using interviews,
focus groups, workshops, and Delphi surveys. We identified two main
groups of narratives within Portuguese policy and regulatory frame-
works. The mainstream narrative reflects the fossil-fuel-based socio-
technical paradigm, emphasizing centralized renewable systems, top-
down governance, economic growth, and new energy exports. In
contrast, the alternative narrative focused on energy democracy and
decentralized governance, promoting socio-technical innovations like
energy communities, citizen-led investments, and peer-to-peer
exchanges.

2.2. Energy system model and Modelling to Generate Alternatives

We developed multiple energy transition configurations using the
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Calliope framework, an open-source tool that allows building energy
system models while keeping user-friendly characteristics [33]. The
framework is based on linear programming algorithms while also
accepting mixed-integer optimization, helping to design energy systems
in which renewables play a prominent role. Calliope’s key features
include handling high spatial and temporal resolution and easily
running on high-performance computing systems. Moreover, Calliope
provides an in-built MGA functionality based on the highly customizable
SPORES MGA algorithm (see Section 2.2.1). The basics of the Portu-
guese model are covered below (see Section 2.2.2).

2.2.1. The SPORES MGA approach

Energy system optimization models typically identify a system
configuration to reach a target with the minimum cost [9]. Nevertheless,
focusing on a single solution may hide feasible but perhaps radically
different alternatives [13]. Similarly, generating a set of Pareto-optimal
solutions with multi-objective optimisation may be insufficient, given
the countless objectives that matter in the real world [12]. This is
particularly notable for an energy transition issue involving many het-
erogeneous stakeholders across scales. Accordingly, the popularity of
modelling to generate alternatives (MGA) approaches has increased
dramatically in this field in the last few years [34]. Among the many
MGA methods tailored to energy system optimization, SPORES - or
Spatially Explicit Practically Optimal Results [35] - is designed partic-
ularly to target both spatial and technological diversity within the
generated system configuration options while also allowing for a good
degree of parallelisation and efficient computation. Here, we apply
SPORES to Portugal as a case study, generating over 261 different en-
ergy transition configurations for the year 2050.

More precisely, the 261 solutions (which we also call “SPORES”, as
the method that generates them) are obtained based on the workflow
depicted in Fig. 1, which builds on recent work from our author team
[22] and leverages SPORES capacity to use different MGA objectives in
parallel to explore the option space efficiently and effectively. In a
nutshell, the cost-optimal solution is identified as the starting point.
Then, SPORES search for new feasible solutions that diversify the
technologies deployed and are compared to the previous solution(s).

Mathematically, this results from incrementally assigning penalties,
or weights, to spatially explicit capacity investment decision variables
that featured prominently in previous solutions. As highlighted in Fig. 1,
many runs expand the above search by using a multi-MGA-objective
formulation, which combines the search for spatially and technologi-
cally distinct solutions with the intensification of specific system fea-
tures, for instance, the high or low deployment of a given technology.

Starting point

Spatial & technological

2 distinctiveness

Cost-optimal

o Spatial & technological
solution U

distinctiveness

0O, Spatial & technological
distinctiveness

0, Intensified key feature

Iterative search for alternatives
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We call “intensification” the push for a given feature to be either at its
minimum or maximum feasible value. As shown in previous work [36]
the use of “intensification” objectives ensures that we capture extreme
technological boundaries of the solution space and otherwise hard-to-
discover system configuration options. In all runs, we force the gener-
ated near-optimal solutions to be within 10 % of the cost of the least-cost
feasible solution. This relaxation is in line with previous studies
[18,21,35] and within the range of the relaxations deemed realistic by
studies that look into empirical evidence for willingness to pay for fea-
tures of interest in system design [37].

In practice, we generate a total of 80 SPORES in four parallel batches
using the default single-MGA-objective (Eq. 1, b = 0) applied to the
decision variables of four different energy sectors: power (n = 50
SPORES), heating, mobility and synthetic fuels (n = 10 per sector).
Then, we generate up to 180 SPORES across multi-MGA-objective
batches (Eq. 1, b # 0) that alternatively maximize (n = 10) or mini-
mize (n = 10) each of the following nine critical technology assets: wind
onshore, wind offshore, wind overall, open-field solar PV, roof-mounted
solar PV, biofuels, battery storage, electrolysis and transmission capac-
ity. This leads to a total of 260 (80 + 180) different system SPORES, or
261 when including the cost-optimal solution used as the starting point.

The SPORES optimisation problem can be formulated as in Eq.1.

minY =a-) > wpxi? £b-y xi¥
joi J

s.t.cost, < (1+s)-costy
Ax <b.
x>0 &)

where i and j indicate the i-th technology category and the j-th location in
the model; xcap_ij is the capacity investment decision variable for the ij-
th location-technology pair; and xcap_(i)j is the capacity decision vari-
able associated with a technology that we may want to intensify in the
resulting technology mix. Wij is the weight assigned to the capacity
investment decision variable ij-th location-technology pair. The weight
is assigned incrementally at each iteration, penalising those decisions
that have already been explored, as described in prior work [22]. The a
and b coefficients are the weights associated with the different compo-
nents of the objective function: when b has a positive sign, we minimize
the “intensified” technology; when b has a negative sign, we maximize it.
If b is null, the formulation collapses into the default case with a single
objective (Fig. 1)). A, and b, are a matrix and a vector of coefficients

Solution space

X 50 SPORES
(power)

X 10 SPORES
x3 260+1

(heat, mobility, synfuels)

SPORES

x 10 SPORES
X 2 (min, max feature)
x 9 features -

Fig. 1. Conceptual representation of the SPORES workflow we adopt in this study.
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representing the physical constraints of the problem, while x is the
vector of decision variables; cost n is the total annualised system cost,
which is bound to remain within a marginal relaxation of the optimal
cost (cost0); and s is the accepted cost relaxation, also known as cost
slack.

2.2.2. The Portuguese Calliope model

The Calliope-Portugal model is derived from the existing Sector-
Coupled Euro-Calliope model, which encompasses all European coun-
tries’ energy sectors (electricity, heat, transport, and industry). [21]. In
the version of Calliope-Portugal used in this paper [22], we increased
the spatial granularity of wind and solar resources by adopting the finer-
resolution data for Portugal available from the Euro-Calliope model [5].
The model forces supply to meet the demand using energy technologies
that have no direct emissions or whose emissions can be compensated by
capture. This results in a system based on renewables, sustainable bio-
fuels, and green hydrogen and synthetic derivatives fuels. We split
Portugal into two macro-nodes, North and South. These are connected
via electricity transmission lines. We considered the network’s con-
straints and the Sector-Coupled Euro-Calliope’s expansion potential.
Within each of the macro-nodes, the model can deploy renewable power
capacity in many sub-regions (18 in total), corresponding to the coun-
try’s administrative regions, with different land availability and capac-
ity factors.

We replaced other European countries with a stylised representation
of the import and export of electricity and hydrogen at a fixed price. The
price reflects the historical average electricity price for trade with
neighbouring Spain. The price per kWh for hydrogen is calculated
assuming a market price of 1.5 EUR/kg for green hydrogen in 2050 and
33.3 kWh/kg as the lower heating value.

We set the weather year to 2016, having identified it as a “typical”
year among those available from the Euro-Calliope dataset. For addi-
tional model assumptions and their rationale, we refer the readers to the
publication that first introduced the Sector-Coupled Euro-Calliope
model [21]. The Calliope-Portugal model files are publicly available on
Zenodo [38] as part of a prior publication from the SEEDS project [22].

2.3. Environmental modelling with ENBIOS

ENBIOS (Environmental and Bioeconomic System Analysis) [39] is
an analytical framework and Python-based tool for the environmental
assessment of energy transition scenarios. It integrates Life Cycle
Assessment (LCA) —using the Brightway2 [40] LCA framework- and the
Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism
(MuSIASEM). In this work, we have further developed the connection
between Calliope and ENBIOS 2.1.12 to model the environmental
impacts.

This section summarizes the ENBIOS methodology, as depicted in

LCl data

Soft-link
(Technological
dictionary)

Calliope
modelling

Energy Data
260 spores) *

MuSIASEM
dendrogram

________ _" IMPACT
‘ ‘ RESULTS
[ Background
Lcl - < adaptatior
Database
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Fig. 2. For an extensive explanation, see the Supplementary information.

2.3.1. LCA settings

The functional unit is the satisfaction of one year of energy demand,
keeping the analysis at the national level due to the lack of regionalized
life cycle inventory (LCI) data. In LCA jargon, the foreground system
includes all modelled technologies, such as energy generation, storage,
imports and conversions (e.g., biofuel to methanol). A “technology
mapping“linked the energy model to LCA data using Sparks [41], a
module developed for soft-linking ESOM and ENBIOS.

LCI data was sourced from the ecoinvent 3.9.1 cutoff database [42],
considering Portugal as the primary location for activities whenever
possible. Hydrogen-related inventories were sourced and adapted from
the literature. The supplementary materials (section 0) provide a full
breakdown of all data sources, assumptions, and modifications.

We incorporated 2050 projections into the background system to
account for future technological developments and updated global
electricity markets based on these projections. [43]. Electricity markets
are aligned with regional projections from a 2 °C scenario as described
by Junne et al. [44]. However, we did not modify individual technology
parameters (e.g., efficiency, material intensity). We aim to demonstrate
the benefits of coupling MGA with LCA to explore option spaces rather
than to calculate absolute environmental impacts. Double-counting
impacts were avoided by modifying the LCI database to remove down-
stream connections as proposed by Volkart et al. [45].

We used the life cycle impact assessment methodology ReCiPe
midpoint 2016 v1.03 with a hierarchical (mid-term) perspective [46].
From this method, we selected the following impact categories: climate
change (global warming potential), 1and use (agricultural land occupation),
water use (water consumption potential), ecotoxicity (freshwater eutro-
phication potential) as they are covered in the literature as the most
important impacts of energy transition technologies.

2.3.2. Upscaling and trade-offs with MuSIASEM

The soft-linking approach was complemented by a bottom-up char-
acterization of the energy system using the MuSIASEM framework.
Fig. 3 shows the MuSIASEM dendrogram, a hierarchical energy system
representation covering the aggregation distribution at different
analytical levels. We used the dendrogram to connect two specific levels:
n (energy system level) and n-3 (technological level). The information
from the n-3 level is the one soft-linked to the LCA modelling in ENBIOS.

To examine the trade-offs between environmental impacts, we
applied linear regression coefficients to assess the relationship between
indicators. In this case, the analysis specifically concentrates on the
relationship between the dendrogram levels n (energy system) and n-3
(specific technologies). This differentiation allows us to compare the
most aggregated view of the energy system (n) with a more detailed
breakdown (n-3). With this link, we assessed how the system’s

ReCiPe
methods

ENBIOS ‘ J

Fig. 2. Summary of the structure of the analysis with ENBIOS.
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Scale-up—MuSIASEM
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LEVELS: n n-1 n-2
Electricity
Generation
Thermal
Electricity
Storage
Thermal

Imports

Conversions Biofuel to diesel
\ Biofuel to methane

Electricity imports

n3 Life Cycle Assessment
Wind onshore/offshore
Existing wind
Hydro run-of-river/reservoir
Open field/roof mounted PV
Existing PV
Waste supply
CCGT
CHP hydrogen
CHP biofuel extraction
CHP wte back pressure
CHP methane extraction
Biofuel boiler
Methane boiler

=

Battery

Pumped hydro
Heat storage big
Heat storage small
Methane storage

Biofuel to methanol
Electrolysis

Fig. 3. Dendrogram of the energy system under analysis, showing the hierarchical representation at different levels. The level n-3 is linked to Life Cycle Inventories.

environmental impacts change with increasing granularity.
Additionally, we used Spearman-Rank correlations, a non-
parametric measure of rank correlation, to examine the influence of
different technologies or dendrogram levels on the total environmental
impact. Spearman’s method is particularly useful for detecting mono-
tonic relationships between variables without assuming linearity [47].
This approach allows us to understand how the various components
contribute to the overall environmental impact of the energy system.
We explored the influence of the diversity of energy production and
the environmental impacts. To this end, we used the Gini-Simpson index

[48] as a measure of diversity (Eq. 2) and compared the configurations
with the top and bottom 5 % diversity values.

D=1-) p? )

where p is the proportion of electricity produced by technology i in a
given configuration, and S is the total number of technologies.

T
-  Spore
%  Cost-Optimized Spore

climate change

land use -

water use

Indicator

ecotoxicity

materials

0.5 1.0 1.5

2.0 2.5 3.0 3.5

Normalized im;)ad Value

Fig. 4. Environmental impacts of the different energy configurations, normalized according to the cost-optimized configuration at the energy system level (n). The
vertical red line highlights the optimized configuration’s position across different indicators. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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3. Results

3.1. Breaking the single cost solution: Environmental trade-offs in the
option space

The Calliope-Portugal model returned one option space of 260
alternative energy transition configurations. We then compared the
environmental impacts of the single cost-optimal solution with the re-
sults of the option space. Our results indicate that the single optimal
solution (cost-optimized spore) is not the configuration with lower
environmental impacts within the option space generated by the model,
as illustrated in Fig. 4. Compared to the option space, the cost-optimized
solution leads to higher impact values for land use (over Quartile 3,
>Q3) and water consumption (~Q3), a median value for global climate
change, and lower impact values for ecotoxicity (Q1) and material use

(<QL).

3.2. How impacts vary with the technology mix: Relevance of wind, solar,
and batteries

To evaluate the SPORES outcomes, we analyze trade-offs between
impacts and technologies. To this end, we first looked for correlations
among the environmental impacts at the energy system level (n). Our
analysis revealed no significant trade-offs across the various environ-
mental impacts (see Fig. S4).

We investigated the main drivers of the environmental impacts for
the whole energy system (n) and the different energy system technolo-
gies (TWh) (n-3) using Spearman rank correlations Fig. 5. We observed
two significant positive correlations: batteries with material use (p =
0.9) and open PV panels with water use (p = 0.89). These results indicate
that increasing the energy production of these technologies generally
leads to higher impact configurations for these indicators. Also, we
found that wind onshore negatively correlates with the different envi-
ronmental impacts (Fig. 5).

To determine the causes and explanations behind this result, we
looked at the correlations in the energy configuration definitions of the
different spores. We found that open-field PV and wind onshore elec-
tricity production are negatively correlated (r = —0.64), as shown in
Fig. $3. A significant deployment of one technology generally implies a
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low existence of the other. In the same direction, a negative correlation
exists between wind onshore and batteries(r = —0.63). Therefore, the
Spearman correlation indicates a negative correlation of wind onshore,
as the more wind onshore installed, the less solar PV and batteries,
which translates into a lower overall impact configuration.

Further results support this statement: the configurations with the
maximum amount of wind and minimum solar technologies perform
better (in environmental impacts) than those with a high amount of
solar and minimum wind (Fig. 6). Additionally, Fig. 6 shows that con-
figurations with maximum battery deployment perform poorly across all
studied indicators.

When analysing Fig. 6, two factors are crucial: total demand and
efficiency. Environmental impact scales linearly with demand, meaning
technologies with higher demand in specific configurations lead to
greater impacts. In contrast, efficiency modulates these outcomes by
producing lower environmental impacts per unit of energy output.
Fig. S6 presents the relative normalized impact values of various tech-
nologies per unit of energy produced. Wind and solar technologies
demonstrate lower impact values than other energy sources, whereas
batteries show considerably higher impact intensities. This observation
is further supported by Fig. S5, which shows that solar and wind tech-
nologies exhibit higher impacts due to their large-scale deployment,
despite their lower impact values per unit of energy.

On the other hand, batteries have a significantly higher impact in-
tensity per unit of energy produced (flow out in this case), reflecting
their lower life-cycle efficiency. This is a noteworthy consideration
given the limited availability of battery systems across the various
configurations compared to wind and solar technologies (Fig. S5). It is
important to note that wind and solar technologies have a lower impact
than other technologies, but solar tends to return higher impacts than
wind turbines. For example, solar technologies have a climate change
impact 4 times higher than wind turbines and can occupy up to 20 times
more land (Table S3).

Finally, contribution analysis reveals that silicon (multi-Si) produc-
tion is the dominant factor driving the water use on solar panels, ac-
counting for 93 % of the impact). In contrast, the surplus ore potential of
batteries is primarily influenced by the production of lithium hydroxide
(41 %) and NCA hydroxide (cathode, 20 %).
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biofuel_to_diesel 0.021 0.0024 0.077 -0.038
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biofuel_to_methanol 0.29 0.42 0.26 -0.092 -
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3.3. Higher technological diversity correlates with increased
environmental impacts in energy configurations

We examined the trade-off between the diversity of electricity pro-
duction technologies and the environmental impacts. As depicted in
Fig. 7, our findings suggest a positive trend: energy system configura-
tions characterized by greater technological diversity exhibit higher
environmental impacts. This positive relationship is statistically signif-
icant (p < 0.01), and the strength ranges from moderate (p = 0.39) in the
case of materials to strong (p =0.67) for ecotoxicity.

The observed trends align with our previously discussed results and
are shaped by the distribution of solar, wind, and battery technologies.
Fig. 7 (b) shows the relevance of each technology’s electricity produc-
tion (TWh) in the top and bottom 5 % configurations based on the di-
versity index. Technologies are grouped into categories (e.g., wind
onshore and offshore into ‘wind’).

The top 5 % most diverse configurations are characterized by low
amounts of wind and high proportions of solar, batteries, and imports
compared to other alternatives. On the other hand, the bottom 5 % of
diverse productions are dominated by extremely high amounts of wind
while having low amounts of solar, batteries, imports, and biofuels.
Thus, low diversity configurations are mostly dependent on wind tech-
nologies, which have lower environmental impacts compared to other
alternatives.

4. Discussion and conclusion

In this work we assess if accepting structural uncertainty in the modelling
of energy systems helps us find more sustainable configurations. To do this,
we integrated the MGA approach to energy system optimization using a
Calliope-based model and a broad-range environmental assessment
completed with the ENBIOS framework. We completed a case study for
Portugal using the results of a narrative assessment to identify key en-
ergy parameters for modelling.

Our results emphasize that energy system optimization models based on
MGA are able to produce a diversity of solutions with a wide range of envi-
ronmental impacts. This study is the first to integrates modelling to generate
alternatives (MGA) for an energy system alongside life-cycle environmental
assessment. We found that slightly more costly configurations than the
cost-optimal solution can lead to equally feasible configurations with
reduced environmental impacts. The impact of cost relaxation (5-10 %)
translates into a distribution of environmental impacts, ranging from 50
% less impact to 350 % higher values. These findings add weight to the
previous criticism of techno-economic cost-optimized energy system
models, which often fail to capture the true costs of energy transitions, as
Trutnevyte shows [37]. Relying on single-solution cost-optimized
models may not only result in poorly represented real-world systems but
also restrict the exploration of equally feasible alternatives that could
offer lower environmental impacts and potentially lower public
resistance.

This approach makes the relation between technological diversity and
impacts more explicit. Our results suggest that configurations with a
higher diversity of technologies involved in electricity production tend
to produce higher environmental impacts than those focusing on larger
shares of wind technology. This result generates a new trade-off, as more
diverse energy systems are generally associated with higher resilience
[49], highlighting a potential tension in the coordination of energy
planning and environmental policy. As highlighted by Jesse et al. [23],
the question “resilience against what?” becomes particularly relevant.
Clarifying the types of risks that resilience strategies aim to address is
essential when evaluating whether increased diversity—and its associ-
ated impacts—are justified. In the context of energy transitions, where
long-term structural changes are being implemented, such trade-offs
need careful consideration. Multi-criteria decision analysis and portfo-
lio optimization frameworks can be used in policy-making to system-
atically weigh the benefits of resilience against environmental costs,
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enabling the identification of technology mixes that meet both reli-
ability and sustainability targets.

Building on these insights, it is important to consider the role of model
structure and data uncertainty in shaping the results. The results are highly
influenced by the balance of solar, wind generation technologies, and
batteries. In this sense, two additional considerations arise from this:
first, results are highly dependent on the model definition and con-
straints, such as maximum installed capacities allowed, that translate
into a more diverse option space for wind and solar capacities (Fig. S6).

Second, the uncertainty of the life cycle inventories used also plays a
significant role in this sense, most importantly for wind and solar as the
main energy producers of the system. Our uncertainty analysis revealed
high uncertainty in the results distributions [50]. However, we did not
assess the uncertainty of individual inventory datasets, meaning our
results strongly depend on the accuracy of the inventory data provided
by ecoinvent. We refer to our previous report for a more detailed dis-
cussion of uncertainties, including methodological assumptions and
data reliability (de Tomas-Pascual et al. [51]). Finally, we acknowledge
the limited treatment of biogenic carbon as a result of the environmental
modelling approach using the ReCiPe Midpoint H 2016. Specifically,
these methods do not account for carbon sequestration resulting from
the growth of biogenic components, which could provide a natural offset
of some emissions.

Still, regarding specific technologies, our results suggest that solar and
battery technologies are the primary contributors to the total environmental
impacts. In particular, solar PV panels significantly drive water use, with
a contribution analysis identifying multi-crystalline silicon (multi-Si)
production as the leading cause. Previous studies, such as Golroudbary,
Lundstrom, & Wilson [52], highlighted the high water and energy de-
mands of multi-Si manufacturing while pointing to potential efficiency
improvements and material consumption reductions across the value
chain.

Conversely, batteries exhibit a substantial environmental impact per
unit of energy compared to other technologies. Particularly, our results
showed a strong correlation between battery deployment and the total
environmental impacts. Contribution analysis indicates that the pro-
duction of lithium hydroxide and NCA (nickel-cobalt-aluminium) is a
major contributor to this impact. This is primarily due to the relative
scarcity of critical materials such as lithium, nickel and cobalt, which
increase their environmental footprint. This issue is projected to worsen
as greater quantities of raw lithium brine must be extracted to meet the
demand for battery-grade lithium [53]. Lithium mining extraction is
likely to advance specifically in Portugal, which holds the largest re-
serves in Europe [54], with at least five major projects under develop-
ment, although no active mines are currently operational, largely due to
environmental concerns and local opposition [55]. Furthermore,
emerging technologies like Li-air and Li-S could increase lithium de-
mand in the future. However, the same authors also emphasize the po-
tential benefits of battery reuse and recycling, although significant
technical, economic, and safety challenges remain to be addressed [56].

To the best of our knowledge, this study is the first to integrate modelling
to generate alternatives (MGA) for an energy system alongside life-cycle
environmental assessment. Several authors have previously reported on
holistic approaches to the environmental impact of energy systems
[44,45,57-59]. However, this study uniquely combines the MGA
approach with LCA.

This approach has significant operational applicability. Policy-
makers can leverage MGA-LCA to develop robust energy strategies that
are resilient to future uncertainties, using the generated alternatives to
understand the diverse implications of different policy choices. Utilities
and regional planners can employ this method to evaluate investment in
new energy infrastructure or resource management plans, considering
not just economic factors but a comprehensive suite of environmental
impacts. Furthermore, the method facilitates stakeholder engagement
by providing a clear framework for discussing multiple viable pathways
and their environmental consequences, enabling a more inclusive and
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locally tailored decision-making process.

Specifically, the MGA-LCA method enhances decision-making in
several ways. First, it enhances policymaking by addressing structural
uncertainties through the MGA approach [60]. This enables policy-
makers to consider a range of plausible alternatives. Second, it promotes
a better-informed approach by incorporating extensive environmental
assessment beyond just carbon emissions, such as water usage and
resource depletion. Finally, it fosters stakeholder engagement; by pre-
senting multiple preferences, policies can be tailored to meet local needs
and values [22]. This participatory potential has been demonstrated in
real-world applications such as the decarbonisation planning of Ruhr
University Bochum, where MGA was combined with stakeholder input
to support more inclusive and practical decision-making [61].

There is still a large potential for further work combining environmental
assessment with a large number of energy system configurations to explore
trade-offs between energy system designs and their impact systematically.
Unlike traditional cost-economic optimization, MGA can produce mul-
tiple alternatives that exhibit a wide range of different environmental
impacts while also addressing structural uncertainty. This approach al-
lows for the identification of configurations with lower environmental
impacts, which could accommodate other factors not considered in this
study, such as quicker transition speeds.

Another direction for future work involves incorporating social issues into
the analysis, which is critical for a truly multidimensional assessment of
sustainability. Social preferences regarding techno-economic issues were
integrated by setting constraints for energy modelling, limiting options
within the option space. A deeper understanding of what is acceptable in
techno-economic terms can better inform the MGA approach to SPORES,
leading to increased acceptance of the option space. Moreover, these
preferences can shape the definition of indicators to evaluate environ-
mental impact. For instance, we are currently developing acceptance-
guided metrics to analyze the socio-ecological impacts of wind power
[60], improving their robustness and making them more relevant for
decision-making. Finally, another interesting thread of work would be to
conduct a similar analysis for social or geopolitical issues, laying the
groundwork for a truly holistic assessment of the option spaces.
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