

 © 2008 Avanade Inc. All Rights Reserved.

DELFT UNIVERSITY OF TECHNOLOGY
FACULTY OF EEMCS

AVANADE

Volta
Research and Showcase

Bachelor‟s Project IN3405

9/July/2008

Robin van den Berg 1224220

René Elstgeest 1096249

André Simões Dias Vieira 1263161

Erik Zuidema 1217798

Judging-committee

Principal Drs. E. Jongsma

TU Delft supervisor Dr. P.G. Kluit

BSc Coordinator Ir. B.R. Sodoyer

2 © 2008 Avanade Inc. All Rights Reserved.

 © 2008 Avanade Inc. All Rights Reserved. 3

Preface

This report is the result of the graduation project as conducted by students Robin van den Berg, René

Elstgeest, André Simões Dias Vieira and Erik Zuidema, submitted in partial fulfillment of the requirements

for the degree of Bachelor of Science in Computer Science.

The assignment was set up by Avanade as an internship from April to July 2008, to research the business

and technical potential of the new technology: Volta. The assignment was approved as a Bachelor‟s project

by TU Delft. Compared with Bachelor‟s projects of previous years, the focus on research has increased and

is now an integral part of this report. It was a challenge to combine the different interests of Avanade, the

TU Delft and simultaneously participating in the Imagine Cup.

An extra result of this project is the approval for writing an article for the September issue of .NET

Magazine, a periodical by Microsoft for developers in the Benelux.

The writers owe many thanks to Gerardo de Geest for his support and guidance, Peter Kluit of TU Delft

and Edwin Jongsma of Avanade for their advices. Also our gratitude goes out towards Student Society

„Christiaan Huygens‟, EESTEC LC Delft and Avanade for allowing us to use their resources. Furthermore,

we would like to thank Albert Sluijter, Frans van Duijnen, Raul Kooter, Karen Hofman, Pieter de Bruin and

Jan Drenthen for their creative input and Danny van Velzen for his technical support regarding Volta.

4 © 2008 Avanade Inc. All Rights Reserved.

Table of Contents

PREFACE .. 3

TABLE OF CONTENTS ... 4

SUMMARY .. 7

1. INTRODUCTION .. 8

2. VOLTA ... 9

3. RELATED TECHNOLOGIES ... 11

3.1. Visual Studio 2008 ...11

3.2. Silverlight 2.0...11

3.3. Windows Communication Foundation ...11

3.4. ASP.NET ..11

3.5. Virtual Earth ..12

PART I: PROJECT ...13

4. INTRODUCTION .. 13

5. PRINCIPALS .. 14

6. ASSIGNMENT ... 15

6.1. Problem definition ...15

6.2. Research ..15

6.3. Showcase ...15

7. PLANNING .. 16

7.1. Project setup ..16

7.2. Project Progression ...16

8. EVALUATION ... 18

8.1. Planning ..18

8.2. Multiple principals ..18

8.3. Project roles and cooperation ...18

PART II: SHOWCASE ...19

9. INTRODUCTION .. 19

10. PROJECT ASSIGNMENT ... 20

11. REQUIREMENTS ANALYSIS ... 20

12. GENERAL SYSTEM DESCRIPTION ... 21

12.1. Database Interface ..22

12.2. Components ...23

12.3. Layout ..23

 © 2008 Avanade Inc. All Rights Reserved. 5

13. INTEROPERABILITY WORKAROUNDS .. 23

13.1. Silverlight ..24

13.2. WCF ...24

13.3. ASP.NET ..24

13.4. Windows Live ...24

14. QUALITY ASSURANCE .. 25

15. EVALUATION ... 25

PART III: RESEARCH ..27

16. INTRODUCTION .. 27

16.1. Research aims ..27

16.2. Notes on solution applicability ..28

17. OVERALL FINDINGS OF VOLTA ... 29

17.1. Absence of documentation ...29

17.2. Debug and Release mode ...29

17.3. Tier-splitting with Volta ...29

17.4. Other features ..29

18. MAIN QUESTION 1: WHAT POSSIBILITIES AND RESTRICTIONS DOES VOLTA INTRODUCE

WITH ITS TIER SPLITTING? .. 30

19. MAIN QUESTION 2: WHAT IS THE PERFORMANCE OF VOLTA? .. 35

19.1. Main question 2a: Run-time performance ...35

19.2. Main question 2b. Developer performance ...38

20. MAIN QUESTION 3: HOW DOES VOLTA CONTRIBUTE TO SECURE DEVELOPMENT? 42

21. MAIN QUESTION 4: HOW DOES VOLTA COOPERATE WITH OTHER TECHNOLOGIES? 45

22. MAIN QUESTION 5: HOW DOES VOLTA PERFORM IN COMPARISON WITH RESEMBLING AND

COMPETING TECHNOLOGIES? ... 50

23. RESEARCH CONCLUSIONS AND RECOMMENDATIONS .. 52

23.1. Recommendations ..53

24. CONCLUSIONS .. 55

GLOSSARY ... 56

REFERENCES .. 59

APPENDICES ... 61

A. A very basic chat program ...61

B. Fibonacci sample program ..63

C. Requirements list ..65

D. MoSCoW analysis ..68

6 © 2008 Avanade Inc. All Rights Reserved.

E. Package diagrams ..71

F. Detailed Class Diagrams per Package ..73

G. Database diagram ..78

H. User Interface GReenGRasp ..79

I. Initial class diagram ..82

J. GReenGRasp ..83

K. Planning ...85

L. Server specifications ..87

M. Rotunda end-to-end profiling ...88

N. Silverlight implementation ...89

O. Pre-research report ...91

 © 2008 Avanade Inc. All Rights Reserved. 7

Summary

Developing software as a service is a new trend in the IT industry. Volta is a new technology that targets

simplifying this type of software. It offers developers a toolkit that enables Web development in any .NET

language. This is done by recompiling the CIL code to JavaScript for the client tier (browser) and a .NET

application for the Web server. The decision of determining on which tier certain code should run is easily

carried through by adding an attribute to a class.

A showcase has been developed stretching the possibilities of the first Community Technology Preview

(CTP) of Volta. A CTP is a pre-release version of software intended as a proof-of-concept for the

community. The idea of the showcase was to provide users an impression of their carbon-footprint relative

to others, accomplished by using Web services and information provided by users themselves. The

experiences gained by building this showcase have been used in the research for Volta‟s value for Web

application projects. The showcase was also submitted for Microsoft‟s Imagine Cup software development

competition, which imposed additional requirements on the showcase. Many issues were encountered

during the development, which forced the project group to adjust the requirements while implementing.

The end result offers users login functionality, the ability to enter its food, house and travel CO2-emission

and provides an overview of the user‟s past and present carbon-footprint.

The project also focused on researching the possibilities of Volta. A number of research questions were

posed and investigated in order to provide better information about the strengths and weaknesses of Volta.

This led to the discovery of a number of problems from which the following suggestions for improvements

were derived:

1. Provide more documentation

2. Equalize the behavior of Volta code in Debug and Release mode

3. Decrease the number of restrictions on classes

4. Increase cooperation with other technologies

5. Optimize performance

6. Increase security functionality

Although a developer should still be aware of the traps of distributed computing, Volta can offer benefits

for developing applications.

 Web applications can be built with all .NET languages.

 Developers do not have to worry about the communication code between tiers.

 The facilities of the Visual Studio IDE can be used for testing, debugging and cooperating with

other technologies.

 The end-to-end profiler is a useful tool for analyzing and optimizing a tier-split application.

The community technology preview of Volta looks promising. It is currently not fit for developing actual

Web applications, but if the developers continue working on Volta and address the issues mentioned, Volta

could prove to be a useful toolkit for Web development.

8 © 2008 Avanade Inc. All Rights Reserved.

1. Introduction

Developing Software as a Service (SaaS) is a new trend in the software industry (1). Therefore, software

companies like Microsoft are creating development tools which could make Web development easier.

Software that is provided as a service often uses multiple tiers. This type of software primarily uses Web

pages as a user interface. A high-level model of SaaS is provided in Figure 1.

Figure 1. A model of how software is offered as a service.

The Web pages can be viewed in Web browsers, which make these applications platform independent.

Usually a browser is provided on a client Operating System and is able to provide a user customized

interface for logging in, offers shortcuts, etcetera. Using Asynchronous JavaScript And XML (Ajax) can

increase the user-friendliness of Web pages, but usually requires developer-unfriendly JavaScript

implementations (2; 3).

Development of multi-tier software introduces new challenges in comparison with single tier sequential

software (4). A multi-tier application comes with the challenge of letting different programs and platforms

communicate effectively and efficiently. An internet application often requires a database for data storage;

it accesses Web services and needs an interface to communicate with the user. It would be preferable to be

able to develop multi-tier applications without having to worry about the communication between tiers, and

instead develop them as if they were a single tier application. Volta is a new technology that tries to

achieve this (5).

This report focuses on answering the following research question about Volta:

What are the strengths and weaknesses of Volta for its meant purposes and how well does it cooperate with

complementary and resembling technologies?

This project is being delivered by Avanade. For Avanade it is necessary to evaluate the usability of Volta

for the development of their multi-tiered solutions.

To assess this, an actual application has been built using Volta. The experiences are used to answer part of

the research questions. The application has also been submitted for the Microsoft Imagine Cup 2008. The

theme of this software contest was “Imagine a world where technology enables a sustainable environment”.

The application is set up with this theme in mind.

Following this introduction there is a chapter describing Volta and a chapter describing other technologies

important for this project. After these introducing chapters the three main parts of this report can be found.

These parts are the Project, Showcase and Research parts and each end with an evaluation. The Project part

describes the setup, planning and progression of this project. The Showcase part describes the

implementation decisions and the details of the showcase. The Research part is a documentation of the

research answering the questions of the pre-research. This pre-research can be found in appendix O.

Following these parts a conclusion can be found, regarding the entire project and a Glossary explaining

terms used during this report.

 © 2008 Avanade Inc. All Rights Reserved. 9

2. Volta

This report discusses the first Community Technology Preview (CTP) of Volta
1
. Volta‟s aim is to simplify

the development of distributed applications. To achieve this, Volta provides developers the instruments to

develop multi-tier applications as if they were single-tier applications.

This release mainly aims at proving easy tier-splitting is actually possible and enables the compilation of

.NET languages to (X)HTML, CSS and JavaScript. This provides the possibility to create Web applications

with Volta.

Volta acts as a recompiler: using Microsoft‟s compiler, C# is converted to Microsoft‟s Common

Intermediate Language, CIL. CIL is a low-level programming language resembling assembly to which all

.NET languages are compiled. Using a [RunAtOrigin()] attribute Volta is able to determine which

code should run on one tier, and which on another. Volta comes with two compile configurations: Debug

mode and Release mode. It is important to understand the difference between these two configurations in

order to understand certain parts in this report.

In Debug mode, the communication will take place between two CIL executables, both running on the

same computer. This does not introduce many restrictions. Communication between these two tiers can be

compared to calling a library function from another program. The Debug mode is meant for assessing the

correctness of the program logic. Compiling in this mode will not result in an actual deployable website,

since a browser cannot execute CIL code. Figure 2 shows how compilation takes place in Debug mode.

Figure 2. An overview of compiling in Debug mode.

In Release mode, the client-side CIL is actually converted to JavaScript. Since the CIL code is similar to

assembly, the program structure of the original C# code is lost. The generated JavaScript will be based on

the CIL operations without any optimization. Also, the system and library functions that are not compiled

to CIL, but called as a subroutine cannot be included in the actual JavaScript, resulting in a not supported

compile error. The communication between the server and client is done via HTTP Requests. Figure 3

provides an overview of how Volta compiles in Release mode.

1
 CTP-release of 5

th
 of December 2008 with the bug fixes of 21

st
 of February 2008.

10 © 2008 Avanade Inc. All Rights Reserved.

Figure 3. An overview of compiling in Release mode.

To be able to develop with Volta, Visual Studio 2008 should be extended with a Volta installer-file
2
. This

installation configures the Debug and Release mode, and also provides an end-to-end profiler, called

Rotunda. This profiler tracks the sequence of an application and shows the communication between tiers.

2
 The Volta installer file can be found at http://labs.live.com/volta/download/

 © 2008 Avanade Inc. All Rights Reserved. 11

3. Related technologies

This chapter explains technologies important to this project, because these technologies were used during

this project and are mentioned throughout this report.

3.1. Visual Studio 2008

Visual Studio is an IDE from Microsoft, which can be used to develop applications in several programming

languages. A Volta application requires this IDE for its development and compilation.

Visual Studio can use Team Foundation Server: a version control and project organization platform, and

IntelliSense, which provides auto-completion and shows documentation. The provided Object browser is a

good tool for searching methods and objects. Integration of WCF Web services is as easy as calling

methods from a local library.

To create an application in Visual Studio, a solution is set up, which consists of several projects. Classes

have namespaces, which resemble packages in Java. However, namespaces do not restrict classes to the

same physical directory.

3.2. Silverlight 2.0

Silverlight provides specialized user interfaces that can be embedded in websites. A Volta application can

look more attractive when using this technology since it would not be limited to the standard HTML

interface elements.

Browsers require a plug-in which displays the interface and executes the program logic. A Silverlight user

interface is defined in a specialized XML-based language called XAML. The interaction and logic is

defined in a code-behind file which can be written in any .NET language. The browser plug-in can execute

the CIL code of this code-behind file. The Silverlight application can access and be accessed by JavaScript.

Silverlight has an advantage over the comparable Flash technology, since it allows automatic searching and

indexing by Web crawlers.

3.3. Windows Communication Foundation

Windows Communication Foundation is a framework built by Microsoft to enable easy communication

between applications. It has been part of the .NET framework since version 3.0. If an application provides a

WCF-compatible service, a .NET application can easily connect to it and communicate with it via an

optimized binary format (6). In the Visual Studio IDE, the WCF Web service functions can be used as if

they were library functions. WCF implements WS-Addressing, WS-ReliableMessaging and WS-Security

which are Web services (WS) standards for exchanging addressing information, assuring reliability and

security.

3.4. ASP.NET

ASP.NET (Active Server Pages in .NET) is a programming language meant specifically for websites. It

provides a method for including .NET code (e.g. C#) in a webpage, which enables a developer to build

dynamic websites and Web services. The .NET code can be included into the regular HTML code of a

webpage in an aspx-file, but is usually separated from this by using a separate code-behind file.

When a client‟s browser requests an aspx-webpage, the Web server will execute the .NET code in the aspx-

file or the code-behind file. This will generate a webpage with the required content, which will be sent back

to the client‟s browser.

This is different from how Volta builds up a webpage. Here, a regular html-file with JavaScript will be sent

to the browser. This browser will execute the JavaScript which results in displaying the contents of the

http://en.wikipedia.org/wiki/WS-Addressing
http://en.wikipedia.org/wiki/WS-ReliableMessaging
http://en.wikipedia.org/wiki/WS-Security

12 © 2008 Avanade Inc. All Rights Reserved.

page. The JavaScript is executed client-side after the page is sent to the browser, whereas the .NET code of

an ASP.NET page is executed server-side before the page is sent.

3.5. Virtual Earth

Virtual Earth is a Web application which can provide maps and data of user-specified locations in the

world. Functions like determining the distance between two points are also available. A Web application

can use these functions via JavaScript.

For Volta, a special Virtual Earth library is available which provides C#-methods for integrating the

features of Virtual Earth into a Volta webpage. This means developers do not have to use a different

programming language for this functionality.

 © 2008 Avanade Inc. All Rights Reserved. 13

Part I: Project

4. Introduction

In this part the project is described. First the principals are introduced, followed by an explanation of the

assignment. In the assignment section the two different assignment parts are described: the research and

showcase. The planning is then discussed followed by a description of the project progress. Finally an

evaluation is given corresponding to the project organization, planning and progression.

14 © 2008 Avanade Inc. All Rights Reserved.

5. Principals

The project was set up as an assignment of three principles. This chapter explains the interests of these

principles.

Avanade

Avanade is a global IT consultancy company dedicated to using the Microsoft platform to help enterprises

achieve profitable growth (7). Avanade is owned by Microsoft and Accenture. This way they try to benefit

from the two strengths of consultancy (Accenture) and technology (Microsoft) knowledge and experience.

With the help of Gerardo de Geest, Edwin Jongsma from Avanade supervised the project.

For Avanade, a technology like Volta could provide useful business benefits. Many solutions Avanade

offers are multi-tiered. Consequently, it is necessary for Avanade to evaluate the usability of Volta for the

development of such solutions. Speeding up development of multi-tiered applications could induce faster

delivery of business solutions. Also, the cooperation of Volta with other Microsoft technologies is a

valuable aspect for Avanade. This is because Avanade could then use Volta in combination with their

existing solutions.

Delft University of Technology

This Bachelor‟s project is conducted at the faculty of EEMCS
3
 at the Delft University of Technology in the

Netherlands. Peter Kluit supervised the project, while Bernard Sodoyer was the Bachelor project

coordinator for the TU Delft.

The TU Delft demands the ability to design and implement a software product from its Bachelor students.

Besides this, research qualities are of increasing importance to the TU Delft.

Imagine Cup

The Imagine Cup is a yearly competition organized by Microsoft. This year‟s theme was “Imagine a world

where Information Technology enables a sustainable environment”. The showcase was submitted for the

track of Software Development.

A jury will assess the application. They are primarily interested in how the application would enable a more

sustainable environment. This will not be limited to the features, but the jury will also consider the

appearance of the application and the impact it could have on the society.

3
 EEMCS: Electrical Engineering, applied Mathematics, Computer Science

 © 2008 Avanade Inc. All Rights Reserved. 15

6. Assignment

This chapter describes the assignment as posed by Avanade, the Delft University of Technology and the

participation in the Imagine Cup. Section 6.1 provides a short background of the problem for Avanade and

the problem description for our project. Formulating this problem helped us maintain focus throughout the

project. Sections 6.2 and 6.3 explain the two parts of the assignment: the research and showcase.

6.1. Problem definition

Development of Web applications is difficult for large projects. A new technology like Volta could

simplify the development, and offer a lot of freedom for designing multi-tiered applications. The problem is

that up until the start of this project, it was unknown to the involved parties how Volta could be used for

developing Internet applications and how it cooperates with other (existing) technologies.

The goal of the project is to research Volta’s usefulness on tier -splitting and the ease
of Web development and build a showcase application which displays Volta’s
possibilities.

6.2. Research

In the pre-research report, the concept of Volta has been investigated. This resulted in the formulation of

the main research question:

What are the strengths and weaknesses of Volta for its meant purposes and how well does it cooperate with

complementary and resembling technologies?

This question was split up in the following sub-questions:

1. Which possibilities and restrictions does Volta introduce with its tier-splitting?

2. What is the performance of Volta?

3. How does Volta contribute to secure development?

4. How does Volta cooperate with other technologies?

5. How does Volta perform in comparison with resembling and competing technologies?

The pre-research report, found in appendix O provided the line of thought concerning these questions. The

actual research report can be found in Part 3. Using this research report, Avanade should be able to assess

the value of Volta for their projects.

6.3. Showcase

Avanade required a showcase of the boundaries of Volta. Furthermore, the project team intended to extract

the experiences gained from building this showcase to supply answers to the research questions.

Concurrently, the showcase was submitted for the 2008 Imagine Cup. This means it had to comply with the

theme of sustainability and the rules of the competition. Competing in the Imagine Cup enhanced the drive

to create an appealing showcase. Due to our participation in the Imagine Cup, Avanade allowed changing

the original idea of an Airport Control System to the GReenGRasp tool. The idea of this tool can be found

in appendix J and the showcase is described in Part 2.

16 © 2008 Avanade Inc. All Rights Reserved.

7. Planning

In this chapter the initial setup for this project is described. The planning and roles are described in section

7.1. Section 7.2 describes the problems that affected the planning and how they were dealt with.

7.1. Project setup

While setting up the first planning (appendix K) for the project the wishes of the three principals had to be

accounted for. This planning had two initial targets: the research and the showcase implementation.

Because the expectation was that these could be combined with participating in the Imagine Cup, the third

target was making the application suitable for this contest. The planning was based on a number of

assumptions:

 Volta allows for easy and fast Web development;

 Volta is in an early stage of development and might contain some bugs, however this should not

pose too many problems;

 The project team would progress to the Dutch finals of the Imagine Cup.

To assure the deadlines of the planning were made, responsibilities were divided as follows:

 Project manager: René

 Designer: Erik

 Report coordinator: Robin

 Test coordinator: André

Furthermore, meetings were held every week to assure all team members were informed about each other‟s

results. For these meetings pre-defined roles were assigned:

 Chairman: René

 Secretary: André

7.2. Project Progression

The initial planning mentioned above underwent two major changes worth mentioning due to unexpected

complications. These complications were mainly caused by the following:

 lack of documentation of Volta;

 different behavior between Debug and Release mode;

 extensive restrictions imposed by Volta;

 data loss and delay in development due to repeated crashes of the Web server;

The lack of documentation and extensive restrictions imposed by Volta were responsible for the frequent

changes in the design. This slowed down development. Furthermore, the different behavior between Debug

and Release mode slowed down debugging. Part 2 discusses how this influenced the result for the

application; Part 3 provides further details about the issues of Volta. Our main challenge was coping with

the lack of time in combination with the deadline of the Imagine Cup Dutch Finals.

This was dealt with by changing the plans twice. The first change meant totally consuming the planned

time buffer after only one month. At the same time the focus shifted to implementing features for the

showcase for the Imagine Cup. This meant the research decreased in priority for a period of almost three

weeks. This was to be increased again shortly after this period, in order to guarantee the quality of the

research.

The second change implied splitting up the project team into two separate teams: Robin and René focused

on the research and Erik and André on implementing the rest of the application. This was done so that each

 © 2008 Avanade Inc. All Rights Reserved. 17

team member would only be required to concentrate on a single task. For the research part, Robin and René

divided the sub questions amongst each other. Towards the end André and Erik split up the implementation

tasks between user interface and business logic. Erik was responsible for designing and implementing the

Silverlight interface, CSS and HTML elements, while André implemented the Silverlight to Volta

communication and database interface.

18 © 2008 Avanade Inc. All Rights Reserved.

8. Evaluation

Looking back on the project, complications required adjusting the expectations. This chapter discusses the

lessons learned and also offers a retrospect for the positive elements of the project organization.

8.1. Planning

Working with an early release of a technology can result in many unexpected situations. A ten-week project

of this nature with a buffer of only one week does not sufficiently account for uncertainties. More time

should be reserved for set-backs due to bugs and undocumented issues.

When developing using a new technology time also has to be planned for familiarization. This enables a

more realistic estimation the development time of features. Even though time for familiarizing was planned

in the pre-research report of this project, it was mainly spent in studying the theory of Volta. It would have

been better to spend more time on hands-on experience. In this project, the estimated development time

was too optimistic.

System administration requires time, since a lot of issues normally arise in this area. This should be

accounted for if these tasks are assigned to the project team. Although the project team was responsible for

its own Web server, no time was planned for its administration.

8.2. Multiple principals

Combining the Imagine Cup with the requirements of the TU Delft and Avanade was not always easy,

since these had conflicting goals. A lot of time went into developing a new concept for the showcase which

could have been saved by using the idea proposed by Avanade instead. The new concept however did

provide better opportunities to implement features that were useful for the research.

8.3. Project roles and cooperation

Splitting up the project team into a research and implementation subgroup worked well. It gave the

members the possibility to concentrate on a single task. This somewhat relieved the problems of the duality

of research on one hand and software design on the other.

The implementation tasks were divided naturally between André and Erik. This worked out well, even

though sometimes one had to wait for the other. In these cases pair programming was applied to use the

time of the waiting team member usefully.

The division of the research part into sub questions helped with planning this aspect of the project.

However, the actual questions sometimes overlapped, which made it difficult to prevent both team

members from researching the same aspects. This was primarily avoided through good communication.

Because the team members worked in the same room, communication during the project period was very

effective. Furthermore, the regular meetings with the project team and supervisors helped with making

difficult decisions. The minutes of these meetings were a convenient documentation of the decisions of the

team.

 © 2008 Avanade Inc. All Rights Reserved. 19

Part II: Showcase

9. Introduction

This part describes the implementation of the showcase for this project. First, the specific assignment for

the showcase will be described. This is followed by the requirements analysis. Chapter 12 provides a

general description of our showcase, including complicated solutions that were implemented. The specific

interoperability workarounds can be found in chapter 13. A brief section follows describing the Quality

Assurance. This part ends with an evaluation of the implementation track.

20 © 2008 Avanade Inc. All Rights Reserved.

10. Project assignment

One part of the assignment was to build an application exploring the boundaries of Volta. Originally this

showcase would have been an Airport Control System. Because of our participation in the Imagine Cup,

Avanade allowed us to come up with our own idea. The new idea, GReenGRasp, provided more links with

our research, since the airport showcase would only implement the cooperation with Virtual Earth.

The goal of GReenGRasp is to provide users with a framework to monitor and stimulate the reduction of

their personal carbon footprint. More information can be found in appendix J. The technical goals were to

build a website with a database backend using Volta and its tier-splitting capabilities. Furthermore,

cooperation with Virtual Earth was to be implemented. In a later stage, cooperation with Silverlight was

introduced to provide a rich user interface. Finally, Windows Live ID was introduced using ASP.NET next

to Volta.

11. Requirements analysis

The initial set of requirements was created based upon the original idea for the application. This was a

feature rich application. These features were divided in a MoSCoW-analysis. However, due to the

complications mentioned in section 7.2, a decision was made to build a showcase instead. These

complications were in short:

 the lack of documentation of Volta;

 the different behavior between Debug and Release mode;

 the extensive restrictions imposed by Volta;

 the data loss and delay in development due to repeated crashes of the Web server;

This showcase had two functions. First it had to explore the boundaries of Volta, aiding the research in

various questions. The second function was to serve as a demonstration of the GReenGRasp idea during the

Imagine Cup. Due to the change of objectives most features described in the MoSCoW-analysis were

dropped. Since these did not further explore the boundaries of Volta. An overview of the MoSCoW-

analysis can be found in appendix D.

An overview of the requirements can be found in appendix C. This describes the original set of

requirements with the new Silverlight feature. The crossed out features were not implemented in the

showcase.

The implemented features in the showcase served the following purposes:

 Appealing graphical user interface;

 Testing performance of Volta;

 Testing general web development with Volta;

 Testing interoperability of Volta;

 Increasing chances at Imagine Cup.

The login, news, and mailing list were implemented to test general web development, performance and

interoperability with MS SQL databases. The mailing list was however never integrated with the site,

because Volta did not support the library functions needed to send emails from the server. A special login

through Windows Live was implemented for the Imagine Cup and to test interoperability with ASP.NET.

The integration with Silverlight was implemented to satisfy multiple purposes. The communication

between Volta and Silverlight helped test the interoperability. While the actual integration of Silveright into

the showcase provided an appealing graphical user interface and increased our chances at the Imagine Cup.

 © 2008 Avanade Inc. All Rights Reserved. 21

Virtual Earth was integrated into our application to fulfill the assignment requirement set by Avanade. It

also contributed to an appealing user interface and provided an appealing feature for the Imagine Cup.

CO2-calculation and consumption of the Smart Metering Webservice was primarily added to demonstrate

the GReenGRasp idea for the Imagine Cup. Furthermore, the consumption of this Web service was

encouraged by Avanade, due to interest showed by one of their clients. To test interoperability WCF was

used to consume this Webservice.

The implementation of these features forced the discovery of new complicated solutions and workarounds.

For this reason, these can be found in chapters 12 and 13.

12. General System Description

The system built combines different technologies throughout both server and client tiers. A deployment

diagram can be found in Figure 4. This diagram shows the connection with the database, the separation

between browser and server packages, the different technologies used and which packages communicate

with each other. IIS is used to host both the Volta Server and ASP.NET. Both Volta and ASP.NET

communicate with the database through SQL and Volta uses WCF to consume the SmartMetering Web

service. On the browser side Internet Explorer 7.0 must be used to open the Volta page and display the

Silverlight 2 Beta 2 application used for the GUI.

A more detailed package description can be found in appendix E. It models the different packages for each

tier specifying communication between classes, implementation of interfaces and inheritance.

Visual Studio generated class diagrams can be found in appendix F. Specific implementation details are

described in the following subsections.

The following subsections describe how the database interface layer, components and layout were

implemented. These implementation details were included in the report since they describe complicated

constructions used in our showcase.

22 © 2008 Avanade Inc. All Rights Reserved.

Figure 4. Deployment Diagram

12.1. Database Interface

The application uses a MS SQL database and a custom built interface layer of DataObject classes to

communicate with the database. This DataObject is used as a replacement for LINQ. This

DataObject implements the interface class DataItem which contains three properties: an id, a

Property list, and a DataConnection. Each DataItem corresponds to a table in the database and

contains a set of properties for each column. This set of properties consists of a property named identically

 © 2008 Avanade Inc. All Rights Reserved. 23

to the column, a Boolean property to track changes for later updates. A property with a lower case first

letter is added, which enables setting its attribute without triggering the changed Boolean.

The DataConnection is the class that contains the database connection. All the database operations take

place in this class. A DataConnection class has a two-way reference to a DataItem. It is used by the

DataItem and it uses its properties list mentioned above, to be able to reach its attributes. Basically the

properties list is used here as a reflection substitute, since Volta does not support reflection. To write a

DataItem to the database, the DataConnection‟s Create-method first fills the column names. It uses

the properties list and uses the same list to get the value of the corresponding properties through the

GetProperty (string PropertyName) method of the C# Type class. The DataConnection‟s

Update-method uses the same principle, however it uses the additional Boolean property to check whether

the column needs update.

The package diagram, individual class diagrams of the data objects and the database model diagram can be

found in appendices F and G.

12.2. Components

The application is component based: basically a component can work by itself and has its own

responsibilities. The components are able to communicate with other components or might depend on other

components actions. The C# event framework was used to overcome the C# restriction of circular project

references. Each component has events to which other components can register. The component fires its

event after a certain action and all the components subscribed to it are notified. This is a variation to the

observer and observable pattern. This component idea provides an easy way to build various blocks of the

site and gives the flexibility of placing them wherever needed, see the Layout section for more details.

12.3. Layout

Most of the components have their own GUI part and there is one manager that places the component GUI

parts on the page. That is why these two packages are so tightly linked. Every component extends from

Block which implements the interface iBlock. Because of this, the GUIManager can be sure that

every given component has the methods it needs to place the component on the site. The GUIManager

knows the positions (HTML Divs) where it can place these blocks and decides if it is allowed to place the

component there. For example it places the LoginComponent in our header and the NewsComponent

in the main part of the site.

The main site is fluid, has bright colors and a colorful contrasting background in comparison to the white

foreground. It has the standard column layout, a header with a logo, followed by the main menu bar. The

main part has a block to the right for navigating through the whole site. The page ends in the bottom with a

footer. The markup of the website has been implemented with HTML and CSS.

For a detailed description of the GReenGRasp Silverlight interface with screenshots see appendix H.

13. Interoperability workarounds

This section describes the workarounds used in the showcase to have Volta cooperate with Silverlight,

WCF and ASP.NET. These workarounds were of great interest to the research for interoperability of Volta,

see chapter 21.

24 © 2008 Avanade Inc. All Rights Reserved.

13.1. Silverlight

Silverlight was implemented to provide an appealing graphical user interface. The Silverlight application is

loaded inside a div of our Volta page after a user has logged in. Within the Silverlight application the

user can enter its information regarding the three different GRasps, view their buddies, calculate and

display their GReenGRasp. For displaying the GReenGRasp we used VisiFire, which is an open graph

design package for Silverlight.

The communication between the Volta client and Silverlight application is done via the

GReenGRaspWebsite and SilverLightCommunication classes on the Volta side and via

SilverGlobeSample on the Silverlight side.

All communication to and from Silverlight uses JavaScript. For a detailed description of how this

communication was implemented see appendix N.

13.2. WCF

Adding a WCF class to a Volta Application will not work. This is due to the fact that it can neither be

recompiled to JavaScript since it is not supported, nor can it be run server-side due to the server-side

inheritance restriction, explained in section 18. At first working around this limitation by consuming the

service using an XmlHttpRequest was the best option. Later, a workaround for the library compatibility

issue was discovered. This workaround consists of placing the unsupported classes in a signed library. In

the application we called this library the ServerSideLibrary. This library must be ignored by the

Volta assembler through the IgnoreAssembly attribute and must only be used by a server class in order

to work properly. For this reason we decided to create server-side mapping classes, enabling the use of the

ServerSideLibrary functions on the client tier. These classes can be found in the

ServerSideMapping package. Furthermore only serializable data can be sent from the

ServerSideLibrary to the server class.

13.3. ASP.NET

ASP.NET does not really cooperate with Volta: ASP.NET gets processed and executed before Volta, so it

runs next to Volta. The trick is to make two projects: an ASP.NET project and a Volta project. Copy the

ASP.NET project in the folder of the Volta project and rename the Volta Page.html file to default.aspx.

Then for publishing purposes, the code-behind files of ASP.NET must not be compiled in the Volta project

and neither should the default.aspx in the ASP.NET project. When deploying, first publish the Volta project

to a directory and then publish the ASP.NET project to the same directory. ASP.NET has to go last and it

has to ignore the default.aspx file from being copied. Otherwise, it will overwrite the added JavaScript to

initiate the Volta code. This cannot be set in the Volta project, because then the Volta code-behind would

not be compiled.

13.4. Windows Live

A prerequisite for the Windows Live integration is to have ASP.NET working (see previous section). This

is because the SDK delivered by Windows Live ID was available in several Web languages, but not in

Volta-compatible C#
4
. Conversion of this C# code to Volta compatible code was abandoned due to too

many unsupported libraries. The code in ASP.NET was pretty straightforward. A control displays a link

that redirects the user to the sign-in page of Windows Live. From there, it makes a POST-call to the URL

specified on a webpage of Windows Live. On a different website you are able to manage your websites that

4
 During the implementation period of this project.

 © 2008 Avanade Inc. All Rights Reserved. 25

use the Live login. On this website you can retrieve a key, necessary to use the login feature for your

website.

After signing in, the user is redirected back to our webpage. There, the ASP.NET handles the POST-data

sent along with the redirection. The POST-data was also a problem at first, because a Volta HTML page

cannot process it. This is because JavaScript has no access to its own HTTP-request and therefore cannot

access POST and GET variables. ASP.NET can access this, and places the token acquired from Windows

Live in our database on the server side. Subsequently, this is passed to the client side via a hidden textbox.

With this construction, a user is still logged in when he or she refreshes the browser.

14. Quality Assurance

Testing was performed manually and very superficially during the implementation of this showcase. The

decision against automated or extensive testing was based on two facts. First the C# code of Volta can only

be tested in Debug Mode, since in Release Mode the code is recompiled to HTML and JavaScript on the

browser side. Furthermore, the behavior in Debug Mode does not resemble the behavior in Release Mode,

as explained in chapter 2 and section 17.2. Secondly, there are no tools available to test the recompiled

Volta code, which is explained in section Q 2.6 of chapter 19.

Instead the focus shifted towards providing correct documentation of the limitations and flaws of Volta, for

which a result can be found in part 3. Furthermore, the team attempted to acquire as much information as

possible regarding the current possibilities of Volta by being active on the Volta forums.

15. Evaluation

This showcase was used throughout this project mainly as a tool to explore the boundaries of Volta. This

showcase should not be seen as a demonstration of what can easily be achieved with Volta. Many of the

features were implemented using complicated workarounds. However, the exploration of the boundaries of

Volta using this showcase provided the research with useful information.

During the implementation of this showcase our team was active on the Volta development forums. Mostly

inquiring about limitations or bugs, however, some used solutions were posted as well. Furthermore, this

showcase can show the Volta developers how Volta can be used in its current form. Together with the

research, presented in the following part, the Volta developers can take advantage from our work, since

these highlight some of the limitations and flaws of Volta.

26 © 2008 Avanade Inc. All Rights Reserved.

 © 2008 Avanade Inc. All Rights Reserved. 27

Part III: Research

16. Introduction

In this chapter, the results for the different research items are discussed. Each main question consists of

multiple sub questions. Some of these questions are combined with one of more other questions due to a

large overlap in the answer. This is indicated at the questions where this is applicable.

16.1. Research aims

At the start of the research a main research question was set up:

What are the strengths and weaknesses of Volta for its meant purposes and how well does it cooperate

with complementary and resembling technologies?

This is a very general question that cannot be answered with one simple answer. In order to go into enough

detail and to keep a good overview this question is separated into five main questions:

1. Which possibilities and restrictions does Volta introduce with its tier splitting?

2a. What is the runtime performance of Volta?

2b. What is the development performance of Volta?

3. How does Volta contribute to secure development?

4. How does Volta cooperate with other technologies?

5. How does Volta perform in comparison with resembling and competing technologies?

Every question is separated into their own sub questions. This way the research looks as a tree with the

main question as its root and two other layers as shown in Figure 5.

Figure 5. Research structure

28 © 2008 Avanade Inc. All Rights Reserved.

16.2. Notes on solution applicability

The questions of this research were answered based on the experiences obtained by implementing the

showcase discussed in Part 2 and additional research. However, due to the lack of documentation of Volta

and the sometimes unexpected behavior we cannot guarantee a total accuracy of our findings regarding the

absence of features or existence of faults. The provided samples worked for the explained scenarios and are

designed to work in general. However, errors due to unexpected behavior of the framework are not

accounted for when these samples are used after modification.

 © 2008 Avanade Inc. All Rights Reserved. 29

17. Overall findings of Volta

Throughout the research there were a number of general findings that do not fit within a specific question.

These subjects are discussed in this chapter. These overall findings should be kept in mind when reading

the answers of the research questions.

17.1. Absence of documentation

A major drawback of this Volta release is that it is not shipped with a detailed documentation on how the

system works. The website of Live labs does offer recipes that show how to use Volta in some situations,

but it does not cover nearly enough to verify what Volta is or should be able to do. The site does explain the

vision of Volta and explains on a very abstract level what Volta is able to do. However, some development

limitations were discovered that would not be expected from Volta when just examining the website.

Documentation could easily be provided in a possible future version. The expectation is that it will increase

the usability of Volta significantly.

17.2. Debug and Release mode

The Volta plug-in for Visual Studio comes with two separate configuration modes for the developer. Debug

mode comes with the usual debugging facilities, but does not represent the actual functioning of Volta. For

this reason, constructions that work in Debug mode might possibly not to work in Release mode. Release

mode does represent the actual working of Volta, which gives a more realistic look on how Volta works,

but does not allow any tools for debugging.

One example of the differences between Debug and Release mode is that the runtime performance in the

browser is significantly influenced. Throughout this research the results are mainly based on Release mode

development and sometimes even published applications are used (or even needed). For more information

on the fundamental difference between Debug and Release mode please take a look at section 2.

It is unclear if the difference between Debug and Release mode will change in future releases. Generating

errors instead of warnings when compiling not supported methods in Debug mode is a first option that

would significantly decrease the difference.

17.3. Tier-splitting with Volta

With this CTP Volta has shown that automatic tier-splitting is possible. This does not mean that Volta

solves the fact that not every tier is suitable for any situation. For example, the browser is less capable to

calculate tough mathematical calculations which are more likely to run on a specialized machine for

calculation intensive applications. A browser however, is very suitable to present a GUI that targets

multiple platforms. Volta will not remove the need for this kind of decision making. Another thing Volta

does not solve, are the challenges that shared variables introduce when computing is distributed among

more than one process. Also running performance of currently generated JavaScript by Volta for the

browser is not suitable for real life application development. More details about this will be answered

throughout this research part.

17.4. Other features

Clearly this CTP is far from ready for release judging on the support of the .NET framework‟s library

functions. Quite a lot of library functions are simply not supported. This is probably mainly due to some

implementation issues that are still needed to be solved in Volta. For example, inheritance is unavailable

for classes in the server tier. It is possible to solve this problem with a workaround, but these are not very

developer friendly.

30 © 2008 Avanade Inc. All Rights Reserved.

18. Main question 1: What possibilities and restrictions does
Volta introduce with its tier splitting?

Tier-splitting is the major issue that Volta addresses. Its developers present a way to create a single tier

program and split this into multiple parts that can run on different systems. This chapter will go deeper into

what advantages this brings and what restrictions it introduces if Volta is used for a project.

Q 1.1 What advantages does Volta create for tier-splitting?

Volta enables a basic possibility to actually split a program to run in different tiers without having to think

about the communication code between the tiers. This should generally simplify the development of a

multi-tier application. Volta shows it is possible to split up a program by choosing an execution tier for

each class separately at the end of the development track. This tier-splitting does have hidden limitations

mainly due to limited support of .NET library functionality.

Writing program code

As long as a developer keeps in mind the limitations Volta currently has, a multi-tiered application can be

developed as if it runs on a single tier. The decision of where each class will have to run can actually be

made after the conventional development cycles. By entering [RunAtOrigin()]
5
above the class code a

developer instructs the compiler to compile the class to the server tier. Currently, Volta supports only two

tiers: the (Web) server tier and the browser (client) tier.

The server tier

Server-side classes run on the server, obviously. This implies that such classes can access server-side

classes in the normal fashion. One has to keep in mind that the main application works from browser to

server tier, since the browser runs the user interface. This means the main control of an application lies in

the browser tier and the server-side processes are invoked by the browser. A big limitation of the server tier

is that it does not support inheritance. This can be worked around with a workaround used in the showcase

described in section Q 1.2.

The browser tier

Programming for the browser is limited, especially regarding communication from the server tier towards

the browser and some classes that cannot be compiled to JavaScript. This will be further explained in sub

question 2.

Volta enables the use of the browser integrally within the development. It makes use of the Document

Object Model (DOM) to implement dynamic Web applications. The generated code therefore implements a

standard that is supported by the major browsers
6
.

Q 1.2 What complications does tier-splitting in Volta bring?

The Volta developer team published the following list of known issues and limitations (8):

1. Only subclasses of Object can be tier split.

2. The serialization between the two tiers is not very fast.

5
 Future releases should be able to handle [RunAt(“TierName”)] attributes.

6
 Not every browser has been tested for Volta compliance and not every browser complies with Web

standards.

 © 2008 Avanade Inc. All Rights Reserved. 31

3. The Visual Studio support for tier splitting supports only one server.

4. The server URI can only be specified as an attribute argument (i.e., in source code).

Consequently deploying to a different server requires recompiling the code.

The first issue is a substantial problem. Inheritance is not supported for server-side classes, so all library

classes and functions need to be run client-side. This can be a problem for handling database connections,

for example. There is a workaround for this limitation. First, the classes needed on the server should be

compiled in another project to a signed assembly. This makes it possible to include these files as a

reference. By telling the Volta compiler not to recompile those references and only reference these from

classes that do run server-side enables usage of classes that make use of inheritance. Of course, this is not

an optimal solution. This workaround is applied to be able to use the WCF-functions for the SmartMetering

Web service in the GReenGRasp showcase described in section 13.2.

The second issue is discussed in question Q 2.1.

The third issue limits the research to comparing only running the code client-side versus running it server-

side. It is currently not possible to split Volta-websites across a group of (load-balanced) Web servers.

The fourth comes from the fact that Volta does not support configuration-files. These files come in handy

when defining common variables, such as a database connection string. Not being able to use these means

these variables must be declared somewhere in the source code and passed along, or in multiple locations,

which makes changing the values difficult.

Also, some other classes of the Base Class Library are not supported. This library should be accessible for

every .NET language. This means that the Volta compiler is not able to compile these classes (and its

functions) to JavaScript. To work around this, a helper-class can be created at the server side, which

executes the necessary methods and returns the results to the client. An example is System.DateTime,

which is used in the GRasp-methods (see Code sample 1). This construction results in extra server-calls,

which increases response time.

Another issue is the communication from the server to the client. Not all objects can be sent from server to

client, and no (references to) HTML elements can be sent from client to server. This means if something

happens on the server side, it cannot push notifications to the client. This seems obvious when you think

namespace GReenGRasp

{

 [RunAtOrigin]

 class DateTimeHelperClass

 {

 public static TimeSpan subtract(DateTime start, DateTime end)

 {

 return end.Subtract(start);

 }

 public static int dayOfWeek(DateTime date)

 {

 return (int)date.DayOfWeek;

 }

 }

}

Code sample 1. Server-side helper class for DateTime functions

32 © 2008 Avanade Inc. All Rights Reserved.

about how the http-protocol is set up, but for regular (distributed) application development, it is unusual. It

is possible to set a certain flag and let the client periodically poll this, but for a large application, the

number of flags to poll can increase quickly, making this solution unsuitable.

On the Volta Web forum, a question was raised about whether it would be possible to use some kind of

Comet
7
-style messaging system. Wes Dyer of the Volta development team responded with: “In the first

release of Volta, server-to-client calls are not allowed. Of course, it is entirely possible. We only had so

much time for the first release. So look for it in some upcoming release.” (9)

Also, in Release mode, threading is not supported at the server side, so the server cannot actually do

anything without a client‟s action. Another consequence of this is that asynchronous calls are handled

sequentially.

In short, there are still many smaller issues that are needed to be solved in order to effectively simplify

development in Volta. Technical limitations of the browser still pose problems that need to be solved in

order to be fully able to split programs among tiers.

Q 1.3 How can Volta be used in Brownfield scenarios

In Brownfield scenario‟s issues arise where new software need to coexist with existing applications. This

question is not thoroughly examined, but it there are two subjects worth mentioning.

The first advantage of deploying Volta is that it is able to run on IIS 6.0 and 7.0 and for situations where for

example ASP.NET applications are already deployed it is not necessary to change the current architecture.

Also the connection with MS SQL works fine. Deployment of new Volta application does not require

particularly new software architecture to run on.

Connecting a Volta application with an existing ASP.NET application is also possible (to a certain extend)

as described in section 13.3. The main limitation of this solution is that custom libraries are not easily

accessible from Volta and is only possible at the server tier using the workaround describe in section 13.2.

Deploying a Volta application in existing Microsoft .NET oriented architectures is not difficult. Main

question 4 discusses the cooperation with other technologies.

Q 1.4 What problems regarding shared data can be solved using Volta?

Although it is possible to set the visibility of classes and methods with C#, this does not stop you from

running into shared data problems, nor is it a Volta-specific feature. C# lets you easily create get- and set-

methods, which can help define critical sections, but the choice of implementing these restrictions is still in

the hands of the programmer. Volta does not seem to offer tools to solve these issues, nor does it seem to

proclaim it does: “Volta doesn’t eliminate the intellectual challenges of distributed computing. We must

still formulate strategies for partitioning functionality and dealing with network latency and

availability.”(8)

Switching a class from client to server-side using the [RunAtOrigin()] attribute can alter program

behavior. When a class uses static variables, these will be shared among the clients when it runs on the

server side, which means its value is uncertain. When the same class runs client-side though, every client

has its own instance and the values will only be changed by this client. We have made a small chat-

application that uses this property; see appendix A for the program code.

When tier-splitting is relatively easy to achieve, this can be a danger for safe programming. Since this

means it is also easier to create shared data-problems for inexperienced programmers. However

7
 Comet programming is a generic term for web application techniques that use a long-held HTTP

connection which allows a web server to push data to a browser (22).

 © 2008 Avanade Inc. All Rights Reserved. 33

interesting, the discussion about how tight or lose a programming language should be, is outside the focus

of this research.

Q1.5 What timing problems will tier-splitting with Volta introduce?

Splitting up a single-tiered application can introduce timing problems which did not exist before. These

timing problems are not new. These timing problems are the same for regular multi-threaded and

distributed applications. A scenario where this would change the behavior of the application is when

multiple clients use a shared variable as described in the previous section. In this scenario, it is possible to

program something that would work in a single tier situation, but this introduces a timing problem when

split up.

An example of this is Code sample 2. Here, it is possible that two or more client processes „append‟

something to the shared variable and only the last process is successful. The solution provided in Code

sample 3 results in correct behavior since the append-operation is now atomic and the server processes

them in a set order.

There might be other cases where the shared variable is necessary for the correct working of the methods

between receiving and sending of a variable. In these cases, it would be best to introduce a semaphore for

the variable. This is not something one expects when developing single tiered and single threaded

application, but Volta does not offer solutions to solve these timing problems.

Tier-splitting in Volta still introduces timing problems a developer might not be expecting. Insight in

distributed computing is still required for programming a Volta application that is split into multiple tiers.

Q 1.5 What restrictions does Volta impose to languages?

C# is the current main language which Volta currently aims at. C# is also officially supported, but Volta

implies a few restrictions. Answers on this question are mainly concentrated to this language.

C#

The first major constraint is that inheritance is not possible for any class if this is to be run on the server

tier. Every server-side class has to inherit directly from the Object class. It is still possible to use, build

and implement interface classes. It is also possible to create abstract classes, but since it is not possible to

extend them, they do not seem very useful.

Running methods with more than one return statement resulted in unexpected behavior. Instead of returning

on the first return statement, the program breaks out of the current block and continues running.

// do something time consuming...

serverSideClass.SharedVariable.append(“Appending new line\n”);

Code sample 3. Code that will work in all tier situations.

String localClientString = serverSideClass.getSharedVariable();

localClientString += “Appending a new line\n”;

// do something time consuming...

serverSideClass.setSharedVariable(localClientString);

Code sample 2. Code that will not run as you might expect

34 © 2008 Avanade Inc. All Rights Reserved.

Parameter passing by reference keywords out and ref are not supported in Volta. Normally these

keywords are used in a similar way as pointers are used in C when passing parameters to functions.

Visual Basic

During this research, Visual Basic has not been examined, but here is an overview from the Volta website

on known Visual Basic issues:

 Late binding is not supported

 Services from My are not supported

 Not all conversion functions (for types) are supported

 Not all legacy code is supported

Other .NET languages

The Base Class Library, which is usable by every .NET language, is not fully supported. The precise

(im)possibilities are not examined here and are more likely to be more useful when the Base Class Library

is better supported.

Volta still imposes several limitations on the usage of C#. Inheritance is not fully supported, return

statements are not handled as expected and out and ref do not work. Other .NET languages are also not

fully supported and de Base Class Library poses significant restrictions for programming in other

languages.

Q 1.6 Is it possible to use the same Volta tools for every supported language?

This question was abandoned. Volta mainly supports the development of C# and partly supports Visual

Basic. Of course ordinary .NET connectivity between languages can be used to import functions in C# and

Visual Basic as this is a feature that comes with the CIL assembler of the .NET framework (10). Testing

whether Volta operates well would be more interesting from the moment that Volta fully supports tier-

splitting for the total .NET Base Class Library.

Results of Main question 1

Volta enables tier-splitting in general, but there are still restrictions that are needed to be solved in order to

present developers a fully automated tier-splitting compiler. The main restrictions are:

 Incomplete support for the Base Class Library

 Inheritance in C# is not fully supported

 Tier-splitting is limited to one server and one client (the browser) tier

Brownfield scenarios were not fully researched, but the expectation is that the deployment of Volta to

existing systems will not pose many problems. Question 4 discusses the capabilities of Volta to cooperate

with other technologies.

Volta does not solve problems introduced by distributed processes. Shared variables and timing problems

are still the responsibility of the developer. This does imply that a developer needs at least a notion of

distributed computing in order to safely implement a tier-split application.

 © 2008 Avanade Inc. All Rights Reserved. 35

19. Main question 2: What is the performance of Volta?

Developing Internet applications is not new: there are other technologies available. It is important to know

if developing an application developed with Volta will perform significantly different. Another question

related to performance is whether Volta enhances the performance of the developers. Since both these

aspects will be discussed, Main question 2 will be split up in Main question 2a: Run-time performance and

Main question 2b: Developer performance.

19.1. Main question 2a: Run-time performance

This section will describe the performance of Volta. This relates to response times of functions as well as

resource usage. The sub questions discussed here are:

1. How many resources will a Volta application require to operate with acceptable response times?

2. What are the effects of tier-splitting on the performance of a Volta application?

3. What is the difference between running an operation in the browser at the client side compared to

running it server-side?

Because the output of the Volta compiler is not optimized yet, these questions could not all be answered

completely.

Q 2.1 How many resources will a Volta application require to operate with acceptable

response times?

It is very difficult to give an unambiguous answer to this question. One thing that should be noted again is

that the JavaScript output of the Volta compiler is not optimized yet (11). What optimizations a future

release could bring and how this will affect the response time and resource usage is unknown.

For the current release however, Volta generated 2725 files for a simple Hello World webpage. This

required 25.8 MB of hard-disk space on the server. Obviously this is significantly larger than an ordinary

webpage of one HTML-file that takes up 386 bytes. Furthermore, the large number of JavaScript files

makes a Volta page less responsive than a comparable webpage. Published at the project team‟s Web

server, the Hello World webpage took around three seconds to load.

No further research has been done for this question because of its ambiguity and the lack of time. It is

recommended to revisit this question when a final release for Volta is available.

Q 2.2 What are the effects of tier-splitting on the performance of a Volta application?

This question cannot be answered completely yet. As mentioned in Q 2.1, the output of the Volta compiler

is not optimized yet.

It is uncertain whether an application built with the release discussed in this report will reflect the highest

performance possible for Volta. It is recommended to research this issue again when a final release for

Volta is available. No further research has been done for this question.

Q 2.3 What is the difference between running an operation in the browser at the client side

compared to running it server-side?

For the current release, there is a difference in what operations can be run efficiently on the client side and

what can be run efficiently on the server side. The difference varies for different tasks. Again, it should be

noted that the current release of Volta is not optimized for performance yet.

An example Volta page has been created that shows the current difference for arithmetic operations. It

calculates the n
th

 Fibonacci number recursively and returns this in a Paragraph on a Web page. The

calculation is done in a class that can either run on the client side or server side. The program code is

36 © 2008 Avanade Inc. All Rights Reserved.

provided in appendix B. The Rotunda end-to-end profiling that comes with the Volta installation was used

to find out the exact run times. Figure 6 and Figure 7 show the run times in milliseconds for various

numbers of n. Every bar represents the average of five runs in that particular situation.

Figure 6. Response in milliseconds for calculation the 10th, 20th and 30th Fibonacci number

In Debug mode, the program is not compiled to actual JavaScript, so the differences between computing

the value client-side rather than server-side should be marginal. For low values of n, this actually is not the

case, but since the response time is so low, minor changes in the run-time environment might have

influenced the results. For higher values of n, the differences become negligible.

10

20

30

0
1000
2000
3000
4000
5000
6000

7000

8000

9000

Se
rv

er

C
lie

n
t

Se
rv

er

C
lie

n
t

Debug mode

Release mode

81

22

178

46

47
25

211

200

137
112

225

8,858

10

20

30

 © 2008 Avanade Inc. All Rights Reserved. 37

Figure 7. Response time in milliseconds for calculating the 40th, 42nd and 45th Fibonacci number

In Release mode however, the client code is converted to actual JavaScript. In this mode, run times

significantly increase for higher values of n, when the computation runs client-side. For low values of n, the

client outperforms the server. For n > 20 however, this transforms to an advantage for running server-side.

For n > 40 when running client-side, the browser stopped responding within reasonable time: after ten

minutes, the browser was still blocked. This behavior is represented by a value of 100.000 in the graph.

Also noticeable is the performance in Release mode of the server, compared to Debug mode. It is possible

that the program code for Release mode is optimized to a certain extent, since it does not have to account

for possible breakpoints or other specific functions needed for debugging. We have posed this question to

the Volta developers, but have not yet received an answer.

The test points out the use of the ability to easily switch classes to different tiers for performance

improvements. There is a significant difference in run times of arithmetic operations when run either on

server-side or client-side. With the current release of Volta, the client side is not efficient enough for heavy

calculations.

Results of Main question 2a

It is difficult to assess the actual performance of Volta. The code generated by Volta is not optimized for

speed, which is also emphasized by the developers of Volta. Load times are higher than one would expect

for a certain page due to the many JavaScript files. When a final release of Volta is available the

40
42

45
0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

Se
rv

er

C
lie

n
t

Se
rv

er

C
lie

n
t

Debug mode Release mode

4,760 4,813 3,160

12,717 12,706
8,320

51,403 53,682

33,026 40

42

45

38 © 2008 Avanade Inc. All Rights Reserved.

performance can be analyzed completely. With the current release some operations perform better on a

specific tier. This points out the usefulness for easy tier-splitting.

19.2. Main question 2b. Developer performance

Besides the performance of the actual Volta applications, it is interesting to research how Volta can

simplify processes for developers. In this section, the following sub questions are discussed:

4. In which way does Volta support the development of feature rich applications?

5. How much does Volta contribute to ease the development of an Internet application?

6. How easy does a Volta application get tested in order to keep security and bug issues close to

zero?

7. How does testing with a Volta application relate to ordinary Web development testing?

Q 2.4 In which way does Volta support the development of feature rich applications?

This question is discussed in Q 2.5, since both questions discuss the same subject.

Q 2.5 How much does Volta contribute to ease the development of an Internet application?

To be able to assess the convenience of developing with Volta, a number of criteria was inspected. These

criteria are the working environment, since this can increase a developer‟s productivity; the teamwork

abilities because software development primarily takes place in teams; and the convenience of tier-splitting

since this is a specific feature of Volta.

Working environment and teamwork

The first two aspects, the working environment and the teamwork abilities, are easily answered. Volta

applications are built in the Visual Studio 2008 IDE. Visual Studio enforces a structured method for setting

up projects. Visual Studio‟s IntelliSense and the compiling presets of the Volta installer made the work of

application development quite easy. Unfortunately, Volta does not provide documentation for its functions,

as mentioned in section 17.2, so IntelliSense cannot be used for this. The TFS functionality makes it

possible to share files with each other, keep track of different versions and lock files when necessary. The

Volta Visual Studio plug-in also provides a toolbox specially for creating HTML pages.

Tier-splitting

Tier-splitting a Volta application can be done by inserting a class attribute. By placing the

[RunAtOrigin()]
8
 attribute above a class one defines that this class will be compiled CIL to be run

server-side. Classes without this attribute are compiled to JavaScript and run client-side (i.e. in the

browser).

Volta‟s method for tier-splitting is much easier for developers, since a developer does not have to worry

about the communication code. It is difficult to assess what exactly happens when this goes wrong, but the

Rotunda end-to-end profiler helps if this occurs.

Debug and Release modes

Debugging and releasing a Volta application introduces new problems. An application that works in Debug

mode does not necessarily work in Release mode, which is already mentioned in section 17.2. For example:

asynchronous applications can be built easily in Debug mode, but will fail in Release mode. With some

editing, asynchronous processing can be implemented, but requires another review of the source code by

8
 Future releases plan to implement a general [RunAt(“TierName”)] attribute.

 © 2008 Avanade Inc. All Rights Reserved. 39

the developer. These differences do not make it very suitable to develop in Debug mode: too much code

needs to be changed to effectively use this mode.

The Document Object Model

A notable feature is that the HTML library is mainly based on the Document Object Model. Although there

is no official support to the DOM it seems like it works up until level 2. This does ease the development by

people that are already well familiar with this widely used model. Firefox and Internet Explorer are

officially both supported, but only Internet Explorer seemed to work at less simple application scenarios.

Volta does not make developing an Internet application much easier. This is primarily because of the lack

of documentation and difference in compiling modes, which has already been mentioned in chapter 17.

Documentation can easily be provided in a future release, but how the difference between Release and

Debug mode will evolve in future versions is not clear. Convenient elements of Volta are the tier-splitting

possibilities and the support for the DOM.

Q 2.6 How easily can a Volta application be tested for security and bugs?

On the Volta website, there are some remarks about debugging and testing a Volta application. In the FAQ

section, the website states the following about the intended benefits to developers: “Developers can use all

the .NET languages, libraries, and tools they already know, including debuggers, profilers, test generators,

refactoring, and code analysis tools. […] Moreover, Volta supports end-to-end profiling and testing in a

manner that cannot be achieved with different programming models in the browser and server tiers.”(11)

Visual Studio can auto-generate a number of tests for a project.

Web tests

First of all, Web tests can be used for several Web related tests, for instance: timing a HTTP-request, or

validating the contents of a response. For Volta, response times can be checked, but nothing regarding the

actual content of the Web page. The tests validate the HTML code of the page. However, Volta uses

JavaScript to build the page, which means the test will receive a nearly empty HTML page. There are some

frameworks available for testing JavaScript functions, but the Volta-generated code is too complex to be

able to create meaningful tests. This makes it very tedious, if not impossible to test with these frameworks.

Automatic testing of Ajax enhanced Internet applications is currently a subject of research at Delft

University of Technology (12).

Unit tests

Unit tests can help significantly for finding bugs in the business logic. The framework Visual Studio

provides for the tests is comparable with IDEs like Eclipse, and provides startup and teardown methods,

assertion checking, result overviews and coverage reports.

Unit tests can be run on the classes of a Volta project, though it should be noted that the code will not run

as actual JavaScript, but in the CLR as Intermediate Code. This means that the CIL to JavaScript compiler

cannot be Unit tested. This is very inconvenient for the development of an application in the current release

of Volta, because a number of differences between compiling in Debug mode and Release mode came to

light. These are discussed in section 17.2.

Load tests

Visual Studio can also generate load tests. With this, several values can be tested when a Volta page is

under heavy load. Basically it entails that multiple other (unit) tests are performed simultaneously and in

parallel. The same restrictions for the Web tests are valid: it cannot test the contents of the page generated

by Volta. Figure 8 and Figure 9 offer an overview of a test screen in Visual Studio and a summary of the

results, respectively.

40 © 2008 Avanade Inc. All Rights Reserved.

Figure 8 Screenshot of a Load test in Visual Studio

Figure 9 Overview screen of results of a load test

 © 2008 Avanade Inc. All Rights Reserved. 41

Testing Volta applications resembles testing other applications in most areas. Volta enables using the test

facilities of Visual Studio. Fully automated testing of a complete Volta application is not possible yet. When

the testing of generated JavaScript can be automated, testing a Volta application will not differ

significantly from testing other applications.

Q 2.7 How does testing with a Volta application relate to ordinary Web development

testing?

Since a Web application can be developed in C# with Volta, a developer can use the unit test and load test

functionality of Visual Studio, as described in the section above. This only covers the pure C# code, but

extensive unit testing frameworks are still not commonly available for other technologies. For the actual

webpage generated, Web tests cannot simulate all the behavior, but as already mentioned above, Ajax

testing is still a subject for research regardless of the used technology (12). This means being able to

develop in Visual Studio with Volta and C# is an advantage over other technologies that do not have unit

testing frameworks.

Results of Main question 2b

There is a number of things to be said about the developer performance of Volta. Besides this, the lack of

documentation makes it very difficult to create a real project. During the development of GReenGRasp, we

continuously had to change the implementation plan because some methods or classes were not supported,

or generated incomprehensible JavaScript-errors. The short recipes provided on the Volta project website

do not provide enough information for a realistically sized project.

Testing a Volta application resembles testing a regular application in Visual Studio, which is an advantage

when compared to other Web development technologies. The primary concern here is testing the actual

results the JavaScript produces in a browser. This is a general issue with Ajax applications though, which is

already subject for current research.

42 © 2008 Avanade Inc. All Rights Reserved.

20. Main question 3: How does Volta contribute to secure
development?

It is still difficult to realize a fully secure application in most projects. For a new technology, this can play

an important part in its acceptance. In this chapter we research how security is dealt with in Volta. Also the

support provided to the developer eases acceptance.

Q 3.1 Does Volta make it easier to construct error-free communication code?

When using Volta, the programmer does not have to manually set up the communication between tiers. The

Volta compiler automatically generates the required code between the [RunAtOrigin()] classes and

the client-side classes. The programmer has no influence on this generated code: the communication

between tiers is more or less a black box. An advantage of the code generation is that the programmer

cannot introduce bugs in the communication. Debugging generated code is far from easy though.

Volta does not avoid assumptions of distributed computing (13) and thus does not preserve a programmer

from having to worry about these issues. These issues are discussed more thoroughly in Q 1.4 and Q 1.5.

Q 3.2 Does the JavaScript code generated by Volta contain obvious leaks?

The automatically generated JavaScript code is not designed to be human readable. Variables like function

names like aTD() and tSDF() are the best references the JavaScript shows. A simple Volta application

exists of around 15.000 different JavaScript files divided over more than 50 folders. This shows that

reverse engineering will not be an easy task.

Further research has not been done, because the generated JavaScript is still under development in order to

significantly improve performance.

Leaks in the generated code of Volta are not obvious due to the complex and unreadable structure the

generated JavaScript code. Further research should be done when JavaScript generation has been

optimized in a newer release.

Q 3.3 Can communication between tiers be established securely using security protocols
such as SSL or TLS to prevent transferred data interception and manipulation?

Volta does not support any encryption methods when sending sensitive information across the network.

Generating MD5- or SHA1-hashes is not possible. Of course, it is possible to implement a custom

encryption in a Volta application. In theory however, this could makes it possible to find out the exact

encryption method if this is tier-split to the client-side, although reading the auto-generated JavaScript is

nearly impossible. In practice, it is much easier to implement a secure connection created by the Web

server. This way, the connection is always encrypted and one does not have to consider encrypting

variables sent across tiers.

A Volta application runs in a Microsoft Internet Information Server (IIS). IIS has a build-in option to serve

SSL secured websites. The GReenGRasp showcase is fully tested with the SSL connection and posed no

problems. Connections were successfully encrypted here and the application did not show unexpected

errors caused by the SSL security.

 © 2008 Avanade Inc. All Rights Reserved. 43

For the GReenGRasp project, the network packets were monitored when using an early version of the

login-control. The username and password could clearly be identified, as Code sample 4 shows. An SSL

connection makes this communication unreadable (for this reason no code is provided).

In general, encryption functionality is not supported by Volta. It is possible to encrypt messages manually

by the implementation of a custom encryption method. A better encryption solution is to use the IIS SSL

certificate functionality to encrypt all the communication between the browser and the server.

Q 3.4 Is it possible to implement anti spoofing mechanisms and does Volta facilitate it?

Spoofing associated with websites is represented in different forms. Man-in-the-middle and phishing (URL

spoofing) attacks are examples of Web spoofing problems that a developer is faced with. Spoofing is in

essence the fooling of a user in order to extract his or her private information. The only security measure a

website can offer to these attacks is to offer a login account for a user which saves sensitive information on

the website behind a password and taking care of a secure connection. Spoofing by giving a different URL

(i.e.: www.greengresp.net instead www.greengrasp.net) for example cannot be prevented, even by

certificates.

Volta provides a built-in login control, but creating such a control manually is not very difficult. In the

GReenGRasp showcase a control has been implemented. The best solution here was to encrypt the

connection through an SSL secured connection as described in Q 3.3.

Volta does not present any new anti-spoofing mechanisms. Volta does not make it harder to implement

anti-spoofing mechanism and known techniques are not hard to implement. An SSL connection is also

easily set up.

Q 3.5 Is it possible to produce web applications/pages invulnerable to code injection and
does Volta help prevent this?

With Volta, the general way to process data from forms is to fetch the values with JavaScript. It is possible

to check the input for code injection on the client side, as well as the server side. The programmer should

pay attention though, since by default the classes run on the client side and client-side verification can be

bypassed by a user. This can be done by editing the JavaScript. This will not be easy since the code is

Volta-generated, as mentioned in Q 2.1. Tier-splitting the verification to the server side makes this

unreachable for a user and thereby is more secure.

The C# .NET library provides functionality for processing user-provided parameters securely if they are

used in database queries. This functionality relies on parameter binding. This processing functionality

comes in handy to filter out code injections in queries.

There are several functions a programmer can use for validating user input. Functions like contains and

replace are standard string operations of the C# library. Unfortunately, there is no function to automatically

{__type:"Microsoft.LiveLabs.Volta.MultiTier.CallInfo",Type:"Account",Met

hod:"4",Instance:{__type:"GReenGRasp.DataObjects.Account",id:"15328412-

81c1-432f-96b5-177bfef9b0dc"},Tag:null,

Parameters:[{__type:"System.String",value:"Andre"}]}

{__type:"Microsoft.LiveLabs.Volta.MultiTier.CallInfo",Type:"Account",Met

hod:"8",Instance:{__type:"GReenGRasp.DataObjects.Account",id:"c5da4e62-

bf96-47a6-aeed-26cde0aaad81"},Tag:null,

Parameters:[{__type:"System.String",value:"ditwachtwoord"}]}

Code sample 4. Part of TCP/IP packet caught by Wireshark

44 © 2008 Avanade Inc. All Rights Reserved.

convert a user-provided string into a secure string where selected characters are filtered out. This could be

a useful addition for Volta, although it would have to contain a construction for automatically execute it on

the server-tier. As mentioned in Q 2.1 and Q 2.3 the verification should ideally be performed there. The

JavaScript on the client-side could be altered by the user, making it possible to circumvent the measures

against code-injection. The server tier does not include this vulnerability.

Volta’s generated JavaScript is harder to grasp compared with human generated JavaScript code, but it is

still not impossible to bypass. Some C# .NET facilities do make it easier to filter out code injection, but not

everything is fully supported. In general Volta supports the development of secure applications, but this is

still the responsibility of the developer.

Q 3.6 How does Volta contribute to security assurance? And is it easier to assure security
with Volta than with common web development tools?

The possibilities of testing a Volta application are discussed in section 19, Q 2.6. Volta makes it possible to

use C#‟s functional and testing possibilities in Visual Studio to test Volta applications build in C#.

When it comes to security, a programmer using Volta has to think a bit more about security in comparison

with other applications. Since tier-splitting in Volta is very easy, classes can be created without needing an

explicit notion of on which tier to run it (as this is decided after implementation). In languages like PHP or

ASP.NET, methods are always run on the server and it is necessary to explicitly create JavaScript functions

in order to use browser side programmability. One important notion that has to be included into this

decision is the fact that everything that runs on the client (in JavaScript) can be altered by the user. This

sometimes means that additional functionality is required for security reasons. When using Volta, a

programmer will be less aware of this since classes run on the client by default, and a programmer might

forget think about the implementation of the required security fail-safes when splitting up the application.

The discussion about the notion of tier security issues is in some way the same as the discussion about the

level of abstraction a programming language should reach. In Volta a programmer should be aware of the

implications of easy tier-splitting and be cautious of security issues raised by targeted tiers.

Secure development is not simplified by Volta. A developer even has to be aware of the security issues that

are implicated by the targeted tier.

Results of Main question 3

Developing security mechanism in Volta is not made easier, but also not harder. Volta does not deliver

anti-spoofing mechanisms to ease security issues.

Using an SSL connection would be a wise decision to provide a more secure Volta application. The

combination of the badly readable JavaScript and the encryption creates poses new problems for possible

malicious usage. This should make a Volta application more secure than ordinary applications protected

with SSL.

A drawback of the abstraction of tiers during the development is that a developer is not aware of the

security issues of the targeted tier. These security issues are also not solved by Volta.

 © 2008 Avanade Inc. All Rights Reserved. 45

21. Main question 4: How does Volta cooperate with other
technologies?

A programmer spends most of his time adjusting existing programs, fixing and extending legacy code.

Also, many Web applications rely on different technologies, which have to communicate with each other

according to standards. It is important to know how a new technology can form an extension to already

present systems. This allows switching to this technology in a more robust and gradual way. This chapter

discusses the ways in which Volta can cooperate with other technologies.

Q 4.1 Which standards does Volta apply to already?

The answer to this question is provided in Q 4.4 because of the relation with the subject discussed in that

sub question.

Q 4.2 Which standards will be implemented in the near future?

Since there is no roadmap for Volta (11), this sub question cannot be answered and was therefore

abandoned.

Q 4.3 Would there be any important standards that Volta is not going to support?

This sub question was abandoned for the same reason as Q 4.2.

Q 4.4 In what ways can Volta be used by other technologies?

Other technologies can benefit from Volta if they can successfully communicate with Volta. This enables

Volta to extend current technologies, which will increase its usefulness. Three general technologies are

discussed below: how Volta can be used by preprocessing Web technologies or by browser-based virtual

machines.

Preprocessing Web technologies

A Web application based on preprocessed code like ASP.NET is often supported by JavaScript code in

order to enrich the user experience of an application. If one root HTML source file is used, a connection

with a preprocessed Web application can be made. If more are used, which is usually the case for realistic

Web applications, illegal GetElementByID(“targetedHtmlElementID”) calls cause errors. This

is something to be tackled by the Volta developers. However, if it is possible for a Web application,

integrating the ASP.NET and Volta part in one solution with two projects that refer to the same HTML

source file can currently already make development of a rich ASP.NET application easier.

Browser based virtual machines

Web applications running on browser-based virtual machines like Microsoft Silverlight can be supported

by Volta. The showcase provides an example for this: the Silverlight code uses Volta code for the business

logic.

As long as such a Web application supports the communication through JavaScript it is possible to

communicate with Volta. By using Volta with these technologies by passing events through JavaScript it is

possible to create applications that have a client-side and server-side application tier.

Other technologies, both preprocessing and running in a browser-side virtual machine, can be extended

with Volta. However, the ways to achieve this extension are not easy and limit functionality, which makes it

difficult to assess the actual usefulness. Simplification of these methods could be possible and would make

Volta a useful extension for other technologies.

46 © 2008 Avanade Inc. All Rights Reserved.

Q 4.5 How easily can Volta be used with another technology?

This question was abandoned due to lack of time.

Q 4.6 Which technologies of Microsoft are supported?

This question is discussed integrally with Q 4.8, Q 4.12 and Q 4.13 in the new question NQ 4.1.

Q 4.7 What is the overlap in these technologies?

This question was abandoned due to lack of time.

Q 4.8 How does the integration work?

This question is discussed integrally with Q 4.6, Q 4.12 and Q 4.13 in the new question NQ 4.1.

Q 4.9 Does Volta provide a way to use Web services?

It is possible to make use of Web services both on the client and the server side. Volta can create and send

XmlHttpRequests and receive responses. The next sub question elaborates on how this can be achieved.

Q 4.10 How easily can we use these Web services?

Using the XmlHttpRequest-object and the example on the website of Volta, Web services can be used very

easily (14). The XmlHttpRequest-object preserves the semantics as typically used in non-Volta Ajax-style

applications. Therefore, developers already familiar with it do not need to learn anything new. An example

is given in Code sample 5.

The Visual Studio IDE also supports adding service references to a project, which enables access to one or

more WCF services. For Volta though, this does not completely work. The IDE consistently crashed when

this was tried for the Smart Metering Web service, and others have encountered similar problems (15).

Signing the assembly of the reference might solve this, but this is not always possible: a Web service is

usually independently created by a third party. This was also the case with the Smart Metering Web service

for the GReenGRasp website.

Alternatively, it is possible to use WCF services in program code. First, a DeviceDataService class and a

corresponding configuration file have to be generated using the ServiceModel Metadata Utility Tool

shipped with the Windows SDK. The functions of the specific Web service are automatically created

within this class. A side effect is that it is not possible to use the configuration file. In that case the variables

of the configuration file have to be defined in the program code. A bigger problem is the fact that parts of

the DeviceDataService class are “not supported” by the Volta Compiler, which means it is not able to run

client-side. Changing this to the server-side tier cannot be done by simply applying the

[RunAtOrigin()] attribute. This is because the DeviceDataService class inherits from a WCF library

class and inheritance is not supported server-side, as explained in Q 1.2. The workaround explained in

section 13.2 can be used to solve this problem.

 © 2008 Avanade Inc. All Rights Reserved. 47

The conclusion can be drawn that simple Web services can be used relatively easily. It is more difficult

however to use WCF Services. Building support for the functions that the ServiceModel Metadata Utility

Tool generates would simplify the use of WCF. Allowing classes to inherit from System.Object, or removing

the requirement of inheriting from this class in total would provide a welcome solution.

Q 4.11 In which way can Volta itself provide Web service(s)?

Creating Web services is not one of the intended purposes of Volta. It is possible, but not recommended to

do so.

The main difficulty is that Volta cannot access the variables that are sent with the request for the Web page.

This means it can only access variables by trying to parse parts of its URI, in case the request is sent with a

GET method.

Another limitation is that the only way Volta can respond directly is with an XmlHttpRequest, a database

command or its HTML page that is built by client-side JavaScript. These cannot be sent directly back to the

caller of the Web service. In this case only a one-way request is possible. However, this does not follow the

principles of REST which are important factors of the Internet (16). REST states that the GET method

should only be used for information retrieval which is something a Volta application cannot accomplish.

public String getWebService()

{

 String result = “”;

 // the address of a web service

 String uri = "http://ajaxify.com/run/xmlHtttpRequestCall/

 sumGet.phtml?figure1=5&figure2=10";

 // create a new request

 XMLHttpRequest xhr = new XMLHttpRequest();

 xhr.Open("get", uri, false);

 xhr.Send();

 // process the response

 if (xhr.Status == 200)

 {

 result = xhr.ResponseText;

 }

 else

 {

 result = "error";

 }

 return result;

}

Code sample 5. Example method that uses a Web service

48 © 2008 Avanade Inc. All Rights Reserved.

The example of Code sample 6 uses the Search property of the location of the document and parses this

string to get the necessary variables. It can then do whatever the Web service is required to do. This was the

only method found to provide a Web service in Volta.

Concludingly, it can be stated that a simple Web service can be provided by Volta, but this is too tedious to

use. Providing Web services is not a goal of Volta and is not recommended.

Q 4.12 What are the possibilities to cooperate with technologies of competitors?

This question is discussed integrally with Q 4.6, Q 4.8 and Q 4.13 in the new question NQ 4.1.

Q 4.13 What are the possibilities to cooperate with technologies of partners?

This question is discussed integrally with Q 4.6, Q 4.8 and Q 4.12 in the new question NQ 4.1.

NQ 4.1 With which technologies can Volta cooperate and how does this work?

For this issue we have examined five Microsoft technologies: SQL Server 2005, LINQ, WCF, Silverlight

and ASP.NET (in the order mentioned). Although Volta does not natively support four of the five products,

it is capable of working with these products. A short description of the findings for each technology is

provided below.

MS SQL Server

It is easy to implement a database connection to MS SQL Server. Volta supports the ordinary database

connection methods that are normally used in other .NET applications. In order words: code used in Volta

code be copied and used in any other .NET application and vice versa.

public void webService()

{

 if (Document.Location.Search.Length > 0)

 {

 // uri = ...page.html?id=value1&newvalue=value2

 // Search retrieves the substring starting with „?‟

 String GETvars = Document.Location.Search.Substring(1,

 Document.Location.Search.Length - 1);

 String[] varsarray = GETvars.Split(new char[] { '&' });

 String[] id = varsarray[0].Split(new char[] { '=' });

 String[] newvalue = varsarray[1].Split(new char[] { '=' });

 int value1 = (int)id[1];

 String value2 = newvalue[1];

 // followup actions

 }

}

Code sample 6. A Web service method in Volta

 © 2008 Avanade Inc. All Rights Reserved. 49

LINQ

LINQ was the second technology tried. Initially it worked in Debug mode, but it did not compile in Release

mode. The reason for this is that Volta does not support inheritance on server-side classes as mentioned in

section 18. Just before writing this report a workaround was came across that enabled the usage of WCF on

the server tier. The same technique could be applied to LINQ on the server tier (see section 13.2).

Windows Communication Foundation

Integrating the Windows Communication Foundation presents the same challenge as LINQ does in Volta

application development. For the WCF it is necessary to use .NET libraries that are not natively supported

by Volta, but can also be implemented solely on the server tier (see section 13.2)

Silverlight

The communication of Silverlight with the Web server is based on the DOM. Because Volta also supports

the DOM, communication with Silverlight is not very different from other JavaScript event

communication. Using Import and Export directives of JavaScript events in C# made it possible to

integrate Silverlight with the showcase.

Using Silverlight functions directly in a Volta application can be a promising possibility for the future. The

advantage of Silverlight over JavaScript is that it does support multithreading and compiles to the same

CIL code like every other .NET language does. Providing Volta with built-in support for Silverlight should

not be hard to achieve in comparison with the DOM. It would only have to compile to CIL and XAML to

have client-side code run in the browser. However, the difference in .NET frameworks used could

complicate this task: Volta uses version 3.5 while Silverlight still uses 2.0.

ASP.NET

Using ASP.NET to support a Volta application can be done by taking a single HTML file (in this case a

*.aspx file) as base for both applications. A developer does have to publish to a Web server twice (first the

Volta application followed by the ASP.NET application) in order to properly compile the application. This

means that Volta and ASP.NET have separate machine code and share their presentation layer. Combining

the full .NET framework on the server side with ASP.NET and the advantages of tier-splitting and

JavaScript generation from Volta can provide a powerful combination. To implement user management for

the GReenGRasp showcase, ASP.NET based code was used to communicate with the Windows Live

authentication Web service (see sections 13.3 and 13.4)

Although Volta does not natively support most of the tried Microsoft products, it is capable of working with

these related technologies. SQL Server 2005, LINQ, WCF, Silverlight and ASP.NET can be used with

Volta, but required workarounds that could and should be simplified.

Results of Main question 4

Using Volta in cooperation with other technologies is possible via importing and exporting JavaScript

functions. For most related technologies, additional workarounds were required to accomplish cooperation.

In a future version, most of these workarounds could be simplified, making Volta a more useful extension

for these technologies. The cooperation with Web services is something that this release already simplifies,

although WCF also required a workaround. Providing Web services with Volta is not recommended.

50 © 2008 Avanade Inc. All Rights Reserved.

22. Main question 5: How does Volta perform in comparison
with resembling and competing technologies?

Since Web development received a new impulse by the Web 2.0 movement several toolkits and

technologies have been introduced. Most of these tools aim to offer developers easier ways of creating rich

collaborating Internet applications which target SaaS products. How Volta performs in comparison with

resembling technologies determines largely whether it will be adopted by companies. This chapter aims at

the comparison of Volta with other technologies.

Q 5.1 Which technologies have similar if not comparable techniques to Volta and how do
they ease the pain of SaaS driven development?

Google Web Toolkit

GWT aims at the same goal of easing the development of web applications. It does so by providing a

compiler that compiles Java code to JavaScript. This also means that developers are able to use existing

Java tools. The important differences of GWT compared with Volta are:

1. GWT does not aim at tier-splitting;

2. GWT does not aim to abstract the browser from the developer.

Script#

Script# is similar to GWT, but aims at the .NET Framework instead of the Java Open Source community. It

does not aim at tier-splitting and the abstraction of the browser layer.

GWT and Script# both aim at easing development by compiling existing framework code to JavaScript and

do not support tier-splitting facilities.

Q 5.2 How does Volta perform compared with other currently used techniques that strive to
facilitate SaaS driven development?

First of all, tier-splitting just before compile time introduces a new concept. Volta proved the possibility of

tier-splitting from Web server to Web browser with the help of the DOM. Not everything is already

possible in the browser tier like multithreading and direct calls from server to browser, but these browser

challenges are also not overcome by other technologies either.

One thing that is already on the Volta teams‟ agenda is the optimization of the JavaScript code. We agree

with the fact that this should be optimized. As an example, a simple chatter program that took around two

to three seconds to load its JavaScript code in order to start. In comparison with the performance of

applications build with the Google Widget Toolkit like Google Docs it seems that this Volta CTP is way

behind. Script# currently offers more support to the .NET framework (reflection, for example).

In short it is too early to say whether Volta provides better or worse results in comparison with currently

launched software. Currently Volta is not capable to ease development more than GWT and Script# are

capable of.

Q 5.3 What exact goals do these other technologies have and how does Volta perform in
relation to these goals?

The goals of GWT and Script# are to deliver a compiler from one language to JavaScript (Java and CIL,

respectively). Both do not target tier-splitting.

In Volta not everything works as expected and not all library functions are fully supported. Missing out on

inheritance on the server side tier is also a big limitation.

 © 2008 Avanade Inc. All Rights Reserved. 51

Volta enables easier development in area of tier-splitting, because communication code is not an issue

anymore. The only thing the developer should be very aware of possible security issues induced by a target

tier. Still, the developer is able to concentrate on this instead of creating the communication code itself.

Comparing Volta with GWT and Script# is not possible one-on-one. GWT and Script# are more mature and

support more functionality. Volta gives one great advantage of tier-splitting, but this is also not totally

finished. For now GWT and Script# seem to be the better options for Web application developers.

Q 5.4 What are the practical results of other technologies in comparison with what Volta
strives to achieve?

The most obvious candidates for this question are GWT and Script#, but due to a shortage of time it was

not possible to examine these technologies. It would still be very interesting what their results are in a

situation where Volta is in a more mature phase of its development.

Q 5.5 Does Volta simplify multiple tier development scenarios?

Easy development of multi-tiered applications is where Volta is able to show its big advantage. The power

of Volta lies in its ability to split single-tier CIL code to multi-tier CIL code. The domain of Web

development has been chosen to demonstrate this, but it has not been implemented completely enough to

develop Web applications easier than established technologies. On the Volta website, the developers

announce future possibilities for Volta: “Further, execution contexts such as XNA, WinForms, DHTML,

SVG, VML, even SQL are realistic client targets (tiers) for Volta.” (8)

Currently Volta does not fully simplify development of multiple tier applications. It is simple not mature

enough to easily develop an application. In the case that other technologies and the .NET framework would

be fully supported the situation would probably be different as Volta would be fully able to take care of the

communication code.

Results of Main question 5

It is difficult to fully assess the performance of Volta in relation to other technologies, since Volta is in a

very early stage of development. Volta is at a CTP stage, which is meant to demonstrate the basic idea.

Comparable technologies are a lot further in the development cycle. Obviously, other technologies provide

better support, documentation and performance. Also, they offered more complete solutions for security.

On the other hand, the tier-splitting capabilities of Volta are not available in any other technology: this is

Volta‟s unique selling point. Currently, other technologies for building Web applications perform better,

but if Volta is further developed, it might catch up and eventually surpass them.

52 © 2008 Avanade Inc. All Rights Reserved.

23. Research conclusions and recommendations

At the time of this report, Volta was at an early stage of development. To be able to give a good perspective

of the value of this technology, an overview is provided of what Volta‟s current state is, what will be

possible in the future and what issues Volta will not be able to solve.

In section 23.1, the point of view of the project team will be given, along with a number of

recommendations for the future development of Volta.

What is Volta currently?

Volta is a technology that provides the ability to create a basic Web application that can be split into two

tiers. There is a number of limitations that make the current release not fit for commercial use.

Volta can be used in cooperation with other technologies, but this often requires workarounds that are

tedious to implement.

By using the Visual Studio it brings Volta the advantage of the available facilities for testing and

collaboration.

Implementing security mechanisms in Volta is not easier or harder than in comparable Web development

technologies.

What can Volta be in the near future?

Volta has several problems that can be solved in a future release. In order to overcome the restrictions that

Volta currently imposes, it is possible to implement the following:

 More support for the Base Class Library;

 Inheritance for server-side classes;

 Extension of tier-splitting to more than two tiers

More documentation should be provided to be able to use Volta for a realistically sized project.

The performance of JavaScript can be improved in order to offer competing response times for Web

applications.

In a future version cooperation with other .NET technologies can be simplified. This will allow Volta to be

a complete Web application development tool.

Testing and debugging the generated JavaScript is currently very difficult. Improving the simulation that

the Debug mode provides can solve this in the future.

What problems does Volta not solve

Volta does not solve problems introduced by distributing processes across multiple tiers. A developer still

needs to know about the possible problems of distributed computing.

Another drawback of the abstraction of tiers during the development is that a developer might not be aware

of the security issues of the targeted tier. These security issues are also not solved by Volta.

 © 2008 Avanade Inc. All Rights Reserved. 53

23.1. Recommendations

Volta is an interesting technology which promises to offer convenient tools for Web development.

However, our research showed several unresolved issues in the current Community Technology Preview.

Because of these issues we conclude that Volta is currently not fit for actual Web development projects.

We recommend the development team focuses on the following issues in order to change this.

1. Provide more documentation. We continuously ran into problems that could have been prevented

if the limitations and possibilities are better documented. Through trial and error certain

limitations and workarounds were found for letting Volta cooperate with other technologies.

2. Equalize the behavior of Volta code in Debug and Release mode. It is very difficult to debug a

program since the Debug mode differs from the Release mode. A developer spends too much time

on debugging the actual application.

3. Decrease the number of restrictions on classes. This limitations make Web development difficult

and obstruct the programmer from really being able to delay the choice of tier-splitting classes.

4. Increase cooperation with other technologies. Making Volta pages cooperate with these

technologies required workarounds that could be simplified, while the technologies can offer very

useful extensions to Volta and vice versa.

5. Optimize for performance. Currently a website created with Volta performs worse comparing to

websites built with other technologies. This decreases the user experience of Volta websites.

6. Increase security functionality. Although it is possible to use encryption, other standard security

functions have to be implemented by the developer. This costs time and brings the additional risk

that JavaScript functions can be changed by the user.

Disregarding these issues, Volta can offer an easy way for tier-splitting an application:

 .NET languages can be used for developing Web applications.

 Developers do not have to worry about communication code of multi-tier applications.

 The facilities of the Visual Studio IDE can be used for testing, debugging and cooperating with

other technologies.

 The end-to-end profiler is a useful tool for analyzing and optimizing a tier-split program.

However, developers should still be aware of the consequences of where certain program code is executed.

In this sense, tier-splitting will always be difficult, but Volta speeds up the process following this decision.

All in all, the community technology preview of Volta looks promising. It is currently not fit for developing

actual Web applications, but if the developers continue working on Volta and address the issues, Volta

could prove to be a useful toolkit for Web development.

54 © 2008 Avanade Inc. All Rights Reserved.

 © 2008 Avanade Inc. All Rights Reserved. 55

24. Conclusions

This report describes our project, the showcase and the research done on the Microsoft Web developing

framework Volta.

The current version of Volta is a Community Technology Preview. Developing with an early release of a

technology can result in unexpected situations. To account for these situations, sufficient time should be

reserved in the planning for set-backs and familiarization with the technology.

Combining different requirements from multiple principals requires special attention.

The initial planning for this project was too optimistic. This optimism reflected our idea of Volta, acquired

during the pre-research. However, this idea was based on the aims of Volta which is different from its

current state. The roles and cooperation had a positive effect on the progress of this project.

The showcase does not demonstrate what can easily be achieved with Volta; instead it is an application that

explores the boundaries of Volta. The experiences gained during the implementation of this showcase can

contribute to the improvement of Volta.

The research showed that Volta is an interesting technology that promises convenient tools for Web

development. However, several unresolved issues in the current release make Volta not fit for actual Web

development projects. It should also be mentioned that Volta does not solve all problems for distributed

computing. A number of recommendations for the development team have been provided which can

improve the usefulness of Volta:

1. Provide more documentation.

2. Equalize the behavior of Volta code in Debug and Release mode.

3. Decrease the number of restrictions on classes

4. Increase cooperation with other technologies.

5. Optimize performance.

6. Increase security functionality

Lessons learned

Looking back on this project there are a few important lessons learned:

 Special care needs to be taken when using experimental and conceptual software. Take about

twice the development time in order to keep a realistic planning when developing an application.

 A demonstration of an application needs preparation. Time and resources need to be reserved for

this.

 Research questions tend to get too broad. Particular aspects should be researched and pointed out

in the total picture. Optionally have some extra question in case there is time left, but try to focus.

 Beware of badly documented or undocumented software, especially when the software is

experimental. The combination of no documentation and bad error messages often turn out in time

consuming trial and error situations.

 Do not use multiple beta-, alpha- or other prerelease software simultaneously. This only

complicates things even more.

56 © 2008 Avanade Inc. All Rights Reserved.

Glossary

ASP.NET A web application framework developed and marketed by Microsoft used by
programmers to build dynamic Websites, Web applications and Web
services. This is mainly based on preprocessed code generating Code-behind
and DHTML.

Auto completion Auto completion in a program predicts a word or phrase that the user wants
to type in without the user actually typing it completely.

Base Class Library The library that is available for every programming language in the .NET
Framework

CIL Common Intermediate Language is a low-level programming language
resembling assembly to which all .NET languages are compiled. Also known
as MSIL.

CMS A content management system (CMS) is computer software used to create,
edit, manage, and publish content in a consistently organized fashion

Code-behind A model used in ASP.NET where dynamic code is separated from the static
presentation layer. Code-behind typically takes care of data connections and
event handling.

CTP A Community Technology Preview is a pre-release version of software
intended as a proof-of-concept for the community.

DHTML Stands for Dynamic HTML collective term for the combination of
technologies that enable dynamic web pages. A common website uses a
markup language, a presentation definition language, a scripting language
and the DOM.

DOM The Document Object Model is a platform- and language-independent
standard object model for representing HTML or XML and related formats.

End-to-end profiler A tool that tracks the sequence of an application and allows analysis of
messages between tiers. See Rotunda.

Flash This Adobe product enables a virtual machine in a browser. Flash is mainly
used to animations and interactive web applications.

Fluid A webpage is fluid if all components resize proportionally.

IDE An Integrated Development Environment provides comprehensive facilities
for the development of software applications.

IntelliSense A Microsoft's implementation of auto completion, best known for its use in
the Microsoft Visual Studio integrated development environment. In
addition to completing the symbol names the programmer is typing,
IntelliSense serves as documentation and disambiguation for variable
names, functions and methods using metadata-based reflection.

JSP Java Server Pages is a Java technology that allows software developers to
dynamically generate HTML, XML or other types of documents in response
to a Web client request.

 © 2008 Avanade Inc. All Rights Reserved. 57

LINQ Language Integrated Query (LINQ, pronounced "link") is a Microsoft .NET
Framework component that adds native data querying capabilities to .NET
languages using syntax reminiscent of SQL.

MS SQL Server Microsoft SQL Server is a relational database management system (RDBMS)
produced by Microsoft.

MSDN The Microsoft Developer Network (MSDN) is the portion of Microsoft
responsible for managing the firm's relationship with developers.

out (C#)
The out keyword causes arguments to be passed by reference. This is similar to the

ref keyword, except that ref requires that the variable be initialized before being

passed.

PHP PHP: Hypertext Preprocessor; a computer scripting language, originally
designed for producing dynamic web pages. PHP is solely executed server-
side.

project (Visual
Studio)

A configuration facility used by Visual Studio. Among these configurations it
takes care of compilation directives, file management and the dependence
of certain files on other files.

ref(C#) The ref keyword causes arguments to be passed by reference. The effect is
that any changes to the parameter in the method will be reflected in that
variable when control passes back to the calling method.

REST Representational State Transfer is a style of software architecture for
distributed hypermedia system.

Rotunda An end-to-end profiler that comes with the Volta installation.

Ruby Ruby is a dynamic, reflective, general purpose object-oriented programming
language.

SaaS Software as a Service (SaaS) is a software application delivery model where a
software vendor develops a web-native software application and hosts and
operates (either independently or through a third-party) the application for
use by its customers over the Internet. Customers do not pay for owning the
software itself but rather for using it.

Script# A .NET script language aimed at browser programming.

Silverlight Microsoft Silverlight plug-in for delivering Web User Interfaces.

Solution
(Visual Studio)

Set of projects in Visual Studio.

Spoofing The act of successfully masquerading a person or program as another by
falsifying data.

SVG An XML specification and file format for describing two-dimensional vector
graphics.

TFS Team Foundation Server (commonly abbreviated TFS) is a Microsoft offering
for source control, data collection, reporting, and project tracking, and is
intended for collaborative software development projects.

Tier A layer in a multitier software architecture.

Tier-splitting Splitting of an application among tiers.

58 © 2008 Avanade Inc. All Rights Reserved.

URI Uniform Resource Identifier, an identifier for a resource available on the
internet.

URL Uniform Resource Locator, an URI describing the address of the resource.

Visual Studio An IDE for .NET application development by Microsoft.

VMware An application that enables running a virtual machine with its own hardware
and software on a host computer.

WCF Windows Communication Foundation, a Microsoft's framework to build
applications that intercommunicate.

WDSL Web Services Description Language, an XML-based language for describing
Web services.

WinForms A Microsoft's graphical user interface API.

Wireshark A network protocol analyzer.

XmlHttpRequest API for transfer of XML and other text data between a web server and a
browser.

XNA A Microsoft's game development platform.

 © 2008 Avanade Inc. All Rights Reserved. 59

References

1. PRWeb. SaaS 2.0: Saugatuck Study Shows Rapid SaaS Evolution to Business Platforms. Westport, CT :

PRWeb, 2006.

2. InterAKT. AJAX: Asynchronously Moving Forward. InterAKT Online. [Online] November 10, 2005.

[Cited: June 29, 2008.]

http://www.interaktonline.com/support/articles/Details/AJAX:+Asynchronously+Moving+Forward-

Why+use+AJAX%3F.html?id_art=36&id_asc=309.

3. Avanade. Avanade home page. Avanade. [Online] Avanade inc., 2008. http://www.avanade.com.

4. From Sequential Programs to Multi-Tier Applications by Program Transofrmation. Matthias

Neubauer, Peter Thiemann. Long Beach, CA : ACM, 2005. 0362-1340.

5. Microsoft Corporation. Announcing Volta: Web Development Using Only the Materials in the Room.

Microsoft Live Labs Volta. [Online] Microsoft Corporation, December 05, 2007. [Cited: February 15,

2008.]

http://labs.live.com/volta/blog/Announcing+Volta+Web+Development+Using+Only+The+Materials+In+T

he+Room.aspx.

6. Cappell, David. Introducing Windows Communication Foundation. s.l. : Microsoft Corporation, 2007.

p. 36.

7. Avanade. About Us. Avanade. [Online] Avanade inc., 2007. [Cited: March 3, 2008.]

http://www.avanade.com/about/.

8. Microsoft Corporation. Volta Fundamentals. Microsoft Live Labs Volta. [Online] Microsoft

Corporation, December 05, 2007. [Cited: February 28, 2008.] http://labs.live.com/volta/docs/.

9. Dyer, Wes. Volta Forum - Server to client messaging. MSDN Forums - Microsoft Live Labs Volta.

[Online] Microsoft Corporation, February 08, 2008. [Cited: April 25, 2008.]

http://forums.microsoft.com/msdn/ShowPost.aspx?PostID=2812777&SiteID=1.

10. Michigan), Thuan L. Thai and Hoang Q. Lam. (University of. .NET Framework essentials. s.l. :

O'Reilly, 2003.

11. Microsoft Corporation. Frequently Aksed Questions. Microsoft Live Labs Volta. [Online] Microsoft

Corporation. [Cited: april 10, 2008.] http://labs.live.com/volta/faq/.

12. Mesbah, Ali. Scientific Activities. Ali Mesbah. [Online] April 16, 2008. [Cited: June 17, 2008.]

http://www.st.ewi.tudelft.nl/~mesbah/.

13. Rotem-Gal-Oz, Arnon. Fallacies of Distributed Computing Explained. Arnon Rotem-Gal-Oz's Cirrus

Minor. [Online] June 28, 2006. [Cited: June 25, 2008.] http://www.rgoarchitects.com/Files/fallacies.pdf.

14. Microsoft Corporation. UI and Ajax Recipes. Microsoft Live Labs Volta. [Online] Microsoft

Corporation, December 5, 2007. [Cited: June 9, 2008.] http://labs.live.com/volta/docs/recipes/ux.aspx.

15. Richter, Christoph. Volta Forum - Volta & WCF services. MSDN Forums - Microsoft Live Labs

Volta. [Online] Microsoft Corporation, December 10, 2007. [Cited: June 10, 2008.]

http://forums.microsoft.com/msdn/ShowPost.aspx?PostID=2532303&SiteID=1.

16. Fielding, Roy Thomas. Architectural Styles and the Design of Network-based Software Architectures,

Doctoral dissertation. Irvine : University of California, 2000.

17. Comet (programming). Wikipedia. [Online] [Cited: 07 09, 2008.]

http://en.wikipedia.org/wiki/Comet_(programming).

60 © 2008 Avanade Inc. All Rights Reserved.

18. Microsoft Corporation. Volta Sample Applications. Microsoft Live Labs Volta. [Online] Microsoft

Corporation, December 5, 2007. [Cited: 03 29, 2008.] http://labs.live.com/volta/samples.aspx.

19. Dai Clegg, Richard Barker. Case Method Fast-Track: A RAD Approach. s.l. : Addison-Wesley

Professional, 1994. 978-0201624328.

20. Kantamneni, Harish. Volta Forum - More integration with ASP.NET. Microsoft Live Labs Volta.

[Online] Microsoft Corporation, December 19, 2007. [Cited: June 11, 2008.]

http://forums.microsoft.com/MSDN/ShowPost.aspx?PostID=2573924&SiteID=1.

21. Merrill, Christopher L. Performance Impacts of AJAX Development. Web Performance. [Online]

January 15, 2005. [Cited: June 29, 2008.]

http://www.webperformanceinc.com/library/reports/AjaxBandwidth/.

22. Velzen, Danny van. Volta Forum - Next version of Volta... optimization? Microsoft Live Labs Volta.

[Online] Microsoft Corporation, March 14, 2008. [Cited: April 20, 2008.]

http://forums.microsoft.com/MSDN/ShowPost.aspx?PostID=3003469&SiteID=1.

 © 2008 Avanade Inc. All Rights Reserved. 61

Appendices

A. A very basic chat program

using System;

using Microsoft.LiveLabs.Volta.Html;

using Microsoft.LiveLabs.Volta.Xml;

namespace SharedData

{

 public partial class VoltaPage1 : Page

 {

 public Paragraph p1;

 public Paragraph p2;

 public Input invoer;

 public Button get;

 public Button set;

 public Button setname;

 private String name;

 public VoltaPage1()

 {

 InitializeComponent();

 getstring();

 }

 partial void InitializeComponent()

 {

 p1 = new Paragraph();

 p2 = new Paragraph();

 set = new Button();

 get = new Button();

 setname = new Button();

 set.Value = "Send";

 get.Value = "Get new message";

 setname.Value = "Set nickname";

 set.Click += new HtmlEventHandler(setstring);

 get.Click += new HtmlEventHandler(getstring);

 setname.Click += new HtmlEventHandler(setnickname);

 invoer = new Input();

 name = "Unknown";

62 © 2008 Avanade Inc. All Rights Reserved.

 Document.Body.Add(p1);

 Document.Body.Add(p2);

 Document.Body.Add(setname);

 Document.Body.Add(invoer);

 Document.Body.Add(set);

 Document.Body.Add(get);

 }

 public void setstring()

 {

 server.setbericht(name + " says: " +

 invoer.Value.ToString());

 getstring();

 }

 public void getstring()

 {

 p1.InnerText = p2.InnerText;

 p2.InnerText = server.getbericht();

 }

 private void setnickname()

 {

 name = invoer.Value.ToString();

 p1.InnerText = p2.InnerText;

 p2.InnerText = "Nickname set to: " +

 invoer.Value.ToString();

 }

 }

}

Code sample 7. A very basic chat program.

 © 2008 Avanade Inc. All Rights Reserved. 63

B. Fibonacci sample program

Program code for calculating the n
th

 Fibonacci number. The calculation can be switched from client to server by

uncommenting the [RunAtOrigin()] attribute.

using System;

using Microsoft.LiveLabs.Volta.Html;

using Microsoft.LiveLabs.Volta.Xml;

using Microsoft.LiveLabs.Volta.MultiTier;

namespace Fibonacci

{

 public partial class VoltaPage1 : Page

 {

 Paragraph p;

 Button b10, b20, b30, b40, b42, b45, b50;

 public VoltaPage1()

 {

 InitializeComponent();

 }

 partial void InitializeComponent()

 {

 p = new Paragraph();

 b10 = new Button();

 b10.Value = "Calculate 10th";

 b10.Click += delegate

 {

 p.InnerText = "result: " + serverside.calculate(10);

 };

 Document.Body.Add(p);

 Document.Body.Add(b10);

 //add buttons for other Fibonacci numbers

 }

 }

Code sample 8. A page that outputs the result of Fibonacci calculations.

64 © 2008 Avanade Inc. All Rights Reserved.

 // currently running at client; uncomment for calculation on server

 // [RunAtOrigin()]

 public static class serverside

 {

 public static int calculate(int order)

 {

 if (order <= 1)

 {

 return order;

 }

 else

 {

 return (calculate(order - 1) + calculate(order - 2));

 }

 }

 }

}

Code sample 9. We can decide here whether to compile for client or server tier calculation.

 © 2008 Avanade Inc. All Rights Reserved. 65

C. Requirements list

1. User Support

1.1. Registration

1.2. Wizard

1.2.1. Import during wizard

1.2.1.1. Import from Live account

1.2.1.2. Import from Facebook

1.2.1.3. Import from OpenSocial

1.3. Login

1.3.1. Login‟s on other social networks

1.3.1.1. Live Account

1.3.1.2. Facebook

1.3.1.3. OpenSocial

2. Profile

2.1. Data

2.1.1. Personal information

2.1.2. Location

2.2. Create

2.2.1. Wizard support

2.3. Modify

2.3.1. Automated information updates (i.e. age through birth date)

2.4. Rights

2.4.1. View

2.4.2. Modify by friends

2.4.3. Group views

2.4.4. Third party

2.5. Linked with other social networks

2.5.1. Live

2.5.2. Facebook

2.5.3. OpenSocial

2.6. CO2 footprint (linked to 3)

2.7. Buddy list

2.7.1. Add, remove, search buddies

2.7.2. Statistics

2.7.3. Subgroups (i.e. all your school friend)

3. CO2 footprint (show/calculation)

3.1. Transportation

3.1.1. Car

3.1.1.1. Petrol

3.1.1.2. Routes

3.1.1.2.1. Include extra CO2 according to traffic jams

3.1.1.3. Carpooling

3.1.1.4. Last mile

3.1.2. Public transport

3.1.2.1. Bus

3.1.2.2. Train

66 © 2008 Avanade Inc. All Rights Reserved.

3.1.2.3. Metro

3.1.2.4. Tram

3.1.3. Boat

3.1.4. Airplane

3.2. Household

3.2.1. Power

3.2.2. Gas

3.2.3. Smart metering

3.3. Food

3.4. Products

3.4.1. Production CO2

3.4.2. Waste processing

3.5. Other

3.5.1. Module support to add new things to measure

3.5.2. Personal plug-ins

3.6. Overview

3.6.1. Pie-charts

3.6.2. Graphs

3.6.3. View per year, month, week and day

3.6.4. Averages, peaks

4. Optimization (Goal to lower CO2)

4.1. Active

4.1.1. Route planner (TraVolta)

4.1.1.1. Traffic jam information

4.1.1.1.1. Predict jams according to route information of our users

4.1.1.2. Carpooling

4.1.1.3. Last mile

4.1.2. Other?

4.2. Passive (Text tip)

4.2.1. General random tips

4.2.2. Specific/Relevant knowhow

4.2.2.1. Specific knowhow with comparing information

5. News

5.1. Show news

5.2. News integration from other sources

5.3. RSS support

6. Partner management

6.1. Show list of partners

6.2. Adding, removing, editing and publishing of GReen partners

6.3. Banner management

6.3.1. Show banners

6.3.1.1. Page dependent banners

6.3.2. Adding, removing and editing banners

7. Mailing list

7.1. User management

7.2. Sending emails

8. Administrative interface

 © 2008 Avanade Inc. All Rights Reserved. 67

8.1. Overall right management

8.2. Web service

8.2.1. Provide a web service

8.2.2. Configuration

8.3. Theme management

8.4. Content management

8.5. User management

9. Integration with Silverlight

68 © 2008 Avanade Inc. All Rights Reserved.

D. MoSCoW analysis

MoSCoW analysis and implementation status

Number Description Status

Must haves

1. User Support Implemented

1.1. Registration Not implemented: this did not add value to our research

or showcase.

1.3. Login Implemented

2.7. Buddy list Not implemented

2.7.1. Add, remove, search buddies Present in Windows Live ID, not incorporated into our

site.

3 CO2-footprint Implemented as GReenGRasp (a positive display of CO2-

footprint)

3.6. Overview (basic) Implemented

3.6.3. View per year, month week and day An overview of the last five weeks can be displayed

3.6.4. Averages Averages per week are calculated as part of the

GReenGRasp.

4 Optimization (basic) Not implemented: required too much knowledge

regarding CO2 emission, which is not a goal of the

project 4.2.1 General tips

5. News Implemented

5.1. Show news Implemented

5.2. News integration from other

sources

Not implemented: we already tested the consumption of

Web services elsewhere

7. Mailing list Implemented, but dropped in the final version, since

sending e-mails was not supported by Volta

7.2. Sending emails Not Implemented: not possible with Volta

 © 2008 Avanade Inc. All Rights Reserved. 69

Should haves

1.2. Registration Wizard Not implemented, see feature 1.1

1.2.1.1. Import from Live account Idem ditto

1.3.1.1. Login Live Account Implemented through ASP.NET

2. Profile Implemented in the database and database interface,

however nothing is done with it in our current version of

the application.

2.1. Personal information

Not implemented

2.2. Create Profile

2.3. Modify Profile

2.4. Rights

2.4.1. View

2.5. Linked with other social networks

2.5.1 Live

2.6. CO2 footprint (linked with 3) Implemented

3.1. Transportation Implemented (TravelGRasp)

3.1.1. Car Implemented

3.1.1.2. Routes Implemented through integration with Virtual Earth.

3.1.2. Public Transport Not implemented

3.2. Household Implemented (HouseGRasp)

3.2.1. Power Implemented

3.2.2. Gas Not implemented

3.3. Food Implemented (very basically: FoodGRasp)

70 © 2008 Avanade Inc. All Rights Reserved.

3.6. Overview Implemented

3.6.1. Pie-charts Not Implemented: we believed bar and line graphs to

provide a better overview

3.6.2. Graphs Implemented using VisiFire in Silverlight

5.3. RSS Support Not implemented, see 5.2

7.1. User management

All not implemented: low added value and lack of time

8. (Basic) administrative interface

8.1. General right management

8.4 Content management

8.5. User management

Could haves

1.2.1.2. Import from Facebook; 1.3.1.2. Login Facebook; 1.2.1.3. OpenSocial; 1.3.1.3. Login OpenSocial;

2.1.2. User Location; 2.5.2. Facebook; 2.5.3. OpenSocial; 3.1.2.1. Bus; 3.1.2.2. Train; 3.1.2.3. Metro; 3.1.2.4.

Tram; 3.1.4. Airplane; 3.2.3. Smart Metering; 3.3. Food (more precise); 4.2.2. Specific/Relevant knowhow;

4.2.2.1 Specific knowhow with comparing information; 6. Partner Management; 6.1 Show list of partners; 6.2.

Adding, removing, editing and publishing of GReen partners; 6.3. Banner management; 6.3.1. Show banners;

6.3.2. Adding, removing and editing banners; 8. Administrative interface (extended); 8.2. Web service; 8.2.1.

Provide a web service; 8.2.2. Configuration

Would haves

2.4.2. Modify by friends; 2.4.3. Group views; 2.4.4. Third party; 2.7.3. Subgroups; 3.1.1.1. Petrol; 3.1.1.2.1.

Include extra CO2 according to traffic jams; 3.1.1.3. Carpooling; 3.1.1.4. Last mile; 3.1.3. Boat; 3.4. Product;

3.4.1 Production CO2; 3.4.2. Waste processing; 3.5. Other; 3.5.1. Module support to add new things to

measure; 3.5.2 Personal plug-ins; 6.3.1.1. Page dependent banners; 8.3. Theme management;

 © 2008 Avanade Inc. All Rights Reserved. 71

E. Package diagrams

Figure 10. Client package diagram

72 © 2008 Avanade Inc. All Rights Reserved.

Figure 11. Server package diagram

 © 2008 Avanade Inc. All Rights Reserved. 73

F. Detailed Class Diagrams per Package

Figure 12. Components package

74 © 2008 Avanade Inc. All Rights Reserved.

Figure 13. GUI Package

 © 2008 Avanade Inc. All Rights Reserved. 75

Figure 14. LoginControl package

76 © 2008 Avanade Inc. All Rights Reserved.

Figure 15. ContentControl package

Figure 16. ServerSideLibraryMapper package

 © 2008 Avanade Inc. All Rights Reserved. 77

Figure 17. ServerSideLibrary package

78 © 2008 Avanade Inc. All Rights Reserved.

G. Database diagram

Figure 18. Database Model

 © 2008 Avanade Inc. All Rights Reserved. 79

H. User Interface GReenGRasp

At the main page the user can see the current news, as present in the News Table of the GReenGRasp Database. On

the top the user can login through its GReenGRasp account and on the bottom through Windows Live.

If the login succeeds the user is then presented with the GReenGRasp Silverlight interface. This interface has five

main buttons: the Buddy Button, the HouseGRasp button, the Travel GRasp button, the FoodGRasp button and the

GReenGRasp display button. Each of these main buttons displays a different side screen, each with different

functionalities.

Figure 19. HouseGRasp

The HouseGRasp button displays the interface to update the HouseGRasp. On this interface the user can see the date

of their last HouseGRasp update. The date will be displayed in red if the last time the HouseGRasp was updated has

surpassed the acceptable interval. This also implies that your HouseGRasp will receive a penalty. Furthermore, the

user can update its HouseGRasp using the SmartMetering webservice by supplying the application with his device

name. In case the user does not have a smart meter or does not want to use this service, the user can enter the current

energy meter standings instead.

80 © 2008 Avanade Inc. All Rights Reserved.

Figure 20. TravelGRasp

The TravelGRasp screen displays an interface to enter a new TravelGRasp entry. A user can select a pre-defined

route or define a new one, for which Virtual Earth can be used to calculate the length of this route.

Figure 21. FoodGRasp

The FoodGRasp screen displays a simple interface to enter a new FoodGRasp entry; this only consists of a date and

an amount of CO2.

 © 2008 Avanade Inc. All Rights Reserved. 81

Figure 22. GReenGRasp overview

The GReenGRasp display button creates and shows the GReenChart. This chart displays the three independent

GRasps as bars and the composed GReenGRasp as a line for the past 5 weeks.

82 © 2008 Avanade Inc. All Rights Reserved.

I. Initial class diagram

Figure 23. Initial class diagram

 © 2008 Avanade Inc. All Rights Reserved. 83

J. GReenGRasp

The main aim of GReenGRasp is to deliver a tool where it is possible to supply a concrete indication value on the

green awareness of a person. The GReenGRasp value is divided into three main categories: the HouseGRasp, the

TravelGRasp and the FoodGRasp.

In and around every house, electricity, gas and water are used to maintain a household. By using new technology,

that is already underway, called Smart Metering, we automate the calculation the energy consumption of a

household. The GReenGRasp value represents the rate of green awareness of a person. This value should give a

recognizable and quick impression to reflect this.

The score is mainly an indication for a user to about how active he or she is in comparison with others. As it

becomes more difficult to be more environmentally aware when approaching a neutral state, the GReenGRasp will

increase more rapidly when one approaches the neutral area.

A requirement of the GReenGRasp was that it should have a value of 100 when a person‟s “environmental weight”

is on average. The value should be 1000 when a person has no perceivable impact on the environment (this could be

accomplished by emission compensation). Another requirement is that it should increase faster when one is able to

become relatively “greener” when approaching a neutral environmental weight.

The GReenGRasp function

The following formula satisfies these requirements:

Where G represents the GReenGRasp and x represents the ratio of the personal vs. average environmental weight

(i.e. Carbon Footprint, waste production, wood usage etc).

We use the ratio of the environmental weight, because this makes it possible to apply this formula for multiple

environmental weight expression methods. This way the formula is generally applicable.

Figure 24. The relation between a person's carbon footprint and GReenGRasp

84 © 2008 Avanade Inc. All Rights Reserved.

Currently the GReenGRasp is composed by 3 sub GRaps: HouseGRasp, TravelGRasp and FoodGRasp. Each of

these GRasps contributes equally to the total: the GReenGRasp. If no input is provided for a certain GRasp during a

certain period a penalty is applied to the score, lowering and sometimes even nullifying a person‟s GReenGRasp.

 © 2008 Avanade Inc. All Rights Reserved. 85

K. Planning

Figure 25. Planning from the Working Method

Figure 26. Planning from 8th of May

86 © 2008 Avanade Inc. All Rights Reserved.

Figure 27. Planning from the 4th of June

 © 2008 Avanade Inc. All Rights Reserved. 87

L. Server specifications

Virtual Hardware (VMware 1.05)

Processor Intel® Pentium® M processor, 2.00 GHz, 32-bit

Memory 1022 MB

Hard disk drive size 16 GB

Network interface 1 Gbit/s

Software

Operating System Windows Web Server 2008

Web server Internet Information System 7.0

Database MS SQL Server 2005

IDE Visual Studio 2008 Team Foundation edition

Design Environment Microsoft Blend 2.5 (March and June preview)

Other .NET framework 3.5

Volta CTP release of February 21st

SQL Management Studio 2005

Silverlight 2 beta 1 and beta 2

88 © 2008 Avanade Inc. All Rights Reserved.

M. Rotunda end-to-end profiling

Rotunda is a project by Microsoft that can profile end-to-end performance of applications. The goal is to enable

developers to create more efficient applications for the Web tier.

A first call which runs client-side can be seen on the left side of the picture, between 10:36:52:AM:781 and

10:36:53:AM:310.

The operations between 10:36:54:AM:531 and 10:36:56:AM:984 can clearly be distinct as a call to a server-side

function.

Figure 28. A screenshot from a client-side and server-side Fibonacci calculation

 © 2008 Avanade Inc. All Rights Reserved. 89

N. Silverlight implementation

From Silverlight to Volta we use the HtmlPage.Window.Invoke method, as can be seen in Code sample 10.

This invokes a JavaScript-function that is exported by the GReenGRaspWebsite class in Volta.

Furthermore, since the exported functions must be static, using static events to link these functions to the non-static

methods in our GReenGRaspWebsite was necessary. Also, all exported function names have to be lowercase;

this was discovered through trial and error. Code sample 11 shows an example of this construction applied to a route

function.

Communication from Volta to Silverlight works differently. On the Volta side we use the browser class

SilverLightCommunication to import JavaScript functions defined in Page.html, as can be seen in Code

sample 12.

[Export]

public static void getroutedistance(string name)

{

 // Fire getRouteDistanceEvent with name in the argument

 getRouteDistanceEvent(null,

 new SilverLightCallEventArgs(new object[]

 {

 name

 }));

}

Code sample 11. Silverlight to Volta communication in GReenGRaspWebsite

public void RouteSelected(object sender, EventArgs e)

{

 string name =

 (string)((ListBox)Routes.FindName("SavedRoutes")).SelectedItem;

 HtmlPage.Window.Invoke("getroutedistance", new object[]

 {

 name

 });

}

Code sample 10. Silverlight to Volta communication

90 © 2008 Avanade Inc. All Rights Reserved.

These JavaScript functions call methods of the Silverlight application marked with the ScriptableMember-attribute.

A sample of such a JavaScript function can be seen in Code sample 13; it calls the function of Code sample 14.

In order to send arrays through this path, the Volta JavaScript.Array class must be used, which is interpreted

as a ScriptObject by Silverlight and can be converted to a C# array. This is also displayed in Code sample 14.

[ScriptableMember]

public void createChart(object xValues,object yValues)

{

 string[] x = ((ScriptObject)xValues).ConvertTo<string[]>();

 string[] y = ((ScriptObject)yValues).ConvertTo<string[]>();

 …

}

Code sample 14. Page.xaml.cs in SilverLight

function createChart(a, xvalues, yvalues)

{

 var silverLightControl =

 document.getElementById('greensilver');

 silverLightControl.Content.Page.createChart(xvalues,yvalues);

}

Code sample 13. Calling a method of the Silverlight application in the JavaScript of Page.html

[Import("createChart", PassTypeParametersAsArguments = false)]

public extern void createChart(Array<string> xvalues,

 Array<string> yvalues);

Code sample 12. Importing a function to SilverLightCommunication

 © 2008 Avanade Inc. All Rights Reserved. 91

O. Pre-research report

	Preface
	Table of Contents
	Summary
	Introduction
	Volta
	Related technologies
	Visual Studio 2008
	Silverlight 2.0
	Windows Communication Foundation
	ASP.NET
	Virtual Earth

	Introduction
	Principals
	Avanade
	Delft University of Technology
	Imagine Cup

	Assignment
	Problem definition
	Research
	Showcase

	Planning
	Project setup
	Project Progression

	Evaluation
	Planning
	Multiple principals
	Project roles and cooperation

	Introduction
	Project assignment
	Requirements analysis
	General System Description
	Database Interface
	Components
	Layout

	Interoperability workarounds
	Silverlight
	WCF
	ASP.NET
	Windows Live

	Quality Assurance
	Evaluation
	Introduction
	Research aims
	Notes on solution applicability

	Overall findings of Volta
	Absence of documentation
	Debug and Release mode
	Tier-splitting with Volta
	Other features

	Main question 1: What possibilities and restrictions does Volta introduce with its tier splitting?
	What advantages does Volta create for tier-splitting?
	Writing program code
	The server tier
	The browser tier

	What complications does tier-splitting in Volta bring?
	How can Volta be used in Brownfield scenarios
	What problems regarding shared data can be solved using Volta?
	What restrictions does Volta impose to languages?
	C#
	Visual Basic
	Other .NET languages

	Is it possible to use the same Volta tools for every supported language?
	Results of Main question 1

	Main question 2: What is the performance of Volta?
	Main question 2a: Run-time performance
	How many resources will a Volta application require to operate with acceptable response times?
	What are the effects of tier-splitting on the performance of a Volta application?
	What is the difference between running an operation in the browser at the client side compared to running it server-side?
	Results of Main question 2a

	Main question 2b. Developer performance
	In which way does Volta support the development of feature rich applications?
	How much does Volta contribute to ease the development of an Internet application?
	Working environment and teamwork
	Tier-splitting
	Debug and Release modes
	The Document Object Model

	How easily can a Volta application be tested for security and bugs?
	Web tests
	Unit tests
	Load tests

	How does testing with a Volta application relate to ordinary Web development testing?
	Results of Main question 2b

	Main question 3: How does Volta contribute to secure development?
	Does Volta make it easier to construct error-free communication code?
	Does the JavaScript code generated by Volta contain obvious leaks?
	Can communication between tiers be established securely using security protocols such as SSL or TLS to prevent transferred data interception and manipulation?
	Is it possible to implement anti spoofing mechanisms and does Volta facilitate it?
	Is it possible to produce web applications/pages invulnerable to code injection and does Volta help prevent this?
	How does Volta contribute to security assurance? And is it easier to assure security with Volta than with common web development tools?
	Results of Main question 3

	Main question 4: How does Volta cooperate with other technologies?
	Which standards does Volta apply to already?
	Which standards will be implemented in the near future?
	Would there be any important standards that Volta is not going to support?
	In what ways can Volta be used by other technologies?
	Preprocessing Web technologies
	Browser based virtual machines

	How easily can Volta be used with another technology?
	Which technologies of Microsoft are supported?
	What is the overlap in these technologies?
	How does the integration work?
	Does Volta provide a way to use Web services?
	How easily can we use these Web services?
	In which way can Volta itself provide Web service(s)?
	What are the possibilities to cooperate with technologies of competitors?
	What are the possibilities to cooperate with technologies of partners?
	With which technologies can Volta cooperate and how does this work?
	MS SQL Server
	LINQ
	Windows Communication Foundation
	Silverlight
	ASP.NET

	Results of Main question 4

	Main question 5: How does Volta perform in comparison with resembling and competing technologies?
	Which technologies have similar if not comparable techniques to Volta and how do they ease the pain of SaaS driven development?
	Google Web Toolkit
	Script#

	How does Volta perform compared with other currently used techniques that strive to facilitate SaaS driven development?
	What exact goals do these other technologies have and how does Volta perform in relation to these goals?
	What are the practical results of other technologies in comparison with what Volta strives to achieve?
	Does Volta simplify multiple tier development scenarios?
	Results of Main question 5

	Research conclusions and recommendations
	What is Volta currently?
	What can Volta be in the near future?
	What problems does Volta not solve
	Recommendations

	Conclusions
	Lessons learned

	Glossary
	References
	Appendices
	A very basic chat program
	Fibonacci sample program
	Requirements list
	MoSCoW analysis
	Package diagrams
	Detailed Class Diagrams per Package
	Database diagram
	User Interface GReenGRasp
	Initial class diagram
	GReenGRasp
	The GReenGRasp function

	Planning
	Server specifications
	Rotunda end-to-end profiling
	Silverlight implementation
	Pre-research report

