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SUMMARY 

This report is concerned with developing a theoretical 

calculaûon .method for the three-dimensional interaction between 

a laminar boundary layer and a shock wave. in the case when a 

constant transverse velocity is imposed. parallel to the shock 

plane. 

The phenomenon is studied on an adiabatic ' axi-sym­

metric body consisting of a hollow c~rcular cylinder with a 

flare. The transverse velocity is generated by the rotation of 

the body about its axis of symmetry which is aligned in the 

main flow direction. 

The calculation procedure is derived from the two­

dimensional integral method of Lees and Reeves. The required 

relationships bet ween boundary layer integral properties are 

obtained from similar solutions of compressible axial flow on 

a rotating cylinder. 

It has been established using this theory that a 

transverse velocity of 10% of the ma in flow velocity produces 

a reduction of statie pressure in the interaction region of 

about 2%. This re sult agrees with wind tunnel measurements 

made at M = 2.21. On the basis of this agreement. theoretical 

predictions are made for interactions with larger transverse 

velocities • It is found that. when the transverse velonity 

reaches 100% of the main flow velocity. a 10% incr."nt in 

pressure is predicted. 
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INTRODUCTION 

The phenomenon of shock wave-boundary layer interac­

tion is frequently encountered on high-speed vehicles (air 

intakes, flaps, etc.). In hypersonic flow the boundary layer 

~s of ten laminar and therefore sensitive to the impingement 

of a shock wave. Reaione of leparated flow ar~ formed which 

modify appreciably the distributions of surface pressure and 

heat transfer. 

Shock wave-boundary layer interactions are generally 

three-dimensional in character, and therefore complex to study. 

Theoretical and experimental work has thus tended to concen­

trate on the two-dimensional problem. The two-dimensional 

theory has reached an advanced stage 1,2,3,4,5, and a large 

body of experiment al results is available 6,7,8. 

Only recently. attention has been turned to cases of 

more practical interest. The important problem of three-dimen­

sional interactions in corners has been treated 9. The analysis 

of the flow on a lifting surface fitted with a fin (see sketch) 

is also very interesting. The inter­

action between the swept. normal 

shock wave and the boundary layer 

on the lifting surface is purely 

three-dimensional. The present 

study is concerned with interactions 

having certain important character­

istics in common with this type 

of interaction. 

As a first approximation, it is possible to resolve 

the main stream velocity into its two components u and v, normal 

and parallel to the shock surface. In fact, it is possible to 

approach the general three-dimensional problem by the study 

of interactions produced on a flat plate of infinite span, 

fitted with a trailing edge flap and placed in sweep to the 

undisturbed stream (fig. la). The use of such a model in a wind 
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tunnel presents serious difficulties because of end effects. 

which are particularly large in separated flows. 

For this reason we have proposed and constructed. for 

the experimental part of this research 10. an apparatus consis­

ting of a body of revolution upon which a transverse velocity 

is produced by spinning the model about its axis of symmetry. 

which is aligned with the undisturbed stream. Thus. by analpgy 

with the classic two-dimensional flat plate-ramp configuration. 

we have used a model consisting of a hollow cjrcular cylinder 

followed by a flare (fig. lc). 

In the present report. a theoretical study is made of 

the effect of a constant transverse velocity upon the interac­

tion phenomenon. for the purpose of comparison with experimental 

results. Thls is en extension . to the case with spin of the theore­

tical study by Horton 11 of interactionson a fixed hollow 

cylinder-flare configuration. 

The method presented here is based on the two-dimen­

sional integral approach of Lees and Reeves 1. as more recently 

improved by Klineberg 3. The former method was programmed for 

an IBM 1130 computer by Gautier 12. this programme having been 

later adapted by Riethmuller 13 according to Klineberg's modi­

fications. Horton 11 later transformed this programme to treat 

interactions on axi-symmetric bodies without spin. We here 

develop the necessary modifications to treat the case with spin. 

The first section of this report develops the equations 

governing interactions with constant transverse velocity. The 

choice of coordinate system is diecussed and the basic boundary 

layer equations are presented. The transformation of these basic 

equations to final integral form is discussed. Also. similar 

solutions for flow over a spinning cylinder are derived. which 

are used to calculate relations between parameters occuring in 

the integral equations governing interactions. 
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The method of numerical sol ut ion of the integral 

equations is discussed in the second section. We briefly 

discuss the method of calculation of the axi-symmetric external 

inviscid flow established by Horton 11. based upon the second­

order shock · ~expansion method of Syvertson and Dennis 1~. 

which is directly applicable in the present case. Initial and 

final conditions for the integration of the equations are dis­

cussed. the initial conditions being derived from the analytic 

solution for weak interaction with spin given by Horton 29 in 

an accompanying report. We finally recall the iteration and 

interpolation procedures. 

The results of some calculations by the method are 

presented and discussed in the third section. They are firstly 

compared with calculations of Horton for the case of a fixed 

model, and the predicted effect of transverse velocity is noted. 

Comparison ~~ measurements made without Bnd with spin exhibit 

similar qualitative behaviour and the same order of magnitude 

effects. The theory is then used to predict the effect of 

larger transverse veloeities than were obtained experimentally. 
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1. ANALYSIS 

1.1 The basic equations 

We discuss in this paragraph the reasons for the 

choice of the coordinate system used to write the equations 

govern1ng boundary~yer development on a spinning axisymmetric 

body. The analogy between the energy equation and the momentum 

equation for the flow in the circumferential direction is shown. 

The relation existing between the temperature and the velocity 

components in the boundary layer is deduced. for the adiabatic 

case. 

1.1.1 Choi~e_o! ~o~r~i~ale_szsle~._a~d 

the basic ~~ali~n~ 

As for interactions on two-dimensional and non-

sp inning axi-s~mmetric bodies. we assume that the general 

boundary layer equations. derived from the concept of Prandtl. 

are applicable in the case of separated as well as attached 

flow. 

The three-dimensional boundary layer equations are 

of ten written in an orthogonal curvilinear coordinate system 

along and normal to external streamlines. Cooke and Hall 15 

discuss the use of this system in detail. 

z,w In the present case. it is how­

ever simpler to use orthogonal axes 

fixed in space as shown in the dia­

gram (cf. Mager 15), such that s is 

measured along a generator, y is 

the circumferential transverse co­

ordinate and z is measured normal 

to the surface. The correaponding 

velocity components in the boundary 

layer are u, v. w respectively. v 
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being the transverse velocity component due to the rotation 

of angular velocity n. r (x) is the local radius of the body. 
w 

The system of boundary layer equations in this 

system ofaxes is, for Prandtl number Pr • 1 : 

1. Continuity equation 

a (pr u) + .l... (pr w) :: 0 
as w oZ w 

2. Axial momantum equation 

p G :~ + w 
au 
oZ 

2 dr~ v w 
-~-r ds 

w 
= -

3. Transverse momentum equation 

a(r v) 
= ..L (~ w) 

az oZ 

4. Energy equation 

The boundary conditions are 

z = o. u = w = 0, v = 

z -+ 00. u -+ u • e 
v -+ 0 

nr w and 

and 

H :: H or 
w 

aH 
- = 0 az 

H -+ H 
e = C T 

P e 

(2 ) 

(4 ) 

According to the boundary layer approximation, ~ = 0 so that oZ 
~ = ~dd , whilst by symmetry, derivatives with respect to y 
as s Cl 
are zero (ay = 0). 

The assumption has been made that the boundary layer 

thickness, ö, is small compared with the 10cal body radius, 

Thus transverse curvature effects are neglected. and r ~ 

throughout the boundary layer. 

r 
w 

r • 
w 



- 6 -

The flow on such a body has been studied by 

Illingworth 17. Chu and Tifford 18 and Schlichting 19. 

Chu and Tifford 18 have pointed out the similarity 

between the equations of y-momentum (3) and of energy (4). A 

particular solution of the energy equation has the form 

H = C T + 1 (u 2+v2 ) K' + K' r OV p 2 = 1 2 w (6 ) 

, , 
where Kl and K2 are constants. From the outer boundary condi-

tion (5). it follows that 

K' = H 
1 e 

In the case of an adiabatic wall considered here 
(_aH -_ 0) .'. az we may f~nd K2 s~mply. since 

w 

where C is taken to be a constant. Hence. unless 
p 

which is not of p r actical importance. we have 

K' = 1 
2 

Then we may put relation (6) in the form 

T 1 
Te = 1 + 2C T 

P e 

or using perfect gas relations 

2r Ov w 

(u) az • o. 
w 

(8 ) 

T is the statie temperature. M is the Mach ' number and the 

suffix e refers to conditions in the external isentropic flow. 
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In the case of zero rotation (n = v = 0) this reduces 

to the well-known Busemann integrale 

Relation (8) will be used, in conjunction with the 

perfect gas law, to relate density to velocity in the boundary 

layer, as will be seen in section 1.2. 

1.2 Mathematical treatment of the equations 

The similarity. pointed out in the preceding section, 

between the equations of y-momentum and energy suggests that, 

for the calculation of an interaction on an adiabatic spinning 

model, one may calculate the transverse momentum by a method 

similar to that used by Klineberg to solve the energy equation 

in the non-adiabatic two-dimensional case. 

The problem will thus be treated by the simultaneous 

solution of four differential equations: 

1. The axial momentum equation, 

2. The transverse momentum equation, 

3. The axial moment-of-momentum equation, 

4. The equation coupling the boundary layer and external 

invisc id flows. 

The axial moment-of-momentum equation is obtained by multiplying 

equation (2) by 2u to give: 

This equation is necessary only when the system of 

equations is cast into integral form, by integration across 

the boundary layer with respect to z, as we shall do. 

The coupling equation, first used by Crocco and 

Lees 20. simply equates the inclination to the wallof the 

external inviscid flow, 0 , to the slope of a streamline at 

the edge of the boundary layer, and is obtained by integration 

of the continuity equation from z = 0 to ó 
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tanG (10) 

However, using the same reasoning as Ref. 11, we neglect the 

last term to give 

(11) 

so that the slope of the external flow is put equal to the 

displacement surface slope. This is the coupling equation used 

by Horton 11 for the case of zero spin, and is applicable with­

out modification to the case with spin since the external 

flow relations are not affected by spin, and the effective dis­

placement thicknes8 is the axial component ö:. 

The calculation of interactions on a 8pinning body 

thus requires the solution of four basic equations (2), (3), 

(9) and (11). The method of solution is similar to that ori­

ginally conceived by Lees and Reeves 1 for the two-dimensional 

case. Diagram 1 shows schematically the steps of a calculation. 

We shall describe the principal steps in the second 

section. The mathematical developments which follow are given 

in detail in ref. 21. 

Equations (2), (3) and (9) are integrated across 

the boundary layer from z = 0 to ó(x), the outer boundary 

layer edge, and the w-component of velocity is eliminated 

using eq. (1). The coupling equation, (11). is already in 

integral form. The resulting integral equations are 

1. Axial momentum integral equation 

1 
r 

w 

dr 
w -= ds 

(12) 
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2. Transverse momentum integral equation 

-dd
S 

(p u 2 e ) + 2p u2e 1 
e e sy e e sy rw 

dr 
w -= de 

3. Axial moment-of-momentum integral equation 

J
ó a 2 = 2 ~ (~) dz az 

o 
4. Coupling equation 

dÓ· 
s -= ds 

v 
e = tan9 

u e 

The boundary layer integrals are defined as follows 

( 13) 

(14 ) 

pu ) dz 
Peue 

- axial displacement thickness 

o 

(1- JL) dz 
u e 

ov 2 
~dz 

P u 2 
e e 

{ê 
e = J ~ dz 

sy P u 2 
o e e 

- axial velocity thickness 

- axial momentum thickness 

- transverse momentum thickness 

- cross momentum thiçkness 
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- axial kinetic energy thickness 

puv 2 
dz 

P U 3 
e e 

- cross kinetic energy thickness 

o 

In the original theory of Lees and Reeves 1 the 

integral equations are written in the 'incompressible plane' 

(S.Z) with the aid of the Stewartson 22 transformation. That 

is. the transfo~med equations had exactly the same form as 

those corresponding to an incompressible flow. It is. however. 

more convenient to leave the s-ordinate untransformed. The 

Stewartson scalings applied to the velocity u and the normal 

ordinate z are then 

dZ 
a 

Ol) 

and U = - u a e 

a u 
In the external flow we then have U = ~ e 

that the axia1 velocity ratio remains invariant: 
a e 

U tr= 
e 

u 
u 

e 

• so 

(18) 

v Likewise. the transverse velocity ratio - is invariant under va 
the transformation. where Va = nrw. 

In addition to relations (17) and (18) we use the 

Chapman viscosity law 

L c T (19) = T }JOl) Ol) 

and the perfect gas law 

p = pRT (R I: C -C ). p v 
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Since under the boundary layer approximation ~~ = o. this 

relation gives 

(20) 

We may combine equations (20) and (8) to give the 

relation between density and velocity. In transformed variabIes 

this is 

Pe U2 
K

2 m 
l+m v 2 

(1- (l+m
e

)(2 
v 

= 1 + m -) + - - -) 
P e U2 1 CD vo 2 

CD v o e 

(21) 

where m = y-l Me 2 m = cl M
2 

e 2 CD 2 CIO 
(21a) 

and Kl 

v o the spin where flr = ~s parameter, vo = 
u w (21b) 

CD 

Using the above relations, equations (12) to (15) 

become: 

1. Transformed axial momentum integral equation 

ó
H

• dr 
s~ w 

r 
w 

dB 

2. Transformed transverse momentum integral equation 

d~ ó~ 
_....;;.s y.. + àe.. IJ( ~ dMe 

ds sy Me ds 

- 30{ '1{ sy 

ó
H

• dr 
s~ w r-ds-
w 

(22) 

(23) 
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3. Transformed axia1 moment-of-momentum integra1 equation 

= ec 
R 

Ö
H

• Sl. 

cS H. dr 
Sl. w 

r dB 
w 

4. Transformed coup1ing equation 

BC M co 

= -R Me 
ö 11 • 

Sl. 

a ePe 
with B = R 

a ... p ... 
, 

K2 and K3 are, 1ike 

K2 , 

h -

OH. 
Sl. 

Kl. 

OH. dr 
2F Ij( 

Sl. w 
y r ds 

W 

P"" u 
"" H = cS •• 

lJ ... Sl. 

spin parameters 

l+m 

m 
e 

e K2 

being defined 

The transformed integra1 thicknesses are defined by 

ö
H

. Sl. 

ó . 

J l.(1_ U 
= U-)dZ. 

e 
0 

ell
. Sl. 

ó. 

J 
1 V 

= dZ. Va 
o 

ó. 

= J l. U: 

a 

v 
- dZ. Vo 

e 

o . 

J 
l. 

:a 

0 

o. 

J 
l. 

U U 
= (1- -) si U U e e 

0 

U2 U (1- -) dZ 
U

2 U e e 

dZ 

o . 
eH . 

syl. = rg
e 

:; 
a 

dZ 

dZ 

(24) 

by 

(26) 

(27a) 
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whilst the ratios between these quantities are derined by 

dt= 
e . 

Sl -
ö H

. 
81 

eH. 
81 

J :-

Also 

6
11

• 
Sl 

p = ~:~~~=: 1 

e . 
= J2:. 

6 H
. yl 

ö . 

~ ~2 2 
I 

1 eH u/u ) 
R = 

O(Z/6: i ) 
dZ 

6H
. 81 0 

m 3x-l f = de.. (~ 1.!l +2) + l' l+m X-l x-e 

l+m 
F <1t e 

= +- • m e 

R 
611

• 1 
l+m 

h 
Sl Me 

(l+m
e

) tan0 = --
C M m 

ClO e Ol) 

'ät sy = 

(27b) 

(27c) 

K2 (3x;:l)( 2- at. ). f = Y x- Y 

F K3 (2-~) (27d) = y 

The set of four first-order ordinary differential 

equations (22) to (25) may be solved it uni-parametric ramilies 

of profiles of U/U and vivo are a88umed. when the four un-
e 

H known8 become 6 .• Me. a. b. where a and bare the profile 
Sl 

parameters. 

We assume. following Lees and Reeves 1. that 'similar 

solutions' of the Fa1kner-Skan 23 type (see section 1.3) of 

the basic equations (1) to (4). including lower branch reversed 

flow solutio~of the type found by Stewartson 24. give an 
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adequate representation of the relationship between integral 

quantities. Again following Lees and Reeves, the profiles are 

'unhooked' from the Falkner-Skan pressure gradient parameter e, 
whilst, in a manner analogue with Klineberg's 3 treatment of 

the nonadiabatic two-dimensional case. the axial and transverse 

(a and b) profiles are decoupled from each other. 

The axial velocity profile parameter, a, is defined 

by 

~ j a (u/u ) 
a = HZ/ó:> w 

for attached flow (28a) 

and 

a = [~]U/Ue=O for separated flow (28b) 

The transverse velocity profile parameter,b, is 

defined in a similar way to Klineberg's enthalpy profile para­

meter, and is, for both separated and attached flow 

b = -°. 99 [~::~;:~v 
where n.

99 
is the value of the Falkner-Skan ordinate at the 

boundary layer edge. 

The quantities defined in equations (27b) and (27c) 

may be expressed as polynomials in the variables a and b, so 

that <1t= dt(a). ~ ="ät (b), ~ = -at. (a.b). p:a P(a), y y sy sy 

d~ __ (d~) da) d'àt y __ (d'dey)(_db) 
Py = Py(b). etc. Also ds ~ (di' db db ds' etc. 

For numerical integration by, for example, the Runge­

Kutta method. the system of equations (22) to (25) in the 
ti variables Ó ., Me. a and b may be put in the form 
sJ. 
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dÖ·, NI 
Sl. -- D ds 

6·, d& N2 
- = 

Sl. ds D 

ö·, db N3 _ a 

D Bl. ds 

ö·, atnMè N4 
= D Sl. ds 

with 

Nl = DIC7 + D3C9 + B2C5 

N2 = DICIO + B2C3 D5C9 

N3 = BICl - D2CIO - B3C3 - D4c7 + B4C5 + D6c9 

N4 = - B2Cl - D3CIO + D5C7 

D = DICl + D3C3 + D5C5 

with &nd 

Bl = &44 b 3 &34 b 4 &1 1 = de.. 

B2 = &43 b 3 &33 b 4 &12 
dil - = -d& 

B3 = &42 b 3 - &32 b 4 &13 = 0 

B4 = &31 b 4 - &41 b 3 &14 = (2~+1)+K2(2-1l)~ Y 

Cl = &11&22- & 12 &21 &21 = J 

C3 = &11&24 &14&21 &22 = 
dJ dOt.. 
irn.dä 

C5 = a 14 &2 2 &12&24 &23 = 0 

C7 = &22 b 1 &12 b 2 &24 = 3J+2K2 ( 2T 1-T2)a(a) 

C9 = &24 b 1 - &14 b 2 a31 a:: a(&)T1 

~+ 
aTl 

CIO= &11 b 2 - a21 b 1 &32 = Tl a(& ) ~ d'à. 



- 16 -

= a(a) 
aT l 

a33 ab Dl = &33 a 44 - a34 a 43 

D2 = a32 a 44 - a34 a 42 a34 = a(a) Tl (= a3l) 

a41 = F+F'j{, y D3 = &32 a 43 a33 a 42 

F o(b) da dä{ 
a42 = - + da' y da D4 = a3 1 a4 4 &34 a 1t1 

d~ do 
a43 = F a(a) - - K3'j(~ 

Y db D5 = a3l a 43 - a33 a 41 

a44 = f + fX 
Y 

D6 = a31 a 42 - a32 a 41 

and with 

Qbll bll = àt+ K3~~ 

b22 = J + 2K3T2a{a) 

b33 = 3Tlll{a) 

b44 = 2F t;K y 

K and Q being defined by 

K = SC M"" 
~Më 
~JI. 
s~ 

tE 
Ö • dr 
S~ w 

Q = -;:- dB 
w 

a{a), o(b), Tl{a,b) and T2{a,b) will be defined in the 

following chapter. 

1.3 Similar solutions for a spinning cylinder 

Polynomials 

(3l) 

We use. to rei&te the coefficients in equations (22) 

to (25), the 'similar solutions' (i.e., solutions depending 

on a single variabIe n) for axial flow on a hollow spinning 

circular cylinder. This procedure again follows the approaches 

of Lees and Reeves 1 and of Klineberg 3 for rel&ted problems. 
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The boundary layer equations for flow over a spinning 

circular cylinder are given by equations (1) to (4) with r • w 
constant. With this condition they are then identical to those 

obtained by Crabtree 25 for a swept infinite wing. On~y the 

boundary conditions are different. 

The equations for self-similar boundary layer flow 

on the spinning cylinder of Falkner-Skan type, are 21 

(32) 

g" + fg' = 0 

for an external velocity distribution ~n the Stewartson plane 
m of the form U = CIS , where S is the transformed axial ordi-e 

nate. a is related to the exponent m by a = 2m/m+l. Primes 

indicate ordinary differentiation with respect to the simila­

rity variable n defined by 

Ue m+l 1/2 
n = (;-8~) Z (32a) 

m 

whilst f(n) is directly related to a stream function ~ given by 

~(S,z) 

such that f' = ~ • The function g(n) is defined as g = :0' 
and the boundary conditions are 

n = 0; f = f' = O. g = 1 
(33) 

f' ~ 1, g ~ 0 

The quantity w appearing in the first of equations (32) is 

defined by 

(34) 

Tt being the total temperature of the isentropic external flow. 
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In the case of incompressible flow, w + 0 and the 

axial profile f', determined from the first of equations (32), 

becomes independent of the transverse profile g. Coupling 

between the axial and transverse flows thus only occurs when 

compressibility effects are important. 

The system (32). with the boundary conditions (33), 

has been solved numerically for a range of values of 8 and w. 
The computer programme used was derived nomthat given by 

Klineberg for the calculation of similar solutions for two­

dimensional flow with heat transfer. The IBM 1130 computer at 

VKI was use d. 

The boundary conditions are given at two 'points' -

three conditions are known at the wall n = 0, and two at the 

exterior of the boundary layer n ~ ~. To solve the 5th order 

system. numeri cal integration starting at n = 0 is made using 

estimates for (f") 0 ~ r" and (g') 0 ~ g', and these values n= w n= w 
are iterated to satisfy the known outer boundary conditions 

f'(~) ~ 1. g(~) ~ O. 

Figure 2 shows f" and g' as functions of 8 for various w w 
values of w. Figure 3 shows velocity profiles for various values 

of 8 and w. The effect of rotation (w) on the f' and g profiles 

for a value 8 = 2.0 is similar in natura to the effect of sweep 

for 8 = 1.0 shown by Reshotko and Beckwith 26. That is. for 

* large rates of spin (w = 0.23 and 0.64) we observe an over-

shoot in the axial velocity profile (f' > 1) in the outer part 

of the boundary layer. Cohen and Reshotko 27 observed the same 

effect in the case of a heated surface. They give the physical 

explanation that when the wall is strongly heated. the density 

in the boundary layer is reduced and the f1uid is accelerated 

more rapidly than in the exterior. Reshotko and Beckwith 26 

give the same explanation for the overshoot which they observe. 

remarking that the additional heating is produced by the trans-

* For the experimenta1 conditions considered here (r = 10 cm. 
w 

Tt = 300 0 K), these va1ues of w correspond to 40 and 60xl0 3 RPM. 

Values of RPM quoted henceforth refer to these conditions. 
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verse wall stress. If this explanation is accepted. it is ap­

plicable a180 in the present case. 

The polynomials in a, b. and (a.b) representing the 

integral quantities defined by relations (27b) and (27c) are 

calculated by a curve-fit procedure resembling that used by 

Klineberg 3, starting with a sufficient number of similar 

solution values. both for attached and separated flows. To 

each value of 8 there correspond two si~ilar solution ~profiles. 

f' and g. and two parameters a and b characterising these 

profiles (section 1.2.2). Knowing these pro,iles. we may cal­

culate ot., 'ät , etc. for each value of a and b. 
Y 

We note that the variables n and Z are related by a 

factor of proportionality suah that 

dn = dZ .!l 
Z 

(cf eq. (32a)) 

whence 

ö . 

6*. 
J 

~ U Z = (1- -) dZ = 
s~ U n e 

0 

6 . 

I ~ U U e . = (l- -) U dZ 
s~ U e e 

0 

We therefore have that 

I
n 99 

• {l-f')f'dn 
o 

~= 

I
n .99 

o 

where Cl = 

{l-f' )dn 

1 

= 

= 

rn.99 
~ ( l ... r') dn 

J

n.99 
Also put cr = g dn 

o 

n .99 

J (l-f' ) dn 

0 

n.99 
Z J (J.-f t )t'dn 
n 

0 

J
n.99 

Cl {l-f' )f'dn 

o 
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n .99 

"hen -at y :a ~ f g2 dn a n d 'j(. • Qa 

0 

Similarly the quanti ties ~ (a.b) and J (a.b) may be expressed sy sy 
as 

Tl T2 
ät sy = - J 

:I: _ 

• a • sy a 

n .99 n .99 

"here Tl 0:: I fg dn. and T2 :I: J fg 2 dn (34a) 

o 0 

The functions "át( a). 'ä),(b) and Tda.b) are sho"n in 

figures 4a. band c. The continuous line indicates the poly­

nomials (attached and separated) resulting from the curve-fits 

for w = .0045. "hilst the open circles indicate the discrete 

points obtained from the similar solutions. For this small 

rotational speed. the polynomial of ä(a) is almost identical 

"ith that of Klineberg for zero heat transfer. The curves of 

Tl(a.b) are analogous to those of Klineberg (T(a.b» with 

"all cooling (Klineberg's T is not dëfined for zero heat 

transfer). This resemblance is explained by the fact that the 

f' profiles are almost identical in the t"o cases. and the 

transverse velocity profiles and enthalpy profiles resembIe 

each other if the boundary conditions are suitably transformed. 

The full circles on figures 4a, b. and c represent 

discrete similar solution values for a large transverse flo" 

velocity (w = 0.64, n = 60,000 RPM). We note that the points 

lie very close to the polynomials established for small tran8~ 

verse velocity. Thus. although the effect of large rotation 

is to modify. for example. ~ ë1t. and a to a marked extent. 

for a given value of 8. nevertheless the functional relation 

be.veen àt and a remains almost unchanged. This property of 

the equations has been explained analytically in ref. 28. 

"here it is sho"n that a change in w has precisely the same 

effect as a related change in 8. when B is smalle Specifically, 

profiles with spin wand pressure gradient 81 are identical 

with zero spin profiles "ith pressure gradient B. "ith al = 
a/(l+w). Numerically. it is found that for larger values of a 
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this re1ation is modified by a mu1tip1icative factor depending 

upon 8. On1y for high1y acce1erated f10ws does the equiva1ence 

break down. 

This resu1t enab1es a considerab1e simp1ification 

1n the interaction ca1cu1ations to be made. in that the po1y­

nomia1s need on1y be ca1cu1ated for one va1ue of w (e.g •• 

w = 0). and can then be used in interaction ca1cu1ations for 

arbitrary w. This e1iminates the inconvenience of the method 

of K1ineberg for the case of heat transfer. in which it was 

necessary to reca1cu1ate the po1ynomia1s for each va1ue of 

wa11 entha1py ratio required. 
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2. SOLUTION 'OF THE INTERACTION EQUATIONS 

2.1 Calculation of the external inviscid flow 

The coupling equatiçn, (25), contains the angle e 
(by virtue of the aefinition of h). which is defined as the 

inclination of external flow streamlines to the surface. This 

angle must be related to the Mach number in the external flow 

by some suitable methode 

In the two dimensional case the Prandtl-Meyer rela­

tion is used. In the present axisymmetric case this rèlation 

is not valid. Horton 11 derived, for the case of interactions 

on an axisymmetric body without spin, an inverted form of the 

second order shock-expansion method of Syvertson and Dennis 14. 

The calculation of the external inviscid flow over 

a spinning axisymmetric body is directly derived from that 

without spin. Infact, the external flow relationships are not 

affected by body spin, and the effective displacement thickness 

is OH (the axial component), as mentioned in section 1.2. s 

A detailed description of this method is g~ven in 

ref. 11. The validity of the method is shown in fig. 5, where 

a comparison is made with measurements obtained using a 10° 

flare, of radius r = 100 mmo The good agreement indicates the c 
precision of this simple approximate methode 

2.2 Initial conditions for the numerical integration 

In order to solve the system of equations (30) gover­

ning an interaction, it is necessary to know initial values 

of the independent variables (OH. , MeO, ao, ba) to start 
s ~O 

downstream step-by-step integration. 

In the two dimensional case, Klineberg 3 has given 

analytic expressions for OH. , Meo, aO, derived by series 
s~o 

expansion of the interaction equations. for both st rong and 
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weak self-induced interaction on a flat plate. These expres­

sions are used at some point s = So , the start of the ma in 

interaction, as initial conditions to calculate interactions 

induced by ramps or impinging shocks. 

Horton 11, ~n the case of an axisymmetric body 

without spin, used the two dimensional weak-interaction expres­

sions of Klineberg. It was shown that this neglect ofaxi­

s~mmetric effects upstream of the main interaction is unim­

portant when the body radius is sufficiently large. 

In the present case, the additional initial value 

bo is required, which does not exist in the two dimensional 

and zero-spin axisymmetric cases. Furthermore, the transverse 

flow modifies the axial flow parameters. However, we may 

assume that for small rates of spin the effect of the transverse 

flow upon the axial flow is weak. Thus in the case of similar 

solutions for flow over a spinning cylinder (section 1.2.3) 

the coupling between the two flows occurs, in equations (32), 

thro~gh a term proportional to w. For small spin (~ = 5000 RPM) 

this parameter is small (w = 0.0045). lts effect is therefore 

weak, and its influence upon the weak interaction should be 

of analogous importance. Hence, for initial conditions with 

small spin, it should be possible to use those for the non-sp~n 

case (i . e., Klineberg's two dimensional values) for öH
., Me, S1 

and a. The transverse profile parameter b may be taken, as a 

first approximation, to have its zero pressure gradient 

(Blasius' ) value (b~ = bBl, since the weak interaction expan­

sion is an expansion about this condition. This value is given 

by the similar solutions with 8 = o. The use of these initial 

values gave good results for small spin rates, as we s~all 

see in section 3. 

This procedure is not sufficiently accurate when the 

sp1n rate becomes large (w ~ 0.1). Then it is necessary to 

derive the full weak interaction expansions, starting with the 

general equations (22) to (25). This calculation has been 

carried out by Horton 29. Equations (22) to (25) were first 
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written in terms of a new independent variable X, the wel1-

known hypersonic interaction parameter, and a non-dimensional 

axial displacement thickness IJ. (a R 'X/H3C) and Mach number 
ó H • co 

sJ. 

M (=Me/M
co

) were introduced. This led to the system (8) to (11) 

of ref. 29. Following a similar procedure to that of Kubota 

and Ko 30, Horton then assumed expansions about the Blasius 

point of the form 

where 6 0 , ao. ba are the values for X ~ 0 (zero pressure 

gradient 'Blasius' values), and wI indicates 'weak interaction'. 

Af ter substitution of these expansions into the weak 

interaction integral equations. and identification of powers 

of 'X. Horton obtains the coefficients 

60 = 1.733. 

(y-l) (l+m ) 
co 

where all 

ba = 0.470; 

(l+K~)mll + (l+K~+ ;)m12). 

= 1.733, 

= (1- -1..)~! 
<\tB / \ P 

dP 
da 

co 

1 .èE.) 
R da B 
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where dIl = 2 + (l~) all = 2.111, 
R da B 

6} + (l ~) 
a da B 

1 dP 
(p~) 

y B 

al + mlK 4 

(l ~) 
a db B 

2 
m , 

1 

= 
°l + 0. 41a l + ml K4 

2.294 

recalling that m , Kl and 
00 

K2 are defined respectively 
K = 31-1 ~ (21b) and (26), and where 

4 y-l l+m 
00 

by (21a), 

The numerical va1ues quoted were derived from the 

po1ynomials for small spin but, using the arguments of section 

1.3.2, are equally valid for arbitrary values of spin. 

The substitution of these coefficients into the 

system (35) enables one to calculate the initial conditions, 

for X corresponding to so, the start of the interaction, neces­

sary for the integration of system (30). It was thus possible 

to calcu1ate the interaction on a cylinder-flare model spinning 

at n = 60,000 RPM, corresponding to w = 0.64. 

2.3 Iteration and interpo1ation procedures 

The system of equations (30), integrated numerically 

with the initia1 conditions discussed in section 2.2. exhibits 

astrong instability, as in the two dimensional and zero-spin 

axisymmetric cases. As the sketch (next page) shows, a solu­

tion of either type I (expansion) or type 11 (compression) 

results, the latterbeing the type of present interest. In 

order to obtain solutions of the desired type, it is neces­

sary to slightly perturb the initia1 weak-interaction values 
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s 

Meo. OH .• aO and bO. as described by Ko and Kubota 34 and 
SlO 

Klineberg 3. Horton 29 has derived the form of the perturba-

tion using an analysis similar to that of Ko and Kubota. The 

expressions for the perturbed variables are : 

Me = He 0 (1 + PI€: ) where 

OH. = 0: i 0 [1 + (p Z + K~ ( P Z + PI)) ~ • Sl. 

a = aO (1+P3 (l+K~) €:) • 

b = bo (1+P4 (l+K~ h) • 

dJ 
Pz = 3Jo-( 2ïRo+l) (d~ o' 

(36) 

P3 = Jo ( l-~ ) / ( diK/ da ) 0 • 

- tAto (Pl+P3)+PZ 
a (M.sr) 0) 

P 4 = aa 
a ~'4t s 1.'tf(J 0 

ab 

Here. the suffix '0' indicates the weak interaction solution 

values calculated for the value of X corresponding to the 

value of so chosen. 
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It ~s necessary to iterate for So and E to obtain 

the solution satisfying the boundary conditions far downstream. 

as indicated in section 2.3.2. The iteration procedure is 

identical to that described by Riethmuller and Ginoux 13 for 

the two dimensional case. An initial value of E = _10- 3 is 

generally suitable, and the position of the start of inter­

action So is iterated to the third decimal place. Then So is 

held constant and further iteration carried out by changing E. 

The exact procedure is not critical, because the same solution 

may be obtained by different combinations of E and sO. Thus, 

referring to the diagram above, starting at s = So we may 
1 

obtain solution 'El' or 'EZ' depending upon the value of Ei 

the same solution EZ may be obtained starting at s = So using 
2 , 

a value E 2 'F E2. 

The calculations presented here were carried out 

using perturbations applied to Meo. ó*. and a according to 
s~o 

the two dimensional scheme of Ko and Kubota 31, whilst keeping 

bo unperturbed. The rigourous perturbation equations for flow 

with spin, equations (36), which were later derived, reduce 

to these relations for K~ = 0, P4 = 0. This simplified proce­

dure enabled smooth starting of the integration to be made, 

but necessitated a doubling of the perturbation E for large 

spin rates. The errors introduced into the final results are 

completely negligeable. However, in future calculations the 

full scheme (36) should be used. 

2.3.2 Downstream conditions and interpolation 

According to the correctness of the combination of 

So and E for a particular solution in the iterative procedure, 

the solution mayor may not pass through a reattachment; in 

either case a solution is obtained of either type I (expan­

sion) or type 11 (new compression). Values of So and E which 

are too large lead to type I solutions, an~ values which are 

* too small to type 11. A series of tests on a, e, ó • and Me 
S~ 

allow the determination of the type of solution being generated, 

so that So or E may be suitably modified for the next iteration. 
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]I INiERPOL1ITIONS 

s 

These tests are described in detail for the two dimensio~al 

case by Riethmuller 13. whilst Horton 11 has established the 

tests necessary for trezero-spin axisymmetric case. The latter 

may be used in the present case without modification. 

When the iteration procedure bas resulted in two 

solutions of opposite type which follow each other closely 

until some distance downstream of reattachment. an interpola­

tion procedure between solutions similar to that described by 

Riethmuller 13 for the two dimensional case is used to con­

tinue the numerical solution as far downstream as desired. 

still using the same tests to reject solutions as soon as 

divergence becomes evident. 
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3. RESULTS AND DISCUSSION 

The computer programme for the solution of . the system 

of equations (30) was derived directly from the zero-spin pro­

gramme of Horton 11. which was itself developed from the pro­

gramme for two dimensional adiabatic interactions written by 

Riethmuller 13. The details of this basic programme are given 

in ref. 13. We simply remark that it is written in Fortran IV, 

for use on the IBM 1130 computer of the von Karman Institute. 

In the following section we shall discuss the nume­

rical results showing the influence of a transverse flow up on 

an interaction and we shall compare these predictions with 

measurements. 

3.1 Effect of a weak transverse flow 

upon the interaction (n = 5000 RPM) 

Figure 6 shows the predicted effect of a weak trans­

verse flow upon the static pressure distribution in regions 

of interaction. The pressure is plotted as a function of x. 

the axial ordinate. in the non-dimensional form (p-p )/P. eo ~ 

where Peo is the statie pressure at the start of interaction 

(xo). and p is the static pressure af the undisturbed super-
~ 

son1C stream. This farm has been adapted in order .to eliminate. 

as far as possible. errors due ta the chaice of reference 

pressure 10. 

The interaction for the conditions shown in fig. 6a 

has been verified to be laminar 10. The flare causing separa­

tion has an angle of 7.5 0 and is placed at an axial distance 

of 60 mm from the leading edge. The stagnation pressure is 

100 mm Hg and the circumferential velocity of the surface is 

about 10% of the free stream velacity. For the latter condi­

tion the cylinder constituting the upstream part of the model. 

of radius 100 mm. must turn at 5000 RPM. 
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The transverse flow has a weak effect upon the 

pressure distribution in the interaction. It tends to reduce 

the general level of surface pressure. The effect is ~ost 

pronounced in the separated flow region. The relative pres­

sure increment, ~(p/Pm)/(p/p~), due to spin at the cylinder 

flare junction is about 1 %. 

The positions of the separation and reattachment 

points are almost unaltered by the spin, and the influence 

of spin upon the position of the start of interaction cannot 

be discerned. 

Figures 6b and 6c show results of calculations for 

two other configurations, the flare being positioned at 40 and 

80 mm from the leading edge, and the stagnation pressure 

remaining unchanged. The effect of spin is similar, in trend 

and amplitude, to that in the first case. 

3.2 Comparison between theory and experiment 

(n • 5000 RPM) 

Figures 7a and 7b show comparisons between the 

results of calculations by the present method and experimental 

results previously published by Leblanc and Ginoux 10. The 

7.5 0 angle flare was situated respectively at 60 and 80 mm 

from the leading edge (7a and 7b), whilst the stagnation 

pressure was equal to 100 mm Hg. The symbols represent the 

values obtained experimentally, those for n = 5000 RPM indi­

cating measurements corrected for the centrifugal forces 

acting upon the air in the pressure leads. The continuous 

and dashed lines represent the pressure distribution calculated 

theoretically. 

The theoretical prediction of the effect of the 

transverse flow upon the pressure distributions shows a varia­

tion in the same direction and of similar amplitude to that 

observed experimentally. The pressure is reduced, as a re sult 

of spin, particularly in the vicinity of separation and reat­

tachment. 
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The validity of the theory is thus established for 

the case of small transverse velocities and, since no res­

trictive assumptions concerning the magnitude of the trans­

verse velocity have been made in the theory, we may use it to 

predict the effect of transverse velocities larger than those 

obtained experimentally, Some results are given in the föllo­

wing section. 

In order to complete the experimental work reported 

in ref. 10, we have carried out some tests for the transi­

tional regime. The principal results are given in the Appendix. 

3.3 Effect of large transverse flow velocity 

Having shown that the polynomial functions used in 

the theory are universally applicable, whatever the value of 

the spin parameter w provided that it is not greater than 

about unity (the upper limit has not been determined), we 

can calculate interactions for different magnitudes of trans­

verse velocity simply by solving the system of equations (30) 

with various values of the parameter Kl. 

Figure 8 shows the effect, predicted by the theory. 

of large transverse veloeities upon th e pressure distribution 

in an interaction. The variation of (p-p )/p is shown as a eo 00 

function of x for Pt = 100 mm Hg. The transverse flow is p r o-

duced by spin rates of 5 , 30 and 60xl0 3 RPM. 

The effect of spin rates of 30 and 60xl0 3 RPM is 

in the same direction as for 5xl0 3 RPM. but increaeed in 

magnitude. For n = 30 X10 3 RPM. the magnitude is about 4% at 

the cylinder flare junction and also of the same order in 

the region of the pressure peak. For n = 60X10 3 RPM. the 

effect becomes very marked - of the order of 5% at separation 

and 10% at reattachment. The redistribution of pressure due 

to spin, and therefore the change in loading on the flare. 

is c ons iderable. 

<---------- ------ ---_. - -- - --
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Figure 9 shows the trajectories of the variables 

a(x), b(x), aH.(x) of equations (30) for g = 0,5 and 60xl0 3 RPM, 
S1 

a = 7.5°, L = 60 mm and Pt = 100 mm Hg. (The fourth variable 

Me(x), is represented by p(x) in fig. 6a for the same con4i­

tions). The general form of the curves is similar tex~ept for 

b(x» vith that obtained and discussed 1n detail by Lees ad 

Reeves 1 for the tvo dimensional case. The transverse velocity 

profile parameter b has a variation similar to that of the 

enthalpy profile parameter b used by Klineberg 3. 

We note the discontinuities in slope of the curves 

at the cylinder-flare junction, vhere 0 is discontinuous. 

Also,~ is discontinuous at separation and reattachment because 
ds -

of the difference in definition of this parameter in attached 

and separated regions. 

From the curve of a(x). it vill be seen that separa­

tion 1S retarded and reattachment advanced by the large spin~ 

Also, for g = 60xl0 3 RPM, the slope of aH. is considerably re-
61 

ruced by the spin., vhich explains the marked reduction in 

pressure observed in fig. 8. 
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CONCLUSIONS 

The partial differential equations governing boun­

dary layer flow upon a rotating body of revolution in axial 

flow have been examined. The similarity between the transverse 

(y) momentum equations and the energy equation leads to a 

relation, analogous to that of Busemann, between the static 

temperature and the velocity components u and v in the boun­

dary layer. 

This similarity furthermore suggested that the 

problem of~inar boundary layer - shock wave interactions on 

such rotating bodies might be solved by a method similar to 

that used by Klineberg for the calculation of two dimensional 

interactions with heat transfer, when the energy equation must 

be solved. To this end, the boundary layer equations have been 

put in 'integral' form, and have been simplified by means of 

a compressibility transformation similar to that of Stewartson. 

The coefficients occuring ~n these equations have 

been established in the form of polynomial functions of two 

parameters a and b characterising the velocity profiles u and 

v. To est ablish these polynomials, 'similar'solutions' for 

boundary layer flow on a spinning circular cylinder have been 

calculated. It was found that these polynomials are, to a 

very close approximation, independent of the spin parameter w. 

This is in contrast with the case of heat transfer treated by 

Klineberg, in which case it is necessary to calculate the 

set of polynomials for each value of the wall enthalpy ratio. 

The initial conditions for the integration were either 

the two dimensional adiabatic values of Klineberg (plus b equal 

to its zero pressure gradient value), in the case of' small spin 

rates, or those calculated by Horton for a spinning cylinder, 

in the case of large spin rates. 

This theory has enabled the effect of a transverse 

flow upon an interaction to be predicted. Cases were chosen 
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in which the interaction was known to be entirely laminar. 

For moderate transverse flow velocities (Q = 5000 RPM) the 

effect is weak. In general. rotation causes an overall reduc­

tion in pressure in the interaction region. of the order of 

1 to 2% for Q • 5000 RPM. 

Comparison with experimental results obtained in a 

complementary study shows that the measured effect of spin is 

in the same direction and of similar amplitude. This agreement 

demonstrates the validity of the present method of caiculation. 

It is therefore possible to use the theory to predict the 

effects of larger spin ratio, impossible to achieve with the 

existing model. 

Such calculations were made for spin ratio of 30 

and 60xl0 3 RPM. The trend observed at 5000 RPM is considerably 

amplified. The relative pressure increment due to spin. in 

the regions of separation and reattachment. is about 3% at 

30 X 103 RPM and 10% at 60xl0 3 RPM. 

For the largest rate of spin. separation is retarded 

and reattachment advanced. 
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APPENDIX - EFFECT OF TRANSVERSE FLOW UPON 

A TRAHSITIONAL INTERACTION 

The results of the theory developed in this report 

have been compared with measurements obtained previously by 

the first and last authors 10. It was verified that the inter­

actions in these tests were fully laminar. the theory being 

applicable only under this condition. 

It was desired to complete these measurements by 

examining the influence of a transverse flow upon a transitional 

interaction. It was known 10 that. without spin. the effect 

of change of Reynolds number is of opposite s~nse according 

to whether the interaction is laminar or transitional. Would 

the effect of rotation. also. be in the opposite sense? 

The tests were carried out with the 10 0 flare 

positioned at 40 mm from the leading edge. a configuration 

whi~h produces the two types of flow (laminar or transitional) 

according to the unit Reynolds number 21. 

Figure Al shows the effect of rotation upon the 

pressure in the interaction region when the unit Reynolds 

number of the free stream is small (corresponding to Pt = 
97.2 mm Hg). We note that the transverse flow produces the 

s am e "1 am i nar" t ren d 0 b ser v e d f 0 r th e 7. 5 0 rIa re (f i g. 6 a) • 

with a general reduction in pressure level. 

The same experimental configuration has been tested 

at a higher Reynolds number (corresponding to Pt = 172.6 mm 

Hg). The results are shown in fig. A2. The effect of rotation 

is now to increase the level of pressure in the region of 

separation. This trend is thus opposite to that observed in 

the laminar case. 

This result has been confirmed by repeating the tests 

for the transitional interaction. the 10 0 flare being placed 

at 60 mm from the leading edge. The same re sult was found. 



Figure A3 shows the same effect when the f1are has 

an angle of 15°, for L • 60 mme 

In conclusion. it appears that the destabilizing 

effect of ~pin upon the boundary 1ayer produces changes in 

pressure near separation in opposite directions depending 

on whether the interaction is laminar or transitiona1. 

Changes of Reyno1ds number have a simi1ar effect. 
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