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SUMMARY

This report is concerned with developing a theoretical

calculation method for the three-dimensional interaction between

a laminar boundary layer and & shock wave, in the case when a

constant transverse velocity is imposed, parallel to the shock

plane,

The phenomenon is studied on an adiabatic - axi-sym-

metric body consisting of & hollow circular cylinder with a

flare. The transverse velocity is

generated by the rotation of

the body about its axis of symmetry which is aligned in the

main flow direction.

The calculation procedure is derived from the two=-

dimensional integral method of Lees and Reeves., The required

relationships between boundary layer integral properties are

obtained from similar solutions of compressible axial flow on

a rotating cylinder,

It has been established
transverse velocity of 10% of the
a reduction of static pressure in
about 2%. This result agrees with
made at M = 2,21, On the basis of

using this theory that a
main flow velocity produces
the interaction region of
wind tunnel measurements

this agreement, theoretical

predictions are made for interactions with larger transverse

velocities . It is founa that, when the transverse velocity

reaches 100% of the main flow velocity, a 10% increment in

pressure is predicted.
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INTRODUCTION

The phenomenon of shock wave-boundary layer interac=-
tion is frequently encountered on high-speed vehicles (eir
intakes, flaps, etc.). In hypersonic flow the boundary layer
is often laminar and therefore sensitive to the impingement
of & shock wave., Regions of separated flow are formed which
modify appreciably the distributions of surface pressure and

heat transfer,

Shock wave=boundary layer interactions are generally
three-dimensional in character, and therefore complex to study.
Theoretical and experimental work has thus tended to concen-
trate on the two-dimensional problem, The two-dimensional
theory hes reached an advanced stage 13233:%:5, and a large

body of experimental results is available ®»'»°,

Only recently, attention has been turned to cases of
more practical interest, The important problem of three-dimen=-
sional interactions in corners has been treated %, The analysis
of the flow on & lifting surface fitted with a fin (see sketch)

is also very interesting. The inter=-

FIN A action between the swept, normal

shock wave and the boundary layer
on the lifting surface is purely
—————— three-dimensional, The present

study is concerned with interactions

having certain important character-

BOUN DARY LAYER
LIFTING SURFACE

istics in common with this type

of interaction.

As a first approximation, it is possible to resolve
the main stream velocity into its two components u and v, normal
and parallel to the shock surface. In fact, it is possible to
approach the general three-dimensional problem by the study
of interactions produced on a flat plate of infinite span,
fitted with a trailing edge flap and placed in sweep to the

undisturbed stream (fig. la). The use of such a model in a wind




tunnel presents serious difficulties because of end effects,

which are particularly large in separated flows,

For this reason we have proposed and constructed, for
the experimental part of this research 10, an apparatus consis-
ting of a body of revolution upon which a transverse velocity
is produced by spinning the model about its axis of symmetry,
which is aligned with the undisturbed stream, Thus, by analpgy
with the classic two-dimensional flat plate-ramp configuration,
we have used a model consisting of a hollow circular cylinder
followed by a flare (fig. lc).

In the present report, a theoretical study is made of
the effect of a constant transverse velocity upon the interac-
tion phenomenon, for the purpose of comparison with experimental
results, This is en extension.to the case with spin of the theore-
tical study by Horton !l of interactions on a fixed hollow

cylinder-flare configuration,

The method presented here is based on the two-dimen=
sional integral approach of Lees and Reeves 1, as more recently
improved by Klineberg 3, The former method was programmed for
an IBM 1130 computer by Gautier 12, this programme having been
later adapted by Riethmuller !3 according to Klineberg's modi=-
fications, Horton !! later transformed this programme to treat
interactions on axi-symmetric bodies without spin. We here

develop the necessary modifications to treat the case with spin,

The first section of this report develops the equations
governing interactions with constant transverse velocity. The
choice of coordinate system is diecussed and the basic boundary
layer equations are presented. The transformation of these basic
equations to final integral form is discussed., Also, similar
solutions for flow over a spinning cylinder are derived, which
are used to calculate relations between parameters occuring in

the integral equations governing interactions,



The method of numerical solution of the integral
equations is discussed in the second section, We briefly
discuss the method of calculation of the axi-symmetric external

inviscid flow established by Horton !!, based upon the second-

order shock.-expansion method of Syvertson and Dennis 1“,
which is directly applicable in the present case, Initial and
final conditions for the integration of the equations are disw-
cussed, the initial conditions being derived from the analytic
solution for weak interaction with spin given by Horton 29 in
an accompanying report, We finally recall the iteration and

interpolation procedures,

The results of some calculations by the method are
presented and discussed in the third section, They are firstly
compared with calculations of Horton for the case of & fixed
model, and the predicted effect of transverse velocity is noted.
Comparison with measurements made without and with spin exhibit
similar qualitative behaviour and the same order of magnitude
effects., The theory is then used to predict the effect of

larger transverse velocities than were obtained experimentally.



l. ANALYSIS

l.1 The basic equations

We discuss in this paragraph the reasons for the
choice of the coordinate system used to write the equations
governing boundary layer development on a spinning axisymmetric
body. The analogy between the energy equation and the momentum
equation for the flow in the circumferential direction is shown.
The relation existing between the temperature and the velocity
components in the boundary layer is deduced, for the adiabatic
case,

l.1.1 Choice_of coordinate_system, and

the basic equations
As for interactions on two-dimensional and non-

spinning axi-symmetric bodies, we assume that the general

boundary layer eguations, derived from the concept of Prandtl,

are applicable in the case of separated as well as attached

flow.

The three-dimensionel boundary layer equetions are
often written in an orthogonal curvilinear coordinate system
along and normal to external streamlines, Cooke and Hall 15

discuss the use of this system in detail,

In the present case, it is how=-
ever simpler to use orthogonal axes
fixed in space as shown in the dia-
gram (cf., Mager !5), such that s is

measured along a generator, y is

the circumferentiesl transverse co=-
ordinate and z is measured normal
to the surface, The corresponding

velocity components in the boundary

layer are u, v, w respectively, v



being the transverse velocity component due to the rotation

of angular velocity Q. rw(x) is the local radius of the body.

The system of boundary layer equations in this

system of axes is, for Prandtl number Pr = 1 :

l, Continuity equation

-5; (pr u) + aa_z (pr ) = 0O (1)

2, Axial momantum equation

—_—

dr
du du 2 W 3p 3 du
mm—m— P st @n e =2 - emmnam P,
piu s b z rw ds 9s * 92 (“ z) (2)

. Transverse momentum equation

v v v
a(r : WM e o (=, )) (3)
32 3z 3z
. Energy equation
9H oH! _ 0 9H M
pIu s tw A 92 (“ az) (k)
The boundary conditions are
. oH
z =0, u=w=20, v = Qr and H = H_ or =— =0
w W 92
(5)
Z > °, u -+ u v - 0 and H - H = C T + = u?
. e’ e p e 2 e
5 . . 22__
According to the boundary layer approximation, T 0 so that

%% = %% s, Whilst by symmetry, derivatives with respect to y
9
— = ),

are zero (ay )

The assumption has been made that the boundary layer
thickness, 6, is small compared with the local body radius, T
Thus transverse curvature effects are neglected, and r = T

throughout the boundary layer.,




The flow on such a body has been studied by
Illingworth 17, Chu and Tifford !8 and Schlichting !9,

l.1.2 ﬁelpiign_bgtiegn_tsmgezaﬁuze_agd_vglgpijl

Chu and Tifford !® have pointed out the similarity
between the equations of y-momentum (3) and of energy (4), A

particular solution of the energy equation has the form
- 1 2..2 ' '
H CPT + 3 (u¢+ve) = K, + K, r av (6)

' -
where K; and K2 are constants, From the outer boundary condi=

tion (5), it follows that

Kl = He
In the case of an adiabatic wall considered here
(25 = 0) we may find K; simply, since
w
9T oV '
c, (33) =0 (ra 57 (x,-1)) (1)

where C_ is taken to be a constant., Hence, unless (%%) = 0,

which is not of practical importance, we have

(u?=u2-v2+2r Qv)
e w

2C. T
P €

or using perfect gas relations

- 2 2 2r Qv
e w14 Lok Ne? {1e AL o X (8)
T ) 5 y
e ue ue

T is the static temperature, M is the Mach number and the

suffix e refers to conditions in the external isentropic flow,



In the case of zero rotation (9 = v = 0) this reduces

to the well-known Busemann integral,
Relation (8) will be used, in conjunction with the
perfect gas law, to relate density to velocity in the boundary

layer, as will be seen in section 1.2,

1.2 Mathematical treatment of the equations

The similarity, pointed out in the preceding section,
between the equations of y-momentum and energy suggests that,
for the calculation of an interaction on an adiabatic spinning
model, one may calculate the transverse momentum by a method
similar to that used by Klineberg to solve the energy equation

in the non-adiabatic two-dimensional case,

The problem will thus be treated by the simultaneous

solution of four differential equations:

l. The axial momentum equation,

2. The transverse momentum equation,

3. The axial moment-of-momentum equation,

4L, The equation coupling the boundary layer and external
inviscid flows,

The axial moment-of-momentum equation is obtained by multiplying

equation (2) by 2u to give:

dr du
2pu2 a_u + 2puw a—‘i - 2puv2—l— .4 = 2up u ——s' + 2u i‘ (u '8'2)
98 9z rw ds e e ds 0z z

(9)
This equation is necessary only when the system of
equations is cast into integral form, by integration across

the boundary layer with respect to z, as we shall do.

The coupling eguation, first used by Crocco and
Lees 20, simply equates the inclination to the wall of the
external inviscid flow, © , to the slope of a streamline at
the edge of the boundary layer, and is obtained by integration

of the continuity equation from z = 0 to § :



*
ve dss %* d
tan® = E: ol (6—65) T (1npeuerw) (10)

However, using the same reasoning as Ref, 11, we neglect the
last term to give

as™

= = teno (11)
so that the slope of the external flow is put equal to the
displacement surface slope., This is the coupling equation used
by Horton !! for the case of zero spin, and is applicable with=
out modification to the case with spin since the external
flow relations are not affected by spin, and the effective dis-

placement thickness is the axial component 6:.

The calculation of interactions on a spinning body
thus requires the solution of four basic equations (2), (3),
(9) and (11). The method of solution is similar to that ori=-
ginally conceived by Lees and Reeves ! for the two-dimensional

case, Diagram 1 shows schematically the steps of a calculation.

We shall describe the principal steps in the second
section, The mathematical developments which follow are given

in detail in ref, 21,

Equations (2), (3) and (9) are integrated across
the boundary layer from z = O to §(x), the outer boundary
layer edge, and the w-component of velocity is eliminated
using eq. (1). The coupling equation, (11), is already in

integral form. The resulting integral equations are

l., Axial momentum integral equation

du dr

2 w 9u
+ peue(es+e =y (=)

) = .
y'r, ds w 9z

d 2 %
ds (peuees) ™ 6speue ds

(12)
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2. Transverse momentum integral equation

d 2 2 1 W av
ds (peueesy) * epeueesy I‘w ds = uw(az)w (13)

3. Axial moment-of-momentum integral equation

L (5 ule®) + 2(6%-5_ )p u? Efﬁ + p ud(e™+20® ) L. T
ds pe e 8 5 u pe e ds pe e s sy rw ds

é

2
= 2 J u(3)” az (14)

0
L, Coupling equation
d6: ve
e = ™ = tan® (15)

8
6: = J (1- pﬁ ) dz - axial displacement thickness
Pete
0
§ u
Gu = f (1- E_) dz - axial velocity thickness
e
0
6 u u
o = J (1- E—) —EE— dz - axial momentum thickness
e Pele
0
v?2 i
6 = LI az = transverse momentum thickness
y 0 u2
0 e e
4

f
" J UV _ 4. - ¢cross momentum thickness
0
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J 2
6: = J § T —3%— dz - axial kinetic energy thickness
u2  Pele
0 e
2
G:y = [ £EZ_ ax - cross kinetic energy thickness
0 peue

l.2.2 Ergngfgrgpg.sqgaiigps

In the original theory of Lees and Reeves ! the
integral equations are written in the 'incompressible plane'
(8,2) with the aid of the Stewartson 22 transformation, That
is, the transformed equations had exactly the same form as
those corresponding to an incompressible flow. It is, however,
more convenient to leave the s-ordinate untransformed, The
Stewartson scalings applied to the velocity u and the normal

ordinate z are then

a P, a_
dZ = —— dz and U = = u (17)
a_pn, a
e
8, U,
In the external flow we then have Ue = = » 80
that the axial velocity ratio remains invariant: €
U u
e @

. . . . v . . .
Likewlise, the transverse velocility ratio vo 18 invarliant under
0

the transformation, where vy = ar .

In addition to relations (17) and (18) we use the

Chapman viscosity law

"] T

el (19)
and the perfect gas law

P = pRT (R = cp-cv).
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Since under the boundary layer approximation %& = 0, this

relation gives

LI -3 (20)

We may combine equations (20) and (8) to give the

relation between density and velocity. In transformed variables

this 1is
P 2 l+m 2
e U 2 e v v
—=1+m (1- =) + Kim_ (se==](2 il =~} (21)
U © v
e 0
vhere m_ = Isi Me2 m = 1z 2 (21a)
e 2 % 2 ©
Yo
and K; = =— is the spin paremeter, where vo = Qr_ (21vb)
Using the above relations, equations (12) to (15)
become:

1. Transformed axial momentum integral equation

g 851 . x am . %55 ame
Fe * fei @s v (2RI (2- N 5t T
*
M 6 . dr
_ BC o si W
- = . ik {3 +K338 _} I (22)
si
2. Transformed transverse momentum integral equation
as®. aR 8% am
¥ XLy s*® _BY 4 g oy = =
sy ds y1 ds sy Me ds
#
M P 6 . dr
_ _BC © ¥ si W
R Me Y 3a{syﬁﬁ r ds (23)
5 w
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3. Transformed axial moment-of-momentum integral equation

as™ s
si * dJ ; si dMe
J ds f 6si ds * {3J+2K2(2&st-sz)UL} Me ds
gC ¥, :i ar,
= . e R - {J+2K3sz§(} T @5 (24)
Gsi
4, Transformed coupling equation
as™®, as™, g 8%, a
si yi ¥ 4dR si dMe _ yx.gs*.
F= * Fy ds ' %si T (f+fy?C) Me ds °yi G
*
M § . dr
BC © . 81 W
= R Me b= 2Fyut T ds (25)
s*. w
si
o Pole
with B = =% R 2 — %,
wPo o * M si
- sl

K, and K3 are, like K;, spin parameters being defined by

m 29 l+me
l+m KL s Ky = m B (26)

Ky, =

The transformed integral thicknesses are defined by

6 8.
: 8 X
® _ U U, U
S 5 = J (1- 5-)dz, o ; = J (1- 5=) 7~ 42
e e e
0 0
8 ,
6%, = J [ 1ss Se) wie a2
sl 2° U
U e
0 e
8, 85
2
s*. = J 2 a3z, o_.= I I az (27a)
yi Vo ¥yi v2
0 0 0
8. 84
* U v ® 0 _ U v2
syi = U Vo el syi U 2 4=
e 0 e v}
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whilst the ratios between these quantities are defined by

9 . f
y ] i B> &1
g, jﬂy 6*. aﬁsy ol
81 yi yi
(27v)
o™ s®. o
J = — M = 2 -
ox. il 8Y  o*
81 sl yi
Also
a(u/u,) a(v/vg)
P = - Py=- P
a(z/asi) . a(z/cyi) .
(27¢c)
S .
i {a(u/u.)
8.3 ’ a(z/asi)
m
o G fomie I £k i = K, (3X=L)(2-
f ae(l+me =5 +2) + 255 1 KZ(Y_; )(2 1ty).
‘&Q 14+m
F = F =K - a
f ;= Ka(2-%) (274)
R F
6 1l+m
si Me 1 e
h = -C——ﬁ-‘:a (1“%) Lane

The set of four first-order ordinary differential
equations (22) to (25) may be solved if uni-parametric femilies
of profiles of U/Ue and v/vy are assumed, when the four un=-
knowns become G:i’ Me, a, b, where a and b are the profile

parameters,

We assume, following Lees and Reeves 1 that 'similar
solutions' of the Falkner-Skan 23 type (see section 1.3) of
the basic equations (1) to (4), including lower branch reversed

flow solutions of the type found by Stewartson 24 give an
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adequate representation of the relationship between integral
quantities., Again following Lees and Reeves, the profiles are
'unhooked'! from the Falkner-Skan pressure gradient parameter 8,
whilst, in a manner analogue with Klineberg's 3 treatment of
the nonadiabatic two-dimensional case, the axial and transverse

(a and b) profiles are decoupled from each other,

The axial velocity profile parameter, a, is defined

by
B(U/Ue)
a = 3137327 for attached flow (28a)
a w
and
a = gL for separated flow (28b)
i -
U/Ue-O

The transverse velocity profile parameter,b, is
defined in a similar way to Klineberg's enthalpy profile para=-

meter, and is, for both separated and attached flow

B(V/Vo)
LTS b e7c ) LE8
w
where n is the value of the Falkner-Skan ordinate at the

«99
boundary layer edge.

The quantities defimed in equations (27b) and (2Tc)
may be expressed as polynomials in the variables a and b, 80

that ® = H (a), aey = aey(b), -Aesy = '&Lsy(a,b), P = P(a),

aR
- a¥ _ d#, da vy _ 4%y, db
Py Py(b)’ etc. Also 'a_s_ = (da )(-d-s'). db = (db )(ds)’ eth

For numerical integration by, for example, the Runge-
Kutta method, the system of equations (22) to (25) in the

variables 6‘., Me, a and b may be put in the form
si
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as*., wm,;
S1
emcmm——
ds D
x da Y2
6 s — e
s1 ds D
(30)
# db 3
6 L e ]
g1 ds D
g% dinMe _ N
si ds D
with
N1 = D1CT + D3C9 + B2CS5
N2 = D1C1l0 + B2C3 = D5C9
N3 = B1Cl - D2C10 = B3C3 = DLCT + BLCS5 + D6C9
N4L = - B2Cl - D3C1l0 + D5CT
D = D1C1l + D3C3 + D5C5
with and
Bl = ayub3 - a34by aj; = &
adl
B2 = ay3bz = az3by a12 = 3a
B3 = ayybs agoby a;13 =0
B4 = a3by ay1b3 ayy = (23(+1)+K2(2-'&%,)5(,
Cl = ajja22= &81282] a1 = J
_ dJ dast
C3 = a11824 ajuyaz] 822 * R da
C5 = ajy832 = 812824 a3 = 0
CT = az3b) ajoby apy = 3J+2K,(2T7;-T;)a(a)
C9 = azyb; a14b2 a3; = a(a)T
da aT,
Cl0= aj;by az1b; a3 = T, E— + a(a) 3:-
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D3
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and

a(a),

&3384y =
azzayy =
a3z28y3 =
agléyy =
&31843 =

azjéay2 =

KP = Qbj)
KR = Qbyy
KP_ = Qb

y Qb3

Kh = Qbyy

BC_ _=
- Me
§.
si

azuay3

azyay

azzéay?

&3u8y]

&338y]

azzay]

3
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&33

a3y

ay ]

ay2

&y 3

ayy

with

AT,
= ole) 75—
= ala) T; (= a3;)
= F F
4 yﬂ(
- da , a¥
B Fyo(b) da | da
do dde
= Fya(a) e - K3ﬁtasx
= f f
+ y&(
= ¥ + K3ﬂ%ﬂ£
= J + 2K3T2u(a)
= 3T;a(a)
= 2F X
yU( (31)
6*. dr
si W
r ds
W

o(b), T;(a,b) and Ty (a,b) will be defined in the

following chapter,

1.3 Similar solutions for a spinning cylinder =

Polynomials

1.3.1 The similar solutions

We use, to relate the coefficients in equations (22)

to (25), the 'similar solutions' (i.e., solutions depending

on a single variable n) for axial flow on a hollow spinning

circular cylinder., This procedure again follows the approaches

of Lees and Reeves ! and of Klineberg 3 for related problems,
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The boundary layer equations for flow over a spinning
circular cylinder are given by equations (1) to (L) with r, =
constant, With this condition they are then identical to those
obtained by Crabtree 23 for a swept infinite wing. Only the

boundary conditions are different,

The equations for self-similar boundary layer flow

on the spinning cylinder of Falkner-Skan type, are 21 ;

£ 4 £f" 4 g(1-f'240(2g=-g2)) = O
(32)
g" + fg! = 0

for an external velocity distribution in the Stewartson plane
of the form U = clsm, where S is the transformed axial ordi=-
nate, B is related to the exponent m by B = 2m/m+l, Primes
indicate ordinary differentiation with respect to the simila-
rity variable n defined by

m+1, 172

Ue
n o= (= =) Z (32a)

whilst f(n) is directly related to a stream function y given by

2 1/2
v(s,z) = (VmUeS‘Tzﬁ) £(n)

such that f' = %% « The function g(n) is defined as g = ﬁ%.

and the boundary conditions are

n = 03 f =f' =0, g =1
(33)
n > o f' > 1, g+ 0

The quantity w appearing in the first of equations (32) is

defined by

= (X=1) M2
w ( s ) M,
Vo 1/2
where Mg = =— , and a, = (yRTt) / % (34)

t

Tt being the total temperature of the isentropic external flow.
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In the case of incompressible flow, w =+ O and the
axial profile f', determined from the first of equations (32),
becomes independent of the transverse profile g, Coupling
between the axial and transverse flows thus only occurs when

compressibility effects are important.

The system (32), with the boundary conditions (33),
has been solved numerically for a range of values of 8 and u.
The computer programme used was derived fromthat given by
Klineberg for the calculation of similar solutions for two=-
dimensional flow with heat transfer, The IBM 1130 computer at

VKI was used,

The boundary conditions are given at two 'points' =
three conditions are known at the wall n = 0, and two at the
exterior of the boundary layer n + =, To solve the 5th order
system, numerical integration starting at n = O is made using
estimates for (f”)n=o E f: and (8')n=0 = g;, and these values
are iterated to satisfy the known outer boundary conditions

£f'(e) » 1, g(=) » 0,

Figure 2 shows f; and g; as functions of B for various
values of w. Figure 3 shows velocity profiles for various values
of B and w. The effect of rotation (w) on the f' and g profiles
for a value B = 2,0 is similar in nature to the effect of sweep
for B = 1,0 shown by Reshotko and Beckwith 26, That is, for
large rates of spin (w = 0,23 and 0.,64) ¥ we observe an over-
shoot in the axial velocity profile (f' > 1) in the outer part
of the boundary layer, Cohen and Reshotko 27 observed the same
effect in the case of a heated surface. They give the physical
explanation that when the wall is strongly heated, the density
in the boundary layer is reduced and the fluid is accelerated
more rapidly than in the exterior, Reshotko and Beckwith 26
give the same explanation for the overshoot which they observe,

remarking that the additional heating is produced by the trans-

* For the experimental conditions considered here (rw = 10 cm,

R 300°K), these values of w correspond to 40 and 60x103 RPM,

Values of RPM quoted henceforth refer to these conditions,
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verse wall stress, If this explanation is accepted, it is ap=-
plicable also in the present case,

1.3.2 Calculation of polynomial functions

The polynomials in a, b, and (a,b) representing the
integral quantities defined by relations (27b) and (2Tc) are
calculated by & curve-fit procedure resembling that used by
Klineberg 3, starting with a sufficient number of similar
solution values, both for attached and separated flows., To
each value of B there correspond two similar solution.profiles,
f' and g, and two parameters a and b characterising these
profiles (section 1,2.,2). Knowing these profiles, we may cal=

culate 3, 3Qy, etc., for each value of a and b,

We note that the variables n and Z are related by a

factor of proportionality suech that

(cf eq. (322a))

We therefore have that

n, 99
J (1-£')f'dn
K =

(1-£')dn

0
I".se
0




N, 99
when é{y = %-I g2 dn and ¥ = ag
0
Similarly the quantities éﬁsy(a,b) and sz(a,b) mey be expressed

as
By T,
oy " v T Vs
N,99 N .99
where T, = J fg dn, and T, = J rg? dn (3ka)
0 0

The functions'ﬂ!a),‘ﬂ%(b) and T;(a,b) are shown in
figures ba, b and c. The continuous line indicates the poly=-
nomials (attached and separated) resulting from the curve=fits
for w = ,0045, whilst the open circles indicate the discrete
points obtained from the similar solutions, For this small
rotational speed, the polynomial of ¥ (a) is almost identical
with that of Klineberg for zero heat transfer, The curves of
T;(a,b) are analogous to those of Klineberg (T(a,b)) with
wall cooling (Klineberg's T is not défined for zero heat
treansfer), This resemblance is explained by the fact that the
f' profiles are almost identical in the two cases, and the
transverse velocity profiles and enthalpy profiles resemble

each other if the boundary conditions are suitably transformed,

The full circles on figures 4a, b, and ¢ represent
discrete similar solution values for a large transverse flow
velocity (w = 0,64, 2 = 60,000 RPM)., We note that the points
lie very close to the polynomials established for small trans<
verse velocity. Thus, although the effect of large rotation
is to modify, for example, both ¥ and a to a marked extent,
for a given value of B, nevertheless the functional relation
between ¥ and a remains almost unchanged. This property of
the equations has been explained analytically in ref., 28,
where it is shown that a change in w has precisely the same
effect as a related change in B, when B is small, Specifically,
profiles with spin w and pressure gradient B; are identical
with zero spin profiles with pressure gradient B, with B; =

B/(1l+w)., Numerically, it is found that for largér values of B
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this relation is modified by a multiplicative factor depending

upon B. Only for highly accelerated flows does the equivalence

break down,

This result enables a
in the interaction calculations

nomials need only be calculated

0), and can then be used in

w =

considerable simplification
to be made, in that the poly=-
for one value of w (e.g.,

interaction calculations for

arbitrary w. This eliminates the inconvenience of the method

of Klineberg for the case of heat transfer, in which it was

necessary to recalculate the polynomials for each value of

wvall enthalpy ratio required.,
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2, SOLUTION OF THE INTERACTION EQUATIONS

2.1 Calculation of the external inviscid flow

The coupling equation, (25), contains the angle 0
(by virtue of the definition of h), which is defined as the
inclination of external flow streamlines to the surface, This
angle must be related to the Mach number in the external flow

by some suitable method.

In the two dimensional case the Prandtl-Meyer rela=-
tion is used., In the present axisymmetric case this relation
is not valid, Horton !! derived, for the case of interactions
on an axisymmetric body without spin, an inverted form of the

second order shock-expansion method of Syvertson and Dennis 1%,

The calculation of the external inviscid flow over
a spinning axisymmetric body is directly derived from that
without spin. Infact, the external flow relationships are not
affected by body spin, and the effective displacement thickness

is 6: (the axial component), as mentioned in section 1l.2.

A detailed description of this method is given in
ref., 11, The validity of the method is shown in fig., 5, where
a comparison is made with measurements obtained using a 10°
flare, of radius rc = 100 mm, The good agreement indicates the

precision of this simple approximate method.

2,2 Initial conditions for the numerical integration

In order to solve the system of equations (30) gover-

ning an interaction, it is necessary to know initial values
*

Bio
downstream step-by=-step integration.

of the independent variables (3§ , Meg, ag, bp) to start

In the two dimensional case, Klineberg 3 has given

analytic expressions for 6:10‘ Meg, ag, derived by series

expansion of the interaction equations, for both strong and
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weak self=induced interaction on a flat plate, These expres=
sions are used at some point s = s; , the start of the main
interaction, as initial conditions to calculate interactions

induced by ramps or impinging shocks.

Horton !1, in the case of an axisymmetric body
without spin, used the two dimensional weak-interaction expres-
sions of Klineberg. It was shown that this neglect of axi=-
symmetric effects upstream of the main interaction is unim-

portant when the body radius is sufficiently large.

In the present case, the additional initial value
by is required, which does not exist in the two dimensional
and zero-spin axisymmetric cases, Furthermore, the transverse
flow modifies the axial flow parameters, However, we may
assume that for small rates of spin the effect of the transverse
flow upon the axial flow is weak, Thus in the case of similar
solutions for flow over a spinning cylinder (section 1.2,3)
the coupling between the two flows occurs, in equations (32),
through & term proportional to w. For small spin (Q = 5000 RPM)
this parameter is small (w = 0,0045), Its effect is therefore
weak, and its influence upon the weak interaction should be
of analogous importance. Hence, for initial conditions with
small spin, it should be possible to use those for the non-spin
* Me,

si?
and a, The transverse rofile parameter b msay be taken, as a
]

case (i.,e., Klineberg's two dimensional values) for §

first approximation, to have its zero pressure gradient

(Blasius') value (bg = b since the weak interaction expan=-

B)'
sion is an expansion about this condition, This value is given
by the similar solutions with B = O, The use of these initisl
values gave good results for small spin rates, as we shall

see in section 3.

This procedure is not sufficiently accurate when the
spin rate becomes large (w 2 O+l)s Then it is necessary to
derive the full weak interaction expansions, starting with the
general equations (22) to (25). This calculation has been

carried out by Horton 29, Equations (22) to (25) were first
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written in terms of & new independent variable ;, the well=-

known hypersonic interaction parameter, and a non-dimensional

exial displacement thickness A (= R

M (=Me/M_) were introduced, This led to the system (8) to (11)

. ;/Mic) and Mach number

S .
si

of ref, 29, Following a similar procedure to that of Kubota

and Ko 30, Horton then assumed expansions about the Blasius

point of the form

Myt

AWI = 60(1"‘1111;"'.00).

= + 81X * oo
aWI 30 a'lX + .

b bo"‘bl-x-“' LI )

WI

1l + m1;+ mz-x-z"' LI Y

(35)

where 63, ag, by are the values for ; + 0 (zero pressure

gradient 'Blasius' values), and WI indicates 'weak interaction',

After substitution of

interaction integral equations,

and identification of powers

of X, Horton obtains the coefficients

§g = 1.733, ap =

(y=1) (1+m_)
/2

m = - -
uM (M2-1)
(-] (-]

where mj,
m )
a; = (1+Kz)a;jm,

where aj;

1.633, bp = 0.4TO;

2 2
((1+&)myy + (14K5+ 2)m,)

oo

= R 60 = 0.662,

560 =l-733'

- (1-:l) /(&R _ 1Ry __

= (1- X ($ 3 - F da)B 3.630

these expansions into the weak
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61 = (d11(1+Kp)=Ky)my,
where dll =2 + (—;- g—z-) aj1 = 2.111.
B
1l da
6! + (; E-S.-)B &1 * leh 61 + 0.’418.1 + leu
oL 1l “E 1l do ) 2.294
(=t -G N
y B B
n, = "o 1 2
= = ’
l-!-muD 2(M2~l) 1

recalling that m_, K; and K, are defined respectively by (21a),

m
=3-l 0
(21b) and (26), and where K, ;%T— T:E:

The numerical velues quoted were derived from the
polynomials for small spin but, using the arguments of section

l1.3.2, are equally valid for arbitrary values of spin,

The substitution of these coefficients into the
system (35) enables one to calculate the initial conditions,
for X corresponding to Sgp, the start of the interaction, neces=-
sary for the integration of system (30)., It was thus possible
to calculate the interaction on a cylinder-flare model spinning

at @ = 60,000 RPM, corresponding to w = 0,6L4,

2+3 Iteration and interpolation procedures

The system of equations (30), integrated numerically
with the initiel conditions discussed in section 2,2, exhibits
a strong instability, as in the two dimensional and zero=-spin
axisymmetric cases, As the sketch (next page) shows, & solu=
tion of either type I (expansion) or type II (compression)
results, the latterbeing the type of present interest, In
order to obtain solutions of the desired type, it is neces-

sary to slightly perturb the initial weak-interaction values
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Meg, 6%. , ag and by, as described by Ko and Kubota 3% and

sio

Klineberg 3, Horton 2% has derived the form of the perturba-

tion using an analysis similar to that of Ko and Kubota. The

expressions for the perturbed variables are :

Me = Meo(l+Pls] where Py =ﬁ£0(%%—0 - Jg
G:i = 5:i0[1+(1>2+x<f(p2+?1))ej, P, = 3Jo-(23€0+1)(g§-e_)0,
(36)
a = ao(l+P3(l+Ki')e). Py = Jo(l-éco)/(dea)o.
2 - @ o (B#+py) +P, ﬁa—:a&)
b = bo[l+Pq(l+K1)e). P, = TR0,
b

Here, the suffix 'o' indicates the weak interaction solution
values calculated for the value of ; corresponding to the

value of sy chosen,
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It is necessary to iterate for sy and ¢ to obtain
the solution satisfying the boundary conditions far downstream,
as indicated in section 2.,3.,2. The iteration procedure is
identical to that described by Riethmuller and Ginoux !3 for
the two dimensional case, An initial value of ¢ = =10-3 is
generally suitable, and the position of the start of inter=-
action 8y is iterated to the third decimal place, Then s is
held constant and further iteration carried out by changing e.
The exact procedure is not critical, because the same solution
may be obtained by different combinations of € and sy, Thus,
referring to the diagram above, starting at s = 801 we may
obtain solution 'e;' or 'e,' depending upon the value of €3
the same solution €, may be obteined starting at s = soz using

1
a value €, # €.

The calculations presented here were carried out

using perturbations applied to Meg, 5= and a according to

the two dimensional scheme of Ko and ;;gota 31 whilst keeping
by unperturbed. The rigourous perturbation equations for flow
with spin, equations (36), which were later derived, reduce

to these relations for K? = 0, P, = O, This simplified proce=
dure enabled smooth starting of the integration to be made,
but necessitated a doubling of the perturbation € for large
spin rates. The errors introduced into the final results are
completely negligeable, However, in future calculations the

full scheme (36) should be used,

2.3.2 Downstream conditions and interpolation

According to the correctness of the combination of
sg and ¢ for a particular solution in the iterative procedure,
the solution may or may not pass through a reattachment; in
either case a solution is obtained of either type I (expan-
sion) or type II (new compression). Values of s; and € which
are too large lead to type I solutions, anP values which are
too small to type II. A series of tests on a, O, G:i and Me
allow the determination of the type of solution being generated,

so that sy or € may be suitably modified for the next iteration,
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These tests are described in detail for the two dimensional
case by Riethmuller '3, whilst Horton !! has established the
tests necessary for thezero-spin axisymmetric case. The latter

may be used in the present case without modification.

When the iteration procedure has resulted in two
solutions of opposite type which follow each other closely
until some distaence downstream of reattachment, an interpola-
tion procedure between solutions similar to that described by
Riethmuller !3 for the two dimensional case is used to con=-
tinue the numerical solution as far downstream as desired,
8till using the seame tests to reject solutions as soon as

divergence becomes evident,



- 2O -

3. RESULTS AND DISCUSSION

The computer programme for the solution of the system
of equations (30) was derived directly from the zero-spin pro=-
gramme of Horton 11, which was itself developed from the pro-
gramme for two dimensional adisbatic interactions written by
Riethmuller 13, The details of this basic programme are given
in ref, 13, We simply remark that it is written in Fortran IV,

for use on the IBM 1130 computer of the von Karman Institute,

In the following section we shall discuss the nume-
rical results showing the influence of a transverse flow upon
an interaction and we shall compare these predictions with

measurements,

3.1 Effect of a weak transverse flow

upon the interaction (9 = 5000 RPM)

Figure 6 shows the predicted effect of & weak trans-
verse flow upon the static pressure distribution in regions
of interaction. The pressure is plotted as a function of x,
the axial ordinate, in the non-dimensional form (p-peo)/pm,
where peO is the static pressure at the start of interaction
(x9), and p_ is the static pressure of the undisturbed super=-
sonic stream, This form has been adopted in order .to eliminate,
as far as possible, errors due to the choice of reference
pressure 10,
The interaction for the conditions shown in fig. 6a
has been verified to be laminar !0, The flare causing separa-
tion has an angle of 7.,5° and is placed at an axial distance
of 60 mm from the leading edge. The stagnation pressure is
100 mm Hg and the circumferential velocity of the surface is
about 10% of the free stream velocity. For the latter condi=-
tion the cylinder constituting the upstream part of the model,

of radius 100 mm, must turn at 5000 RPM,
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The transverse flow has a weak effect upon the
pressure distribution in the interaction. It tends to reduce
the general level of surface pressure, The effect is most
pronounced in the separated flow region., The relative pres-
sure increment, A(p/p_)/(p/p_), due to spin at the cylinder

flare junction is about 1 %.

The positions of the separation and reattachment
points are almost unaltered by the spin, and the influence
of spin upon the position of the start of interaction cannot

be discerned,

Figures 6b and 6c show results of calculations for
two other configurations, the flare being positioned at LO and
80 mm from the leading edge, and the stagnation pressure
remaining unchanged, The effect of spin is similar, in trend

and amplitude, to that in the first case.

3.2 Comparison between theory and experiment

(9 = 5000 RPM)

Figures Ta and Tb show comparisons between the
results of calculations by the present method and experimental
results previously published by Leblanc and Ginoux !0, The
7.5° angle flare was situated respectively at 60 and 80 mm
from the leading edge (Ta and Tb), whilst the stagnation
pressure was equal to 100 mm Hg. The symbols represent the
values obtained experimentally, those for Q@ = 5000 RPM indi=-
cating measurements corrected for the centrifugal forces
acting upon the air in the pressure leads, The continuous
and dashed lines represent the pressure distribution calculated

theoretically.

The theoretical prediction of the effect of the
transverse flow upon the pressure distributions shows a varia-
tion in the same direction and of similar amplitude to that
observed experimentally. The pressure is reduced, as a result
of spin, particularly in the vicinity of separation and reat-

tachment,
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The validity of the theory is thus established for
the case of small transverse velocities and, since no res=-
trictive assumptions concerning the magnitude of the trans-
verse velocity have been made in the theory, we may use it to
predict the effect of transverse velocities larger than those
obtained experimentally, Some results are given in the follo-

wing section.
In order to complete the experimental work reported
in ref, 10, we have carried out some tests for the transi-

tional regime. The principal results are given in the Appendix,

3.3 Effect of large transverse flow velocity

Having shown that the polynomial functions used in
the theory are universally applicable, whatever the value of
the spin parameter w provided that it is not greater than
about unity (the upper limit has not been determined), we
can calculate interactions for different magnitudes of trans-
verse velocity simply by solving the system of equations (30)

with various values of the parameter K;.

Figure 8 shows the effect, predicted by the theory,
of large transverse velocities upon the pressure distribution
in an interaction., The variation of (p-peo)/p°° is shown as a
function of x for Py ™ 100 mm Hg, The trensverse flow is pro=-

duced by spin rates of 5, 30 and 60x103 RPM,

The effect of spin rates of 30 and 60x103 RPM is
in the same direction as for 5x103 RPM, but increased in
magnitude., For @ = 30x103 RPM, the magnitude is about L% at
the cylinder flare junction and also of the same order in
the region of the pressure peak, For Q = 60x103 RPM, the
effect becomes very marked - of the order of 5% at separation
and 10% at reattachment., The redistribution of pressure due
to spin, and therefore the change in loading on the flare,

is considerable,
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Figure 9 shows the trajectories of the variables
a(x), b(x), 6:i(x) of equations (30) for @ = 0,5 and 60x103 RPM,
§ = 7.5°, L = 60 mm and p, = 100 mm Hg, (The fourth variable
Me(x), is represented by p(x) in fig. 6a for the same condi-
tions). The general form of the curves is similar {(except for
b(x)) with that obtained and discussed in detail by Lees ad
Reeves ! for the two dimensional case, The transverse velocity
profile parameter b has a variation similar to that of the

enthalpy profile parameter b used by Klineberg 3.

We note the discontinuities in slope of the curves
at the cylinder-flare junction, where © is discontinuous,
Also,gﬁis discontinuous at separation mand reattachment because

of the difference in definition of this parameter in attached

and separated regions,

From the curve of a(x), it will be seen that sepéra-
tion is retarded and reattachment advanced by the large spin,
Also, for Q = 60x10% RPM, the slope of G:i is considerably re=-
ruced by the spin, which explains the marked reduction in

pressure observed in fig. 8.



CONCLUSIONS

The partial differential equations governing boun-
dary layer flow upon a rotating body of revolution in axial
flow have been examined, The similarity between the transverse
(y) momentun equations and the energy equation leads to a
relation, analogous to that of Busemann, between the static
temperature and the velocity components u and v in the boun-

dary layer.,

This similarity furthermore suggested that the
problem of laminar boundary layer - shock wave interactions on
such rotating bodies might be solved by a method similar to
that used by Klineberg for the calculation of two dimensional
interactions with heat transfer, when the energy equation must
be solved, To this end, the boundary layer equations have been
put in 'integral' form, and have been simplified by means of

a compressibility transformation similar to that of Stewartson,

The coefficients occuring in these equations have
been established in the form of polynomial functions of two
parameters a and b characterising the velocity profiles u and
ve To establish these polynomials, 'similar'solutions' for
boundary layer flow on a spinning circular cylinder have been
calculated, It was found that these polynomials are, to a
very close approximation, independent of the spin parameter w,
This is in contrast with the case of heat transfer treated by
Klineberg, in which case it is necessary to calculate the

set of polynomials for each value of the wall enthalpy ratio.

The initial conditions for the integration were either
the two dimensional adiabatic values of Klineberg (plus b equal
to its zero pressure gradient value), in the case of small spin
rates, or those calculated by Horton for a spinning cylinder,

in the case of large spin rates,

This theory has enabled the effect of a transverse

flow upon an interaction to be predicted, Cases were chosen
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in which the interaction was known to be entirely laminar,

For moderate transverse flow velocities (Q = 5000 RPM) the

effect is weak. In general, rotation causes an
tion in pressure in the interaction region, of

1 to 2% for @ = 5000 RPM,

Comparison with experimental results

overall reduce=

the order of

obtained in a

complementary study shows that the measured effect of spin is

in the same direction and of similar amplitude. This agreement

demonstrates the validity of the present method of calculation,

It is therefore possible to use the theory to predict the

effects of larger spin ratio, impossible to achieve with the

existing model,

Such calculations were made for spin
and 60x103 RPM. The trend observed at 5000 RPM
amplified, The relative pressure increment due
the regions of separation and reattachment, is

30x103 RPM and 10% at 60x103 RPM,

ratio of 30
is considerably
to spin, in
about 3% at

For the largest rate of spin, separation is retarded

and reattachment advanced,
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APPENDIX - EFFECT OF TRANSVERSE FLOW UPON
A TRANSITIONAL INTERACTION

The results of the theory developed in this report
have been compared with measurements obtained previously by
the first and last authors !0, It was verified that the inter-
actions in these tests were fully laminar, the theory being

applicable only under this condition,

It was desired to complete these measurements by
examining the influence of a transverse flow upon a transitional
interaction. It was known !0 that, without spin, the effect
of change of Reynolds number is of opposite sense according
to whether the interaction is laminar or transitional, Would

the effect of rotation, also, be in the opposite sense ?

The tests were carried out with the 10° flare
positioned at 40 mm from the leading edge, a configuration
wvhich produces the two types of flow (laminar or transitional)

according to the unit Reynolds number 21,

Figure Al shows the effect of rotation upon the
pressure in the interaction region when the unit Reynolds
nunmber of the free stream is small (corresponding to Py =
9T.2 mm Hg). We note that the transverse flow produces the
same "laminar" trend observed for the 7.5° E¥lare (fig. 6a),

with a general reduction in pressure level,

The same experimental configuration has been tested
at a higher Reynolds number (corresponding to Py = 172.6 mm
Hg). The results are shown in fig., A2, The effect of rotation
is now to increase the level of pressure in the region of
separation, This trend is thus opposite to that observed in

the laminar case,

This result has been confirmed by repeating the tests
for the transitional interaction, the 10° flare being placed

at 60 mm from the leading edge. The same result was found,




Figure A3 shows the same effect when the flare has

an angle of 15°, for L = 60 mm,

In conclusion, it appears that the destabilizing
effect of spin upon the boundary layer produces changes in
pressure near separation in opposite directions depending
on whether the interaction is laminar or transitional.

Changes of Reynolds number have a similar effect,
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