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Abstract— The participation of volatile wind energy in the 

generation mix of the power system is increasing. . It becomes 

crucial for system operators to accurately predict the wind power 

generation across different short term horizons. This research 

aims to investigate how different parameters of artificial neural 

networks, such as the input data, batch size, number of hidden 

layers, number of neurons per hidden layer, and the amount of 

training data, influence the short term forecast accuracy. From 

the investigated cases it is concluded that a neural network with 

two hidden layers always has the best performance. 

Furthermore, with increasing forecast horizons, better 

performance is achieved when neural networks contain increased 

neurons in the hidden layers and have enlarged training data 

sets. 

Index Terms— Wind Energy, Forecasting, Artificial Neural 

Networks, Sensitivity. 

I. INTRODUCTION 

With increasing penetration of wind generation it becomes 

essential for system operators to accurately predict the wind 

power, in order to ensure reliable and affordable supply of 

electricity. This forecasting is done across different time 

horizons. For different forecast horizons (FH) there exist 

different models: statistical models for up to 6 hours ahead 

and numerical weather prediction (NWP) based physical 

models for more than 6 hours ahead. For statistical models, 

artificial neural networks (ANN) are one of the most accurate 

techniques.  This research focuses on ANN based statistical 

models  for forecast horizons of 5, 15, 30, and 60 minutes 

ahead. The 5 minutes forecast horizon (FH 5) is useful for 

ramp forecasting, which is crucial for power systems with 

high penetration of wind generation [1][2][3]. An emergency 

event in Texas related to the wind power ramping is described 

in [4]. FH 15 and FH 60 are useful for intraday markets where 

quarter-hourly and hourly products are traded.  

The aim of this research is to investigate how the forecast 

accuracy across the different horizons is influenced by 

changes in the following parameters of the ANN: 

• Number of inputs, i.e. the historic data set (HDS): 5, 

10, 20. 

• Number of hidden layers (HL): 1, 2, 3.  

• Number of neurons per hidden layer (NHL):  100% 

(i.e. equal to the number of neurons in the input 

layer) and 50% (i.e. equal to the average of the 

neurons in the input and output layer). 

• Size of the training data set (TDS): 50% and 80%. 

• Batch size (BS), i.e. amount of observations after 

which the weighting factors are updated: 5, 10, 20. 

 

Whereas a majority of the publications investigated the 

influence of the HDS on the forecast accuracy, only some did 

analyze the impact of the HDS combined with one or more 

aspects of the ANN’s structure. In one study the influence of 

the HDS size for a single 1 hour forecast was investigated. The 

forecasting algorithm contained 1 hidden layer with 3 neurons, 

with TDS 57%. It was found that the optimum size of the HDS 

is dependent on the learning rate of the algorithm [5]. In 

another study the influence of HDS on the forecast accuracy in 

terms of root mean square error for FH 30 is presented. The 

implemented forecasting algorithm contained 1 hidden layer, 

whereas the HDS was varied from 3 to 8. It was concluded that 

the highest forecast accuracy is achieved for the ANN with 

HDS 8 [6]. In [7] the influence of HL and HDS on the forecast 

accuracy was investigated. It was found that a simple ANN 

with HDS 2 and no hidden layers performed the best in terms 

of forecast accuracy.  

The current research investigates the combined influence of 

the HDS and certain aspects of the ANN’s structure (not only 

limited to the number of HL) on the forecast accuracy for four 

different forecast horizons. 



II. RESEARCH METHOD 

As stated earlier, the aim of this research is to examine to 

what extend certain parameters and settings of the ANN 

influence the accuracy of wind power forecasts (the focus is 

not on minimizing the forecast error). This influence is 

investigated for four different forecast horizons.  

A. Artificial Neural Network 

Figure 1 illustrates the general architecture of an ANN.  
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 Fig. 1 Artificial Neural Network: General Architecture 

 

It consists of an input layer, one or more hidden layers, an 

output layer, and several synapses with their associated 

weighting factors. Each layer contains a number of neurons. 

For the input layer this can be either previous observed values 

of the wind power generation or numerical weather prediction 

data such as wind speed, pressure, and temperature. A single 

neuron in the input layer is assigned to each input variable. The 

number of neurons in the hidden layers can be chosen 

arbitrarily. An activation function is used to determine the 

weighting factors of the neurons in the last hidden layer. The 

dimension of the output layer is determined by the number of 

outputs being forecasted. Based on the objective function of the 

ANN’s optimizer, the weighting factors are updated using the 

backward propagation technique [8].  

The ANN developed for this paper is modelled in Python 

[9]. The parameters that were kept constant during the analysis 

are given in Table 1. 

TABLE I.  FIXED PARAMETERS ANN 

Parameter Value 

Epochs 100 

Activation Function 
Rectifier Linear 

Unit 

Output Layer Neurons 1 

Optimizer Adam [10] 

 

The FH for which analyses were carried out are 5, 15, 30, and 

60 minutes ahead. For these forecast horizons better accuracies 

are achieved when instead of NWP data, past observed wind 

power generation values are used as input [11]–[13]. In total 27 

cases combining several ANN parameters were investigated 

(see Appendix A). The characteristics of the Base Case are 

given in Table 2. 

TABLE II.  BASE CASE VARIABLES  

Variable Value 

HDS 10 

HL 2 

NHL 50% 

TDS 80% 

BS 10 

B. Data 

The data used for this research was retrieved from the 

WIND Prospector Toolkit of USA’s National Renewable 

Energy Laboratory and belongs to a small wind park of 16 MW 

(Site ID 8501) [14]–[17]. Observed NWP data (wind direction, 

wind speed, air temperature, surface air pressure, and air 

density) and wind active power generation data with a 

resolution of 5 minutes are available for the time span 2007–

2012. The statistical parametric t test was performed 

successfully on the data sets to determine if all the data 

belonged to the same population. 

C. Forecast Error: Mean Absolute Error 

In order to assess the influence of the variables on the 

forecast accuracy, literature provides measures such as root 

mean square error (RMSE), mean absolute error (MAE), and 

mean absolute percentage error (MAPE). For the reasons given 

in [11], [18], [19] the normalized MAE (nMAE) will be used 

as measure for the forecast accuracy. The nMAE is calculated 

as: 

𝑛𝑀𝐴𝐸 =
1

 𝑃𝑀𝐴𝑋
 
1

𝑛
  𝑦𝑖 − 𝑦𝑖𝑝  ,

𝑛

𝑖=1

 

    (1) 

where PMAX is the maximum active power generation of the 

wind farm, n is the number of observations, yi is the observed 

wind generation for instance i, and yip is the forecasted wind 

generation for instance i. 

For each of the 108 cases (27 cases per forecasting horizon), 

the ANN is trained using the data from 2007. After the 

training, the ANN is evaluated by calculating the nMAE for 

each year of data (2008 – 2012). The final nMAE reported per 

case in this paper is the average nMAE over the 5 years of that 

case. An example for case 15 for FH 5 is given in Table 3. 

TABLE III.  NMAE FOR CASE 15 (FH=5) 

Year nMAE 

2008 2.778% 

2009 2.398% 

2010 2.622% 

2011 2.442% 

2012 2.469% 



Year nMAE 

Final nMAE 2.542% 

III. RESULTS & DISCUSSION  

In Figure 2 the forecast error distribution is given for FH is 

5, 15, 30, and 60 minutes. Accuracies on the outer circle of 0.3 

need to be disregarded: the ANN in these cases did not give 

any output. From the figure it can be observed that the 

developed forecast algorithms have a low bias across all the 

investigated horizons. On the other hand, with increasing 

forecast horizon, the general trend observed is one of an 

increasing variance. Low bias-low variance algorithms are 

preferred. There is, however, always a tradeoff between the 

bias and the variance. 

 

 
Fig. 2 Error Distribution for Different Forecast Horizons 

 

In Figure 3 the nMAE of the forecasting algorithms is given 

for all the cases across the four forecasting horizons. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A. Forecast Horizon: 5 Minutes 

For this FH, the general trend observed is increasing 

forecast accuracies (i.e. a decreasing nMAE) with increasing 

dimension of the HDS. This observation is independent on 

NHL and BS. In 8 of the 9 cases, an ANN with NHL 50%  

outperforms an ANN with NHL 100%. Only with HDS 5, the 

ANN with HL 1 performs better. In all the other cases, the 

ANNs with HL 2 have a higher accuracy. The general trend is 

that with increasing dimension of HDS, cases with TDS 80% 

result in a slightly better performance. As the number of inputs 

is lower in the case with HDS 5, the ANN can be trained 

relatively better with less data. Therefore the case with TDS 

50% and HDS 5 achieves a higher performance. When 

combining the variables, the best performance is achieved for 

an ANN with HL 2, NHL 50%, HDS 5, TDS 50% and BS 20. 

The average nMAE over the 5 years is 2.54%. 

B. Forecast Horizon: 15 Minutes 

The observation is that with HDS 5, the highest accuracy is 

achieved for BS 20. With HDS 20 and BS 5 the highest 

accuracy is achieved for the case with NHL 50%. With HDS 20 

and BS 10 the highest accuracy is achieved for NHL 100%. In 6 

out of the 9 cases, an ANN with NHL 50% outperforms an 

ANN with NHL 100%. In the other 3 cases, NHL 100% results in 

a slightly lower nMAE. With HDS 5, the ANN with HL 2 

performs the best. With HDS 10, the ANN with HL 3 layers 

performs best. With HDS 20, no reliable result is achieved. For 

HDS 5, the best performance is achieved for TDS 80%. For 

HDS 10 and HDS 20, lowest nMAE achieved for TDS 50%. 

When combining the variables, the best performance is 

achieved for an ANN with HL 2, NHL 50%, HDS 10, TDS 

80% and BS 10. The average nMAE over the 5 years is 3.96%. 

C. Forecast Horizon: 30 Minutes 

In 4 out of 6 cases, HDS 10 resulted in a better 

performance. In all the cases NHL 50% outperforms ANN with  

NHL 100%. The best performance is achieved for ANN with 

HL 2. For HDS 5 and HDS 20 best performance is achieved 

with TDS 50%. For HDS 10, best performance is achieved 

with TDS 80%. After combining various values of the 

parameters, the best performance is achieved for an ANN with 

HL 2, NHL 50%, HDS 10, TDS 80% and BS 10. The average 

nMAE over the 5 years is 5.15%. 

D. Forecast Horizon: 60 Minutes 

In terms of the batch size, the best performance is achieved 

for BS 5. When HDS 5, the lowest nMAE is achieved with NHL 

100%. For HDS 10 and HDS 20, NHL 50% results in a higher 

accuracy. When varying the number of hidden layers, it is 

observed that an ANN with HL 3 outperforms ANNs with HL 

2 or HL 1. Also, with increasing HDS, a higher TDS leads to 

increased accuracy. The overall best performance, when 

combining the various parameters, is achieved for an ANN 

with HL 2, NHL 100%, HDS 5, TDS 80% and BS 5. The 

average nMAE over the 5 years is 6.15%. 

 

The variables for the best performing ANN for each FH are 

given in Table 4. 

TABLE IV.  VARIABLES OF BEST PERFORMING ANN 

FH Case HL NHL BS TDS HDS nMAE 

5 15 2 50% 20 50% 5 2.54% 

 
Fig. 3 Forecast Performance across Four Different Forecast Horizons 

 



FH Case HL NHL BS TDS HDS nMAE 

15 0 2 50% 10 80% 10 3.96% 

30 7 2 50% 20 80% 10 5.15% 

60 18 2 80% 5 80% 5 6.15% 

 

From the 27 investigated cases per forecasting horizon, it can 

be concluded that the best performance is achieved when the 

neural network contains two hidden layers, independent of the 

forecast horizon. Furthermore, with increasing forecast 

horizons, better performance is achieved when the neural 

networks contain increased neurons in the hidden layers and 

have enlarged training data sets. 

IV. CONCLUSIONS  

The aim of this research was to investigate to what extend 

certain parameters and settings of an artificial neural network 

influence the accuracy of wind power forecasts across four 

forecast horizons: 5, 15, 30, and 60 minutes ahead. The results 

presented in this paper are based on 27 specific cases for each 

of the four forecast horizons. From these investigated cases it is 

observed that with increasing forecast horizons the variance of 

the forecast accuracy is increasing, whereas the bias remains 

low. 

 Furthermore, it can be concluded that the best performance 

is achieved when the neural network contains two hidden 

layers, independent of the forecast horizon. Furthermore, with 

increasing forecast horizons, better performance is achieved 

when neural networks contain increased neurons in the hidden 

layers and have enlarged training data sets. The influence of 

the batch size and the historic data size on the forecast 

accuracy are dependent on the structure of the artificial neural 

network.  

As the influence of several parameters on the forecast 

performance is now known, an optimization of the most 

influencing parameters can be carried out with the aim to 

minimize the forecast error. 
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APPENDIX A 

 
Case HDS HL NHL BS TDS 

0 (Base Case) 10 2 50% 10 80% 

1 5 2 50% 10 80% 

2 20 2 50% 10 80% 

3 5 2 50% 5 80% 

4 10 2 50% 5 80% 

5 20 2 50% 5 80% 

6 5 2 50% 20 80% 

7 10 2 50% 20 80% 

8 20 2 50% 20 80% 

9 5 3 50% 20 80% 

10 10 3 50% 20 80% 

11 20 3 50% 20 80% 

12 5 1 50% 20 80% 

13 10 1 50% 20 80% 

14 20 1 50% 20 80% 

Case HDS HL NHL BS TDS 

15 5 2 50% 20 50% 

16 10 2 50% 20 50% 

17 20 2 50% 20 50% 

18 5 2 100% 5 80% 

19 10 2 100% 5 80% 

20 20 2 100% 5 80% 

21 5 2 100% 10 80% 

22 10 2 100% 10 80% 

23 20 2 100% 10 80% 

24 5 2 100% 20 80% 

25 10 2 100% 20 80% 

26 20 2 100% 20 80% 

 

 

 

 

 

 

 

 

 

 

 


