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Chapter 10
Adaptive Dynamic Programming for
Flight Control

Erik-Jan van Kampen and Bo Sun

10.1 Introduction to Adaptive Dynamic Programming

Optimality is a property that a control system should always pursue. A generic way
to solve optimal control problems is involving the Hamilton–Jacobi–Bellman (HJB)
equation. However, for nonlinear systems, it is, in general, impossible to find an
analytical solution to the HJB equation [1, 2]. Nevertheless, adaptive dynamic pro-
gramming (ADP) offers a promising tool to attain satisfying numerical solutions
by incorporating artificial neural networks (ANNs). As its name suggests, ADP not
only inherits the capability of the classic dynamic programming for pursuing opti-
mality but also empowers the controller to be adaptive. Through iterations between
policy improvement and policy evaluation, ADP can address optimal control prob-
lems in a numerical way. Wang et al. [3] provided a comprehensive survey on ADP
and also discusses the many names under which these methods are known, such
as Approximate Dynamic Programming, Neuro-Dynamic Programming, Adaptive
Critic Designs, and RL. Although there are differences in the meanings of these
terms, they have all at some point been used to describe the same class of methods.
In this chapter, the termADPwill be used, but we consider it a form of reinforcement
learning (RL) because ADP essentially maximizes returns [4, 5].

With the development of technology, the complexity of aircraft has largely
increased. For example, making aviation sustainable has become a popular topic
in recent days. To achieve this goal, wings with morphing functions [6] or large
aspect ratios [7] are usually designed, which, however, involves more states that
introduce nonlinearities, uncertainties, and constraints. An equilibrium for different
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demands should be attained, which becomes an optimal control problem. With its
power of approximation and interaction, ADP is promising to overcome these new
challenges.

This section presents some of the basic derivations of ADP, which will be used
as a starting point for derivations of more advanced ADP methods in Sect. 10.3.
Consider a generic continuous, nonlinear, affine in the control system

ẋ (t) = f (x (t)) + g (x (t)) u (t) , (10.1)

where x (t) ∈ R
n denotes the state vector, u (t) ∈ Ωu ⊂ R

m the control vector, and
f and g are differentiable functions describing the effect of the state and input and
the state derivatives.

Based on optimal control theory, the utility function U is introduced to account
for the cost of states and inputs

U (x (t) , u (t)) � Q (x (t)) + uT (t) Ru (t) . (10.2)

The infinite-horizon cost function related to this utility function should beminimized,
leading to the optimal cost function

J ∗ (x) � min
u∈A(Ω)

∞∫

t

U (x (τ ) , u (τ )) dτ . (10.3)

Bellman’s optimality principle states that the admissible control that achieves this
optimal value is the one that sets the Hamiltonian of system (10.1)

H (x, u (x) ,∇ J (x)) � U (x, u (x)) + (∇ J (x))T [ f (x) + g (x) u (x)] (10.4)

to zero, that is,

u∗ (x) = argminu∈A(Ω) H
(
x, u (x) ,∇ J ∗ (x)

) = −1

2
R−1gT (x) ∇ J ∗ (x) . (10.5)

The cost or value function J is approximated by the critic, often in the form of an
artificial neural network (ANN). Instead of the analytical expression for the control
action, as given in (10.5), an actor ANN is often used to approximate the control law
and to reduce model dependency. Together with a model of the plant that is to be
controlled, both the actor and the critic form the basic framework for ADP, as shown
in Fig. 10.1.

The structure of the remainder of this chapter is as follows. First, some early
applications of ADP to flight control will be presented in Sect. 10.2. The main
contributions of this chapter are presented in Sect. 10.3, which will describe four
recent developments in ADP applied to flight control, namely, the use of incremental
models (Sect. 10.3.1), the analytical approach to ADP (XGDHP) (Sect. 10.3.2), how



10 Adaptive Dynamic Programming for Flight Control 271

Fig. 10.1 Basic actor–critic ADP framework: action-dependent heuristic dynamic programming
(AD-HDP)

to deal with input constraints (Sect. 10.3.3), and an event-triggered ADP control
(Sect. 10.3.4). The chapter is concluded by Sect. 10.4.

10.2 Early Applications of ADP to Flight Control

This section will show some of the early applications of ADP methods to flight
control tasks. These applications form the foundation of the recent developments
that will be shown in Sect. 10.3. One of the early works on applications of ADP to
flight control is a paper by Enns and Si on Neuro-Dynamic Programming applied to
helicopter flight control [8]. Although they do not use the name ADP themselves,
and opt for Neuro-Dynamic to stress the use of artificial neural networks as function
approximators, it is a classic AD-HDP approach, in which the actor output is fed into
the critic for easier back-propagation through the critic to update the actor weights.
This is a model-free approach, which does not require a model of the plant in the
control loop. A block diagram of their approach is shown in Fig. 10.2. The controller

Fig. 10.2 Action-dependent heuristic dynamic programming architecture for helicopter control.
For additional details on this architecture, see [8]
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Fig. 10.3 Dual heuristic dynamic programming architecture for fixed-wing aircraft control. The
scheduling variable generator (SVG) produces the significance scheduling vector and the command
state generator (CSG) provides secondary state elements that are compatible with the reference. For
additional details on this architecture, see [9]

is applied to stabilizing tasks, i.e., tasks where the aim is to drive a set of states
to zero. The controller is trained offline, with success rates varying between 78 and
96%, depending on the task. After training, the weights of a successful run are frozen
and an online evaluation takes place.

Another key publication in the history of ADP for flight control is the work by
Ferrari and Stengel on the application of ADP for control of a business jet-type
aircraft model [9]. The work from Ferrari and Stengel is different from the work
from Enns and Si in several important aspects. First of all, they use a more advanced
form of ADP, Dual Heuristic Dynamic Programming, in which the critic network
approximates the derivative of the value function with respect to the state λ, instead
of the value function itself, see Fig. 10.3. Secondly, Ferrari and Stengel do not have
the action dependency in the critic, and, hence, model information, in the form of
transition matrices, is needed to update the actor network. Another difference with
previous work is that the controller is not just used for stabilization, but also for
tracking reference signals.

A final example of some of the early work on ADP for flight control can be found
in [10]. In this paper, a direct comparison is made between action-dependent and
action-independent heuristic dynamic programming applied to a simulation model
of the F-16 fighter aircraft. By removing the action dependency, i.e., by cutting the
back-propagation path through the critic to the actor, an approximated plant model
is required, as in the work from Ferrari and Stengel. The results in [10] show that the
success rate for convergence was nearly doubled by removing the action dependency.
It also shows an improvement in tracking performance for the action-independent
HDP approach. The three examples of early ADP applied to flight control, which
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were shown in this section, have shaped a lot of the later developments, some of
which are discussed in Sect. 10.3.

10.3 Recent Developments in ADP

This section describes four recent developments in ADP applied to flight control. The
use of incremental models and the analytical approach to ADP will be introduced in
Sects. 10.3.1 and 10.3.2, respectively. Then, the improvement of the recent ADP in
dealing with input constraints and incorporating event-triggered control (ETC) will
be presented in Sects. 10.3.3 and 10.3.4, respectively.

10.3.1 Incremental Model

ADP can be model free if it is action dependent, which means the control signals are
also introduced as the inputs of the critic network [11]. Nevertheless, to achieve a
model-free application, an alternative is building a third module to approximate the
plant dynamics, and ANNs are often regarded as the first choice [10]. The authors
in [10] show that this three-network structure outperforms the action-dependent
approach if rewards only depend on system states. Although ANNs can approx-
imate the nonlinear function with arbitrary precision, many samples are required
before the weights converge for online identification of complex plant dynamics,
such as aerospace systems, which can be dangerous especially at the start of train-
ing because the critic and actor networks are then trained based on the incorrect
model. For these complex systems, offline training is normally involved to obtain a
primary model and it often remains constant in applications [10], which, however,
cannot achieve adaptive control when facing unforeseen uncertainties and sudden
disturbances in realistic application [12]. Modern processors work in a discrete way,
leading to discrete measurements and computations. With the assumption of suffi-
ciently high sampling frequency and relatively slow time-varying dynamics, one can
represent a continuous nonlinear plant with a discrete incremental model and retain
high enough precision [13].

By taking the first-order Taylor series expansion of (10.1) around time t0 and
omitting higher order terms, the system is linearized approximately as follows:

ẋ(t) ≈ ẋ(t0) + F(x(t0), u(t0))(x(t) − x(t0)) + G(x(t0), u(t0))(u(t) − u(t0)),
(10.6)
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where

F(x(t0), u(t0)) = ∂ f (x(t), u(t))

∂x(t)

∣∣∣∣ x(t0),u(t0), (10.7a)

G(x(t0), u(t0)) = ∂ f (x(t), u(t))

∂u(t)

∣∣∣∣ x(t0),u(t0), (10.7b)

F(x(t0), u(t0)) ∈ R
n×n denotes the system matrix and G(x(t0), u(t0)) ∈ R

n×m

denotes the control effectiveness matrix. Assuming the states and state derivatives
of the system are measurable, i.e., Δẋ(t), Δx(t) and Δu(t) are measurable, the
following incremental model can be used to describe the above system:

Δẋ(t) � F(x(t0), u(t0))Δx(t) + G(x(t0), u(t0))Δu(t). (10.8)

With a constant, high sampling frequency, i.e., if the sampling time Δt is suf-
ficiently small, then the plant model can be written approximately in the discrete
form

xt+1 − xt
Δt

≈ Ft−1(xt − xt−1) + Gt−1(ut − ut−1), (10.9)

where Ft−1 � ∂ f (x,u)

∂x

∣∣∣
xt−1,ut−1

∈ R
n×n denotes the system transition matrix and

Gt−1 � ∂ f (x,u)

∂u

∣∣∣
xt−1,ut−1

∈ R
n×m denotes the input distribution matrix at the time step

t − 1 for the discretized system. From (10.9), the following incremental form of the
new discrete nonlinear system can be obtained as follows:

Δxt+1 ≈ Ft−1ΔtΔxt + Gt−1ΔtΔut . (10.10)

This way, the continuous nonlinear global plant is simplified into a linear incre-
mental dynamic equation. The resulting local plant model can be identified online by
the recursive least squares (RLS) technique, to take advantage of its adaptability to
cope with time variations in the regression parameters and fast convergence speed,
so as to avoid training a complex ANN [13]. Although some information is omitted,
such as state variation-related nonlinear terms and higher order terms in their Taylor
series expansion, with the identified F̂t−1 and Ĝt−1 matrix, the next system state can
be predicted by

x̂t+1 = xt + F̂t−1ΔtΔxt + Ĝt−1ΔtΔut . (10.11)

The combination of the incremental model with HDP and DHP leads to IM-HDP
[15] and IM-DHP [13, 14, 16–18], respectively. The structural diagram of IM-DHP
is illustrated in Fig. 10.4 [14], where the discrete-time (DT) state xt is represented
by st . Both IM-HDP and IM-DHP have successfully been applied to a variety of
aerospace systems, including launch vehicles, satellites, airplanes, etc. In particular,
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Fig. 10.4 Flowchart of the information during a single complete time step of the IM-DHP learn-
ing framework. Solid lines capture feedforward information, while dashed lines indicate feedback
update paths For additional details on this architecture, see [14]

Fig. 10.5 The PH-LAB research aircraft operated by Delft University of Technology. The Cessna
Citation 550 is a CS-25 certified aircraft

the application of IM-DHP in Cessna Citation 550 (shown in Fig. 10.5) has been
gaining attention [16, 18], and, therefore, is selected to demonstrate the applicability
of the incremental model-based ADP.
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Fig. 10.6 General layout of the flight controller. The inner control loop consists of the reinforcement
learning agent and provides body rate control. The outer loop consists of PID controllers converting
the desired altitude and bank angle to body rate references for the inner control loop. For additional
details on this architecture, see [18]

The adaptive learning framework is applied to the pitch and roll rate, augmented
with an outer control loop, as illustrated in Fig. 10.6. Rate control exhibits the lowest
learning complexity due to the direct dynamic relation between the angular rates
and control surfaces. The outer control loop consists of conventional proportional–
integral–derivative (PID) controllers and provides a higher level control interface,
which enables reference tracking of an altitude and roll angle profile. Under the
assumption of a symmetric aircraft, a decoupled design is employed for longitudinal
and lateral learning controllers. Furthermore, the aircraft’s yaw damper is disabled to
provide the agent with full control authority over the control surfaces. The engine’s
thrust setting is controlled by an internal airspeed controller. The simulation model
is run with a sampling frequency of 50Hz.

The online learning simulation is conducted at the trimmed condition where the
true airspeed is 90m/s and the altitude is 2km. More detailed settings can be found
in [18]. It is noteworthy that persistent excitation (PE) is essential to both state-space
exploration in the learning process anddynamic excitation in the system identification
process of the incremental model [12]. Exponentially decaying, sinusoidal excitation
is applied to the elevator and ailerons to excite the system during the initial training
phase. As the agent learns to track the dynamic reference signals, the excitation on
the elevator and ailerons is reduced. As illustrated in Fig. 10.7, both the longitudinal
and lateral controllers are able to follow the reference signals after less than 30s of
training.

10.3.2 XGDHP

The main character of the (X)GDHP technique is that it makes use of both the cost
function and its derivative information to update the critic network. The structural
diagram of the present XGDHP implementation that is combined with IM is depicted
in Fig. 10.8.
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Fig. 10.7 Online training procedures of longitudinal (left) and lateral (right) controller starting at
the trimmed operation condition. Reference and excitation signals are illustrated by black dashed
and blue dotted lines, respectively. For additional details, see [18]

Fig. 10.8 The architecture of the IM-XGDHP algorithm, where solid lines represent the feedfor-
ward flow of signals, dashed lines are back-propagation pathways, and the thick arrow represents
the weight transmission. For additional details on this architecture, see [19]
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Fig. 10.9 Traditional
straightforward critic
network

As depicted in Fig. 10.9, for the conventional straightforward GDHP technique,
the critic network outputs the approximation of cost function and its derivatives
simultaneously [20], whose description is given by

[
Ĵ (xt )
λ̂(xt )

]
=

[
ŵc2,J

ŵc2,λ

]T

σ
(
ŵT

c1xt
)
, (10.12)

where ŵc1 ∈ R
n×lc , ŵc2,J ∈ R

lc , and ŵc2,λ ∈ R
lc×n , respectively, denote the estima-

tion of the ideal weights wc1 ∈ R
n×lc wc2,J ∈ R

lc , and wc2,λ ∈ R
lc×n , and σ(·) is the

activation function in the hidden layer. In this structure, two kinds of outputs share
the same inputs and hidden layer but have different pathways between the hidden
layer and the output layer. However, this sharing does not make any physical sense
but only makes them strongly coupled, which is undesirable. Indeed, in general, the
weights update processes for two kinds of outputs should be relatively independent.
Besides, due to the inevitable approximation error, Ĵ (xt ) and λ̂(xt ) approximated in
this way cannot exactly provide the derivative relationship, which is called suffering
from the inconsistency error [12].

Therefore, inspired by [12, 19], a novel XGDHP technique that takes the advan-
tage of explicit analytical calculations is developed. The architecture of the critic
network of the XGDHP technique is illustrated in Fig. 10.10, where the critic net-
work only approximates the cost function as

Ĵ (xt ) = ŵT
c2σ(ŵT

c1xt ), (10.13)

where ŵc2 ∈ R
lc denotes the estimation of the ideal weight matrix wc2 ∈ R

lc . By
taking the explicit analytical calculations, we obtain that

λ̂(xt ) = ∂ Ĵ (xt )

∂xt
= wc1

(
ŵc2 	 σ ′(wT

c1xt )
)
, (10.14)

where 	 denotes the Hadamard product.
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Fig. 10.10 Critic network of the XGDHP technique. For additional details, see [12]

XGDHPmakes use of the cost function and its derivative information, and, there-
fore, the critic network is expected to minimize the performance measure

Ec,t = β
1

2
e2c1,t + (1 − β)

1

2
eTc2,t ec2,t , (10.15)

where

ec1,t = Ĵ (xt ) −U (xt , u(xt )) − γ Ĵ (x̂t+1), (10.16a)

ec2,t = ∂[ Ĵ (xt ) −U (xt , u(xt )) − γ Ĵ (x̂t+1)]
∂xt

, (10.16b)

and β ∈ [0, 1]. If β = 1, then XGDHP becomes pure HDP, and if β = 0, then the
weight matrix is tuned merely based on the computed derivatives λ̂(xt ) and, conse-
quently, XGDHP is equivalent to DHP [19].

For precise calculations, the partial derivative of u(xt ) with respect to xt should
also be into consideration in the critic network updating procedure. Thus, define
U (xt , u(xt )) as in (10.2), in which Q(xt ) = xTQx . By applying the chain rule, it
follows from (10.16b) that

ec2,t = λ̂(xt ) − 2Qxt − ∂u(xt )

∂xt
· 2Ru(xt )

− γ

(
∂ x̂sk+1

∂xt
+ ∂u(xt )

∂xt

∂ x̂sk+1

∂u(xt )

)
λ̂(xsk+1), (10.17)

where ∂u(xt )/∂xt is computed with the facilitation of the actor network, and
∂ x̂sk+1/∂xt and ∂ x̂sk+1/∂u(xt ) are computed through the model network.

Given a learning rate ηc > 0, the weight updating algorithm is given by

Δŵc2 = −ηc
∂Ec,t

∂ŵc2
, Δŵc1 = −ηc

∂Ec,t

∂ŵc1
, (10.18)
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and

∂Ec,t

∂ŵc2
= β

∂ Ĵ (xt )

∂ŵc2
ec1,t + (1 − β)

∂λ̂(xt )

∂ŵc2
ec2,t , (10.19a)

∂Ec,t

∂ŵc1
= β

∂ Ĵ (xt )

∂ŵc1
ec1,t + (1 − β)

∂λ̂(xt )

∂ŵc1
ec2,t , (10.19b)

where ∂λ̂(xt )/∂ŵc2 and ∂λ̂(xt )/∂ŵc1 are the second-order mixed gradients of the
cost function Ĵ (xt ), and are computed as

∂λ̂(xt )

∂ŵc2
ec2,t = (ŵT

c1ec2,t ) 	 σ ′(ŵT
c1xt ), (10.20a)

∂λ̂(xt )

∂ŵc1
ec2,t = ec2,t (ŵc2 	 σ ′(ŵT

c1xt ))
T − xt

(
ŵT
c1xt 	 ŵc2 	 σ(ŵT

c1xt ) 	 σ ′(ŵT
c1xt )

)T
,

(10.20b)

respectively [21]. The computation method in (10.20) is simpler than the approach
presented in [12, 19, 22], where the Kronecker product and tensor operations are
involved, and matrix dimensionality transformation is required. Through mathemat-
ical derivation, it can be found that (10.20) is equivalent to the method developed in
[12, 19, 22].

The above introduction is presented based on the stabilization control problem.
The IM-XGDHP approach can also be applied to tracking control problems such
as the angle of attack (AOA) tracking problem of the F-16 Fighting Falcon aircraft
[12]. In this case, the input to the networks and the identifier is the tracking error
instead of the system state xt . The AOA reference signal varies around the trimmed
condition, namely, 2.6638◦. The partial observability (PO) condition is taken into
consideration, i.e., the pitch rate q is not directly measurable. To handle this PO
problem, an augmented IM is adopted by extending IM with previous controls and
observations. All simulations are performed with a sampling frequency of 1kHz
and using Euler’s method. In order to achieve the PE condition, a 3211 disturbance
signal [12, 13] is introduced as the exploration signal at the initial exploration stage.
Furthermore, it is noted that the learning process is performed totally online. More
detailed settings can be found in [19]. Although the initial condition can have an
impact on the controller, the IM-XGDHP-PO approach can deal with a wide range
of initial states within [−10, 15]◦ without loss of precision. As presented in Fig.
10.11, the AOA can track the given reference signal αref in less than 2 s for all initial
conditions using the IM-XGDHP-PO approach, which is indicative of its competent
adaptability and robustness.

Nevertheless, only when the task is successfully performed, the results presented
abovemake sense.Randomfactors, such as initialweights ofANNsandmeasurement
noises, can have impacts on performance and, occasionally, even trigger divergence
and failure. A concept of success ratio is therefore introduced as a performance index
[19] to show the robustness of the IM-XGDHP-PO by comparing it with XGDHP-
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Fig. 10.11 Online AOA tracking control with different initial states using the IM-XGDHP-PO
approach

Table 10.1 Success ratio comparison for different initial states with 1000 times of Monte Carlo
simulation

α0 [◦] −10 −5 0 2.6638a 5 10 15

IM-XGDHP-
FSF

100% 64.5% 78.5% 100% 100% 99.1% 99.4%

IM-XGDHP-
PO

92.7% 46.3% 73.5% 100% 99.3% 99.2% 99.6%

XGDHP-PO 25.7% 38.2% 45.3% 51.2% 44.3% 41.4% 50.5%
aAOA value starting at the trimmed condition

PO using a model network and IM-XGDHP with full state feedback (FSF). One
thousand Monte Carlo simulations are executed with seven different initial AOAs
and equal reference to evaluate the robustness of these approaches toward initial
tracking errors. The results regarding success ratio are illustrated in Table 10.1.

Both IM-XGDHP-FSF and IM-XGDHP-PO have a success ratio of 100% starting
at the trimmed condition, which implies these approaches are stable for this tracking
control problem. Thanks to the fast convergence and accurate approximation of IM,
both IM approaches outperform the XGDHP-PO which uses a model network to
approximate systemdynamics.However, it should also be noted that inmultiple cases
the success ratio is not 100%, which is mainly owing to the fact that it is arduous to
accomplish optimal PE condition due to the circular argument between PE condition,
accurate system information, and stable control policy [12]. Nevertheless, there is
still a prospect of full success and the results presented in Table 10.1 are obtained
based on current settings. The development of various aspects can benefit the stability
and improve the success ratio, such as sensor precision, exploration signal, parameter
initialization, and learning rates.
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Fig. 10.12 The structure of the actor network, where ŵa1, ŵa2, and ŵa3 are the weight matrices
to be updated. It is assumed that there are 4 system states and 3 control inputs, and the number of
neurons in both hidden layers is 10

10.3.3 Input Constraints

Saturation constraints commonly exist in aerospace systems [22], but are rarely tack-
led in the traditional optimal control because of their nonlinear nature. By incorpo-
rating ANNs, ADP acquires a more powerful generalization capability and can deal
with input constraints as well. For DT systems, the actor–critic scheme is adopted,
and an actor network is required. A bounding layer can be added to the actor output to
improve the actor network such that the outputted control command can be bounded
by the activation function of the bounding layer [12, 19] as shown in Fig. 10.12.

However, for continuous-time (CT) systems, by solving the HJB equation, the
single critic network architecture is able to perform ADP with lower computational
cost and eliminate the approximation error introduced by the actor network [23].
Different from the actor–critic architecture, where the input saturation constraints are
addressed by the bounded actor neurons, the single critic network structure ordinarily
utilizes a non-quadratic cost function, such that the control inputs derived from the
solution of the HJB equation can be bounded by a hyperbolic tangent function [23].

For the CT system (10.1), assume that u(x(t)) ∈ Ωu andΩu = {u|u ∈ R
m, |ui | <

ub, i = 1, . . . ,m}, where ub denotes the control saturating bound. For simplicity,
the input constraints are assumed identical and symmetric for each input element in
this chapter. Different and asymmetric input constraints are introduced in [22] and
[21], respectively. To deal with input constraints, a new infinite-horizon cost function
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is defined for system (10.1) as

J (x) =
∫ ∞

t
xTQx + Y (u)dτ, (10.21)

where Q ∈ R
n×n is positive semi-definite and is set to be a diagonal matrix in this

chapter, andY (u) is a positive semi-definite integrand function utilized to handle con-
trol input constraints.We chooseU (x, u(x)) = xTQx + Y (u) as the utility function,
and U (x, u(x)) satisfies U (x, u) ≥ 0 and U (0, 0) = 0. Therefore, we define

Y (u) � 2ub

∫ u

0
tanh−T(υ/ub)Rdυ = 2ub

m∑
i=1

∫ ui

0
tanh−T(υi/ub)ridυi , (10.22)

where tanh−T(·) stands for (tanh−1(·))T, and tanh−1(·) denotes the inverse hyper-
bolic tangent function, which is amonotonic odd function; R = diag([r1, · · · , rm]) ∈
R

m×m is a positive-definite weight matrix, where diag(·) reshapes the vector to a
diagonal matrix; remarkably Y (u) ≥ 0, and Y (u) = 0 only if u = 0.

The Hamiltonian and the optimal cost function J ∗(xt ) still take forms as (10.4)
and (10.3), respectively. Applying the first-order optimality condition

∂H (x, u(x),∇ J (x)) /∂u(x) = 0,

we deduce that the corresponding optimal feedback control solution is given by

u∗(x) = argminu(x)∈Ωu
H(x, u(x),∇ J ∗(x))

= −ub tanh(D
∗),

(10.23)

where tanh(·) denotes the hyperbolic tangent function, and D∗ is given by

D∗ = 1

2ub
R−1gT(x)∇ J ∗(x). (10.24)

The control input u∗ is bounded by ub, and the non-quadratic cost (10.22) evaluated
at u∗ is given by

Y (u∗(x)) = ub∇ J ∗T(x)g(x) tanh(D∗) + u2b R ln
(
1 − tanh2(D∗)

)
, (10.25)

where∇ J ∗T(x) denotes (∇ J ∗(x))T and R = [r1, · · · , rm]T. Substituting (10.23) and
(10.24) into the HJB equation produces

0 = xTQx + u2b R ln(1 − tanh2(D∗)) + ∇ J ∗T(x) f (x) (10.26)

with J ∗(0) = 0 that leads to H(x, u∗(x),∇ J ∗(x)) = 0. Since the system is CT, only
a single critic network is required to approximate the cost function J (x), and the
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bounded approximate optimal control can directly be obtained through (10.23) and
(10.24) by substituting the approximated cost function Ĵ (x).

10.3.4 Event-Triggered Control

Although time-based ADP approaches provide a mature and normative solution to
nonlinear optimal control problems, to enhance the resource utilization and reduce
the computational burden, ETC has been evolved as an alternate control paradigm
and acquiredmore attentions in recent days [21]. Originating from networked control
systems [25], ETCoriginally aims to dealwith the limitation of communication band-
width [21, 26]. A cross fertilization of ETC and ADP produces event-triggered ADP,
which has successfully been implemented for optimal stabilization of both discrete-
time aerospace systems [21] and CT aerospace systems [27]. The key attribute of the
event-triggered mechanism lies in that the control signals are updated only when a
certain condition is triggered [27]. Therefore, designing a sound triggering condition
is the principal task of ETC.

Considering the event-triggered scheme, we define a sequence of triggering
instants {sk}∞k=0, where sk satisfies sk < sk+1 with k ∈ N. The output of the sampled-
data module is x(sk) � xk for all t ∈ [sk, sk+1). Subsequently, we define the gap
function using the event error:

ek(t) = xk − x,∀t ∈ [sk, sk+1). (10.27)

Wedenote ek(t) briefly by ek hereafter. Every timewhen a certain triggering condition
is satisfied, the event-triggered state vector is updated and the event error ek is reset to
zero. At every triggering instant (instead of time instant), the state feedback control
law u(x(sk)) = u(xk) is accordingly updated. By introducing a zero-order holder
(ZOH), the control sequence {u(xk)}∞k=0 actually turns to be a piece-wise signal that
remains constant during the time interval [sk, sk+1), ∀k ∈ N. Based on the control
signal u(xk), system (10.1) takes the form:

ẋ = f (x) + g(x)u(x + ek),∀t ∈ [sk, sk+1). (10.28)

For system (10.1), with the infinite-horizon cost function represented by (10.21),
we define a triggering condition as

‖ek‖2 > ‖eThr‖2, (10.29)

where eThr denotes the threshold to be determined. The event is said to be triggered
if (10.29) is satisfied.

The methods to design a threshold for CT systems and DT systems are differ-
ent. For CT systems, the triggering threshold is designed to incorporate the ADP
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Fig. 10.13 Simple diagram of the ETC scheme incorporating the DT ADP algorithm

controller, which means the control policy is always computed although the control
input is updated based on the triggering condition. For CT systems adopting ETC
methods, the inter-execution time can be zero, resulting in the accumulation of event
times. This is the infamous Zeno phenomenon that must be avoided in the controller
design [27]. The main benefit to involve ETC is to decrease the communication cost
between the controller and the controlled system.

On the contrary, for DT systems the design of the triggering threshold can be
separated from the common control law. As presented in Fig. 10.13, only when
an event is triggered will the ADP algorithm be activated and the control policy is
computed. Therefore, not only the communication cost is decreased, but also the
computational load is saved for DT systems.

Since the triggering condition is determined independently for DT ADP, it can
have a common form. By assuming that there exists a positive constant C ∈ (0, 0.5)
such that

‖ f (xt , μ(et + xt ))‖ ≤ C‖xt‖ + C‖et‖, (10.30)

where ‖et‖ ≤ ‖xt‖, the triggering condition for DT systems can be defined as [21]

‖et‖ > eThr = C
1 − (2C)t−sk

1 − 2C
‖xsk‖. (10.31)

The effectiveness of the event-triggered ADP has been verified in an aeroelastic
system as an example for CT systems [27].With the wide usage of composite materi-
als, high aspect-ratio aircraft wing can suffer from aeroelastic instability phenomena,
including the LCOs [28, 29]. If not suppressed by active control, LCOs can lead to
structural failure and even flight accidents [30]. The schematic of an aeroelastic wing
section controlled by a single trailing-edge flap is illustrated in Fig. 10.14 [24], where
c.m. is the abbreviation of center of mass. It has two degrees of freedom: the plunge
displacement h and the pitch angle θ . In this problem, it is assumed in the undisturbed
case that the freestream is along the airfoil chord, and thus pitch angle θ is equal to
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Fig. 10.14 A two-degree-of-freedom aeroelastic system with one control surface. For additional
details on this mechanical analogy between fluttering of a wing and the connection of a wing with
a translational and torsional spring, see [24]

AOA α. The task of the controller is to stabilize the system with input constraints in
the ETC scheme and the detailed settings can be found in [27].

For presenting the advantage of theETCscheme, a time-based approach is adopted
for comparison, whose settings are exactly same as the proposed intelligent critic
control approach except for the event-triggered scheme, i.e., the time-based control
approachupdates the control input at each time instant. The simulation is conducted in
an onlinemanner, whichmeans that the control policy improves in a closed-loopway.
It can be observed from Fig. 10.15 that the convergence of the weight vector occurs
around1s,which illustrates the feasibility of online learning. The inter-execution time
is depicted in Fig. 10.16. It is worth mentioning that 800 samples are utilized by the
time-based controller, whereas the proposed event-triggered approach only requires
366 samples. Therefore, the event-triggered method reduces the control updates in
the learning process up to 54.25%, and thus improves the resource utilization.

Figures 10.17 and 10.18 present the aeroelastic system states trajectory divided
into plunge and pitch motion, respectively. It can be observed that, although the
event-triggered controller utilizes fewer data samples, the state variables eventually
converge to a small vicinity of zero without deteriorating the converge rate.

Figure 10.19 presents the control command directly generated by the controller, u
(βc). The developed event-triggered approach has an overall comparable curve to the
time-based approach. Due to the event-triggered mechanism, the control command
signal is step-wise. Nevertheless, the control command signal has to go through an
actuator and the real deflection is adequately smooth for the wing surface control.
Furthermore, the control command (incorporating exploration noise) is bounded by
the pre-designed saturation constraints, i.e., |u| < ub. Therefore, it can be concluded
that the control input constraints problem has been overcome.
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Fig. 10.15 Convergence process of the critic weights

Fig. 10.16 Evolution of the inter-execution time

The phase portraits of plunge motions are illustrated in Fig. 10.20. It appears
that the trajectories of the proposed method and the open-loop simulation almost
coincide at the beginning. This phenomenon is due to the collective effect caused by
LCOs and the initial unlearned policy and disappears quickly as the weight vector
updates. Then, all states are stabilized to a small vicinity of the equilibrium point.
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Fig. 10.17 Evolution of the plunge motion states

Fig. 10.18 Evolution of the pitch motion states



10 Adaptive Dynamic Programming for Flight Control 289

Fig. 10.19 Control command generated by the controller

Fig. 10.20 Phase portrait of the plunge motion states

The simulation results collectively verify the feasibility and the effectiveness of the
event-triggered constrained-input ADP control approach.
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10.4 Conclusions and Future Work

This chapter provided an overview of how adaptive dynamic programming has been
applied to flight control in the past 20 years. The introduction of incremental plant
models in the ADP loop has allowed fast online learning and enabled the design of
providing fault-tolerant flight control systems. Many developments have been made
to increase the convergence success rate and performance of ADP controllers, for
example, by using more advanced structures such as XGDHP (explainable global
dual heuristic dynamic programming).

There are still several challenges that have to be addressed before ADP can find
more widespread applications in flight control. For this reason, considerable effort
is continuing in developing ADP controllers with guaranteed converge properties.
These guarantees will improve safety at the cost of some flexibility in the learn-
ing strategy. An additional aspect that needs improvement concerns the learning
efficiency, i.e., how many samples of data are required to learn a good policy. For
low-level tasks, such as pitch rate or pitch angle control, the efficiency is high enough
to allow for fast online learning. However, increasing the complexity of the control
task, by adding more states and actions, can cause the learning to be too slow for
pure online learning, meaning the aircraft can lose control before a recovering policy
is learned. In these situations, a combination of offline and online learning can be
used, in order to provide some baseline control performance while the online agent
is trained.

Having addressed a control system for a single autonomous aircraft, such as ADP,
which is at the intersection between optimal control, adaptive control, and RL, the
next chapter will discuss how adaptive control can be successfully employed to
control heterogeneous systems of autonomous aircraft.
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